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Abstract. Synchronization is studied using a pair of
diffusively-coupled, two-layer quasi-geostrophic systems
each comprising a single baroclinic wave and a zonal flow.
In particular, the coupling between the systems is in the
well-known master-slave or one-way configuration. Non-
linear time series analysis, phase dynamics, and bifurca-
tion diagrams are used to study the dynamics of the cou-
pled system. Phase synchronization, imperfect synchroniza-
tion (phase slips), or complete synchronization are found, de-
pending upon the strength of coupling, when the systems are
either in a periodic or a chaotic regime. The results of inves-
tigations when the dynamics of each system are in different
regimes are also presented. These results also show evidence
of phase synchronization and signs of chaos control.

1 Introduction

For several years, regular fluctuations in climate dynamics
have intrigued climate scientists and researchers. Some in-
vestigations have been performed to demonstrate the cyclic
behavior in the Earth climate such as the well-known El Niño
phenomenon, the index cycle, and the North Atlantic Oscil-
lation (Tziperman et al., 1995). It is often unclear, however,
whether this cyclic behaviour is produce by external peri-
odic forcing (solar forcing for instance), internal variability,
or some interaction between the two (Gildor and Tziperman,
2000).

Certain fluctuations in meteorological records are also
characterized by teleconnection patterns in both space and
time, in the sense of significant correlations between the fluc-
tuations of a field at widely separated points, commonly ap-
plied to variability on monthly and longer timescales. Such
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correlations suggest that some kind of information may be
propagated between two (or more) distant places through the
atmosphere. For instance, teleconnections between middle
latitude blocking of the Northern and Southern Hemispheres
have been diagnosed in atmospheric data (e.g.Duane et al.,
1999). These teleconnections are manifested as a small but
significant tendency for blocking to occur simultaneously in
the two hemispheres. Ideas of chaos synchronization have
been used to explain this phenomenon (Duane et al., 1999;
Duane, 1997). In those investigations, it was found that, even
though the events considered singly in each hemisphere are
chaotic in time, correlations between blocking events in the
Northern and Southern Hemispheres were taking place, (Du-
ane and Tribbia, 2001). Similar results have also been found
and studied using global GCMs or coupled-hemisphere mod-
els (Lunkeit, 2001). Phase synchronization between atmo-
spheric variables, such as daily mean temperature and daily
precipitation records, has also been studied byRybski et al.
(2003).

The study of synchronization in simple experiments and
simplified models can provide a useful source of insight
for these atmospheric phenomena and more generally in the
study of climate variability. Since the first studies of baro-
clinic waves in the atmosphere, the two-layer model has
played an important role. It was proposed more than 50 years
ago to encapsulate in the simplest way some of the principal
features of the middle latitude atmospheric circulation. Since
then, it has been widely used in studies of baroclinic instabil-
ity (Phillips, 1954; Pedlosky, 1970, 1971, 1972), and it has
also been used as an idealization of the rotating annulus labo-
ratory experiment (Hide and Mason, 1975; Lovegrove et al.,
2001).

In this paper, we use a five-dimensional version of the
two-layer, minimal quasigeostrophic model of baroclinic in-
stability presented inLovegrove et al.(2001, 2002) andEc-
cles et al.(2006). This model can be understood as one of
the simplest models to represent non-linear dynamics of the
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baroclinic instability of a single wave in the presence of a
baroclinic zonal flow. Although it is clear that this model
is far removed from realistic atmospheric situations, it can
reproduce several of the basic dynamical regimes found in
rotating annulus experiments. Those include experiments in
real two layer systems, (Appleby, 1982; Lovegrove, 1997)
or the thermally driven rotating baroclinic annulus (Hide and
Mason, 1975; Read et al., 1992, 1998).

As shown inLovegrove et al.(2001) andLovegrove et al.
(2002), when subject to steady boundary conditions this sim-
ple model exhibits a rich structure of bifurcations, includ-
ing period doubling cascades, leading to regimes correspond-
ing to stationary waves, traveling waves, amplitude vacillat-
ing waves (AV), and chaotic modulated amplitude vacillat-
ing waves (MAV). This model has also been previously used
to study the effects of external periodic forcing on the dy-
namics byEccles et al.(2006), who found frequency locking
between the natural oscillation frequencies and the forcing
frequencies under certain conditions.

The main objective of this paper is to present results of
investigations carried out using a coupled pair of such two-
layer models. The coupling between the two systems under
study in this paper is in theone-wayor unidirectionalconfi-
guration (better known asmaster-slaveconfiguration). This
connection is achieved by adding a linear diffusive coupling
term into the mean flow correction equation of the system,
being the most natural and simplest way to introduce a zon-
ally symmetric interaction between the two systems. The or-
ganization of the article is as follows. Section2 provides a
general description and formulation of the simple two-layer
quasigeostrophic model. Then, in Sect.3, the modifica-
tions performed in order to create a coupled two-layer quasi-
geostrophic model will be discussed followed by the methods
used to analyze the data in Sect.4. Section5 presents both
general and particular results for each of the main flow types
found in the model, showing the kind of synchronized states
that can be reached with this system. Finally, Sect.6 presents
a discussion of the results and final remarks.

2 The model

The model used here is an adaptation of the 5-dimensional
(5-D) model described byLovegrove et al.(2001), Love-
grove et al.(2002), andEccles et al.(2006), and the reader
is referred to these papers for a more detailed description.
The basic model is a two-layer quasi-geostrophic system,
formulated in cartesian geometry and permits just one zon-
ally propagating wave with barotropic and baroclinic com-
ponents. Hence it is arguably the simplest possible represen-
tation of such a system.

Following e.g. Salmon (1998), the quasi-geostrophic
equations for a two-layer fluid of equal layer depths may
be written in terms of barotropic and baroclinic streamfunc-
tions,ψs andψd respectively, (subscripts will henceforth be

used for barotropic variables andd for baroclinic) where in
our case

ψs = (ψ1 + ψ2) /2,
ψd = (ψ1 − ψ2) /2.

(1)

In the same way, the barotropic and baroclinic velocities,Ud
andUs , are defined as

Us = (u1 + u2) /2,
Ud = (u1 − u2) /2.

(2)

The streamfunctions are then projected onto a series of
Fourier modes see (Lovegrove et al., 2001, 2002; Lovegrove,
1997):

ψs,d =

M∑
m=1

Xs,dm coslmy︸ ︷︷ ︸
mean flow correction

+

N∑
n=−N
n 6=0

M∑
m=1

W s,d
nm exp[iknx] sinlmy

︸ ︷︷ ︸
wave term

− Us,dy︸ ︷︷ ︸
background

,

(3)

where

W
s,d
−mn =

(
W s,d
mn

)∗

and k−n = −kn. (4)

The asterisk signifies complex conjugation. The first term on
the right hand side of Eq. (3), without any dependence onx,
is known as themean flow correctionterm. This term will be
the main focus of our study. The second term is called the
wave termand the remainder is the background flow.

2.1 The 5-dimensional system

Substituting Eq. (3) into the corresponding quasigeostrophic
potential vorticity equations (Lovegrove et al., 2001), and
truncating to a single zonal wavenumber term in each of the
radial and zonal directions, i.e.M=N=1 we obtain

Ȧs = −1sAs + βsBs − (νs + γsXd) Bd ,

Ḃs = −1sBs − βsAs + (νs + γsXd) Ad ,

Ȧd = −1dAd + βdBd − (νd + γdXd) Bs ,

Ḃd = −1dBd − βdAd + (νd + γdXd) As ,

Ẋd = −1̄Xd + γ̄ [AsBd − BsAd ] ,

(5)

where the over-dot represents differentiation with respect to

time,As,d=Re
(
W
s,d
11

)
, andBs,d=−Im

(
W
s,d
11

)
. This sys-

tem describes the interaction between one azimuthal wave
and the mean flow and, whilst not being strictly justifiable
physically, it serves to form the simplest possible conceptual
model for initial analysis which captures some of the essen-
tial qualitative behavior of the full system. The dynamics
that this simple model is able to reproduce (when compared
to annulus experiments) are,
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– The steady wave regime (Labeled S in Chapter II of this
thesis),

– The amplitude vacillation (periodic or quasi-periodic
modulated wave) regime (Labeled AV),

– The modulated amplitude vacillation regime (labeled
MAV, which can be periodic or chaotic).

Taking into account those results, the dynamics and the ef-
fects of coupling two of such systems in those different
regimes will be investigated.

3 The coupled two-layer model

3.1 One way coupling

In recent years, different studies of synchronization in nu-
merical models, such as the work byPikovsky et al.(2001),
Pecora et al.(1997), and Anishchenko et al.(1998), have
shown that synchronization between two numerical systems
(whether identical or not) can be achieved by adding a lin-
ear coupling term between the two systems. Experimental
investigation have confirmed most of these numerical and
theoretical approachesWembe and Yamapi(1995); Yu et al.
(1995). Several investigations have used this form of cou-
pling to study synchronization in the classic and complex
Lorenz equations (Pecora et al., 1997; Anishchenko et al.,
1998; Pyragas, 1996; Rulkov et al., 1995; Stefanski et al.,
1996), in the Rossler oscillator (Pecora et al., 1997; Osipov
et al., 1997) and in other numerical systems (e.g.Guan et al.,
1999; Boccaletti et al., 2002).

In a one-way coupling configuration this is performed by
adding an extra term to the response system, proportional to
the difference between the drive and response variables of
the form:

dx1

dt
= G(x1), (6a)

dx2

dt
= G(x2)+ η(x1 − x2)︸ ︷︷ ︸

Coupling

, (6b)

where Eqs. (6a) and (6b) are the master and slave systems,
respectively.η is a parameter which determines the strength
of the coupling. The choice of thex component that is used
to couple the systems depends on the characteristics of the
particular problem under investigation. It has been found that
this type of interaction commonly leads to synchronization of
periodic and chaotic oscillations as well as to chaos control.

Following these ideas, we coupled two 5-D two-layer
models through a linear coupling term, perturbing directly
the baroclinic mean flow correction term in the slave system.
Xd represents variations in the mean flow, which, as shown

for the 5-D system, is associated with modulations of the am-
plitudes of the waves traveling in the channel. Thus our cou-
pling term has the formη(Xda−Xdb ), whereη is the cou-
pling strength parameter. The complete one-way coupled,
two-layer quasi-geostrophic model is then formed as follows

Master
Ȧsa = −1saAsa + βsaBsa −

(
νsa + γsaXda

)
Bda ,

Ḃsa = −1saBsa − βsaAsa +
(
νsa + γsaXda

)
Ada ,

Ȧda = −1daAda + βdaBda −
(
νda + γdaXda

)
Bsa ,

Ḃda = −1daBda − βdaAda +
(
νda + γdaXda

)
Asa ,

Ẋda = −1̄aXda + γ̄a
[
AsaBda − BsaAda

]
,

Slave
Ȧsb = −1sbAsb + βsbBsb −

(
νsb + γsbXdb

)
Bdb ,

Ḃsb = −1sbBsb − βsbAsb +
(
νsb + γsbXdb

)
Adb ,

Ȧdb = −1dbAdb + βdbBdb −
(
νdb + γdbXdb

)
Bsb ,

Ḃdb = −1dbBdb − βdbAdb +
(
νdb + γdbXdb

)
Asb ,

Ẋdb = −1̄bXdb + γ̄b
[
AsbBdb − BsbAdb

]
+ η(Xda −Xdb )︸ ︷︷ ︸

Coupling

(7)

In Eq. (7), as mentioned above, the coupling was introduced
in the form of a linear term; which is a priori the simplest
means of coupling two systems, and justified here since the
precise details of how the coupling might occur in a real
physical system are not yet characterized or fully understood.
Note, however, that this term has the same form as New-
ton’s classical law of coolingdT /dt=K(T0−T ), which is
appropriate for forced convective heat transfer. In experi-
ments using the thermally driven rotating baroclinic annulus
Hide and Mason(1975); Read et al.(1998) (which the sin-
gle two-layer system attempts to model) the vertical shear in
the velocity field is produced, in agreement with the thermal
wind equationAndrews(2000), by a temperature gradient
between the inner and outer wall of the annulus in a rotating
frame of reference. This temperature difference is produced
by nothing else but by forced convection between the wall
and the fluid, since this is essentially how the thermal bound-
ary conditions are maintained in typical baroclinic annulus
experiments. The coupling term in theXd equation in our
5-dimensional formulation, therefore, effectively represents
a zonally symmetric perturbation to the mean flow correc-
tion through Newton’s law of cooling and the thermal wind
equation. This represents a perturbation in the background
thermal structure of the flow, associated, for instance, with
a modulation of the temperature contrast between the inner
and the outer cylinder, such as in the experiments carried out
by Eccles et al.(2009).

The type of coupling where the interaction is only in one
direction is usually termedmaster-slave. The first system
acts as themasteror driver, while the second one acts as
the slaveor driven system. In this configuration, theslave
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system is the one that will be perturbed, and it is the one that
will be forced to follow the dynamics of themaster. We have
chosen to study this configuration first for one main reason:
we have total control over the behaviour of the driver. The ef-
fects produced over the driven system can therefore be easily
identified.

In order to study the synchronization between two non-
identical systems, amismatchbetween the systems has to
be introduced. Consequently, for the baroclinically unstable
problem, the rotational Froude numbers,Fa,b, will be used
to produce such amismatch. Changes in the value ofF af-
fect the parameters1d , βd , 1̄, νd , γ̄ andγd of the model,
and thereby produce shifts of the main oscillating frequency
and its amplitude. In practice, in a real experiment, varia-
tions ofF would imply alterations in the thermal boundary
conditions, in the aspect ratio of the annular container, or in
the physical properties of the working fluid.

For the principal observable in each of our models, we
have chosenXda,b , the mean flow correction, since this is
where the periodic and chaotic modulation of the amplitude
of the baroclinic wave can be most easily identified, and can
be seen as a direct extension of the modulated system byEc-
cles et al.(2006).

4 Data analysis and detection of synchronized states

There are different procedures to detect synchronization of
periodic and chaotic oscillations. The most straightforward
is via the classical Lissajous figure where the signal of one
oscillator is plotted against the signal of the second. Regular
patterns (even closed curves in the case of periodic dynam-
ics) are usually an indication that synchronized behaviour
could be developing. In chaotic systems, however, this test is
less definitive.

A more useful and quantitative technique to detect syn-
chronization in periodic and chaotic systems is the analysis
of the phase difference between the external forcing and the
oscillator or between the coupled oscillators. It has been
proposed that the Hilbert transform is a suitable technique
to calculate the instantaneous phase, even for reasonably
smooth chaotic data (the Fourier spectrum of which con-
tains a predominant main frequency or a narrow-band sig-
nal) (Pikovsky et al., 2001; Rosenblum and Pikovsky, 2003).
In order to implement it, one has to construct from a scalar
signals(t) a complex variable,

ζ = s(t)+ isH (t) = A(t)eiφ(t) , (8)

wheresH (t) is the Hilbert transform,

sH (t) = π−1P

∫
∞

−∞

s(τ )

t − τ
dτ . (9)

In the above equation (Eq.9), P denotes that the integral is
taken in the sense of the Cauchy principal value. From this,

the phase can be calculated using:

φ(t) = arctan
sH (t)

s(t)
. (10)

The phase obtained from Eq. (10) is restricted, by con-
struction, to the interval[0,2π ]. When “unfolded” or “un-
wrapped” (i.e. by accumulating the phases such that ev-
ery cycle, the phasesφ1,2 increase by 2π ) one can observe
how it continuously grows in time, although some fluctua-
tions will be observed, particularly for chaotic data. Finally,
by calculating the phase difference between the oscillators,
1φ=φa(t)−φb(t) (where the subindex refers to the corre-
sponding oscillator), we can determine whether the coupled
system has reached a synchronized state or not. If the phase
difference does not grow in time but remains bounded (i.e. it
fluctuates around a constant value:| 1φ | <const) we have
phase locking, generally understood as phase synchroniza-
tion. Finally, we can create a histogram of1φmod(2π) by
subdividing the possible range of phase differences intoN

intervals (of size 2π/N and determine how often this differ-
ence occurs in each interval. In a phase synchronized state,
this histogram will present a clear peak around a particular
value of1φ. In contrast, in non-synchronized systems, this
histogram is expected to be uniform.

Another condition for synchronization is based on the cal-
culation of the frequency difference ir ratio. This condition
is considered somewhat weak in investigations when the pa-
rameters of the systems are inaccessible (“passive” experi-
ments (Pikovsky et al., 2001)) because the fact of having two
interacting systems oscillating at (approximately) the same
frequency does not imply that the two non-identical systems
are necessarily phase locked; the closeness of the two fre-
quencies could just be a coincidence. In our case, however,
since we have full access an control over all the parameters
(an “active” experiment), the computation of the frequency
ratio will be a valuable tool in the detection of synchro-
nized states. This will be especially helpful when analyzing
the resulting dynamics when the mismatch and/or coupling
strength can be varied over a relatively wide range of param-
etersPikovsky et al.(2001).

To calculate the frequency of a chaotic signal, however,
could be difficult. The most direct approach by calculating
the differentiation of Eq. (10) could result in a fluctuating fre-
quency9(t). This happens due to noise and the sometimes
complicated form of the signal. Averaging over time can give
much better values of the frequency

9 = 〈
dφ(t)

dt
〉, (11)

where 〈 〉 denotes averaging over time. This approximate
mean frequency is usually usually known as the “observed
frequency”. By analysing its value, and in particular the dif-
ference and/or ratio between the frequencies of the two inter-
acting systems, one can look for signatures of synchroniza-
tion.

Nonlin. Processes Geophys., 16, 543–556, 2009 www.nonlin-processes-geophys.net/16/543/2009/



A. A. Castrej́on-Pita and P. L. Read: Synchronization in a coupled QG baroclinic model 547

Fig. 1. Dynamics of1φ at the synchronization transition. The
phase difference is shown for several values ofFb (which governs
the frequency mismatch between the systems) for a constant value
of the coupling strength (η=0.002). In the synchronous state, for
Fb=6.8 to 7 the plot show fluctuating but bounded1φ. Just out-
side the synchronized region the phase difference tends to grow in
a smoothly stepped way (Fb=6.7,6.75 andFb=7.1) and more uni-
formly for larger mismatches (Fb=6.5,6.6 andFb=7.2,7.3). The
transition at the other border of the synchronize regions occurs sim-
ilarly, with difference that the phase difference now decreases in
time.Fa=6.8 is always kept constant.

5 Results

First, we will describe the results of coupling the two sys-
tems when they are in a periodic regime (Sect.5.1). Then
we move on to perform a similar analysis in a chaotic
regime (Sect.5.2), where another tool to test for synchro-
nization, namely the Auxiliary System Approach, was ap-
plied (Sect.5.3).

5.1 Periodic regime

As a starting point, we will present the results of coupling
the two systems in a periodic regime for various values of
Fb (with Fa=6.8) while keeping the coupling strength con-
stant. Figure1 shows extracts of the time variation of1φ
for various values of the mismatch (governed by changes in
the value of the Froude number for theslavesystem,Fb) and
a constant coupling parameter ofη=0.002. For relatively
large mismatches, the systems do not seem to synchronize,
as expected. For values ofFb between 6.7 and 6.75 however,
the phase difference appears as an intermittent sequence of
jumps (known as phase slips in this context) together with
intervals of synchronized behaviour. These phase slips indi-
cate that we are entering into the margins of a synchronized

Fig. 2. Example of the Lissajous plot and the distribution of
the cyclic relative phase,1φmod(2π), for a synchronous state.
Fb=6.9. Fa=6.8 andη=0.002 as in Fig.1.

regime. When the mismatch is decreased, for the whole
range from approximatelyFb=∼6.8 to∼7, the phases of the
two systems are synchronized; the phase difference in this
state shows small fluctuations around a constant value. These
fluctuations seem to increase in amplitude as the mismatch
grows. WhenFb is larger than∼7.05, synchronization is lost
and again a step-like change in the phase difference is ob-
served. Figure2 shows an example of the Lissajous plot and
the distribution of the cyclic relative phase,1φmod(2π), ob-
tained when the systems are synchronized. A clear limit cy-
cle in Fig.2-(left) and a peaked distribution in Fig.2-(right),
confirm a phase synchronized state.

Figure3, shows the bifurcation diagram of theslavesys-
tem and the frequency ratio (9b/9a) between the signals of
themasterand theslavesystem when the coupling strength
is η=0.002. The region aroundFb=6.7 to 7, identified as a
plateau in the frequency ratio plot, is evidently in a frequency
entrained state. This is in complete agreement with what was
found before and simply corroborates the findings plotted in
Fig. 1. The regime diagram shows that the non-zero value of
η alters the amplitude of the oscillation ofXdb . The bifurca-
tion diagram does not, therefore, show a “thin line” (corre-
sponding to a periodic behaviour) for the non-synchronized
regions, but rather what appears at first sight to be chaotic be-
haviour . However, nonlinear time series analysis (Kantz and
Schreiber, 1999, 2002) applied to the temporal signal of the
slavein these regions showed that the dynamics in these re-
gions is quasiperiodic and not chaotic. This dynamical state
is characterized by having a multi-peaked frequency spec-
trum where different linear combinations of the two main
periodic frequencies of each system are present.

In order to investigate synchronization using a wider range
of parameters, a study where bothη andFa were varied con-
tinuously was carried out. In this case, we were looking for
frequency entrainment between the two systems. We were
therefore interested in ratio between the observed frequency
of each system,9b/9a . The result of this investigation can
be observed in the surface plot in Fig.4. Along the horizon-
tal axes we plotFb, andη, and the frequency ratio,9b/9a is
plotted in the vertical, is shown in colour.Fa is kept constant.
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Fig. 3. (Left) Bifurcation diagram, constructed by acumulating the
maxima ofXdb and plotting them against the varying control pa-
rameterFb. In this case, the oscillation maxima are extracted from
theXdb (t) time series of theslavesystem after the transients have
died out, and (Right) frequency difference forFa=6.8, 6.4≤Fb≤8,
andη=0.002.

The regions where9b/9b=1 represent zones where a (1:1)
frequency locked state exists. It is important to point out that
the classic “Arnol’d tongue” behaviour (appearing as roughly
triangular-shape synchronized regions in theη−9b plane)
found in many externally forced and master-slave systems
was, to some extent, obtained at least for low values ofη.
Notice, however, that this tongue is not symmetrical and in
fact is skewed to the right (towards larger9b’s). This is es-
sentially due to the fact that we are coupling two systems
that change both frequency and amplitude when variations
of the Froude number are applied, i.e. changes inF will not
only produce changes in the main oscillating frequency of
the system, but also in its amplitude. This is in contrast to
more classical external periodically-forced systems, where
only changes in the frequency of the external forcing are typ-
ically applied, producing the well-known triangular synchro-
nized regions in parameter space; known as Arnol’d tongues
(Pikovsky et al., 2001). The result in our case is that the
shape of the synchronized regions in the (η−F ) plane ap-
pears more irregular and complicated.

For larger values of the coupling strength, (η>0.004), fre-
quency entrainment is reached quite abruptly forFb smaller
thanFa . On the other hand, for values ofη≈0.006 and for
1F≈0.8 to 1.2 on the upper right hand side of the plot,
we observe another phenomenon. Here, the frequency dif-
ference is not zero (as expected for a one-to-one frequency
locking). Instead, we observe a ratio9b/9a=2. This means
that the slave system is oscillating with a frequency which is
double that of the master. The slave system suffered a bifur-
cation (frequency doubling) caused by the external perturba-
tion. However, the system is still synchronized (but nowto a
1:2 frequency ratio).

Fig. 4. Variations in the9b/9a as a result of rampingFb from
Fb=6.4 to 8 andη from η=0−0.01 for a constantFa=6.8 (which
produces a9b=0.0956).

5.2 Chaotic regime

The dynamics obtained in the chaotic regime are equivalent
to the modulated amplitude vacillation (MAV) flow regime
found in baroclinic annulus experiments in the laboratory
(Read et al., 1992) and numerical simulations (Read, 2003).
MAV flows are typically characterized by having three or
more independent frequencies and are, in some cases, found
to show a chaotic behaviour. These vacillation regimes are
primarily produced by nonlinear wave-mean flow interac-
tions, though perhaps also modified in some circumstances
by wave-wave interactions, as suggested in laboratory ex-
periments in the rotating annulus (Hide and Mason, 1975;
Read et al., 1998). The results for the coupled model in the
chaotic regime follow more or less those found in the peri-
odic regime. However, states such as imperfect phase syn-
chronization (phase slips) are clearer.

Figure5 shows a compilation of the phase difference1φ
for several values of the mismatch (governed byFb) with
a constant coupling strengthη. There, it is possible to ob-
serve a clear transition to a synchronous state, starting with
completely unsynchronized behaviour for a large mismatch
(Fa=13 andFb=12), changing to imperfect phase synchro-
nization (showing the characteristic phase slips) of various
degrees, and finally to full phase synchronization, when the
phase difference is bounded, i.e. the phase difference oscil-
lates around a constant value (fulfilling the condition of phase
synchronization according toPikovsky et al., 2001; Rosem-
blum et al., 1996).

Nonlin. Processes Geophys., 16, 543–556, 2009 www.nonlin-processes-geophys.net/16/543/2009/



A. A. Castrej́on-Pita and P. L. Read: Synchronization in a coupled QG baroclinic model 549

Fig. 5. Dynamics of1φ at the synchronization transition. The
phase difference is shown for several values ofFb (which governs
the frequency mismatch between the systems) for a constant value
of the coupling strength (η=0.05) andFa=13. Imperfect phase
synchronization is clearly visible forFb=12.2 toFb=12.8. As the
detuning decreases, however, the number of phase slips decreases,
demonstrating that the systems are entering into a synchronous be-
haviour. In the synchronous state,1φ is bounded.

Fig. 6. Left: Bifurcation diagram in the chaotic case, and right:
frequency difference forFa=13, 12≤14≤8, andη=0.05.

The phase difference found forFb=12, shown in Fig.5
tends to grow consistently with time, clearly indicating a lack
of synchronization. This behaviour, however, changes radi-
cally when the mismatch is decreased. Signatures of phase
synchronization start to develop, as is the case when values
of Fb=12.2 to 12.8 are selected for theslavesystem. For
Fb>12.87 and for the complete length of the run (∼1×106

timesteps) the dynamics of theslavewere locked to those of
the mastersystem (as shown for the values ofFb=13,13.2
and 13.4.

Figure6 shows the bifurcation diagram for theslavesys-
tem and the frequency ratio for the whole range ofFb stud-

Fig. 7. Lissajous plot and the distribution of the cyclic relative
phase,1φmod(2π), for (top) unsynchronized case withFb=12,
(middle) imperfect phase synchronized withFb=12.6, and (bot-
tom) synchronized case withFb=13.2. Fa=13 andη=0.05 as in
Fig. 6.

ied. It is possible to observe the synchronization transition at
aroundFb=12.9 in both plots. Three individual examples of
an unsynchronized, a partially synchronized and a synchro-
nized state, analyzed using the Lissajous plot and the distri-
bution of the cyclic relative phase are presented in Fig.7.
Notice the clear peak in the histogram for the last two cases,
a clear signature of a preferred value in the phase difference
even in the presence of spontaneous phase slips.

As performed in the periodic case, independently ramping
the values of9b (controlled by the value ofFb) andη while
computing the frequency ratio,9b/9a , can provide a map of
the synchronized regions in the plane (9b,η). The results of
this analysis are presented in Fig.8.

As can be seen in Fig.8, a quite non-regular and asym-
metric region of frequency entrainment is found (regions
where9b/9a≈1). In particular the regions withFb<Fa
need larger values ofη to synchronize probably due to the
nonlinear response of the systems whenF (of either themas-
ter or slavesystems) is varied. Variation in the Froude num-
ber not only induces variation in the observable oscillation
frequency, but also in its amplitude. Therefore, the response
of the slavesystem to the coupling is expected to be com-
plex. Also, there is a region where, even though the two sys-
tems are set to evolve similarly by having very similar Froude
numbers (where1F<0.2), an increment in the value of the
coupling strength is not directly reflected in an increase of the
frequency entrainment. Furthermore, even for cases when
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Fig. 8. The effects on the frequency ratio9b/9a of ramping
Fb=12 to Fb=14 and η=0.0 to η=0.4 whilst holding Fa=13
(which produces a9b=0.1665) in a MAV regime.

1F'0 (i.e. Fa'Fb=13) andη=0.11 to η=0.12, the two
systems oscillate at slightly different (observable) frequen-
cies, and only intermittently being partially locked, showing
the typical phase slips characteristic of imperfect synchro-
nized states.

5.3 Generalized synchronization: the auxiliary system
approach

Synchronization of chaos is often understood as a phe-
nomenon where two systems, in a chaotic regime, exhibit
identical oscillations. However, in amaster-slaveconfigura-
tion this regime of identical oscillations only occurs at cer-
tain points in the parameter space. Moreover, for noniden-
tical systems, strictly speaking that cannot happen. In par-
ticular, for a large coupling strength one could find a func-
tional relationship between the states of two coupled sys-
tems. This means that we can equate dynamical variables
from one system with a function of variables of another sys-
tem. This type of regime is calledgeneralized synchroniza-
tion (Rulkov et al., 1995; Pikovsky et al., 2001). Using this
definition, complete synchronization will be reached when
the relations between the variables of the coupled systems are
simple identity functions. Therefore, the presence of gener-
alized synchronization betweenslavexs(t) andmasterxm(t)
chaotic systems means that there is a functional relation of
the typexs(t)=F[xm(t)] between the systems, after the tran-
sients have decayed away.

In this work, we have used the auxiliary system approach
as another alternative method to study synchronization, in the

generalized sense, in our coupled system. A detailed formu-
lation of the technique is presented byRulkov et al.(1995),
and some examples of its use are presented in the work by
Hramov et al.(2005) andHramov and Koronovskii(2005b).
In that technique, we consider the dynamics of themaster
xm(t) and theslavexs(t) systems. We also introduce an aux-
iliary systemxas(t) which is identical to theslavesystem (it
is important to note that the coupling to themasteris also
exactly the same) but that starts with slightly different initial
conditions (i.e.xs(t0)6=xas(t0)). In the absence of general-
ized synchronization, the trajectories of the two systems in
phase space will share the same attractor but will move apart
rapidly until their separation is of the order of the attractor,
and they will then remain uncorrelated as they develop. How-
ever, if the two response systems (slaveand auxiliary) are
synchronized to the master through the generalized synchro-
nization relationxs(t)=F[xm(t)] andxas(t)=F[xm(t)], then
it is clear that (after transients die away) a solution with the
form xs(t)=xas(t) exists. This technique allows a relatively
easy way to identify generalized synchronization of chaotic
systems by comparing the signal of two identical response
systems, i.e. one needs to look for the identityxs(t)=xas(t).

Therefore, in order to detect generalized synchronization
in the coupled two-layer system:

1. anauxiliary system which is identical to theslavesys-
tem, coupled to themasterby a coupling term identical
to the one used in theslavesystem, was constructed.
The only difference is that the new system (auxiliary) is
initialized with slightly different initial conditions.

2. the signals from the two response systems (slaveand
auxiliary,Xdb andXdas ) were compared, either by plot-
ting the corresponding Lissajous figures (master vs.
slave, mastervs. auxiliary, andslavevs. auxiliary), by
looking for theXdb=Xdas condition to be satisfied, or
by means of simple linear correlation, in this case look-
ing only at the mean flow correction term.

As the technique suggests, one has to ensure that any tran-
sient has died away before starting to look for synchroniza-
tion and to compare the signals from the twoslavesystems.
Several time spans were tried, therefore, and 1000 timesteps
was generally found to be long enough for the transients to
decay. To ensure that this condition was satisfied, however,
the running time was set to 100 000 timesteps.

In Figs. 9, 11 and13, extracts from the time series, and
Lissajous plots for different numerical runs are shown. Phase
differences and plots ofXdb−Xdas are presented in Figs.10,
12and14.

In Fig. 9, with η=0, no synchronization is expected. The
two response (slave) systems, having been initialized with
different initial conditions and being chaotic, evolve differ-
ently. This is also corroborated by plotting the phase differ-
ence between themasterand theslavesystems and between

Nonlin. Processes Geophys., 16, 543–556, 2009 www.nonlin-processes-geophys.net/16/543/2009/



A. A. Castrej́on-Pita and P. L. Read: Synchronization in a coupled QG baroclinic model 551

Fig. 9. Results of the auxiliary system approach applied to the system withFa=13,Fb=12.6 andη=0. The top row shows (from left to
right) extracts of the time series of the mean flow correction term of themaster,Xda , (in black) and the firstslaveXdb (in green); the master
(in black) and the auxiliary systemXdas (in blue); and the two response systems, respectively. Projections onto the planes (Xda , Xdb ),
(Xda , Xdas ), (Xdb , Xdas ) are shown in the bottom row.

the masterand the auxiliary systems, respectively, as pre-
sented in Fig.10. This plot shows that the phase of the two
response systems is not bounded, and they evolve differently.
In the same way, the projections into the planes (Xda , Xdb ),
(Xda , Xdas ) and (Xdb , Xdas ) show no correlation between the
systems, not even between the two response systems.

For the case withη=0.066, we can observe phase slips
in the two response systems. It is important to note that the
phase slips occur at different times for each system, as can
be seen in Figs.11and12.

A further increment in the value of the coupling strength
will lead the systems to a phase synchronized state. The
two response systems are phase synchronized to the com-
mon master, as can be seen in Figs.13 and14. However,
even though the coupled systems are in a phase synchronized
state, they are not yet synchronized in the generalized sense.
Figure14, which shows that the signals of the two response
systems are not identical. The condition for generalized syn-
chronization via the auxiliary system approach is not yet ful-
filled.

For η>0.2, generalized synchronization is finally found.
Figures15 and16 show this state. The Lissajous plot in the
planes (Xda , Xdb ), (Xda , Xdas ) show that the oscillation of
the drive and response systems are not identical; however, the
two response systems are phase synchronized to themaster
(Fig.16shows that the phase difference is bounded) and their
time series are identical. This can be corroborated by looking
at the projection of the trajectories onto (Xdb , Xdas ) plane,
which is basically a line.Xdb (t)−Xdas (t) (shown in Fig.16-

Fig. 10. Top: Phase difference between themasterandslave(in
green) systems and between themasterand Auxiliary systems (in
blue), calculated from the data presented in Fig.9. Notice the lack
of any phase locking between the systems. Bottom: The depen-
dence of the difference between the coordinates of theslaveand
auxiliary systems.

bottom) is equal to zero which shows that the oscillations are
identical for the whole running time, fulfilling the condition
for generalized synchronization. Therefore these systems are
synchronized in the generalized sense.

We can then apply this analysis for the same range of
parameters used to study frequency entrainment presented
in Fig. 8. The result of this is shown in Fig.17. On the
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Fig. 11. As for Fig.9 but with a coupling strength ofη=0.066. A clear phase slip can be noticed inXdas at Time≈820.

Fig. 12. Top: Phase difference between themasterandslave(in
green) systems and between themasterand Auxiliary systems (in
blue), calculated from the data presented in Fig.11. Notice that the
phase jumps or phase slips are quite random and that they occur at
different times in each system. Bottom: The dependence of the dif-
ference between the coordinates of theslaveand auxiliary systems.
Short epochs of correlated amplitude can be observed.

horizontal axis we haveFb (keepingFa=13 while vary-
ing the value of the response system’s Froude number from
Fb=12 toFb=14), in the vertical the value of the coupling
strength,η, and in colours the value of the linear correlation
coefficient between the two response systems. A correlation
approximately equal to 1 is used to determine when the two
response systems are identical and therefore that the systems
are synchronized in a generalized sense.

As can be noticed, when compared with the results shown
in Fig. 8, the regions of synchronized behaviour in the two
plots are alike. Larger values ofη, however, are generally
needed, in agreement with the literature, to reach a general-
ized synchronized state.

During the analysis, particularly near the boundaries be-
tween phase synchronized and generalized synchronized re-
gions, a state which is called by some authorsintermit-
tent generalized synchronization(Hramov and Koronovskii,
2005b), was also found. In this state, the two response sys-
tems (slaveandauxiliary) are phase synchronized with the
common master. However, the distinctive feature in this par-
ticular region is that the oscillations of the two response sys-
tems are identical for short periods of time, then become un-
related for quite a few timesteps, and then related again and
so on in a random way. It is interesting to point out that the
amplitude of these irregular “bursts” (in theXdb−Xdas plot)
is comparable to the amplitude of the natural oscillation of
the unperturbed systems. An example of this behaviour is
shown in Fig.18. It is recommended that in future work,
some further attention should be put into this particular syn-
chronized state, and a more detailed analysis should be per-
formed.

6 Discussion and final remarks

In this paper, results of numerical experiments performed us-
ing a coupled system of a pair of two-layer quasigeostrophic
models of baroclinic instability were presented. We found
that the implementation of the coupling, applied solely
through the mean flow correction term, not only follows the
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Fig. 13. As for Fig.9 but with a coupling strength ofη=0.155. Note that the two response systems are phase synchronized (to the common
master). It is still visible, however, that the two response systems are not identical.

pattern proposed in various previous investigations, but it
also has a physical interpretation in association with an ex-
perimental counterpart, the thermally driven baroclinic an-
nulus. We studied the effects of this coupling in the pe-
riodic (Amplitude Vacillation, AV) and chaotic (Modulated
Amplitude Vacillation, MAV) regimes previously identified
and reported inLovegrove et al.(2001) and Lovegrove et
al. (2002). Nonlinear time series analysis, phase dynamics,
and bifurcation diagrams were used to study the dynamics
of the coupled system. Depending upon the strength of cou-
pling, the mismatch and the type of dynamics of the systems
(either in a periodic or a chaotic regime), various degrees
of synchronization were found such as imperfect synchro-
nization, phase synchronization, generalized synchronization
and intermittent generalized synchronization were found. It
was also found that the synchronization regions in the (η, F )
plane follow an Arnol’d tongue-like behaviour. However, the
shape is not entirely triangular (as in the classic view of an
Arnol’d tongue in externally forced systems). This was ex-
pected due to the complex dependence of both the frequen-
cies and the amplitudes of the oscillation on changes in the
Froude number and also due to the large coupling strengths
used in the runs. The auxiliary system approach was used to
seek for generalized synchronization in the chaotic regime.
This proved to be a valuable technique to analyse and study
another degree of synchronized states. The synchroniza-
tion regions found with both the frequency-ratio diagnostic
(Fig.8) alone and via the auxiliary system approach (Fig.17)
gave similar results regarding the general shape of these re-
gions. It was found, however, that larger values ofη are
needed to cross the boundary from phase synchronized states

Fig. 14. Top: Phase difference between themasterandslave sys-
tems(in green) and between themasterand Auxiliary systems (in
blue), calculated from the data presented in Fig.13. Notice that the
two response are phase locked to themaster. Although the phase
difference presents small fluctuations, it is bounded. Bottom: Plot
of Xdas−Xdb . Even though the two response systems are phase
synchronized, there is yet not full correlation between their ampli-
tudes and therefore, the conditions of generalized synchronization
is not fulfilled.

to generalized synchronized states. In general, it was also
found that relatively larger coupling strengths (for similar
mismatches) were needed to reach phase synchronization in
chaotic regimes than in periodic ones.

Due to its simplicity, it is not easy to directly apply our
findings and results to the explanation of real atmospheric
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Fig. 15. As for Fig.9 but with a coupling strength ofη=0.2. Generalized synchronization if finally reached. Notice the perfect correlation
between the amplitudes of the two response systems.

Fig. 16. Top: Phase difference between themasterandslave(in
green) systems and between themasterand Auxiliary systems (in
blue) calculated from the data presented in Fig.15. Notice that the
phase difference between the response systems and themasteris
the same. In fact, it is not possible to observe the blue line as it is
completely shadowed by the green one. Bottom: The dependence
of the difference between the coordinates of theslaveand auxiliary
systems on time for the data shown in Fig.15.

synchronized and highly correlated phenomena. Our numer-
ical experiments, however, can qualitatively illustrate some
of the possible behaviour expected in both, possible real ex-
periments in the laboratory, or particular and specific pairs of
quasi-unidirectionally coupled geophysical phenomena such
as the cases presented byMaraun and Kurths(2005). The
possibility that synchronization, and the coupling that leads

Fig. 17. Generalized synchronization regime diagram. Results of
the correlation between the two response systems for different val-
ues ofFb and η; Fa=13.Correlation≈1 means that the two re-
sponse systems are oscillating identically and therefore we reached
a synchronized state in the generalized sense between the oscilla-
tions in the amplitude of the two baroclinic waves.

to associated phase-locking, could itself vary with time is an-
other factor that is only just beginning to receive attention.
But recent studies have indicated that the onset of synchro-
nization between disparate climate signals can be stimulated
by discrete events, such as a major volcanic eruptionMaraun
and Kurths(2005).

Nonlin. Processes Geophys., 16, 543–556, 2009 www.nonlin-processes-geophys.net/16/543/2009/



A. A. Castrej́on-Pita and P. L. Read: Synchronization in a coupled QG baroclinic model 555

Fig. 18. Top: The difference of phase between the master and the
two respose systems. Bottom: The dependance of the difference
between the coordinates of the slave and auxiliary systems on time.
Fa=13,Fb=12.6 andη=0.162.

The correlated atmospheric phenomena found byDuane et
al. (1999) could, therefore, be an atmospheric manifestation
of synchronization of two coupled extended systems. This
represents an unusual, and poorly understood, type of tele-
connection that has been identified recently and that is not
easily explained in terms of linear dynamics. The blocked
states essentially represent a particular phase in the respec-
tive zonal index cycles of the two hemispheres, as introduced
in the first sections of this paper. However, the mechanism
for producing such correlated behaviour between two hemi-
spheres, often at quite different points in their respective sea-
sonal cycles, is far from clear. The main aim of our paper
is to look for some insight into the significance of studying
synchronization in a geophysically-relevant simple nonlinear
model. Traditionally, the two layer model has been used as
a test scenario for the understanding of mid-latitude gener-
ation of baroclinic waves. In this same spirit and inspired
by the findings presented inDuane et al.(1999); Duane and
Tribbia (2001), in its most direct form, our coupled system
models the interaction between two interconnected middle-
latitude baroclinic channels, where each two-layer system
represents one hemispheric channel. In a system as com-
plex as the Earth, the complicated, intermittent and nonlinear
interactions between sub-systems represent enormous chal-
lenges to the modelling community as it tries to emulate the
final state of these interactions accurately and realistically.
In this context, a knowledge and understanding of generic
interactions between dynamical systems in the presence of
nonlinearity is vital to guide the future development of mod-
elling strategies. Until recently, the approach of the climate
science community has tended to focus upon methods based
on linearised theory and statistical analysis to guide the for-
mulation of modelling and theoretical interpretations of ob-
served phenomena. However, methodologies deriving from

nonlinear systems are beginning to be more widely recog-
nized and applied, amongst which are those related to chaos
synchronization in coupled systems and networks.

One of the main improvements from the periodic forced
system presented inEccles et al.(2006) is that we are able
to perturb a system, theslavesystem, with chaotic signals,
bringing it closer to a possible real situation, since forcing in
the atmosphere (and even in well controlled laboratory ex-
periments) are never usually monochromatic or periodic, but
rather chaotic and noisy.
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