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Abstract. A basic task of exploratory data analysis is the
characterisation of “structure” in multivariate datasets. For
bivariate Gaussian distributions, natural measures of depen-
dence (the predictive relationship between individual vari-
ables) and compactness (the degree of concentration of the
probability density function (pdf) around a low-dimensional
axis) are respectively provided by ordinary least-squares re-
gression and Principal Component Analysis. This study con-
siders general measures of structure for non-Gaussian distri-
butions and demonstrates that these can be defined in terms
of the information theoretic “distance” (as measured by rela-
tive entropy) between the given pdf and an appropriate “un-
structured” pdf. The measure of dependence, mutual infor-
mation, is well-known; it is shown that this is not a useful
measure of compactness because it is not invariant under an
orthogonal rotation of the variables. An appropriate rotation-
ally invariant compactness measure is defined and shown to
reduce to the equivalent PCA measure for bivariate Gaus-
sian distributions. This compactness measure is shown to be
naturally related to a standard information theoretic measure
of non-Gaussianity. Finally, straightforward geometric inter-
pretations of each of these measures in terms of “effective
volume” of the pdf are presented.

1 Introduction

A fundamental question in exploratory data analysis is: given
observations of two variablesx1 andx2, to what extent is the
joint distribution of these variables “interesting”, in the sense
that it is “structured”? Different kinds of structure can be
considered, among which some of the most important are:
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I Dependence: to what extent does knowledge ofx1 im-
ply knowledge aboutx2?

II Compactness: to what extent is variance shared between
x1 and x2; that is, how tightly concentrated around a
lower-dimensional surface is the joint probability den-
sity function (pdf)p(x1, x2)?

That these are distinct measures of structure is illustrated
by the the pdfs displayed in Fig.1, all of which by con-
struction have the same total variance var(x1)+var(x2). The
Gaussian pdf (a) describes uncorrelated variablesx1 andx2
without any clustering around a lower-dimensional surface;
it possesses no structure in either of the senses described
above. In contrast, the Gaussian pdf (b) is characterised by
more variance along one axis than the other. Whilex1 andx2
are independent, their joint pdf possesses compactness. The
Gaussian pdf (c) is equally concentrated around a single axis
as is (b), but in such a way that the variablesx1 andx2 are
correlated and thus also characterised by dependence.

For bivariate Gaussian distributions with pdf

p(x) =
1

2π
√

det6
exp

(
−

1

2
xT 6−1x

)
(1)

(assumed without loss of generality to be mean zero), where
xT

= (x1, x2) and the covariance matrix6 is defined as

6 =

∫
xxT p(x)d2x =

(
σ 2

x1
ρσx1σx2

ρσx1σx2 σ 2
x2

)
, (2)

then measures of structure associated with dependence and
compactness are associated respectively with ordinary least-
squares regression (OLS) and principal component analysis
(PCA) (the second of which is closely related to orthogonal
least squares regression). For OLS, the natural measure of
structure isρ2, the fraction of variance “explained” by the
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Fig. 1. Contours of joint pdfs ofx1, x2 displaying different degrees
of “structure”. (a) Gaussian pdf with no compactness or dependence
betweenx1 andx2. (b) Gaussian pdf displaying compactness but
not dependence. (c) Gaussian pdf displaying both compactness and
dependence. (d), (e) non-Gaussian pdfs displaying both compact-
ness and dependence. The variablesx1 andx2 are uncorrelated in
(d) and correlated in (e). Pdfs (b) and (d) have the same covariance
matrix, and would not be distinguished by traditional linear mea-
sures of dependence and compactness; the same is true of (c) and
(e). All pdfs have the same total variance var(x1)+var(x2) = TrΣ.

whereλ1 is the larger eigenvalue ofΣ. Values ofρ2 andF
for pdfs (a)-(c) are given in Table 1-1.

When the joint distributionp(x1, x2) is not Gaussian, the
issue of characterising structure is more subtle. Panel (d)in
Figure 1 contours the pdf

p(x1, x2) =
1

2πσ1σ2
exp

(

− x2
1

2σ2
1

− (x2 − a(x2
1 − σ2

1))2

2σ2
2

)

(4)

(for which mean(x1) = mean(x2) = 0, var(x1) = σ2
1 ,

var(x2) = 2a2σ4
1 + σ2

2), where the parameters(a, σ1, σ2)
have been chosen so that the pdfs in (b) and (d) have the
same covariance matrices. It is evident that the pdf (d) is
concentrated around a low-dimensional (nonlinear) curve,
and therefore also is characterised by compactness. In fact,

visual inspection suggests that the degree of concentration
of the pdf (and therefore of compactness) is greater for (d)
than for (b), but the traditional linear measure of compact-
nessF would not distinguish between them. Furthermore,
x1 andx2 in (d) are dependent, despite being uncorrelated:
strongly positive and negative values ofx1 are associated
with strongly positive values ofx2. The traditional linear
measure of dependenceρ2 does not characterise this struc-
ture. The compactness of pdf (d) has contributions from both
the anisotropy of the covariance matrix (shared with pdf (b))
and from the degree of non-Gaussianity. In order to tease
these apart, it is desirable to also define a third measure of
“interesting” structure:

III Non-Gaussianity: to what extent does the joint distribu-
tion differ from a bivariate Gaussian?

Such a measure would allow the determination for a given
pdf of the relative contribution to compactness of non-
Gaussianity and covariance anisotropy.

The pdf (e) (constructed by rotating the pdf (d) through
45◦) has the same covariance matrix as (c); again, these
pdfs would not be distinguished by the measuresρ2 andF .
By inspection, the degree of compactness of pdf (e) is the
same as that of pdf (d): the degree of concentration of a pdf
around a lower-dimensional curve should not depend on its
orientation. However, the degree of dependence betweenx1

and x2 has changed relative to (d) (for example, the con-
ditional pdf p(x2|x1) is much tighter forx1 > 0 than for
x1 < 0). This example further illustrates the fact that the
ideas of compactness and dependence are distinct. Finally,
the fact that the discussion of dependence, compactness, and
non-Gaussianity can be framed in terms of the plots in Fig-
ure 1 suggests that measures of each of these should have
straightforward geometrical interpretations.

The above discussion motivates the consideration of mea-
sures of compactness that are invariant under orthogonal ro-
tations, and which reduce to PCA for the case of a bivariate
Gaussian; of measures of dependence which arenot invari-
ant under rotation and which reduce to ordinary least-squares
for the case of a bivariate Gaussian; and of measures of non-
Gaussianity. The notion of “interesting” structure of course
is a relative concept, and can only be measured relative to
specified “uninteresting” distributions. In the construction of
these measures, we are thus confronted with the need to mea-
sure the difference between two pdfs: one data-driven, the
other some specified background reference. A natural frame-
work for measuring the difference between two pdfs is pro-
vided by information theory (e.g. Cover and Thomas, 1991;
Majda et al., 2005), through which such differences can be
related to the new “information” provided by the data-driven
pdf relative to the background pdf.

In fact, a well-known general measure of dependence is
provided by information theory: this is multiinformation
(which in two dimensions is also known as mutual informa-
tion). Similarly, information theory provides a natural mea-

Fig. 1. Contours of joint pdfs ofx1, x2 displaying different degrees
of “structure”. (a) Gaussian pdf with no compactness or depen-
dence betweenx1 andx2. (b) Gaussian pdf displaying compact-
ness but not dependence.(c) Gaussian pdf displaying both com-
pactness and dependence.(d), (e) non-Gaussian pdfs displaying
both compactness and dependence. The variablesx1 and x2 are
uncorrelated in (d) and correlated in (e). Pdfs (b) and (d) have
the same covariance matrix, and would not be distinguished by
traditional linear measures of dependence and compactness; the
same is true of (c) and (e). All pdfs have the same total variance
var(x1) + var(x2)=Tr6.

regression; for PCA it isF , the fraction of variance explained
by the first PCA mode:

F =
λ1

Tr6
, (3)

whereλ1 is the larger eigenvalue of6. Values ofρ2 andF

for pdfs (a)–(c) are given in Table1.
When the joint distributionp(x1, x2) is not Gaussian, the

issue of characterising structure is more subtle. Panel (d) in
Fig. 1 contours the pdf
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Table 1. Measures of dependence, compactness, and non-
Gaussianity for the distributions contoured in Fig.1. ρ2 is the
fraction of variance explained by ordinary least-squares regression,
F(p) is the fraction of variance explained by the first PCA mode,
M(p) is the generalised measure of dependence (Eq.16), C(p) is
the generalised measure of compactness (Eq.22), S(p) is the com-
pactness measure transformed to correspond toF(p) for a bivari-
ate Gaussian (Eq.27), andν(p) is the measure of non-Gaussianity
(Eq.31).

ρ2 F(p) M(p) C(p) S(p) ν(p)

(a) 0 0.5 0 0 0.5 0
(b) 0 0.69 0 0.15 0.69 0
(c) 0.15 0.69 0.15 0.15 0.69 0
(d) 0 0.69 0.55 0.69 0.91 0.63
(e) 0.15 0.69 0.37 0.69 0.91 0.63

(for which mean(x1)=mean(x2)=0, var(x1)=σ 2
1 , var

(x2)=2a2σ 4
1 +σ 2

2 ), where the parameters(a, σ1, σ2) have
been chosen so that the pdfs in (b) and (d) have the same
covariance matrices. It is evident that the pdf (d) is con-
centrated around a low-dimensional (nonlinear) curve, and
therefore also is characterised by compactness. In fact, vi-
sual inspection suggests that the degree of concentration of
the pdf (and therefore of compactness) is greater for (d)
than for (b), but the traditional linear measure of compact-
nessF would not distinguish between them. Furthermore,
x1 andx2 in (d) are dependent, despite being uncorrelated:
strongly positive and negative values ofx1 are associated
with strongly positive values ofx2. The traditional linear
measure of dependenceρ2 does not characterise this struc-
ture. The compactness of pdf (d) has contributions from both
the anisotropy of the covariance matrix (shared with pdf (b))
and from the degree of non-Gaussianity. In order to tease
these apart, it is desirable to also define a third measure of
“interesting” structure:

III Non-Gaussianity: to what extent does the joint distribu-
tion differ from a bivariate Gaussian?

Such a measure would allow the determination for a given
pdf of the relative contribution to compactness of non-
Gaussianity and covariance anisotropy.

The pdf (e) (constructed by rotating the pdf (d) through
45◦) has the same covariance matrix as (c); again, these
pdfs would not be distinguished by the measuresρ2 and
F . By inspection, the degree of compactness of pdf (e) is
the same as that of pdf (d): the degree of concentration of
a pdf around a lower-dimensional curve should not depend
on its orientation. However, the degree of dependence be-
tweenx1 and x2 has changed relative to (d) (for example,
the conditional pdfp(x2|x1) is much tighter forx1>0 than
for x1<0). This example further illustrates the fact that the
ideas of compactness and dependence are distinct. Finally,
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the fact that the discussion of dependence, compactness, and
non-Gaussianity can be framed in terms of the plots in Fig.1
suggests that measures of each of these should have straight-
forward geometrical interpretations.

The above discussion motivates the consideration of mea-
sures of compactness that are invariant under orthogonal ro-
tations, and which reduce to PCA for the case of a bivariate
Gaussian; of measures of dependence which arenot invari-
ant under rotation and which reduce to ordinary least-squares
regression for the case of a bivariate Gaussian; and of mea-
sures of non-Gaussianity. The notion of “interesting” struc-
ture of course is a relative concept, and can only be mea-
sured relative to specified “uninteresting” distributions. In
the construction of these measures, we are thus confronted
with the need to measure the difference between two pdfs:
one data-driven, the other some specified background refer-
ence. A natural framework for measuring the difference be-
tween two pdfs is provided by information theory (e.g.Cover
and Thomas, 1991; Majda et al., 2005), through which such
differences can be related to the new “information” provided
by the data-driven pdf relative to the background pdf.

In fact, a well-known general measure of dependence is
provided by information theory: this is multiinformation
(which in two dimensions is also known as mutual informa-
tion). Similarly, information theory provides a natural mea-
sure of non-Gaussianity known as negentropy. Less well-
established is a general measure of compactness. Previous
approaches to this problem, using tools such as Nonlinear
Principal Component Analysis (e.g.Monahan et al., 2003),
have been hampered by the lack of a rigorous theoretical
framework and by the methodological difficulties of nonlin-
ear nonparametric function estimation.

The goal of the present study is to further develop mea-
sures of “interesting” structure for general non-Gaussian
pdfs that can provide a rigorous basis for non-Gaussian ex-
ploratory data analysis. In particular, we will propose a gen-
eral measure of compactness with firm foundations in in-
formation theory and which reduces to PCA for bivariate
Gaussians. This measure will be contrasted with the well-
established measures of dependence and non-Gaussianity
provided by mutual information and negentropy. The mea-
sure of compactness will be seen to be a combined mea-
sure of Gaussianity and covariance isotropy, and therefore
to have a natural connection to the standard information the-
oretic measure of non-Gaussianity. This discussion presents
a unifying notion of “structure” in probability distributions:
each of the measures of dependence, compactness, and non-
Gaussianity are defined in terms of the information theo-
retic “distance” (as measured by relative entropy) between
the given pdf and the appropriate “unstructured” pdf. Fi-
nally, it will be shown that these measures have natural ge-
ometrical interpretations in terms of the “effective volumes”
of the associated probability distributions. A similar mea-
sure of compactness was introduced inPẽna and van der
Linde (2007); the present study demonstrates the connection

of the compactness measure to PCA, emphasizes the funda-
mental difference between it and mutual information as mea-
sures of structure, and illustrates how all of these measures
of structure can be expressed as relative entropies. There
has been considerable recent interest in information theoretic
measures of predictability in geophysical systems (e.g.Del-
Sole, 2004; Kleeman and Majda, 2005; DelSole and Tippett,
2007); the present study considers the applicability of these
ideas to exploratory data analysis. This study does not ad-
dress the problem of estimating these measures from finite
datasets: since the proposed measures apply to non-Gaussian
data the estimation problem is considerably more difficult
than those of the corresponding Gaussian measures, as the
underlying pdfs are not known a priori to be parameterised
with a finite set of coefficients. Nevertheless, one must have
a clear idea of what constitutes “interesting structure” with-
out regard to estimation questions before complexities due to
finite data can be addressed.

2 Information theoretic entropy

A natural starting point for the characterisation of the struc-
ture of the pdfp(x) of anN -dimensional random variablex
is the entropy

H(p) = −

∫
p(x) ln p(x)dx (5)

(e.g.Cover and Thomas, 1991). This quantity arises natu-
rally as the measure of the “information content” of a pdf,
and is characterised by the following properties relevant to
the discussion of “structure”:

1. Under a diffeomorphic coordinate transformation
x→x′

=G(x),

H(p(x′)) = H(p(x)) −

∫
p(x) ln

∣∣∣∣det

(
∂x
∂x′

)∣∣∣∣ dx (6)

(Majda et al., 2002). In particular, under a linear rescal-
ing of each variable:x′

i=aixi ,

H(p(x′)) = H(p(x)) +

N∑
i=1

ln |ai |, (7)

and under a unitary transformationx′
=Ux, H is invari-

ant

H(p(x′)) = H(p(x)). (8)

2. We have the inequality:

H(p) ≤
1

2
ln[(2πe)N det6] = H(pG), (9)

where H(pG) is the entropy of a Gaussian random
variable with the same covariance matrix asp(x) (e.g.

www.nonlin-processes-geophys.net/16/57/2009/ Nonlin. Processes Geophys., 16, 57–64, 2009



60 A. H. Monahan and T. DelSole: Measures of dependence, compactness, non-gaussianity

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

x/σ

p(
x/

σ)

 

 

p
1
(x)

p
2
(x)

p
3
(x)

Fig. 2. Three pdfs of equal variance but differing entropy:
H(p2)<H(p3)<H(p1). The Gaussian pdf has maximum entropy
among all pdfs with the same variance.

Cover and Thomas, 1991). Thus, of all distributions
with the same covariance matrix, the Gaussian has the
largest entropy (and so is minimally “informative”).
This point deserves further comment. The three uni-
variate pdfs (illustrated in Fig.2)

p1(x) =
1

√
2πσ

exp

(
−

x2

2σ 2

)
(10)

p2(x) =

{
1

2
√

3σ
|x| ≤

√
3σ

0 |x| >
√

3σ
(11)

p3(x) =
1

√
2σ

exp

(
−

√
2|x|

σ

)
(12)

are each of varianceσ 2 but of respective en-
tropies: H(p1)= ln(

√
2πeσ), H(p2)= ln(

√
12σ), and

H(p3)= ln(
√

2e2σ).

The entropy of the Gaussian distributionp1(x) is larger
than those of the other two distributions, and so it is
less “informative” than either: the boxcar distribution
p2(x) because it does not display long tails, and the ex-
ponential distributionp3(x) because it is sharply peaked
aroundx=0. The Gaussian distribution combines suffi-
cient flatness around its median value with sufficiently
thick tails to be maximally entropic (that is, minimally
informative).

3. A pdf is said to be sphered if all of the eigenvalues of
its covariance matrix are equal; that is, if it its covari-
ance matrix is proportional to the identity matrix (note
that while the covariance matrix of a sphered pdf is in-
variant under rotation, the pdf itself is not necessarily
isotropic). Given a pdfp(x′) with covariance6 ob-
tained from the sphered pdfpS(x) by a linear rescal-
ing of the coordinate axes such that the total variance
Tr6 is fixed, thenH(pS)≥H(p). That is, the entropy is
maximised by the sphered pdf among all pdfs related by
linear rescalings of the axes such that the total variance
is maintained. To see this result, fix the matrix6 (with
eigenvaluesλi) and consider the sphered pdfpS(x) with

covariance matrix(Tr6/N)IN , whereIN is the identity
matrix. The pdfp(x′) with covariance matrix6 is ob-
tained through a linear transformationx′

i=
√

γixi , where
γi=Nλi/Tr6 and thexi are aligned along the eigenvec-
tors of6. From Eq. (7), it follows that

H(p) = H(pS) +
1

2

N∑
i=1

ln
Nλi

Tr6

= H(pS) +
N

2
ln

[
N

Tr6
(det6)1/N

]
≤ H(pS), (13)

where the desired result (given by the final inequality)
follows from the arithmetic-geometric inequality:

Tr6

N
=

1

N

N∑
i=1

λi ≥

(
N∏

i=1

λi

)1/N

= (det6)1/N , (14)

(where equality holds when allλi are equal). Thus, if a
pdf is stretched along some axes and compressed along
others such that the total variance is unchanged, then the
pdf with maximum entropy arises when all axes carry
equal variance.

Note that it follows from this and the previous property
that of all pdfs with the same total variance, the entropy
is maximised by a sphered Gaussian. This fact can be
proved directly using standard maximum entropy meth-
ods (e.g.Cover and Thomas, 1991); properties 2 and 3
have been presented separately in order to highlight the
distinction between spheredness and Gaussianity in the
context of maximum entropy distributions.

A natural measure of the difference between two pdfsp(x)

andq(x) is the relative entropy:

D(p||q) =

∫
p(x) ln

(
p(x)

q(x)

)
dx (15)

(Cover and Thomas, 1991). This quantity is non-negative
(taking the value of zero only ifp=q) and is invari-
ant under an arbitrary invertible coordinate transforma-
tion x⇒x′

=G(x). While relative entropy is not a Eu-
clidean distance measure (in particular, it is not symmetric:
D(p||q)6=D(q||p)), it is a useful measure of the difference
between two pdfs. The measures of dependence, compact-
ness, and non-Gaussianity to which we now turn will each
be defined in terms of the relative entropy between the given
pdf and an appropriate “unstructured” pdf.

3 Measures of structure: dependence

By definition, the components of the random variablex are
independent if and only if their joint distribution factors as
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the product of the marginals:p(x)=
∏N

i=1 pxi
(xi). The well-

known result follows that a natural measure ofdependencein
a multivariate pdf is themultiinformation(Schneidman et al.,
2003)

I (x) = D(p(x)||

N∏
i=1

pxi
(xi))

=

N∑
i=1

H(pxi
(xi)) − H(p(x)), (16)

where the second equality follows from the definitions of
marginal distributions and of entropy. It follows that the
quantity

M(p) = 1 − e−2I (x)

= 1 −

(
exp

[
H(p(x)) −

N∑
i=1

H(pxi
(xi))

])2

= 1 −

(
exp(H(p(x)))∏N

i=1 exp(H(pxi
(xi)))

)2

(17)

is a measure taking values between 0 and 1, with
M(x)=0 when thexi are mutually independent andM(x)=1
when at least two variables are fully dependent (that is,
xj=f (x1, ..., xj−1, xj+1, ..., xN ) for somej ). For the mea-
sure of dependence, the “unstructured” pdf against which
the given pdf is compared is given by the product of the
marginals along eachxi which by construction has no de-
pendence among any of the variables.

For the bivariate case(N=2), I (x) is known as the mutual
information (e.g.Cover and Thomas, 1991). For a bivariate
Gaussian, it is well known that

I (x1, x2) = −(1/2) ln(1 − ρ2), (18)

whereρ is the correlation coefficient betweenx1 and x2,
from which it follows that

M(p) = 1 − exp(−2I (x1, x2)) = ρ2 (19)

In the limit thatp(x1, x2) is bivariate Gaussian, then,M(p)

corresponds to the fraction of variance accounted for by an
ordinary least-squares regression betweenx1 andx2.

The integral (16) defining mutual information is invariant
under an arbitrary coordinate transformation, and therefore
might be considered to also be a natural general measure of
compactness. In fact, the mutual information isnot invari-
ant under an orthogonal rotation ofx. This is most easily
seen in the context of a Gaussian distribution, for which the
correlation coefficientρ2 is not invariant under rotations: in
particular, under a rotation of(x1, x2) such that the coordi-
nate axes are aligned with the principal component axes, the
correlation coefficient vanishes. The resolution of this appar-
ent paradox is that while the integral in Eq. (16) is invari-
ant under the unitary transformationx→x′

=Ux, the integral
does not retain its identity as mutual information. This is

because under the rotation the product of the marginal distri-
butions of the original variables,px1(x1)px2(x2) is not trans-
formed into the product of the marginals of the rotated vari-
ables,px′

1
(x′

1)px′

2
(x′

2) (a detailed discussion of this point in
the context of a bivariate Gaussian distribution is presented
in Appendix A). Likeρ2, mutual information is not invariant
under a unitary transformation that mixes the two variables:
in general,M(p(x′))6=M(p(x)). Mutual information (and
more generally multiinformation) therefore does not provide
the desired compactness measure, to which we now turn.

4 Measures of structure: compactness

As was discussed in the Introduction, we seek a measure of
compactness of multivariate distributions; that is, a measure
of the extent to which the full distribution is concentrated
around a lower-dimensional surface. Such a measure should
be invariant under unitary transformations (the degree of con-
centration should not depend on the orientation of the distri-
bution in state space). The dependence measureM(p) is not
such a measure, as it is not invariant under unitary transfor-
mations.

We suggest measuring compactness based on the degree
to whichp(x) differs from a sphered Gaussian with the same
total variance Tr6. The pdf of such an equivalent sphered
Gaussian is

pSG(x) =

(
N

2πTr6

)N/2

exp

(
−

N

2Tr6
xT x

)
, (20)

from which it follows that

D(p||pSG) = −H(p) + H(pSG)

= −H(p) +
N

2
ln

(
2πe

Tr6

N

)
(21)

(note that the relative entropy can be expressed as a differ-
ence between two entropies as a consequence of the special
form of Eq.20). This measure vanishes for a sphered Gaus-
sian and is never negative. In analogy with Eq. (16), we de-
fine the compactness ofp(x) as

C(p) = 1 − e−2D(p||pSG)
= 1 −

(
exp(H(p))

exp(H(pSG))

)2

, (22)

which is bounded between 0 and 1, vanishes for a sphered
Gaussian, and is invariant under unitary transformations. The
compactness measure can be factored as

C(p) = 1 −

(
eH(p)

(2πe)N/2
√

det6

)2(
N(det6)1/N

Tr6

)N

. (23)

The first factor in parentheses is the exponential of the ra-
tio of the entropy ofp(x) to that of a Gaussian distribution
with the same covariance matrix; by inequality Eq. (9), this
ratio is bounded between zero and one. The second factor
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in parentheses is bounded between zero and one by the in-
equality Eq. (14) and the fact that the eigenvalues of6 are
all non-negative, such that the ratio achieves its maximum
value when all eigenvalues of6 are equal (i.e. when the dis-
tribution is sphered). This factorisation illustrates that our
proposed measure of compactness is fundamentally a com-
bined measure of Gaussianity and covariance isotropy.

For a bivariate Gaussian distribution,C(p) reduces to:

C(p) = 1 −
4 det6

(Tr6)2
(24)

For such a distribution, the classical measure of compactness
is the fraction of variance accounted for by the first principal
component. This measure is expressed mathematically as:

F(p) =
λ1

Tr6
. (25)

The measure

S(p) =
1

2

(
1 +

√
C(p)

)
(26)

is a general measure of compactness that in the limit ofp(x)

Gaussian reduces toF(p). The quadratic equation forλ1
following from the facts that det6=λ1λ2 and Tr6=λ1+λ2
can be solved to yield

F(p) =
1

2

(
1 +

√
1 −

4 det6

(Tr6)2

)

=
1

2

(
1 +

√
C(p)

)
= S(p). (27)

In the same way that for a bivariate GaussianM(p) had a
straightforward relationship to the fraction of variance ex-
plained by an ordinary least-squares regression, for a bivari-
ate GaussianC(p) is naturally related to the fraction of vari-
ance explained by the first PCA mode.

5 Measures of structure: non-gaussianity

The compactness measureC(p) combined measures of co-
variance isotropy and Gaussianity and therefore cannot dis-
tinguish between situations in which the measure is large be-
cause (a) the pdf is Gaussian (or nearly so), such that the vari-
ance of the first principal component is much larger than that
of the second, or because (b) the pdf is narrowly distributed
around a nonlinear curve. For this, a direct measure of non-
Gaussianity is needed; such a measure is thenegentropy(Lee
et al., 2000), defined as the relative entropy betweenp(x) and
the Gaussian pdf with the same covariance matrix:

D(p||pG) = H(pG) − H(pSG) + H(pSG) − H(p) (28)

=
1

2
ln

(
det6

1 − C(p)

(
N

Tr6

)N
)

, (29)

where

pG(x) =
1

(2π)N/2
√

det6
exp

(
−

1

2
xT 6−1x

)
(30)

and Eq. (28) follows becausepG(x) is Gaussian.
Defining

ν(p) = 1 − e−2D(p||pG)
= 1 −

1 − C(p)

det6

(
Tr6

N

)N

, (31)

we obtain a measure taking values between 0 and 1, with
ν(p)=0 if and only if p(x) is Gaussian (as by construction
bothp(x) andpG(x) have the same covariance matrix) and
ν(p) increasing asp(x) becomes increasingly non-Gaussian.
Note thatν(p) contains contributions from both the compact-
ness of the pdf and the degree of covariance anisotropy; for
a sphered distribution Tr6/N=(det6)1/N andν(p)=C(p).
Furthermore, for6 fixed, ν(p) increases asC(p) increases:
among all distributions with the same covariance, the more
compact distributions are the more non-Gaussian.

6 Measures of structure: geometric interpretation

The quantity

V (p) = exp(H(p)) (32)

is an extensive variable which can be interpreted as a mea-
sure of the “effective volume” of a pdf. For instance, for a
Gaussian distributionpG(x) with covariance matrix6,

V (pG) = eH(p)
= eN/2

|6|
1/2 (2π)N/2. (33)

The volume enclosed by a surface of constant probability
density for the same distribution is

VE(α) = Volume[x : xT 6x ≤ α]

= αN/2
|6|

1/2

(
πN/2

0(N/2 + 1)

)
. (34)

Comparing these two expressions shows that, aside from fac-
tors that depend only on the dimension of the space,V (p) is
related to the geometric volume of the isoprobability ellip-
soid. More generally,V (p) is the volume of a “typical set”,
as reviewed in Cover and Thomas (1991). Because of in-
equalities Eqs. (9) and (13), the pdf with maximum volume
for a given covariance matrix is Gaussian, and the pdf with
maximum volume for given total variance is a sphered Gaus-
sian.

The measures of dependence, compactness, and non-
Gaussianity introduced above have natural interpretations in
terms of effective volumes (in the sense of Eq.32):

M(p) = 1 −

(
V (p(x))

V (
∏N

i=1 pxi
(xi))

)2

(35)

C(p) = 1 −

(
V (p)

V (pSG)

)2

(36)

ν(p) = 1 −

(
V (p)

V (pG)

)2

. (37)
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That is:

– M(p) is one less the square of the ratio of two effec-
tive volumes: that of the full pdf, and that of the pdf
produced by the product of the marginals. Dependence
among the variablesxi implies a concentration of prob-
ability around some lower-dimensional surface, with an
associated reduction inV (p) and an increase inM(p).

– C(p) is one less the square of the ratio of two volumes:
that of the full pdf, and that of the equivalent sphered
Gaussian. Similarly toM(p), C(p) is a measure of
the degree to which the pdfp(x) clusters around a low-
dimensional surface; but unlikeM(p), C(p) is rotation-
ally invariant as the effective volume ofpSG(x) does
not change under a coordinate rotation (in contrast to
the effective volume of the product of the marginals).

– ν(p) is one less the square of the ratio of the effective
volume of the full pdf to that of the Gaussian with the
same covariance matrix.

In general, the degree of structure in a pdf increases as the
effective volume decreases relative to that of the “unstruc-
tured” pdf against which it is compared. This result provides
a useful geometrical interpretation of the measures of struc-
ture.

7 Conclusions

This study has considered three measures of structure for
multivariate datasets, all defined in terms of the relative en-
tropy (the information-theoretic distance) between a given
pdf p(x) and an appropriate “unstructured” pdf.

– Dependenceis measured in terms of the relative entropy
betweenp(x) and the pdfq(x)=5N

i=1pxi
(xi) consisting

of the product of the marginal distributions along each
individual componentxi of x

– Compactnessis measured in terms of the relative en-
tropy betweenp(x) and the equivalent sphered Gaus-
sian pSG(x) (the Gaussian with the same total vari-
ance but equal variance along each coordinate direc-
tion). This is a combined measure of Gaussianity and
covariance isotropy, and is invariant under an orthogo-
nal rotation of the variables.

– Non-Gaussianityis measured in terms of the relative
entropy betweenp(x) and the equivalent Gaussian (the
Gaussian with the same covariance matrix). This mea-
sure has a natural connection with the measure of com-
pactness.

All of these measures admit useful geometrical interpreta-
tions in terms of the ratio of the “effective volume” of the pdf

to that of the associated “unstructured” pdf against which it
is compared.

The dependence measureM(p) is not invariant under an
orthogonal rotation of the variable vectorx, despite the fact
that the integral defining it is in fact invariant. This study
has demonstrated that this apparent paradox is resolved by
the fact that under the rotation the integral no longer retains
the identity of the dependence measure (as the rotated prod-
uct of marginal distributions is not the product of the rotated
marginals).

Table 1 presents values of the various measures of de-
pendence, compactness, and non-Gaussianity considered in
this study for the distributions in Fig.1. For the Gaus-
sian distributions, the dependence measureM(p) (Eq. 16)
and compactness measureC(p) (Eq. 22) coincide with the
corresponding measures from ordinary and orthogonal least-
squares regression, as expected. For the non-Gaussian dis-
tributions, the new measures are larger, demonstrating their
better characterisation of dependence and compactness rel-
ative to that of their Gaussian counterparts. Note that the
compactness of (b)–(e) is measured through comparison with
(a); visual inspection demonstrates that (b)–(e) are all more
tightly concentrated around a lower dimensional curve (and
are therefore have smaller “effective volume”) than is (a).
Non-Gaussianity of (d) or (e) is measured through compar-
ison with (b) or (c), respectively; it is evident from inspec-
tion of (d) that the same probability mass is concentrated in
smaller volume in (d) than in (b) [and similarly for (e) and
(c)], consistent with the geometric interpretation of our mea-
sure of non-Gaussianity.

The measures of dependence, compactness, and non-
Gaussianity considered in this study are defined by the dis-
tance between the given pdf and an appropriate reference
pdf, as measured by the relative entropy. Many other dis-
tance measures between pdfs have been proposed, such as
Bregman’s distance, Bhattacharyya distance, the chi-squared
statistic, and the Kolmogorov-Smirnov distance (e.g.Pardo,
2006). Despite the availability of a wide class of measures,
we feel that the measures that we have proposed are es-
pecially attractive because they connect to more traditional
measures used in geophysics (e.g. the fraction of variance
explained by least-squares regression or PCA).

For bivariate distributions, the information theoretic mea-
sures of dependence and compactness considered in this
study are generalisations of the corresponding measures of
covariability obtained from the classical linear measures pro-
vided with ordinary least-squares regression and Principal
Component Analysis. A fundamental challenge with the
use of these information theoretic measures in exploratory
data analysis is their estimation from a finite sample. Esti-
mators of the measures of structure themselves, as well as
the associated sampling error, are required for their practi-
cal application. Classical hypothesis testing (e.g. determin-
ing if one of the proposed measures is significantly differ-
ent from zero) will require the development of parametric or
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non-parametric techniques for computing confidence inter-
vals which is beyond the scope of the present study. The es-
timation problem for information theoretic measures is an ac-
tive field of research (e.g.Kleeman and Majda, 2005; Haven
et al., 2005); we are confident that as robust estimators be-
come available, the measures of dependence, compactness,
and non-Gaussianity discussed in this study will demonstrate
their utility as practical tools for exploratory data analysis in
geophysical data sets.

Appendix A

Change of mutual information under rotation

Suppose that the distribution ofx is bivariate Gaussian with
mean zero and covariance matrix Eq. (2). Under the rotation

U =

(
cosφ − sinφ

sinφ cosφ

)
, (A1)

the transformed variablex′
=Ux is Gaussian with covariance

matrix

6′
= U6UT

=

(
σ 2

x′ ρ′σx′σy′

ρ′σx′σy′ σ 2
y′

)
(A2)

where

σ 2
x′ = cos2 φσ 2

x − 2 cosφ sinφρσxσy + sin2 φσ 2
y (A3)

σ 2
y′ = sin2 φσ 2

x + 2 cosφ sinφρσxσy + cos2 φσ 2
y (A4)

ρ′
=

sinφ cosφ(σ 2
x − σ 2

y ) + (cos2 φ − sin2 φ)ρσxσy

σx′σy′

. (A5)

The product of the marginal distributions in the untrans-
formed coordinates is

q(x) = px(x)py(y) =
1

2πσxσy

exp

(
−

1

2
xT C−1x

)
, (A6)

which is Gaussian with covariance matrix

C =

(
σ 2

x 0
0 σ 2

y

)
. (A7)

Under the coordinate transformation,q(x) remains Gaussian
with new covariance matrix

C′
=

(
cos2 φσ 2

x + sin2 φσ 2
y cosφ sinφ(σ 2

x − σ 2
y )

cosφ sinφ(σ 2
x − σ 2

y ) sin2 φσ 2
x + cos2 φσ 2

y

)
.(A8)

Clearly,C′ is not the covariance matrix of the product of the
marginals in the transformed coordinate system:

C̃ =

(
σ 2

x′ 0
0 σ 2

y′

)
(A9)

with σx′ and σy′ given by Eqs. (A3) and (A4). That is,
the transformed product of the marginal distributions is not
equal to the product of the transformed marginal distribu-
tions. While the integral defining mutual information is in-
variant under an orthogonal rotation mixing variables, its
identity as the mutual information is lost.
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