Nonlin. Processes Geophys., 16, 5684 2009 4 "K Nonli P
www.nonlin-processes-geophys.net/16/569/2009/ G onlinear Frocesses
© Author(s) 2009. This work is distributed under in Geophysics
the Creative Commons Attribution 3.0 License. -

Large-scale instability of a generalized turbulent Kolmogorov flow

B. Legras! and B. Villone?

1L aboratoire de Mteorologie Dynamique, Ecole Normale ®dgure and CNRS (UMR8539), 24 rue Lhomond, 75231 Paris
Cedex 05, France
2|stituto di Fisica dello Spazio Interplanetario di Torino, INAF,4 c. Fiume, 10133 Torino, Italy

Received: 22 May 2009 — Revised: 9 July 2009 — Accepted: 9 July 2009 — Published: 31 August 2009

Abstract. We present an analytical study of the large scale1976 Sivashinsky 1985 whose solution is characterized by
instability of a generalized turbulent Kolmogorov flow, i.e. a an inverse cascade of metastable states with scale growing in
periodic shear flow where the molecular viscosity has beertime (Kawasaki and Ohtal982 She 1987. This cascade
substituted by an eddy viscosity parameterized with theinvolves merging of jets until the gravest mode is reached.
Clark-Smagorinsky model and where the external forcing isIntermediate states with multiple alternated jets may be sta-
adapted to maintain the flow against this dissipation. Webilised by adding friction or by including the dispersige
employ multiscaling technique assuming a scale separatioeffect (risch et al.1996 Manfroi and Young1999 Stuhne
between the basic scale of such a generalindallentKol- 2001, Legras and Villone2003. Such stabilizing mecha-
mogorov flow and the largest scales of the flow. The mainnisms have been advocated in the explanation of the features
result is that an amplitude equation for the large-scale secebserved in the atmosphere of fast rotating Jovian planets,
ondary flow is obtained which exhibits, like for the stan- in the Antarctic circumpolar ocean current and other geo-
dard Kolmogorov flow, an instability of the negative viscos- physical patternsRhines 1994 Nozawa and Yodernl997,
ity type. We find that the presence of mirror symmetry in the Huang and RobinsqQri998 Galperin et al.2004 Hua et al,
basic flow is a necessary condition and that further propaga2008. However, as a matter of fact, astro-geophysical fluids
tive and nonlinear contribution are produced otherwise. Theare characterized by very large Reynolds, whereas the crit-
result is encouraging for the generic existence of large-scalécal Reynolds number relative to the large scale instability
instabilities of the negative viscosity type in fully turbulent described by the Cahn-Hilliard equation is smailanfroi
flows. and Young(2002 showed, studying the stability of the Kol-
mogorov flow on thes plane, that in this case the critical
Reynolds number may increase as a functiof ahd of the
angle between the direction of the Kolmogorov flow and the
planetary vorticity gradient, but it stays still too low to be
. - - alistic. It is also known that friction can increase the crit-
Negative viscosity phenomenon has long been considered dgal Reynolds numberGbhukoy 1983 Dolzhansky 1987

a source of large-scale organized motion in geophysical an L
astrophysical flowsStarr, 1968. Large-scale instabilities of hess1992 Burgess et a]1999 but again this falls short of

parallel shear flows are often considered as a paradigm for Hm conditions of geophysical flows at distance from bound-

number of astro-geophysical observed situations. The perif’Iry layers.

odic Kolmogorov flowU = cosy is the simplest “toy” case In this paper we address the problem of the large-scale
belonging to this category. This flow exhibits a large-scaleinstability of turbulent flows by investigating a generalized
instability of the negative viscosity type for Reynolds num- Kolmogorov flow instability, when the molecular viscosity is
ber exceedingRe=+/2 (Meshalkin and Sinai1961). For replaced by a parameterized eddy viscosity, for which we use
slightly supercritical conditions, the perturbation evolution is the standard Clark-Smagorinsky modebpe 2000. Such

described by the Cahn-Hilliard equatioﬁdpomnyashchyi a flow is maintained by a fOI’Cing term chosen in a way that
the form of the parallel periodic shear flow is preserved in

the high-Reynold parameterized regime. We denote such a

Correspondence tdB. Legras flow as generalizeturbulentKolmogorov flow. Large eddy
BY

(legras@Imd.ens.fr) simulations (LES) of the fully turbulent regime of this flow

1 Introduction
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using the pure Smagorinsky model have been performed bydere, I" is essentially the width of the filtering functio@
(Woodruff et al, 1999 2000. In our work, the large-scale in- and can be considered as the cutoff scale of the LESCand
stability is determined by multiscale analysis, from solvabil- is an adjustable empirical constant. On the right hand side
ity conditions appearing in the perturbative expansion of theof Eq. (1), F is a forcing term, depending only on which
parameterized Navier-Stokes equation at successive ordermiaintainsu1=U (y) as a stationary solution. This forcing
The novelty here is the nonlinear form of the dissipation as aacts at the scale of the flowi(y) but contains also harmonics
representation of the effect of small-scale turbulence and adue to the nonlinear nature of the LES modelling. In the se-
a model for high Reynolds flows. quel we consider that all equations are non dimensionalized
This result is obtained at the price of a two scale separaby two scaleslJg, the amplitude ol/(y) andL, its charac-
tion hypothesis: the first one is between the small-scale turieristic size iny. Then,U (y) is assumed to be periodic with
bulence represented by the Clark-Smagorinsky parameteriperiod 2r and with zero mean ovég0, 27 ]. Although most
zation and the basic generalized Kolmogorov flow and theof the calculations are done without any other assumption on
second one is between this basic flow and the large-scale d (y), it will be shown that the large-scale instability is of
the searched instability. The method does not differ, in itsnegative viscosity type only i/ (y) has, up to an arbitrary
principle, from that applied to the standard case of the Kol-translation iny, the mirror symmetry of an odd sine function
mogorov flow but is made much more complicated by thein y (Dubrulle and Frisch1991). This condition is easily

nonlinearities in the dissipation. obtained by assuming
The paper is organised as follows. In S&;twe describe
the modification to the Navier-Stokes equation leading to they/ (y) = sind(y), (3)

generalized Kolmogorov flow and we describe the perturba-
tive expansion. In Sec8, we solve a case for which the cal- 0(y) is chosen as
culations are amenable to a simple analytic form. In Skct.

we describe the solution of the full problem. In Segtwe 00
describe the numerical solution of the full problem and theg(y) =y + » 6, sin 2py .
results for three selected types of flow. Sectiopresents a p=1

discussion and the conclusions.
This profile generalizes the Kolmogorov flow for which

. 6(y)=y and allows for more complicated and realistic par-
2 The generalized turbulent Kolmogorov flow modelled  j1e| wind profile than purely sinusoidal.

with a Clark-Smagorinsky parameterization An important shortcoming of this parameterization within

. , . the scope of the present study is the vanishing of turbulent
As in the standard problenSiashinsky 1989, we use the dissipation where velocity has an extrema. The undesirable

framework of the two-dimensional incompressible Navier- . . . ; o
: X L consequence is the generation of spurious singularities in the
Stokes equation. The filtered equation, in the sense of Large. . )
Eddy Simulation (LES)(eonard 1974, is singular perturbation problem to be studied here. In order to
' avoid this effect, we modify heuristically as
Al a _ _ 1 _ _
3 | ax @iy +uj) = Vo +F, @ 522 25,5, + pin? + iz 4)

where the overbar marks the filtered quantities, suchas  where is a positive constant. This modification accounts
for the fact that the two-dimensional approximation is im-
a;(x, 1) = / f G(r,x)u;(x —r,t)d°r, perfect and can be seen as a contribution of the residual
vertical shear to the strain rate, consistent with the Clark-
Smagorinsky model. The dimensionalized formuofvould
include a ¥ H? factor whereH is a depth-scale of the flow.
The precise form of the modification is not important as it
contributes only by its value near the extrema of the gener-
alized Kolmogorov flow and it is shown in Sect. 5 that the
instability properties are weakly sensitive to the valug.of

with [ [ G(r, x)d?r =1.

The LES residual-stress tenggy is modelized as a turbu-
lent dissipation according to the Clark-Smagorinsky model
(Pope 2000

T2 (ou; du; 10w o 2= : :
=15 T o 5556‘7 —2C,I'<S8S;;, (2 Introducing the streamfunction ¢+ such that
X OXk k OXk i1=dyy, ip=—0d,y, and taking the curl of Eq.1j, the
where summation is performed over repeated indices, basic equation is
- 10w du; s> o= = AW, V)
Si==(—+—=—L] and §%=2§;;S;;. 2y — — T =
Y2 <3xj' + 8)6,') e *VY A(x, y) K+8,F, (5)
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whereK is The first order at which some terms appear that do not satisfy
) this condition provides the amplitude equation to be satisfied
K:—F—((B 3V + 0,3,0) (Dyy ¥ — dex ) by ¢o(X, T).
12 YR xx This problem has already been solved for the standard
+0xy ¥ (0,4 — 8),41//)) viscous dissipation inMeshalkin and Sinail961, Nepom-

nyashchyj 1976 Sivashinsky 1985 for a pure sinusoidal
©) flow. AppendixA generalizes this derivation to a general
parallel flowU (y) without any assumption about symmetry.
with Itis shown by Eqs.A18,A19) that a large-scale instability of
_ the negative viscosity type is obtained whatever is the profile
§2 = 400 )P+ Ot =02+ 1 (@2 + @2) - oy,
A first illustration of parameterized turbulence is provided
in AppendixB where viscosity is replaced by hyperviscosity,
a parameterization often used in pseudo-spectral simulations

The main hypothesis of this work, following formalye- : )
. ; ) o - of turbulence or geophysical flowBésdevant et 311981
shalkin and Sina1961); Nepomnyashchy(197§; Sivashin Guermond and Prudhomir2003 which is still linear in the

sky (1989, is the assumption of scale separation between the : T
. Streamfunction but concentrates the dissipation into a small
Kolmogorov flow and the large-scale secondary flow, and in- . . X . L
. 5 4 range of scales. The main result is that negative viscosity is
troduce slow variableX=ex andT=e“t wheree is a small . . : : -
; still obtained but that there is no instability threshold due to
parameter. Then, it turns out that the flow depends only o . : . :
he fact that hyperviscosity vanishes much more rapidly than
(X, y, T) and we can expangl as . L - . .
viscosity in the large-scale limit. However, this parameteri-
zation hardly accounts for the nonlinear effects of small-scale

turbulence.

+ CyT? (40, (SBxy ) + (Byy — x)S@yy ¥ — dxx )

The streamfunction and all other primitivestidefined in
this work are assumed to have zero mean g2 ].

Y(X,y, 1) =V¥(y)+
Yo(X, y, T) + i (X, y, ) + €2y2(X, y, 1) + ..., (7)

whereV is the streamfunction fa/ (y). 3 Instability for a simplified case
Equation B) is then expanded ia and the perturbation

problem is solved at successi.ve orders. Itis easy to see that/hen the parameterized dissipation E8), that involves a
at leading order, the problem is reduced to nonlinear dependence on the flow, replaces molecular viscos-
ity, the complexity of algebra increases dramatically and the

_ 2 5
9dyy Y0 = CeT %y (Sodyy (¥ + Y0)) + 0, F (8) general calculation must be solved by symbolic calculations
. ™
with using Mathematica . The output of these calculations fills
- 2 211/2 a large number of pages. Hence, we present here a simpli-
So = [(ayy(\p + 1#0)) T (ay(\p + ‘”0)) ] ’ fied version wheré (y)=y in Eq. @) andu=1in Eq. @) for
which is alwavs satisfied b which the flow is the standard sinusoidal Kolmogorov flow
y y andS(w)=1.
Yo=oX,T). 9) However, the complete algebra, even for this simplified

_ _ case, is still cumbersome and is better done using automatic
Hence, the leading perturbation depends on the slow andympqjic calculation by Mathematica. The corresponding
large-scale variables only. This property does not hold ob+,teh0ok is provided as an electronic supplement to this pa-
viously for higher order perturbations. The remaining calcu-per (http://Aww.nonlin-processes-geophys.net/16/569/2009/
lations at higher orders aim at obtaining an equation for thenpg-16-569-2009-supplement.yipNe give here the results
large-scale amplitudeo(X, 7), establishing a condition for ot the calculations at each order. The notation are simpli-

the instability of tr_]e Iarge—scale_ perturbation. fied by notingC=C, "2 and D=I"2/12 and using primes or
At each order: in the expansion we need to solve parenthesized superscripts for the derivatives.in
E(wn) = Hn ’ (10)

3.1 Firstorder
where £ is a linear operator and{, holds for a com-

plicated expression involving solutions to lower order Atorder 1, we obtain
equations in the perturbation expansion. As seen be- .

low, £ satisfies<L(g)>=0 for any functiong(y) with  <(¥1) = sinydxeo,
<g>5% foz” g(y)dy. Hence, a necessary solvability con- with
dition for Eq. @L0) is given at each order by

c
2

<M, >=0. (11) £ == (B+cos)g" +sin2yg)" .
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the solution of which is

1 .
Y1 = c Sy dx¢o - (12)
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Hence the solvability condition is satisfied for all terms at
order 3 and the solution is

2

+ . 3
In principle, ap1(X, T) should be added to right hand side of ¥3 =~ —5~3~ SINY (x¢0)” + fa dx¢0 dx200

Eqg. (12). However, as we are only interested by the leading
order amplitude equation faso(X, T), this is unnecessary

and would only introduce additional spurious algelBar{-

1 .
+ f3q4 dx3p0 — ra) siny dxr¢o,

soussan et gl1978. It is always possible to assume that where f3,(y) and f3,; are two functions which are solutions

higher order corrections are contained withgt X, T) itself.

of £(fap)=azp, andL( fas)=azq.

Hence this term and similar terms in higher order equations

are discarded.
3.2 Second order

At order 2, we obtain

3+?
£(2) = =~ cosy (0xp0)® — 2C cOS Y dy2¢0,
the solution of which is
3+ C? )
Y2 = ac2 oY (0x90)” + f2(y) dx2¢0.,
with
Tl
1 F(3l3
f30) =53+ cos | F(y}) —E (y|%)¥
£ (313)
1
1F (%13
+ —M sin2y | (13)
()
212

where F(y|m) and E (y|m) are, respectively, the elliptic in-
tegrals of the first and second kind.

3.3 Third order

At order 3, we obtain

2

1+C- . sin
L) = = g siny (0x¢0)® = == dxr o0

+ azp dxPo dx2¢0 + azq Ix3¢o ,
with
az =4c0sd f— (L—3cos2) f{2 +sin2y6+ £
=— ((1 +cos) f5+ % sin2y (3 — 2f2”)>// ,
and
azq :% (11siny —9sin3y + 4siny (f2+ f3))
+ D cosy (fz/ + f2(3))

11 3 o,
=— | cosy—4 cos 3 + cosyfr —siny f5

/

— D(siny f + cosy fz”))
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3.4 Fourth order
At order 4, we obtain

9+ 14c?2 4+ Cc*
L(Ya) = T 13
+ aac(3x90)?dx290 + asag 0x P0dx3¢90

7+ C?

o0z oSy dx 90 0xT %0

+[aadyegpo|+| A+ 51052700 |+ as(Ox290)?.

cosy (dx¢o)*

(14)

The three termayc, as, andas, which depend on functions
f2, fap and fz, are listed in AppendiC. They all satisfy the
solvability condition and do not contribute to the amplitude
equation.

Two terms, which are boxed in Eql4), do not satisfy
the solvability condition. The coefficient in front 62790
provides a contributior-1 when averaged over the interval.
The coefficientiy in front of dya¢p is

3C

ay = —C (%coszyanz”) - (7 - gcoéy— %Sinzy) (15)

—C (2 cos df2 + gsin 2y f;—cos fz”) .
3.5 Amplitude equation

The second and the third term in the right hand side of
Eqg. (15 do not vanish after integration. Hence, after com-
bining the contributions and integrating by part, the ampli-
tude equation is obtained as

or o = ( ————— + C1> dy2¢0, (16)

I = sznsinny/d
a 47 0 24y

__3(,_4FGly)
4 3EG51D)
= —0.12766....

www.nonlin-processes-geophys.net/16/569/2009/
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In terms of the parameters of the Clark-Smagorinskywhere we only need to knovt;, which is solution of

model, the amplitude Eql6) exhibits a negative viscosity

instability if

3 5 r? 1

41 rCcy—(—=+1 0. 17
(2+> d (12+>2r2c5< (7
This inequality is satisfied i <I". with

1 1 2
(l—2+\/m+4cs(3+21)>

r. = (18)

2(3+2I)C?

Using the standard valug;=0.008 Pope 200Q Woodruff

et al, 2000, we obtain I':=2204. For a pure
Smagorinsky model §=0), the critical value would be
FC:CS_1/2(3+21)*1/4=8.69. Using values of s as large as
0.03 as suggestedWoodruff et al (2000 when the grid size

is getting close to the scale of the Kolmogorov flow yields

I'.=6.57 for the Clark-Smagorinsky model aiid=4.49 for
the pure Smagorinsky model.
As soon as the filter width is smaller th&p, a large-scale

instability of the negative viscosity type is obtained. Since

"
[ nU%+ 207 1 L
S(f%)—(m +E(Uf1_Ufl)

D ’
+ 2 (U -U"f) . (21)

At order 3, seven terms are generated which all satisfy the
solvability condition.

At order 4, the solvability condition provides again an am-
plitude equation displaying a parameterized viscosity

9790 = vrdy2¢0,

with
D "
=_E<flU>+E<flU>
U2+ 207
v MR oGy >, (22
VU2 +U"?
and
U/4 ! + ,l,l/U/Z 3UU// _ U/2
G@y) = ( ) ( 32 ) (23)
2(nU?+U7)

I" must be small with respect to the scale of the Kolmogorov g4 most terms in the pertubative expansion, the solvabil-

flow, that is 2r here, for consistency, this condition is always
satisfied in practice.

4 Full problem

ity condition is obtained by finding a primitive inthat does
not depend on any assumption Bily). However, for a lim-
ited number of terms, it is necessary, unlike the pure vis-
cous case discussed in Appendixto use the symmetry of

U (y) as defined in Eq.3) in order to cancel the integral over
[0, 27]. Itis the case, at third order, for the termadgsgo. If

The calculations for the full problem are handled in the SaMe&e flow breaks the symmetry then our scaling is inappropri-
way as for the simple problem but the calculations are theny;o 1nq we need to assurfie-ez. With this new scaling, a

extremely heavy and cannot be presented here in detail. The,hagative equation is obtained at third order, and negative
notebook for the full case is provided as an electronic supyjigeqgity plus an additional nonlinear terms are obtained at

plement fttp://www.nonlin-processes-geophys.net/16/569/ ¢y ,rth order.

2009/npg-16-569-2009-supplement)zgmd we summarize
here only the main results.
The linear operator is now

_(nu?t20? vu'
o= (ﬁg i\ ) -4
At order 1, we have
1
Y1 = Efl(y)axwo,
where f1 is solution of
£(f1)=-U". (20)

At order 2, we have

Y2 = f20(9x90)2 + f2pdx2900,

www.nonlin-processes-geophys.net/16/569/2009/

Namely, it can be shown (see accompanying
notebookhttp://www.nonlin-processes-geophys.net/16/569/
2009/npg-16-569-2009-supplement)zthat the amplitude
equation is then of the form:

drg0+ Poxgo+ e (Q(0xg0)? — vrofpo) =0, (24)
where P, Q are constants depending on the flow andis
given by Eq. 22). In principle, the non linear term in EcR4)
might be able to compensate for the instability induced by
the negative viscosity. The study of these effects is not pur-
sued in the sequel and is left for further work. However,
we remark that the role of symmetries in obtaining negative
viscosity effects is common feature in many instances (see,
e.g.Dubrulle and Frisch1991 and Novikov and Papanico-
lau, 2007).

Notice that the conditiorU >=0 is not a symmetry con-
dition but it is merely consistent with the assumption of scale
separation. Violation of this conditions leads only trivially to
fast wave translation in thg direction.

Nonlin. Processes Geophys., 56,/58969
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Fig. 1. fi(y) for Flow1l (solid), Flow2 (dash) and Flow3 (dotted) (b)
with [,LZOO]. C flf(o)
50

5 Numerical solution of the full problem 20l

In order to estimate the contribution to the amplitude equa- oy

tion, it is necessary to solve the auxiliary problems Eg6) (

and Q1) for the two functionsf1 and f2,. These problems 2

are actually simplified since the r.h.s. of EQOY can be in- 1l

tegrated twice and the terms on the r.h.s. of 4) €an be : ‘ u
integrated either once or twice, and we need only to know 0o 001 01 ! 10

f2,- Hence, we only have to solve second order linear dif-

fe.rential equations within the ensemble of periodic functionsFig_ 2. (a) f](»)(0) for Flow1. (solid) and Flow3 (dotted) as a func-
with zero mean ovel0, 2 ]. The problem forf; reducesto 4o, of 1. {b) f—1(»)(0) for Flow2 (dashed) and slope0.39

£1(f1/) _ —U\/m, (25) (solid) as a function oft.

with : . . '
We consider three different velocity profile

_ 2 12N 7 /
£1(8) = (WU +2U%)g + nUU's . — Flowl, with U (y)=siny, which is the standard sinu-

With U defined by Eq.3), f1 inherits the “odd sine” symme- soidal profile of the Kolmogorov flow.
try and Eq. £5) can be solved over the intervid, %] with
the boundary conditiong; (0)=0 and f;(r/2)=0. In turn,
the problem forf, splits in three parts

— Flow2, with U (y)=sin(y+1/2 sin 2), which is a flow
with a flat plateau such that the first five derivatives of
U (y) vanish inz /2.

2 2 /172 4 112
L1(fp1) = nU 42U —kJUZ+ U2, (26) — Flow3, with U (y)=sin(y+1/4 sin 4y), which is an in-
Lo(fo2) = (UfL = U'f1), 27) termediate case between Flowl and Flow2.
Lo(fo3) =WU'fi =U"f), (28) The details of the calculations can be

checked in the accompanying notebook httg:

with 1 D Ilwww.nonlin-processes-geophys.net/16/569/2009/
A— ¢ = g npg-16-569-2009-supplement.xip
Jo = Jopa C? Ja2 C? T3 Figure 1 shows the functionsf; for the three profiles
and where and for u=0.01. It is apparent that the amplitude for
) 0 ) ) Flow2 exceeds that of the two other flows and thfatex-
£5(g) = (MU +2U J 4 vu g) ' hibits, for this flow, a linear profile over a significant in-
VU240 JUZ+ U2 terval surroundingr/2. The reason is that for all profiles

fi(w/2)=—1/(C /) but this value is preserved over an in-

The boundary conditions arg), ;(0)=73, ;(/2)=0, since  (arya| of ordero (1/.15) for Flow2 instead 0f0 (1/ ) for
f2» exhibits “even cosine” symmetry, aridis an integra-  tne other flows.

tion constant. These problems are numerically solved with Figure2 shows the value of(0) as a function of for

. T™M . . .
Mathematica® using NDSolve which provides the numer- the three profiles. The asymptotic behavior of Flow2 dif-
ical solution of ordinary differential equations as a piewise fers from the two others and is shown separately. It can be
cubic spline interpolating function. demonstrated thaf; (0) scales as-Log() for Flowl and

Nonlin. Processes Geophys., 16, 5684 2009 www.nonlin-processes-geophys.net/16/569/2009/
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Flow3 whenu is small, while it is visible that Flow2 exhibits I
an anomalous algebraic scalingin©-3°. oA
At next order, the contributioif;, , does not differ in am- Y

plitude between the three flows while the contributi(fgg2
andfz/b’3 inherit the scaling properties gf.
After rearrangement of the terms, EQ2 is

B> B3
=BIC, %+ —55 + —, 29
vr 1Cs + CSFZ + 12C, ( ) ‘ ‘ ‘ ‘ : ,
0.01 01 1 10 100 1000
with
B — /,LUZ + 2072 + fopaG Fig. 3. T, for Flow1 (solid), Flow2 (dash) and Flow3 (dotted) with
YU\ Vozroz TRV C5=0.008.
By = (—f1U + f2.2G) .
B3 =(—f{U"+ fay.3G) . flow and, indeed, we find that this is also true for the general-

ized turbulent Kolmogorov flow instability when the flow has
It can be shown numerically that using the standard valuemirror symmetry. However, nonlinear terms are generated in
C,=0.008, B1B><0 for all x and hence, there is a threshold our calculation of the amplitude equation when this symme-
I". for negative viscosity defined as try is broken. These terms are not obtained for pure viscous
L 1 12 flow since'the viscous Kolmqgorov inst'ability is generalized
r,=— (_(_33 n (B§ _ 4BleCS2)1/2> . (30) to any arbitrary parallel flow in Appepdm but may pe seen
Cs \2B1 as a consequence of the nonlinearity of the dissipation. It
would be interesting to check whether such terms are able to

Figure3 shows the variation ofc as a function of for o iiy o 4 Jimit the scale of the instability.

the three selected flows. It is visible that, althoughtends
to increase to larger values for smallthe range of values is
the same for the three flows. Appendix A

Transverse viscous instability of a general

6 Conclusions
parallel flow

We have shown that a large-scale instability of the general ; . .
) ) : We consider here the large-scale perturbation problem with
ized turbulent Kolmogorov flow is obtained for parameter-

. . S issipation performed by molecular viscosityi.e. whenk
ized LES equations as soon as the filtering length of the LESﬁ1 Eq. 6) is replaced byv4y, all the other terms being

is smaller than a threshold that depends on the profile of the o o . . .
- . non modified. Derivatives iry are noted using primes or
flow and of the added friction parameter The slow diver- arenthesized SUDerscriots
gence whem decreases suggests that negative viscosity is d P p ' , L4
robust feature that does not rely strongly on the fairly ad hoc At qrder _0’, one obtamg easily the condition, =0
addition of friction in Eq. 4). which is satisfied by choosingo=go(X, T). .
The instability depends on the assumption that the basic Atorder 1, the perturbatiotty is obtained by solving
flow has a mirror symmetry, a common feature to obtain neg- _ "
ative viscosity Dubrulle and Frisch1991). £ = —Uoxvo, (AL)
Although, the parameterized LES equations are not equivyyiin
alent to the Navier-Stokes equation at high Reynolds num-
ber (Woodruff et al, 1999, our results suggest that negative ¢(g) = vg® . (A2)
viscosity can be obtained in turbulent flow which exhibit an
average zonal flow with the required symmetry and supporfThe solution i{1 = f19x ¢o, with
the hypothesis that these negative-viscosity instabilities are

important in geophysics. It would be interesting to look for £(f1) = —U". (A3)
such instabilities in numerical simulations. h ution | 2

Novikov and Papanicola{001); Novikov (2004 have ,':[ order 2, the solution is2= f2a(9x o) "+ f29x2¢0,
shown, for Navier-Stokes equations, that cellular flows with aWit
single scale can exhibit stabilization such that the large-scal

g 9E SR (fou) = — 117 (A4)

instability is shifted to large Reynolds number. They men-

tion that such effect is not observed with the Kolmogorov £(/2») = F1, (AS)
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whereF;=(Uf/-U'f;)’
At order 3, the solution is

V3 = faa(3x90)° + fapdy200 + faadx300 + f350xT¢0

with

£(faa) = —fo) (A6)
S(fap) = —f52 + 2F2 + G121 (A7)
L£(fa) =U —2vf] + Fa (A8)
£(f3g) = f1 (A9)

whereG,-,j:(fl.’f/f—ﬁf/V)/. All the terms on the r.h.s. of
Eqgs. A6-A9) vanish by integration ovd©, 2] and satisfy
the solvability condition.

At order 4, the solution is

V4 = faa(Ox90)* + facdy200(dx¢0)?
+ (fagdx300 + fandxT¥0)dxP0
+ fadxa00 + fan 7 x2900 + f4o(3X2<p0)2

with
£(faa) = —f5) (A10)
S(fac)=—f33 +3Fsu + Bf{ 3y — 2f2a f1 — f115)
(A11)
L(fag) = —fD — dvfy + Fap+ G (A12)
S(fam) = — 132 + 2, (A13)
L(fu) = — 20f} + Fag (A14)
S(fam) = f3, (A15)
(fan) =[1]+ f3, + Fae (A16)
L£(fa0) = —4vfy, + F3p + G12 (A17)

The first two terms on the right hand side of E4.14)
and the first term on the r.h.s. of E\16) do not vanish by
integration ovef0, 2rr]. They lead to the amplitude equation

7o — (v— < Uf1 >) dy200 =0, (A18)

and hence to the critical viscosity for large-scale instability

Ve =< W(y) Y2 (A19)

This expression generalizes that obtainedMbgshalkin
and Sinai(1961) with U (y)=siny. A Mathematica’ note-

book for this calculation is accompanying this manuscript

(http://www.nonlin-processes-geophys.net/16/569/2009/
npg-16-569-2009-supplement.kip
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Appendix B
Instability in the presence of hyperviscosity

Hyperviscosity is introduced by replacing in Eq. ) by
an iterated Laplacian of the streamfunction. We take here
K=vgV8y. Calculations for this case can be done in the
same way as for the viscous dissipation in Apperix he
remarkable fact is that the perturbative expansion is strik-
ingly similar.

Up to order 2, nothing is changed except tifats now
defined byg(g)=vsg®.

At order 3, the only modification is to change the contri-
bution—2v " into —4vg fl(e') in Eq. (A8).

At order 4, the Egs.A10, All, A13, Al5, Al16) are un-
changed. The contribution4vf,’ is replaced by—8v6f2(f).
The most significant changes occur in E414) where
—2vf5, is changed inte-4vg fz(f) but still does not contribute
to the amplitude equation, and where disappears. The
reason is that the leading corresponding contribution in the
hyperviscous expansion is in factor @fs and thus is0 (®)

The consequence is that the amplitude equation is now
orpo+ < Uf1 > dx2¢0 = 0.

There is no more instability threshold and the negative vis-
cosity is

< &2(y) >
V6

vr =< Ufy >=

where£ (y) is the third integral ot/ (y) with zero-mean over
[0, 27].

A Mathematica"  notebook for this calcu-
lation is accompanying the manuscript http:
/lwww.nonlin-processes-geophys.net/16/569/2009/
npg-16-569-2009-supplement.yip

Appendix C
Fourth-order terms in the simplified case
We list here, after rearrangement, the terms appearing in

Eqg. (14). Since they integrate all to zero over the interval
[0, 2] the solvability condition is satisfied for these terms.

5C2+ 19 c2+3 .
a&:(g 0sd+ ki (3sin2y f3,

sc 8C

Vi
+(3cos 3+1) f3,) —2cosy (cosy fy, — siny f,) )
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