Nonlin. Processes Geophys., 16, 5836 2009 4 "* .
www.nonlin-processes-geophys.net/16/543/2009/ GG Nonlinear Processes

© Author(s) 2009. This work is distributed under in Geophysics
the Creative Commons Attribution 3.0 License. -

Synchronization in a coupled two-layer quasigeostrophic model of
baroclinic instability — Part 1. Master-slave configuration

A. A. Castrejon-Pita and P. L. Read
Atmospheric, Oceanic & Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK

Received: 27 March 2009 — Revised: 15 July 2009 — Accepted: 4 August 2009 — Published: 7 August 2009

Abstract.  Synchronization is studied using a pair of correlations suggest that some kind of information may be
diffusively-coupled, two-layer quasi-geostrophic systemspropagated between two (or more) distant places through the
each comprising a single baroclinic wave and a zonal flow.atmosphere. For instance, teleconnections between middle
In particular, the coupling between the systems is in thelatitude blocking of the Northern and Southern Hemispheres
well-known master-slave or one-way configuration. Non- have been diagnosed in atmospheric data (@ugne et al.
linear time series analysis, phase dynamics, and bifurcal999. These teleconnections are manifested as a small but
tion diagrams are used to study the dynamics of the cousignificant tendency for blocking to occur simultaneously in
pled system. Phase synchronization, imperfect synchronizathe two hemispheres. Ideas of chaos synchronization have
tion (phase slips), or complete synchronization are found, debeen used to explain this phenomenduéne et al.1999
pending upon the strength of coupling, when the systems ar®uaneg 1997). In those investigations, it was found that, even
either in a periodic or a chaotic regime. The results of inves-though the events considered singly in each hemisphere are
tigations when the dynamics of each system are in differenthaotic in time, correlations between blocking events in the
regimes are also presented. These results also show evidenbi®rthern and Southern Hemispheres were taking plé&ae, (

of phase synchronization and signs of chaos control. ane and Tribbia2001). Similar results have also been found
and studied using global GCMs or coupled-hemisphere mod-
els Lunkeit, 200]). Phase synchronization between atmo-
spheric variables, such as daily mean temperature and daily
precipitation records, has also been studiedRiski et al.

1 Introduction

For several years, regular fluctuations in climate dynamics(2003' o _
have intrigued climate scientists and researchers. Some in- 1he study of synchronization in simple experiments and
vestigations have been performed to demonstrate the cycli§implified models can provide a useful source of insight
behavior in the Earth climate such as the well-known EaNi  for these atmospheric phenomena and more generally in the
phenomenon, the index cycle, and the North Atlantic Oscil-Study of climate variability. Since the first studies of baro-
lation (Tziperman et a).1995. It is often unclear, however, Clinic waves in the atmosphere, the two-layer model has
whether this cyclic behaviour is produce by external peri-Played animportant role. It was proposed more than 50 years
odic forcing (solar forcing for instance), internal variability, 290 tO encapsula}te in th? simplest way some of thg prln'c|pa|
or some interaction between the twaildor and Tziperman features of the middle latitude atmospheric circulation. Since
2000. then, it has been widely used in studies of baroclinic instabil-
Certain fluctuations in meteorological records are also'®y (Phillips, 1954 Pedlosky 1970 1971, 1973, and it has

characterized by teleconnection patterns in both space an@lso been used as an idealization of the rotating annulus labo-

time, in the sense of significant correlations between the fluc/a0ry experimentiide and Masonl1975 Lovegrove et a.

tuations of a field at widely separated points, commonly ap-200

plied to variability on monthly and longer timescales. Such I this paper, we use a five-dimensional version of the
two-layer, minimal quasigeostrophic model of baroclinic in-

o stability presented ihovegrove et al(2001, 2002 andEc-
Correspondence toA. A. Castrepn-Pita  cles et al(2006. This model can be understood as one of
BY

(aacp@atm.ox.ac.uk) the simplest models to represent non-linear dynamics of the
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baroclinic instability of a single wave in the presence of a used for barotropic variables aadfor baroclinic) where in
baroclinic zonal flow. Although it is clear that this model our case

is far removed from realistic atmospheric situations, it can

reproduce several of the basic dynamical regimes found inVs = W1 +v2) /2, (1)
Va = (Y1 —¥2) /2.

rotating annulus experiments. Those include experiments in
real two layer systemsAppleby, 1982 Lovegrove 1997) | the same way, the barotropic and baroclinic velocitigs,
or the thermally driven rotating baroclinic annulifide and  gnd/,, are defined as
Mason 1975 Read et a].1992 1998.

As shown inLovegrove et al(2001) andLovegrove etal.  Us = (u1 +u2) /2, @)
(2002, when subject to steady boundary conditions this sim-Us = (41 — u2) /2.

ple model exhibits a rich structure of bifurcations, includ- . . .
The streamfunctions are then projected onto a series of

ing period doubling cascades, leading to regimes correspond-" "~ .
ing to stationary waves, traveling waves, amplitude vacillat-d'l:g;%(_ar modes se¢.gvegrove et al.2001, 2002 Lovegrove

ing waves (AV), and chaotic modulated amplitude vacillat-

ing waves (MAV). This model has also been previously used M

to study the effects of external periodic forcing on the dy- v, = Z Xf,;d cosl,y +

namics byEccles et al(2006, who found frequency locking m=1

between the natural oscillation frequencies and the forcing mean flow correction

frequencies under certain conditions. N M 3)
The main objective of this paper is to present results of Z Z W,f;,f explik,x]sinl,y — Usay ,

investigations carried out using a coupled pair of such two-,=_y m=1 =~

layer models. The coupling between the two systems under "#° background

study in this paper is in thene-wayor unidirectionalconfi- wave term

guration (better known asaster-slaveonfiguration). This
connection is achieved by adding a linear diffusive coupling
term into the mean flow correction equation of the system,s.d _ (Ws,d>* and ko ——k (4)
being the most natural and simplest way to introduce a zon- ™" mn " "

ally symmetric interaction between the two systems. The 0r—pe asterisk signifies complex conjugation. The first term on

ganization of the article is as follows. Secti@rprovides a 1o right hand side of Eq3J, without any dependence an
general description and formulation of the simple two-layer s \nown as thenean flow correctioterm. This term will be

quasigeostrophic model. Then, in Se8f.the modifica-  he main focus of our study. The second term is called the
tions performed in order to create a coupled two-layer quasis

i ; ) wave termand the remainder is the background flow.
geostrophic model will be discussed followed by the methods

used to analyze the data in Sett.Section5 presents both 2.1 The 5-dimensional system

general and particular results for each of the main flow types

found in the model, showing the kind of synchronized statesSubstituting Eq. ) into the corresponding quasigeostrophic
that can be reached with this system. Finally, S@ptesents  potential vorticity equationsLOvegrove et al.2007), and

a discussion of the results and final remarks. truncating to a single zonal wavenumber term in each of the

radial and zonal directions, i.8/=N=1 we obtain

where

2 The model As = —AsA + By Bs — (vs + s Xa) B,
BS = —AsBs — BsAs + (vs + ¥ Xa) Ag,
The model used here is an adaptation of the 5-dimensionalla = —AgAa + BaBa — (va + vaXa) By, ®)

(5-D) model described by ovegrove et al.(2001), Love- By = —AgBq — BaAa + (va +vaXa) As
grove et al(2002, andEccles et al(2006, and the reader Xy =—-AXy+ y[AsBs — BsAy],
is referred to these papers for a more detailed description. , o )
The basic model is a two-layer quasi-geostrophic system‘,"’here the over-dot represents differentiation with respect to
formulated in cartesian geometry and permits just one zontime, A; s=Re (Wf’ld>, and Bs g=—1Im (Wfid)- This sys-
ally propagating wave with barotropic and baroclinic com- tem describes the interaction between one azimuthal wave
ponents. Hence it is arguably the simplest possible represerand the mean flow and, whilst not being strictly justifiable
tation of such a system. physically, it serves to form the simplest possible conceptual
Following e.g. Salmon (1998, the quasi-geostrophic model for initial analysis which captures some of the essen-
equations for a two-layer fluid of equal layer depths maytial qualitative behavior of the full system. The dynamics
be written in terms of barotropic and baroclinic streamfunc- that this simple model is able to reproduce (when compared
tions, ¥y andyr,; respectively, (subscriptwill henceforth be  to annulus experiments) are,
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— The steady wave regime (Labeled S in Chapter Il of thisfor the 5-D system, is associated with modulations of the am-

thesis), plitudes of the waves traveling in the channel. Thus our cou-
pling term has the formy(X,4,—Xg4,), wheren is the cou-

— The amplitude vacillation (periodic or quasi-periodic pling strength parameter. The complete one-way coupled,

modulated wave) regime (Labeled AV), two-layer quasi-geostrophic model is then formed as follows

— The modulated amplitude vacillation regime (labeled
MAV, which can be periodic or chaotic). Master
A.Su = _Asa Asa + IBsa Bsu - (Vsa + Vsa Xdl,) Bda s
Taking into account those results, the dynamics and the efBs, = —As, Bs, = Bs, As, + (vs, + ¥5,.Xa,) Ad, »
fects of coupling two of such systems in those different Ad, = —Ad, Ad, + Bd, B, — (va, + Vi, Xd,) B, »

regimes will be investigated. By, = —=Aq,Ba, — Bi, Ad, + (va, + va,Xa,) As, »
Xda = _AaXda + Ya [Asa Bd,, - Bs,,Ad,, ] s
3 The coupled two-layer model Slave
‘L“Sb = _ASb Asb + ﬁsb BS[; - (Vs;, + Vs;,de) Bd,, s
31 One Wa_y Coupling Bsb = _Asb BS[, - IBSbASb + (VSb + Vszdb) Adb )

A.dh = _Adh Adb + IBdb Bd}, - (vd}, + Yd, Xd},) Bsb s

In recent years, different studies of synchronization in nu- 2% = ~24 B4, = Pa,Ad, + (vay + 74, Xa,) As, -

merical models, such as the work Byjkovsky et al (2007), Xa, = =BpXa, + 75 [As, Ba, — By, Aay] +n(Xa, — Xay)
Pecora et al(1997, and Anishchenko et al(1998, have Coupling

shown that synchronization between two numerical systems

(whether identical or not) can be achieved by adding a lin- @)

ear coupling term between the two systems. Experimental . , .
investigation have confirmed most of these numerical and" Ed- (7), as mentioned above, the coupling was introduced
theoretical approachaembe and YamagL999: Yu et al. in the form of a linear term; which is a priori the simplest
(1999. Several investigations have used this form of cou-Means of coupling two systems, and justified here since the
pling to study synchronization in the classic and complexPreciseé details of how the coupling might occur in a real
Lorenz equationsRecora et al.1997 Anishchenko et a. physical system are not yet characterized or fully understood.
1998 Pyragas 1996 Rulkov et al, 1995 Stefanski et al. Note, however, that this term has the same form as New-
1996, in the Rossler oscillatoecora et 1997 Osipov ~ tON'S classical law of cooling/T /dr=K (To—T), which is

et al, 1997 and in other numerical systems (eGuan et al appropriate for forced convective heat transfer. In experi-
199é Boccaletti et al.2002). ments using the thermally driven rotating baroclinic annulus

Hide and Masor{(1975; Read et al(1998 (which the sin-
e two-layer system attempts to model) the vertical shear in
e velocity field is produced, in agreement with the thermal

In a one-way coupling configuration this is performed by |
adding an extra term to the response system, proportional t%

the difference between the drive and response variables of . . .
I W V P var wind equationAndrews (2000, by a temperature gradient

the form: X . )
between the inner and outer wall of the annulus in a rotating
dxq frame of reference. This temperature difference is produced
ar G(x), (62) by nothing else but by forced convection between the wall
dxs and the fluid, since this is essentially how the thermal bound-
dar G(x2) +n(x1—x2), (6b) ary conditions are maintained in typical baroclinic annulus
Coupling experiments. The coupling term in tt&; equation in our

5-dimensional formulation, therefore, effectively represents

where Egs. §a) and ©Eb) are the master and slave systems, a zonally symmetric perturbation to the mean flow correc-
respectively.n is a parameter which determines the strengthtion through Newton’s law of cooling and the thermal wind
of the coupling. The choice of thecomponent that is used equation. This represents a perturbation in the background
to couple the systems depends on the characteristics of thgaermal structure of the flow, associated, for instance, with
particular problem under investigation. It has been found thata modulation of the temperature contrast between the inner
this type of interaction commonly leads to synchronization of and the outer cylinder, such as in the experiments carried out
periodic and chaotic oscillations as well as to chaos control. by Eccles et al(2009.

Following these ideas, we coupled two 5-D two-layer The type of coupling where the interaction is only in one
models through a linear coupling term, perturbing directly direction is usually termedhaster-slave The first system
the baroclinic mean flow correction term in the slave system.acts as thenasteror driver, while the second one acts as
X4 represents variations in the mean flow, which, as showrthe slaveor driven system. In this configuration, trelave
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system is the one that will be perturbed, and it is the one thathe phase can be calculated using:

will be forced to follow the dynamics of thmaster We have sp(0)

chosen to study this configuration first for one main reason(r) = arctan—-—. (10)
we have total control over the behaviour of the driver. The ef- s(t)

fects produced over the driven system can therefore be easilfhe phase obtained from EqglQ) is restricted, by con-
identified. struction, to the intervall, 27]. When “unfolded” or “un-

In order to study the synchronization between two non-wrapped” (i.e. by accumulating the phases such that ev-
identical systems, aismatchbetween the systems has to ery cycle, the phases; » increase by 2) one can observe
be introduced. Consequently, for the baroclinically unstablehow it continuously grows in time, although some fluctua-
problem, the rotational Froude numbefs,,, will be used  tions will be observed, particularly for chaotic data. Finally,
to produce such aismatch Changes in the value df af- by calculating the phase difference between the oscillators,
fect the parametera,, B4, A, vq, 7 andy, of the model,  A¢=¢,(1)—¢»(t) (Where the subindex refers to the corre-
and thereby produce shifts of the main oscillating frequencysponding oscillator), we can determine whether the coupled
and its amplitude. In practice, in a real experiment, varia-system has reached a synchronized state or not. If the phase
tions of F would imply alterations in the thermal boundary difference does not grow in time but remains bounded (i.e. it
conditions, in the aspect ratio of the annular container, or influctuates around a constant vallieA¢ | <const) we have
the physical properties of the working fluid. phase locking, generally understood as phase synchroniza-
For the principal observable in each of our models, wetion. Finally, we can create a histogram &pmod(27) by
have choserx,, ,, the mean flow correction, since this is subdividing the possible range of phase differences Mto
where the periodic and chaotic modulation of the amplitudeintervals (of size 2/N and determine how often this differ-
of the baroclinic wave can be most easily identified, and canence occurs in each interval. In a phase synchronized state,
be seen as a direct extension of the modulated systeftby this histogram will present a clear peak around a particular
cles et al(2006. value of A¢. In contrast, in non-synchronized systems, this
histogram is expected to be uniform.
) ] . Another condition for synchronization is based on the cal-
4 Data analysis and detection of synchronized states  ¢yjation of the frequency difference ir ratio. This condition
. o s considered somewhat weak in investigations when the pa-
There are different procedures to detect synchronization Otameters of the systems are inaccessible (“passive” experi-

.pe”.Odt'ﬁ anld chaoltch:'osc'lllatlofns. Thehmos:hstrq|ghtflonf/vardments Pikovsky et al.2001)) because the fact of having two
IS Via the classical LISsajous igure where the signal o Onemteracting systems oscillating at (approximately) the same
oscillator is plotted against the signal of the second. Regula

frequency does not imply that the two non-identical systems

patterns (even closed curves in the case of periodic dynamére necessarily phase locked; the closeness of the two fre-

ICS)I(?'E lés%allly ?nn 'Tg'cﬁt'oz thattS)r/T:\chk:owz\(/adr t?[(ra]ihatwotuir uencies could just be a coincidence. In our case, however,
could be developing. In chaolic systems, Nowever, this test Ig,.q we have full access an control over all the parameters

less definitive. (an “active” experiment), the computation of the frequency

A more useful and quantitative technique to detect SYMratio will be a valuable tool in the detection of synchro-

chronization in. periodic and chaotic systems is the al’]"jllys'shized states. This will be especially helpful when analyzing
of the phase difference between the ex_ternal forcing and th?ne resulting dynamics when the mismatch and/or coupling
oscillator or between the coupled oscillators. It has beenstrength can be varied over a relatively wide range of param-

proposed that the Hilbert transform is a suitable teChniqueetersPikovsky et al(2007).

to calculate the instantaneous.phase, even for rgasonably To calculate the frequency of a chaotic signal, however,
smooth chaotic data (the Fourier spectrum of which CON“could be difficult. The most direct approach by calculating

tains a predominant main frequency or a narrow-band sig-the differentiation of E ; :
. | . g.X0) could result in a fluctuating fre-
nal) (Pikovsky et al, 2001, Rosenblum and Pikovskg003. quencyV¥ (t). This happens due to noise and the sometimes

".1 order to implement 't'_ one has to construct from a Scalarcomplicated form of the signal. Averaging over time can give
signals(¢) a complex variable,

much better values of the frequency

_ ; — ip(1)
C=s5()+isg)=A@)e , (8) W <d<Z£t)>’ (11)
wheresy (1) is the Hilbert transform, . . . .
where { ) denotes averaging over time. This approximate
4 ® 5(1) mean frequency is usually usually known as the “observed
su(t) =m P _/ i dr. (©) frequency”. By analysing its value, and in particular the dif-

ference and/or ratio between the frequencies of the two inter-
In the above equation (E), P denotes that the integral is acting systems, one can look for signatures of synchroniza-
taken in the sense of the Cauchy principal value. From thistion.
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Fig. 2. Example of the Lissajous plot and the distribution of
the cyclic relative phaseA¢mod(2r), for a synchronous state.

g BTl F,=6.9. F,=6.8 andn=0.002 as in Fig1.
-4r e " RSN = 7]
o g
0 1000 2000 3000 4000 regime. When the mismatch is decreased, for the whole
Time range from approximately,=~6.8 to ~7, the phases of the

two systems are synchronized; the phase difference in this
Fig. 1. Dynamics of A¢ at the synchronization transition. The state shows small fluctuations around a constant value. These
phase difference is shown for several valuegpfwhich governs  fluctuations seem to increase in amplitude as the mismatch
the frequency mismatch between the systems) for a constant Va'“@rows. When¥, is larger than~7.05, synchronization is lost
of the coupling strengthn&0.002). _In the synchronous state, for and again a step-like change in the phase difference is ob-
B B e Ut eTVed. U@ shows an oxampleof he Lissajous plot and
y 9 b g the distribution of the cyclic relative phasg¢mod(2r), ob-

a smoothly stepped way",=6.7, 6.75 andF,=7.1) and more uni- ined wh h hronized. A ol limi
formly for larger mismatchesH,=6.5, 6.6 andF;,=7.2, 7.3). The tained when the systems are synchronized. A clear limit cy-

transition at the other border of the synchronize regions occurs sim€l€ in Fig.2-(left) and a peaked distribution in Fig:(right),

ilarly, with difference that the phase difference now decreases inconfirm a phase synchronized state.

time. F,=6.8 is always kept constant. Figure3, shows the bifurcation diagram of tiséavesys-
tem and the frequency rati@f,/ ¥,) between the signals of
the masterand theslavesystem when the coupling strength
is n=0.002. The region around,=6.7 to 7, identified as a

5 Results plateau in the frequency ratio plot, is evidently in a frequency
entrained state. This is in complete agreement with what was

First, we will describe the results of coupling the two sys- found before and simply corroborates the findings plotted in

tems when they are in a periodic regime (Séct). Then  Fig. 1. The regime diagram shows that the non-zero value of

we move on to perform a similar analysis in a chaotic 5 alters the amplitude of the oscillation &f;,. The bifurca-

regime (Sect5.2), where another tool to test for synchro- tion diagram does not, therefore, show a “thin line” (corre-

nization, namely the Auxiliary System Approach, was ap- sponding to a periodic behaviour) for the non-synchronized

plied (Sect5.3). regions, but rather what appears at first sight to be chaotic be-
haviour . However, nonlinear time series analykiar{tz and
5.1 Periodic regime Schreiber1999 2002 applied to the temporal signal of the

slavein these regions showed that the dynamics in these re-
As a starting point, we will present the results of coupling gions is quasiperiodic and not chaotic. This dynamical state
the two systems in a periodic regime for various values ofis characterized by having a multi-peaked frequency spec-
F, (with F,=6.8) while keeping the coupling strength con- trum where different linear combinations of the two main
stant. Figurel shows extracts of the time variation ofg periodic frequencies of each system are present.
for various values of the mismatch (governed by changes in In order to investigate synchronization using a wider range
the value of the Froude number for thlavesystem F,) and  of parameters, a study where bathndF,, were varied con-
a constant coupling parameter g£0.002. For relatively  tinuously was carried out. In this case, we were looking for
large mismatches, the systems do not seem to synchronizéequency entrainment between the two systems. We were
as expected. For values Bf between 67 and 675 however,  therefore interested in ratio between the observed frequency
the phase difference appears as an intermittent sequence of each systemy,/¥,. The result of this investigation can
jumps (known as phase slips in this context) together withbe observed in the surface plot in Fify.Along the horizon-
intervals of synchronized behaviour. These phase slips indital axes we plo¥}, andn, and the frequency ratidy, / V,, is
cate that we are entering into the margins of a synchronizegblotted in the vertical, is shown in colouF, is kept constant.
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Fig. 3. (Left) Bifurcation diagram, constructed by acumulating the %, -
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andn=0.002.
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The regions wher@, / ¥,=1 represent zones where a (1:1)
frequency locked state exists. It is important to point out that

the classic “Arnol’d tongue” behaviour rin roughly _. - . .
€ classic ofd tongue” behaviour (appearing as roug yFlg. 4. Variations in the¥;, /¥, as a result of ramping}, from

triangular-shape synchronized regions in e, plane) Fj,=6.4 to 8 andpn from n=0—0.01 for a constan¥,=6.8 (which
found in many externally forced and master-slave system%roduces al,=0.0956).

was, to some extent, obtained at least for low values.of
Notice, however, that this tongue is not symmetrical and in
fact is skewed to the right (towards largé&y’s). This is es- 5.2 Chaotic regime
sentially due to the fact that we are coupling two systems

that change both frequency and amplitude when variation
of the Froude number are applied, i.e. changes inill not
only produce changes in the main oscillating frequency of

the system, but also in its amplitude. This is in contrast to(Read et al.1992 and numerical simulation®ead, 2003

more classica_l external periodically-forced systems, Wherq\/IAV flows are typically characterized by having three or
only changes in the frequency of the external forcing are typ'more independent frequencies and are, in some cases, found

igally app!ied, producing the well-known triangular synchro- to show a chaotic behaviour. These vacillation regimes are
hized regions in parameter space; known as Armold tongue?)rimarily produced by nonlinear wave-mean flow interac-

(Pikovsky et al. 2001. 'The re;ult In our case 1S that the tions, though perhaps also modified in some circumstances
shape of th_e synchronized regions n the-¢) plane ap- by wave-wave interactions, as suggested in laboratory ex-
pears more irregular and compl!cated. periments in the rotating annulukliie and Mason1975

For larger \{alues O.f the coupllng.strength>(0.oo4), fre- Read et a].1998. The results for the coupled model in the
guency entrainment is reached quite abruptlyFpismaller chaotic regime follow more or less those found in the peri-

than F;. On the other hand, for' values QM.)'OOG and for odic regime. However, states such as imperfect phase syn-
AF~0.8 to 12 on the upper right hand side of the plot, chronization (phase slips) are clearer.

we observe another phenomenon. Here, the frequency dif- Figure5 shaws a compilation of the phase differente

ference is not zero (as expected for a one-to-one frequenc br several values of the mismatch (governed By with
locking). Instead, we observe a ratig / ¥,=2. This means ; = .
9) o/ Ve a constant coupling strength There, it is possible to ob-

that the slave system is oscillating with a frequency which is = : .
double that of the master. The slave system suffered a bifur>€Ve @ clear transition _to a synchronous state, starfung with
cation (frequency doubling) caused by the external perturbapOmIOIetely unsynchromzed_ behaylour for a large mismatch
tion. However, the system is still synchronized (but nowto a(Fa=13 andF,=12), changing to imperfect phase synchro-
1:2 frequency ratio). nization (show!ng the characteristic phase_ sllps) of various
degrees, and finally to full phase synchronization, when the
phase difference is bounded, i.e. the phase difference oscil-
lates around a constant value (fulfilling the condition of phase
synchronization according t@ikovsky et al.200%, Rosem-

blum et al, 1996.

She dynamics obtained in the chaotic regime are equivalent
to the modulated amplitude vacillation (MAV) flow regime
found in baroclinic annulus experiments in the laboratory
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Fig. 5. Dynamics of A¢ at the synchronization transition. The Ad (?,';:’od 2 )
phase difference is shown for several valueggiwhich governs

the frequency mismatch between the systems) for a constant value, L . . .
of the coupling strengthy=0.05) and F,=13. Imperfect phase Fig. 7. Lissajous plot and the dlstrlbuthn of the cy(_:llc relative
synchronization is clearly visible faf,=12.2 to F;,=12.8. As the phgse,A</_>mod(21), for (top) unsynghronlz_ed case with, =12,
detuning decreases, however, the number of phase slips decreasé@,'ddle) |mper.fect phase §ynchron|zed Wi=126, and (bqt-
demonstrating that the systems are entering into a synchronous b%gw)ssynchronlzed case witf,=132. F,=13 andy=0.05 as in

haviour. In the synchronous state¢ is bounded.

ied. Itis possible to observe the synchronization transition at
aroundF,=12.9 in both plots. Three individual examples of
an unsynchronized, a partially synchronized and a synchro-
nized state, analyzed using the Lissajous plot and the distri-
bution of the cyclic relative phase are presented in Fig.
Notice the clear peak in the histogram for the last two cases,
a clear signature of a preferred value in the phase difference
even in the presence of spontaneous phase slips.

As performed in the periodic case, independently ramping
the values ofl;, (controlled by the value of}) andn while
Fig. 6. Left: Bifurcation diagram in the chaotic case, and right: computing the frequency ratig@;, /¥, can provide a map of
frequency difference foF, =13, 12<14<8, andn=0.05. the synchronized regions in the plang, (). The results of

this analysis are presented in Fgy.
As can be seen in Fig, a quite non-regular and asym-
metric region of frequency entrainment is found (regions

The phase difference found fd,=12, shown in Fig5  where &,/ W,~1). In particular the regions with, <F,
tends to grow consistently with time, clearly indicating a lack need larger values of to synchronize probably due to the
of SynChronization. This behaViOUr, however, Changes radi'non”near response of the Systems WI?FE(Df either themas-
cally when the mismatch is decreased. Signatures of phasgr or slavesystems) is varied. Variation in the Froude num-
synchronization start to develop, as is the case when valueger not only induces variation in the observable oscillation
of F,=122 to 128 are selected for thelavesystem. For  frequency, but also in its amplitude. Therefore, the response
F,>12.87 and for the complete length of the rurix10°  of the slavesystem to the coupling is expected to be com-
timesteps) the dynamics of tiséavewere locked to those of plex. Also, there is a region where, even though the two sys-
the mastersystem (as shown for the values Bf=13,132  temsare set to evolve similarly by having very similar Froude
and 134. numbers (wheré\ F <0.2), an increment in the value of the

Figure6 shows the bifurcation diagram for tlstavesys-  coupling strength is not directly reflected in an increase of the
tem and the frequency ratio for the whole rangeFpfstud-  frequency entrainment. Furthermore, even for cases when

www.nonlin-processes-geophys.net/16/543/2009/ Nonlin. Processes Geophys., 56652609



550

" 0.4

0.17 '
Fo13.774 9:-11393 0.166 0.164
d fi 12800 Fh;12.517 ?::lz?% 0.16 0
\Pb B Fy-11.875

Fig. 8. The effects on the frequency rati,/ ¥, of ramping
Fp=12 to Fp=14 andn=0.0 to n=0.4 whilst holding F,=13
(which produces &;,=0.1665) in a MAV regime.

AF~O0 (i.e. F,~F,=13) andn=0.11 to n=0.12, the two
systems oscillate at slightly different (observable) frequen-
cies, and only intermittently being partially locked, showing
the typical phase slips characteristic of imperfect synchro-
nized states.

5.3 Generalized synchronization: the auxiliary system
approach

Synchronization of chaos is often understood as a phe-
nomenon where two systems, in a chaotic regime, exhibit
identical oscillations. However, inmaster-slaveonfigura-
tion this regime of identical oscillations only occurs at cer-
tain points in the parameter space. Moreover, for noniden-

A. A. Castrgdn-Pita and P. L. Read: Synchronization in a coupled QG baroclinic model

generalized sense, in our coupled system. A detailed formu-
lation of the technique is presented Rulkov et al.(1995,
and some examples of its use are presented in the work by
Hramov et al (2005 andHramov and Koronovski{2005h.
In that technique, we consider the dynamics of tiaster
X () and theslavex, (r) systems. We also introduce an aux-
iliary systemx,, (¢) which is identical to thelavesystem (it
is important to note that the coupling to theasteris also
exactly the same) but that starts with slightly different initial
conditions (i.e X, (tp) #Xqs (f0)). In the absence of general-
ized synchronization, the trajectories of the two systems in
phase space will share the same attractor but will move apart
rapidly until their separation is of the order of the attractor,
and they will then remain uncorrelated as they develop. How-
ever, if the two response systensaiyeand auxiliary) are
synchronized to the master through the generalized synchro-
nization relationx, (r)=F[X,, (1)] andX.s (*)=F[X,, (¢)], then
it is clear that (after transients die away) a solution with the
form x, (1) =X, (¢) exists. This technique allows a relatively
easy way to identify generalized synchronization of chaotic
systems by comparing the signal of two identical response
systems, i.e. one needs to look for the identityr)=x,, (¢).
Therefore, in order to detect generalized synchronization
in the coupled two-layer system:

1. anauxiliary system which is identical to theavesys-
tem, coupled to thenasterby a coupling term identical
to the one used in thelave system, was constructed.
The only difference is that the new systeauxiliary) is
initialized with slightly different initial conditions.

2. the signals from the two response systesiayeand

auxiliary, X4, andX,4, ) were compared, either by plot-
ting the corresponding Lissajous figuramaster vs.
slave mastervs. auxiliary, andslavevs. auxiliary), by
looking for the X;,=X,4,, condition to be satisfied, or
by means of simple linear correlation, in this case look-
ing only at the mean flow correction term.

tical systems, strictly speaking that cannot happen. In parAs the technique suggests, one has to ensure that any tran-
ticular, for a large coupling strength one could find a func- sient has died away before starting to look for synchroniza-
tional relationship between the states of two coupled systion and to compare the signals from the talavesystems.
tems. This means that we can equate dynamical variableSeveral time spans were tried, therefore, and 1000 timesteps
from one system with a function of variables of another sys-was generally found to be long enough for the transients to

tem. This type of regime is callegkeneralized synchroniza-
tion (Rulkov et al, 1995 Pikovsky et al.2001). Using this
definition, complete synchronization will be reached when

decay. To ensure that this condition was satisfied, however,
the running time was set to 100 000 timesteps.

In Figs. 9, 11 and 13, extracts from the time series, and

the relations between the variables of the coupled systems aldssajous plots for different numerical runs are shown. Phase
simple identity functions. Therefore, the presence of generdifferences and plots of,, — X4, are presented in Fig40,

alized synchronization betwestavex, (t) andmasterx,, (1)

12 and14.

chaotic systems means that there is a functional relation of In Fig. 9, with y=0, no synchronization is expected. The
the typex, (t)=F[x, (¢)] between the systems, after the tran- two responsesfave systems, having been initialized with

sients have decayed away.

different initial conditions and being chaotic, evolve differ-

In this work, we have used the auxiliary system approachently. This is also corroborated by plotting the phase differ-
as another alternative method to study synchronization, in thence between th@asterand theslavesystems and between

Nonlin. Processes Geophys., 16, 5836 2009
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Fig. 9. Results of the auxiliary system approach applied to the systemAyitl 3, F;,=12.6 andn=0. The top row shows (from left to
right) extracts of the time series of the mean flow correction term ofitaster X4, , (in black) and the firsslaveX 4, (in green); the master
(in black) and the auxiliary systetsi;, = (in blue); and the two response systems, respectively. Projections onto the planeX 4, ),
(Xa,, Xa,,)» Xq,, Xq,,) are shown in the bottom row.

a

the masterand the auxiliary systems, respectively, as pre-
sented in Figl0. This plot shows that the phase of the two Zr
response systems is not bounded, and they evolve differently
In the same way, the projections into the plangg,( X,,),

(Xq,, Xq,,) and X4,, X4,,) show no correlation between the ‘ ‘ :
systems, not even between the two response systems. 0 2000 4000 6000 8000 10000

. . Time
For the case withy=0.066, we can observe phase slips 0.1
in the two response systems. It is important to note that the

ngéi §|:ﬁsF?gc;Liraitd (iigerent times for each system, as cari; w M W W W A ! \M M w w

AP2 T
(=]

Comparing Xd ,Xd 5
__ Comparing Xda, X:
a  as

<

A further increment in the value of the coupling strength ol ‘ ‘ ‘
will lead the systems to a phase synchronized state. The "0 2000 4000 6000 8000 10000
two response systems are phase synchronized to the com- Time
mon master as can be seen in F|g$3.and 14. However, . Fig. 10. Top: Phase difference between timasterand slave (in
even though the coupled systems are in a phase synchronizeghen) systems and between thasterand Auxiliary systems (in
state, they are not yet synchronized in the generalized sensgjye), calculated from the data presented in BigNotice the lack
Figure 14, which shows that the signals of the two responseof any phase locking between the systems. Bottom: The depen-
systems are not identical. The condition for generalized syndence of the difference between the coordinates ofstheeand
chronization via the auxiliary system approach is not yet ful- auxiliary systems.
filled.

For n>0.2, generalized synchronization is finally found.
Figures15and16 show this state. The Lissajous plot in the
planes &, . X4,), (X4,. X4,,) show that the oscillation of ~bottom) is equal to zero which shows that the oscillations are
the drive and response systems are not identical; however, tHglentical for the whole running time, fuffilling the condition
two response systems are phase synchronized tméseer for generalized synchronization. Therefore these systems are
(Fig. 16 shows that the phase difference is bounded) and theipynchronized in the generalized sense.
time series are identical. This can be corroborated by looking We can then apply this analysis for the same range of
at the projection of the trajectories ont& 4, X, ) plane,  parameters used to study frequency entrainment presented
which is basically a line X, (t)—Xg4,, ) (Shown in Fig.16- in Fig. 8. The result of this is shown in Fidl7. On the
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Fig. 11. As for Fig.9 but with a coupling strength of=0.066. A clear phase slip can be noticeddp, = at Timex820.

151
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'<9]' 5 Comparing Xd ,Xd
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Fig. 12. Top: Phase difference between timasterand slave (in

4000

6000 8000 10000

Time

green) systems and between thasterand Auxiliary systems (in
blue), calculated from the data presented in Eiy.Notice that the

phase jumps or phase slips are quite random and that they occur

As can be noticed, when compared with the results shown
in Fig. 8, the regions of synchronized behaviour in the two
plots are alike. Larger values @f however, are generally
needed, in agreement with the literature, to reach a general-
ized synchronized state.

During the analysis, particularly near the boundaries be-
tween phase synchronized and generalized synchronized re-
gions, a state which is called by some authorermit-
tent generalized synchronizatigHramov and Koronovskii
2005h, was also found. In this state, the two response sys-
tems §laveandauxiliary) are phase synchronized with the
common master. However, the distinctive feature in this par-
ticular region is that the oscillations of the two response sys-
tems are identical for short periods of time, then become un-
related for quite a few timesteps, and then related again and
so on in a random way. It is interesting to point out that the
gtmplitude of these irregular “bursts” (in the;, — X4, plot)

different times in each system. Bottom: The dependence of the dif!S comparable to the amplitude of the natural oscillation of
ference between the coordinates of ¢heveand auxiliary systems.
Short epochs of correlated amplitude can be observed.

horizontal axis we have, (keeping F,=13 while vary-
ing the value of the response system’s Froude number from
F,=12 to F,=14), in the vertical the value of the coupling

strengthy, and in colours the value of the linear correlation

the unperturbed systems. An example of this behaviour is
shown in Fig.18. It is recommended that in future work,
some further attention should be put into this particular syn-
chronized state, and a more detailed analysis should be per-
formed.

Discussion and final remarks

;oef;f(l)(;lienr: ;tbe eItV\éeigltTg ;V\Ilg Leszzotgsgeigf:r?ir:es.w'?wgr?r'crr?elza:[\:\?é]n this paper, results of numerical experiments performed us-
PP yeq msq a coupled system of a pair of two-layer quasigeostrophic

response systems are identical and therefore that the syste

are synchronized in a generalized sense.

Nonlin. Processes Geophys., 16, 5836 2009

Models of baroclinic instability were presented. We found

that the implementation of the coupling, applied solely
through the mean flow correction term, not only follows the
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Fig. 13. As for Fig. 9 but with a coupling strength af=0.155. Note that the two response systems are phase synchronized (to the common
mastej. It is still visible, however, that the two response systems are not identical.

pattern proposed in various previous investigations, but it 1

. . . . . . Comp‘aring)(d ,Xd
also has a physical interpretation in association with an ex-

. a b
_ Comparing Xd s Xd
L s

perimental counterpart, the thermally driven baroclinic an- 5 0

nulus. We studied the effects of this coupling in the pe- &

riodic (Amplitude Vacillation, AV) and chaotic (Modulated

Amplitude Vacillation, MAV) regimes previously identified ) 2000 4000 6000 2000 10000
and reported irLovegrove et al(2001) and Lovegrove et _ Time

al. (2002. Nonlinear time series analysis, phase dynamics,

and bifurcation diagrams were used to study the dynamics_s" VL W IL

of the coupled system. Depending upon the strength of cou- e 0 (HJW% “{MWWMWWJHWWHM N‘M'WWWV‘« MMMW”JWWMW

pling, the mismatch and the type of dynamics of the systems

(either in a periodic or a chaotic regime), various degrees .1 : : ‘

of synchronization were found such as imperfect synchro- 0 2000 4000 Time 6000 8000 10000

nization, phase synchronization, generalized synchronization

and intermittent generalized synchronization were found. ItFig. 14. Top: Phase difference between tinasterandslave sys-

was also found that the synchronization regions inthe") ~ tems(in green) and between theasterand Auxiliary systems (in

plane follow an Arnol’d tongue-like behaviour. However, the blue), calculated from the data presented in Ef§j.Notice that the

shape is not entirely triangular (as in the classic view of anfWo response are phase locked to thaster Although the phase

Arnold tongue in externally forced systems). This was ex- difference presents small fluctuations, it is bounded. Bottom: Plot

pected due to the complex dependence of both the frequerfy Xdu—Xd,. Even though the two response systems are phase
. . S . synchronized, there is yet not full correlation between their ampli-

cies and the amplitudes of the oscillation on ch_anges In th(:fudes and therefore, the conditions of generalized synchronization

Froude number and also due to the large coupling strengths . o: furilled.

used in the runs. The auxiliary system approach was used to

seek for generalized synchronization in the chaotic regime.

This proved to be a valuable technique to analyse and study

another degree of synchronized states. The synchronizgy generalized synchronized states. In general, it was also
tion regions found with both the frequency-ratio diagnostic foyng that relatively larger coupling strengths (for similar

(Fig. 8) alone and via the auxiliary system approach (E.  mismatches) were needed to reach phase synchronization in
gave similar results regarding the general shape of these resaotic regimes than in periodic ones.
gions. It was found, however, that larger valuesnoére

needed to cross the boundary from phase synchronized Stat?SD.ue to its simplicity, it is not ceasy to directly apply our.
indings and results to the explanation of real atmospheric
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Fig. 15. As for Fig. 9 but with a coupling strength of=0.2. Generalized synchronization if finally reached. Notice the perfect correlation
between the amplitudes of the two response systems.
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Fig. 16. Top: Phase difference between tmasterand slave(in
green) systems and between thasterand Auxiliary systems (in 0 :

blue) calculated from the data presented in Bfg. Notice that the 12122 124 126 128 Fl,s 132 134 136 138 14
phase difference between the response systems andaseeris b

the same. In fact, it is not possible to observe the blue line as it is

completely shadowed by the green one. Bottom: The dependence,

of the difference between the coordinates ofsteveand auxiliary :;'g' 1. Claiperzllzt\?vd syrzﬁhrtonlzatlon regime tdlagr?m.di{fesultts 0];
systems on time for the data shown in Fig. e correlation between the two response systems for different val-

ues of F, andn; F,=13.Correlation~1 means that the two re-
sponse systems are oscillating identically and therefore we reached
a synchronized state in the generalized sense between the oscilla-
tions in the amplitude of the two baroclinic waves.

synchronized and highly correlated phenomena. Our numer-

ical experiments, however, can qualitatively illustrate someto associated phase-locking, could itself vary with time is an-
of the possible behaviour expected in both, possible real exether factor that is only just beginning to receive attention.
periments in the laboratory, or particular and specific pairs ofBut recent studies have indicated that the onset of synchro-
guasi-unidirectionally coupled geophysical phenomena suchization between disparate climate signals can be stimulated
as the cases presented laraun and Kurth§2005. The by discrete events, such as a major volcanic eruparaun
possibility that synchronization, and the coupling that leadsand Kurthg(2005.
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nonlinear systems are beginning to be more widely recog-

1 Comparing X X
. Comzarinz x:a, xd; nized and applied, amongst which are those related to chaos
Q OW’WWWM TR Y synchronization in coupled systems and networks.
3 One of the main improvements from the periodic forced
system presented iBccles et al(2009 is that we are able
- 2000 4000 6000 8000 10000 to perturb a system, thaavesystem, with chaotic signals,
01 ‘ Time ‘ bringing it closer to a possible real situation, since forcing in
i the atmosphere (and even in well controlled laboratory ex-
<" periments) are never usually monochromatic or periodic, but
Zjn O*MWW WM{M%A%MWW * M‘MMWW ‘ '[f rather chaotic and noisy.
~0.1 w w - AcknowledgementsThis work supported by the UK Natural
0 2000 4000 0000 8000 10000 Environment Research Council via a Dorothy Hodgkin award and

grant ref. NE/F002157/1.

Fig. 18. Top: The difference of phase between the master and the_

two respose systems. Bottom: The dependance of the differencEdited by: U. Feudel

between the coordinates of the slave and auxiliary systems on timdX&Viewed by: two anonymous referees
F,=13, F;,=12.6 andn=0.162.
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