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Abstract. A basic task of exploratory data analysis is the | Dependenceto what extent does knowledge of im-
characterisation of “structure” in multivariate datasets. For ply knowledge about,?
bivariate Gaussian distributions, natural measures of depen-

dence (the predictive relationship between individual vari- I Compactnesso what extent s variance shared between
ables) and compactness (the degree of concentration of the  x1 andxz; that is, how tightly concentrated around a
probability density function (pdf) around a low-dimensional lower-dimensional surface is the joint probability den-

axis) are respectively provided by ordinary least-squares re-  Sity function (pdf)p(x1, x2)?

gression and Principal Component Analysis. This study con- o o

siders general measures of structure for non-Gaussian distri- That these are distinct measures of structure is illustrated
butions and demonstrates that these can be defined in tern®y the the pdfs displayed in Fid, all of which by con-

of the information theoretic “distance” (as measured by rela-Struction have the same total variance(vay-+var(xz). The

tive entropy) between the given pdf and an appropriate “un-Gaussian pdf (a) describes uncorrelated variabjeand.x
structured” pdf. The measure of dependence, mutual inforWithout any clustering around a lower-dimensional surface;
mation. is well-known: it is shown that this is not a useful it possesses no structure in either of the senses described

measure of compactness because it is not invariant under &P°Ve: In contrast, the Gaussian pdf (b) is characterised by

orthogonal rotation of the variables. An appropriate rotation-MOre variance along one axis than the other. Whilandxz

ally invariant compactness measure is defined and shown t§"€ independent, their joint pdf possesses compactness. The

reduce to the equivalent PCA measure for bivariate Gaus&aussian pdf (c) is equally concentrated around a single axis

sian distributions. This compactness measure is shown to b&S iS (b), butin such a way that the variablesandx, are
naturally related to a standard information theoretic measur&©'related and thus also characterised by dependence.
of non-Gaussianity. Finally, straightforward geometric inter-  FOr bivariate Gaussian distributions with pdf
pretations of each of these measures in terms of “effective

1 1
volume” of the pdf are presented. (X) = ———exX <——XTZ‘1X> 1
b 27+/dets P\™2 )
(assumed without loss of generality to be mean zero), where
1 Introduction xT = (x1, x2) and the covariance matri is defined as
A fundamental question in exploratory data analysis is: givens. _ T 2y _ “le POx,0x,
. . . Y= | XX p(X)dX = 5 , 2)
observations of two variableg andx,, to what extent is the pOx10x, Oy,

joint distribution of these variables “interesting”, in the sense . .
that it is “structured’? Different kinds of structure can be then measures of structure associated with dependence and

considered, among which some of the most important are; compactness are associated respectively with ordinary least-
squares regression (OLS) and principal component analysis

(PCA) (the second of which is closely related to orthogonal
Correspondence toA. H. Monahan least squares regression). For OLS, the natural measure of
BY (monahana@uvic.ca) structure isp?, the fraction of variance “explained” by the

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.



http://creativecommons.org/licenses/by/3.0/

58 A. H. Monahan and T. DelSole: Measures of dependence, compactness, non-gaussianity

4
Table 1. Measures of dependence, compactness, and non-
2 Gaussianity for the distributions contoured in Fig. 02 is the
fraction of variance explained by ordinary least-squares regression,
><N 0 F(p) is the fraction of variance explained by the first PCA mode,
M(p) is the generalised measure of dependence 1B6q.C(p) is
-2 the generalised measure of compactness ZBq.S(p) is the com-
pactness measure transformed to correspon@(to for a bivari-
-4 ate Gaussian (E@7), andv(p) is the measure of non-Gaussianity
‘—14 -2 0 2 4 4 (Eq.31).

p>  F(p) M) Cip) S v(p)

@ 0 05 0 0 05 0
) O 069 0O 015 069 0
(c) 015 069 015 015 069 0

-2 -2
(d) 0 0.69 0.55 069 091 0.63
-4 -4 (e) 0.15 0.69 0.37 0.69 091 0.63
42 0 2 - 4 4
2 (d) 2 _ )
(for which mearix;)=mearix2)=0, var(x1)=o7y, var
o\ 2.4, 2
< 0 .v 0 (x2)=2a%0;'+05), where the parameter@, o1, 02) have
= been chosen so that the pdfs in (b) and (d) have the same
-2 ‘ ‘ ; -2 ‘ ‘ ; covariance matrices. It is evident that the pdf (d) is con-
centrated around a low-dimensional (nonlinear) curve, and
“_14 2 0 2 4 “_14 2 0 2 4 therefore aI.s?o is characterised by compactness. In fac;t, Vi-
X X sual inspection suggests that the degree of concentration of
1 1 the pdf (and therefore of compactness) is greater for (d)

than for (b), but the traditional linear measure of compact-
Fig. 1. Contours of joint pdfs ok1, x> displaying different degrees  nessfF would not distinguish between them. Furthermore,
of “structure”. (a) Gaussian pdf with no compactness or depen- x1 andx; in (d) are dependent, despite being uncorrelated:
dence between; and.xp. (b) Gaussian pdf displaying compact-  ironqly nositive and negative values of are associated
ness but not dependencéc) Gaussian pdf displaying both com-—\ wp sirongly positive values af,. The traditional linear
pactness and dependenclel), (€) non-Gaussian pdfs displaying measure of dependengé does nét characterise this struc-

both compactness and dependence. The variahlemd x, are W
uncorrelated in (d) and correlated in (e). Pdfs (b) and (d) havelUre. The compactness of pdf (d) has contributions from both

the same covariance matrix, and would not be distinguished byth€ anisotropy of the covariance matrix (shared with pdf (b))
traditional linear measures of dependence and compactness; ttf@nd from the degree of non-Gaussianity. In order to tease
same is true of (c) and (e). All pdfs have the same total variancethese apart, it is desirable to also define a third measure of
var(xy) + var(xp)=Trx. “interesting” structure:

[l Non-Gaussianityto what extent does the joint distribu-
tion differ from a bivariate Gaussian?

by the first PCA mode: pdf of the relative contribution to compactness of non-
Gaussianity and covariance anisotropy.
F = i (3) The pdf (e) (constructed by rotating the pdf (d) through
Lip2 45°) has the same covariance matrix as (c); again, these

pdfs would not be distinguished by the measupésand
. . F. By inspection, the degree of compactness of pdf (e) is
for pdfs (a)—(_c)_ are_gl\{en |.n Table i ) the same as that of pdf (d): the degree of concentration of
_ When the joint distributiorp (x1, x2) is not Gaussian, the - 5 4t around a lower-dimensional curve should not depend
issue of characterising structure is more subtle. Panel (d) D its orientation. However, the degree of dependence be-
Fig. 1 contours the pdf tweenx; andx, has changed relative to (d) (for example,

) > s the conditional pdfp(x2|x1) is much tighter forx1>0 than
< Xy (e—alxi—o1)) ) (4)  forx1<0). This example further illustrates the fact that the

wherex1 is the larger eigenvalue &. Values ofp? and F

1
p(x1, x2)=-——€X

20102 _le_ 2022 ideas of compactness and dependence are distinct. Finally,

Nonlin. Processes Geophys., 16, 642009 www.nonlin-processes-geophys.net/16/57/2009/



A. H. Monahan and T. DelSole: Measures of dependence, compactness, non-gaussianity 59

the fact that the discussion of dependence, compactness, amd the compactness measure to PCA, emphasizes the funda-
non-Gaussianity can be framed in terms of the plots in Fig. mental difference between it and mutual information as mea-
suggests that measures of each of these should have straiglstires of structure, and illustrates how all of these measures
forward geometrical interpretations. of structure can be expressed as relative entropies. There

The above discussion motivates the consideration of meahas been considerable recent interest in information theoretic
sures of compactness that are invariant under orthogonal raneasures of predictability in geophysical systems (@ei-
tations, and which reduce to PCA for the case of a bivariateSole 2004 Kleeman and Majda2005 DelSole and Tippejt
Gaussian; of measures of dependence whichmatévari- 2007); the present study considers the applicability of these
ant under rotation and which reduce to ordinary least-squaregleas to exploratory data analysis. This study does not ad-
regression for the case of a bivariate Gaussian; and of meadress the problem of estimating these measures from finite
sures of non-Gaussianity. The notion of “interesting” struc- datasets: since the proposed measures apply to non-Gaussian
ture of course is a relative concept, and can only be meadata the estimation problem is considerably more difficult
sured relative to specified “uninteresting” distributions. In than those of the corresponding Gaussian measures, as the
the construction of these measures, we are thus confrontegnderlying pdfs are not known a priori to be parameterised
with the need to measure the difference between two pdfswith a finite set of coefficients. Nevertheless, one must have
one data-driven, the other some specified background refeia clear idea of what constitutes “interesting structure” with-
ence. A natural framework for measuring the difference be-out regard to estimation questions before complexities due to
tween two pdfs is provided by information theory (e€dmver  finite data can be addressed.

and Thomasl1991 Majda et al, 2005, through which such
differences can be related to the new “information” provided
by the data-driven pdf relative to the background pdf.

In fact, a well-known general measure of dependence i
provided by information theory: this is multiinformation
(which in two dimensions is also known as mutual informa-
tion). Similarly, information theory provides a natural mea-
sure of non-Gaussianity known as negentropy. Less weII-H (

established is a general measure of compactness. Previous

2

p) = —/p(X)ln p(X)dx

Information theoretic entropy

“A natural starting point for the characterisation of the struc-
ture of the pdfp(x) of an N-dimensional random variable
is the entropy

®)

approaches to this problem, using tools such as Nonlmea[e.g.Cover and Thomasl99). This quantity arises natu-

Principal Component Analysis (e.lylonahan et aJ.2003,

rally as the measure of the “information content” of a pdf,

have been hampered by the lack of a rigorous theoretical 4 j5 characterised by the following properties relevant to

framework and by the methodological difficulties of nonlin- 4 yiscussion of

ear nonparametric function estimation.

The goal of the present study is to further develop mea- 1.

sures of “interesting” structure for general non-Gaussian
pdfs that can provide a rigorous basis for non-Gaussian ex-
ploratory data analysis. In particular, we will propose a gen-
eral measure of compactness with firm foundations in in-
formation theory and which reduces to PCA for bivariate
Gaussians. This measure will be contrasted with the well-
established measures of dependence and non-Gaussianity
provided by mutual information and negentropy. The mea-
sure of compactness will be seen to be a combined mea-
sure of Gaussianity and covariance isotropy, and therefore
to have a natural connection to the standard information the-
oretic measure of non-Gaussianity. This discussion presents
a unifying notion of “structure” in probability distributions:
each of the measures of dependence, compactness, and non-
Gaussianity are defined in terms of the information theo-
retic “distance” (as measured by relative entropy) between
the given pdf and the appropriate “unstructured” pdf. Fi-
nally, it will be shown that these measures have natural ge-
ometrical interpretations in terms of the “effective volumes”
of the associated probability distributions. A similar mea-
sure of compactness was introducedHdia and van der
Linde (2007); the present study demonstrates the connection

www.nonlin-processes-geophys.net/16/57/2009/

structure”:

Under a diffeomorphic coordinate transformation

X—X'=G(X),
0X
det<W> ‘ dx (6)

(Majda et al, 2002. In particular, under a linear rescal-
ing of each variablex;=a; x;,

H(p(X)) = H(p(X)) —fp(X)ln

N
H(p(x)) = H(p(0) + Y_Inlail, ™
i=1

and under a unitary transformatiah=l{x, H is invari-
ant

H(p(X)) = H(p(x)). (8)
2. We have the inequality:
H(p) < ;ln[(Zne)N detX] = H(pc), )

where H(pg) is the entropy of a Gaussian random
variable with the same covariance matrix &%) (e.g.

Nonlin. Processes Geophys.,66 2609
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Fig. 2. Three pdfs of equal variance but differing entropy:
H(p2)<H(p3)<H(p1). The Gaussian pdf has maximum entropy
among all pdfs with the same variance.

Cover and Thomasl99]1). Thus, of all distributions
with the same covariance matrix, the Gaussian has the
largest entropy (and so is minimally “informative”).
This point deserves further comment. The three uni-
variate pdfs (illustrated in Fig)

) = —— ex _x (10)
pP1 = /—27{0_ p 20_2
1
= |x| <30
=] 2J/3% 11
p2(x) { 0 x| > v3o (11)
1 V2|x|
p3(x) = E exp (‘ . ) (12)

are each of variances? but of respective en-
tropies: H(p1)=In(v2reo), H(p2)=In(+/120), and
H(p3)=In(v/2¢20).

The entropy of the Gaussian distributipn(x) is larger
than those of the other two distributions, and so it is
less “informative” than either: the boxcar distribution

covariance matriXTrX /N)ly, wherely is the identity
matrix. The pdfp(x’) with covariance matrixt is ob-
tained through a linear transformatiof=, /y; x;, where
y;=NA;/TrX and thex; are aligned along the eigenvec-
tors of ¥. From Eq. {), it follows that

1 N
H(p)=H(ps) + e
PILE
—H(PS)-F% [ N (detz)l/N}
< H(ps), (13)

where the desired result (given by the final inequality)
follows from the arithmetic-geometric inequality:

1

N N N
=D M= (HM) = (detx)V,  (14)
N i=1 i=1

(where equality holds when all are equal). Thus, if a

pdf is stretched along some axes and compressed along
others such that the total variance is unchanged, then the
pdf with maximum entropy arises when all axes carry
equal variance.

Note that it follows from this and the previous property
that of all pdfs with the same total variance, the entropy
is maximised by a sphered Gaussian. This fact can be
proved directly using standard maximum entropy meth-
ods (e.gCover and Thomad991); properties 2 and 3
have been presented separately in order to highlight the
distinction between spheredness and Gaussianity in the
context of maximum entropy distributions.

A natural measure of the difference between two pdfg

p2(x) because it does not display long tails, and the ex-andg (x) is the relative entropy:

ponential distributiorps(x) because itis sharply peaked

aroundx=0. The Gaussian distribution combines suffi- p(p||¢) =

cient flatness around its median value with sufficiently

(15)

p(X)
| d
/”(X)n<q(x)> X

thick tails to be maximally entropic (that is, minimally (Cover and Thomasl991). This quantity is non-negative

informative).

its covariance matrix are equal; that is, if it its covari-
ance matrix is proportional to the identity matrix (note
that while the covariance matrix of a sphered pdf is in-
variant under rotation, the pdf itself is not necessarily
isotropic). Given a pdfp(x’) with covarianceX ob-
tained from the sphered pdfs(x) by a linear rescal-
ing of the coordinate axes such that the total varianc
TrX is fixed, thenH (ps)> H (p). Thatis, the entropy is

(taking the value of zero only ifp=¢g) and is invari-
. A pdf is said to be sphered if all of the eigenvalues of a_mt unde/r an arbitrary invertible coordinate transforma-
tion x=X'=G(X).
clidean distance measure (in particular, it is not symmetric:
D(pllg)#D(q||p)), it is a useful measure of the difference
between two pdfs. The measures of dependence, compact-
ness, and non-Gaussianity to which we now turn will each
be defined in terms of the relative entropy between the given

epdf and an appropriate “unstructured” pdf.

While relative entropy is not a Eu-

maximised by the sphered pdf among all pdfs related by3  Measures of structure: dependence

linear rescalings of the axes such that the total variance
is maintained. To see this result, fix the matexwith
eigenvalueg,;) and consider the sphered paf(x) with

Nonlin. Processes Geophys., 16, 642009

By definition, the components of the random variablare
independent if and only if their joint distribution factors as
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the product of the marginalgi(x)= ]_[fvzl Px; (x;). The well- because under the rotation the product of the marginal distri-
known result follows that a natural measuraelependencim butions of the original variableg,, (x1) px,(x2) is not trans-
a multivariate pdf is thenultiinformation(Schneidman etal.  formed into the product of the marginals of the rotated vari-
2003 ab|eS,px/l(x’1)pxé(xé) (a detailed discussion of this point in
N the context of a bivariate Gaussian distribution is presented
1(X) = D(p(X)|| 1—[ e (1)) in Appendn.( A). Likep?, mutgal mformguon is not |nvar_|ant
i1 under a unitary transformation that mixes the two variables:
N in general,M (p(X'))#M (p(x)). Mutual information (and
= Z H(py, (x1)) — H(p(x)), (16) more generally multiinformation) therefore does not provide
i=1 the desired compactness measure, to which we now turn.

where the second equality follows from the definitions of
marginal distributions and of entropy. It follows that the 4 \Measures of structure: compactness
quantity
As was discussed in the Introduction, we seek a measure of
) compactness of multivariate distributions; that is, a measure
D of the extent to which the full distribution is concentrated

M(p)=1-e %

around a lower-dimensional surface. Such a measure should
) be invariant under unitary transformations (the degree of con-
exp(H (p(X))) centration should not depend on the orientation of the distri-
=+ (HN exp(H (p .(x')))> 17 bution in state space). The dependence mea#ye is not
i=1 i such a measure, as it is not invariant under unitary transfor-
is a measure taking values between 0 and 1, withmations.
M (x)=0 when thex; are mutually independent and(x)=1 We suggest measuring compactness based on the degree
when at least two variables are fully dependent (that is,to which p(x) differs from a sphered Gaussian with the same
xj=f(x1,...,Xj—1, Xj41, ..., xn) for somej). For the mea- total variance TE. The pdf of such an equivalent sphered
sure of dependence, the “unstructured” pdf against whichGaussian is
the given pdf is compared is given by the product of the Ny2 N
marginals along each; which by construction has no de- ¢ (x) = < ) exp(——xTx), (20)
pendence among any of the variables. 2nTrE 2Trs
For the bivariate casgvV=2), I (x) is known as the mutual
information (e.g.Cover and Thomad991). For a bivariate

N
=1- <6Xp|:H(p(X)) — Z H(px,' (Xi))

i=1

from which it follows that

Gaussian, it is well known that D(pllpsc) = —H(p) + H(psc)
N Trx
I(x1, x2) = —(1/2) In(1 — p?), (18) = —H(p) + 510 (ZneT) (21)
where p is the correlation coefficient between and x», ) )
from which it follows that (note that the relative entropy can be expressed as a differ-
ence between two entropies as a consequence of the special
M(p) = 1— exp(=2I (x1, x2)) = p* (19)  form of Eq.20). This measure vanishes for a sphered Gaus-

In the limit that p(x1, x2) is bivariate Gaussian, theM (p) :Ir?gtﬁgdcfmn;;(;g:g%ptfl(\:g'alg analogy with ELf)(we de-

corresponds to the fraction of variance accounted for by an

ordinary least-squares regression betweeandx,. 2
The integral 16) defining mutual information is invariant C(p) = 1 — e~ 2PPlIPse) =1 — (_exp(H(p)) ) . (22)

- - - exp(H (psG))

under an arbitrary coordinate transformation, and therefore

might be considered to also be a natural general measure efhich is bounded between 0 and 1, vanishes for a sphered

compactness. In fact, the mutual informatiomit invari- Gaussian, and is invariant under unitary transformations. The

ant under an orthogonal rotation »f This is most easily compactness measure can be factored as

seen in the context of a Gaussian distribution, for which the ) N

correlation coefficienp? is not invariant under rotations: in e N (detz)/VN

particular, under a rotation a1, x2) such that the coordi- Clp=1- <(2,Te)1v/2\/m> ( Try ) - (23)

nate axes are aligned with the principal component axes, the

correlation coefficient vanishes. The resolution of this appar-The first factor in parentheses is the exponential of the ra-

ent paradox is that while the integral in EQ.6 is invari- tio of the entropy ofp(x) to that of a Gaussian distribution

ant under the unitary transformatian>x'=U/x, the integral ~ with the same covariance matrix; by inequality E®), this

does not retain its identity as mutual information. This is ratio is bounded between zero and one. The second factor

www.nonlin-processes-geophys.net/16/57/2009/ Nonlin. Processes Geophys. 66 2609
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in parentheses is bounded between zero and one by the in;.. (x) = B exp(_}XTg—lx) (30)
equality Eq. (4) and the fact that the eigenvalues Dfare (2m)N/2/detx 2
all non-negative, such that the ratio achieves its maximumand Eq. £8) follows becausgg () is Gaussian.
value when all eigenvalues af are equal (i.e. when the dis- Defining
tribution is sphered). This factorisation illustrates that our N
proposed measure of compactness is fundamentally a comy(p) = 1 — ¢=2P7llPe) = 1 — 1__6(19) (Tr_E) . (31)
bined measure of Gaussianity and covariance isotropy. detX N
For a bivariate Gaussian distributiafy,p) reduces to: we obtain a measure taking values between 0 and 1, with
ad v(p)=0 if and only if p(x) is Gaussian (as by construction
etx - .
- = (24) both p(x) and pg (x) have the same covariance matrix) and
(Irx) v(p) increasing ap (x) becomes increasingly non-Gaussian.
For such a distribution, the classical measure of compactned¥ote thatv(p) contains contributions from both the compact-
is the fraction of variance accounted for by the first principal ness of the pdf and the degree of covariance anisotropy; for
component. This measure is expressed mathematically as: a sphered distribution B/N=(det=)Y" andv(p)=C(p).
Furthermore, forx fixed, v(p) increases a§(p) increases:
A1 o . .
F(p) = —. (25)  among all distributions with the same covariance, the more
LI compact distributions are the more non-Gaussian.
The measure

C(p)=1

S(p) = % <1+ /C(p)> (26) 6 Measures of structure: geometric interpretation

is a general measure of compactness that in the limptcef 1€ quantity
Gaussian reduces tB(p). The quadratic equation fory V(p) = exp(H(p)) (32)
following from the facts that de&L =114 and TrX=i1+X2

. is an extensive variable which can be interpreted as a mea-
can be solved to yield

sure of the “effective volume” of a pdf. For instance, for a

1 4 dets Gaussian distributiopg (x) with covariance matrix,
Fn=3 (1+ Vi W) V(pg) = eH®) = N2 512 (2m)N/2, (33)
1 The volume enclosed by a surface of constant probability
=3 (1 + vC(p)) = S(p). (27)  density for the same distribution is

T
In the same way that for a bivariate Gaussidiip) had a  V£(®) = Volumelx : X* £x < ]

straightforward relationship to the fraction of variance ex- NJ2 s i1/2 /2
plained by an ordinary least-squares regression, for a bivari- =X I(N/2+1) )" (34)
ate Gaussiafl(p) is naturally related to the fraction of vari-

ance explained by the first PCA mode. Comparing these two expressions shows that, aside from fac-

tors that depend only on the dimension of the sp&ae,) is

related to the geometric volume of the isoprobability ellip-
5 Measures of structure: non-gaussianity soid. More generallyy (p) is the volume of a “typical set”,

as reviewed in Cover and Thomas (1991). Because of in-
The compactness measutep) combined measures of co- equalities Egs.9) and (L3), the pdf with maximum volume
variance isotropy and Gaussianity and therefore cannot disfor a given covariance matrix is Gaussian, and the pdf with
tinguish between situations in which the measure is large bemaximum volume for given total variance is a sphered Gaus-
cause (a) the pdfis Gaussian (or nearly so), such that the varkjgn.
ance of the first principal component is much Iarger than that The measures of dependence, CompactHGSS, and non-

of the second, or because (b) the pdf is narrowly distributedzaussianity introduced above have natural interpretations in
around a nonlinear curve. For this, a direct measure of nonterms of effective volumes (in the sense of Ba):
Gaussianity is needed; such a measure iségentropy(Lee

etal, 2000, defined as the relative entropy betwgg®) and M(p)=1— V(p(x)) ? (35)
the Gaussian pdf with the same covariance matrix: P = V(l_LN: 1 P (X0))
D(pllpc) = H(pc) — H(psc) + H(psc) — H(p)  (28) Copy=1-— ( Vip) )2 (36)
N o 1%
_ %In (1de(t32 <%> ) 29) V(psc) ,
—C(p) b(p) = 1— <V((p))> _ (37)
PG

where

Nonlin. Processes Geophys., 16, 642009 www.nonlin-processes-geophys.net/16/57/2009/
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Thatis: to that of the associated “unstructured” pdf against which it

is compared.

— M(p) is one less the square of the ratio of two effec-  The dependence measuv&(p) is not invariant under an
tive volumes: that of the full pdf, and that of the pdf thogonal rotation of the variable vectordespite the fact
produced by the product of the marginals. Dependencgnat the integral defining it is in fact invariant. This study
among the variables; implies a concentration of prob- 55 demonstrated that this apparent paradox is resolved by
ability around some lower-dimensional surface, with an the fact that under the rotation the integral no longer retains
associated reduction i(p) and an increase if(p).  the identity of the dependence measure (as the rotated prod-

uct of marginal distributions is not the product of the rotated

marginals).

Table 1 presents values of the various measures of de-
pendence, compactness, and non-Gaussianity considered in
. . ) . . . this study for the distributions in Figl. For the Gaus-
dimensional surface; but unlike (p), C(p) is rotation- sian distributions, the dependence measuig) (Eq. 16)

ally invariant as the effective volume gfs (x) does - compactness measutép) (Eq. 22) coincide with the
not change under a coordinate rotation (in contrast to ) :

- . corresponding measures from ordinary and orthogonal least-
the effective volume of the product of the marginals).

squares regression, as expected. For the non-Gaussian dis-
v(p) is one less the square of the ratio of the effective tributions, the new measures are larger, demonstrating their
volume of the full pdf to that of the Gaussian with the better characterisation of dependence and compactness rel-
ative to that of their Gaussian counterparts. Note that the
compactness of (b)—(e) is measured through comparison with

In general, the degree of structure in a pdf increases as th@); visual inspection demonstrates that (b)—(e) are all more
effective volume decreases relative to that of the “unstruc-tightly concentrated around a lower dimensional curve (and
tured” pdf against which it is compared. This result providesare therefore have smaller “effective volume”) than is (a).
a useful geometrical interpretation of the measures of strucNon-Gaussianity of (d) or (e) is measured through compar-
ture. ison with (b) or (c), respectively; it is evident from inspec-

tion of (d) that the same probability mass is concentrated in
) smaller volume in (d) than in (b) [and similarly for (e) and

7 Conclusions (c)], consistent with the geometric interpretation of our mea-

. . sure of non-Gaussianity.
This study has considered three measures of structure for The measures of dependence, compactness, and non-
multlvarlate_ datase_ts, all defln_ed in terms of the relatlve_ eN'Gaussianity considered in this study are defined by the dis-
tropy (the mformatlon-theorenc distance) between a giVeNisnce between the given pdf and an appropriate reference
pdf p(x) and an appropriate “unstructured” pdf. pdf, as measured by the relative entropy. Many other dis-
tance measures between pdfs have been proposed, such as
Bregman'’s distance, Bhattacharyya distance, the chi-squared
statistic, and the Kolmogorov-Smirnov distance (€grdg
2006. Despite the availability of a wide class of measures,
we feel that the measures that we have proposed are es-

Compactnesss measured in terms of the relative en- pecially attractivg because t.hey connect to more traditi_onal
tropy betweenp(x) and the equivalent sphered Gaus- Measures used in geophysics (e.g. the fraction of variance
sian psg(x) (the Gaussian with the same total vari- &XPlained by least-squares regression or PCA).

ance but equal variance along each coordinate direc- For bivariate distributions, the information the_oretlc mea-
tion). This is a combined measure of Gaussianity andSUres of dependence and compactness considered in this

covariance isotropy, and is invariant under an orthogo-StUdy are generalisations of the corresponding measures of
nal rotation of the variables covariability obtained from the classical linear measures pro-

vided with ordinary least-squares regression and Principal
— Non-Gaussianityis measured in terms of the relative Component Analysis. A fundamental challenge with the
entropy betweemp(x) and the equivalent Gaussian (the use of these information theoretic measures in exploratory
Gaussian with the same covariance matrix). This meadata analysis is their estimation from a finite sample. Esti-
sure has a natural connection with the measure of commators of the measures of structure themselves, as well as
pactness. the associated sampling error, are required for their practi-
cal application. Classical hypothesis testing (e.g. determin-
All of these measures admit useful geometrical interpreta4ing if one of the proposed measures is significantly differ-
tions in terms of the ratio of the “effective volume” of the pdf ent from zero) will require the development of parametric or

— C(p) is one less the square of the ratio of two volumes:
that of the full pdf, and that of the equivalent sphered
Gaussian. Similarly taVf(p), C(p) is a measure of
the degree to which the pgfi(x) clusters around a low-

same covariance matrix.

— Dependences measured in terms of the relative entropy
betweerp(x) and the pdf; (X)=I1;_, py, (x;) consisting
of the product of the marginal distributions along each
individual component; of x
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Appendix A

Change of mutual information under rotation

Suppose that the distribution gfis bivariate Gaussian with
mean zero and covariance matrix Eg). (Under the rotation

COS¢ — sing
sing cosp )’

the transformed variabbé=i/x is Gaussian with covariance
matrix

(A1)

s =usu’ = ( ,”3’ P Q’*;‘“”) (A2)
ployoy oy
where
ol = cog o2 — 2Cosp singpoyoy + SIF po? (A3)
O'y% = sir? qbcrxz + 2cosp singporoy + cos qboyz (A4)
) :sinq’) cosp (o2 — 6?) + (COF ¢ — sir? ¢) po,o, . (45)

OyOy

The product of the marginal distributions in the untrans-
formed coordinates is

1
g(xX) = px(X)py(y) = eXp(—EXTC1X), (A6)
xOy

which is Gaussian with covariance matrix
2

J— Gx 0
c=(5 03) |
Under the coordinate transformatigr(x) remains Gaussian
with new covariance matrix

i cos¢ sing(af — o2
)

cog ¢o? +sirt ¢
( 2) si? go? + cog ¢a;) (A8)

cos¢ sing (o2 — o
Clearly,C’ is notthe covariance matrix of the product of the
marginals in the transformed coordinate system:

o5 0 )
( 0 oyz/
with o and o, given by Egs. A3) and @A4). That is,
the transformed product of the marginal distributions is not
equal to the product of the transformed marginal distribu-
tions. While the integral defining mutual information is in-
variant under an orthogonal rotation mixing variables, its
identity as the mutual information is lost.

2T 00

(A7)

2
, o

C= (A9)
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