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Abstract. Landslides are natural hazards occurring in re-
sponse to triggers of different origins, which can act with
different intensities and durations. Despite the variety of
conditions that cause a landslide, the analysis of landslide
inventories has shown that landslide events associated with
different triggers can be characterized by the same probabil-
ity distribution. We studied a cellular automaton, able to re-
produce the landslide frequency-size distributions from cat-
alogues. From the comparison between our synthetic proba-
bility distribution and the landslide area probability distribu-
tion of three landslide inventories, we estimated the typical
size of a single cell of our cellular automaton model to be
from 35–100 m2, which is important information if we are
interested in monitoring a test area. To determine the proba-
bility of occurrence of a landslide of sizes, we show that it is
crucial to get information about the rate at which the system
is approaching instability rather than the nature of the trig-
ger. By varying such a driving rate, we find how the prob-
ability distribution changes and, in correspondence, how the
size and the lifetime of the most probable events evolve. We
also introduce a landslide-event magnitude scale based on the
driving rate. Large values of the proposed intensity scale are
related to landslide events with a fast approach to instability
in a long distance of time, while small values are related to
landslide events close together in time and approaching in-
stability slowly.

1 Introduction

The occurrence of a landslide the size ofs can be quanti-
fied by the landslide size probability density function,p(s),
which is defined as the ratio between the number of land-
slides with size betweens and s+δs and the total num-
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ber of landslides in an inventory and divided byδs. The
analysis of landslide inventory maps shows thatp(s) ex-
hibits two regimes: an increasing behaviour for small land-
slides and a power-law scaling, with a negative scaling ex-
ponent, for large landslides. Several investigators have re-
cently proposed different frequency-size probability distribu-
tions to describe the landslide size statistics. Stark and Hov-
ius (2001) address the use of a modified Pareto (power-law)
distribution, characterized by a double (positive and nega-
tive) power scaling, to describe historical inventories, i.e. in-
ventories that include events occurred over time. Malamud
et al. (2004a), instead, analyse fresh inventories, i.e. invento-
ries accomplished shortly after a landslide event, and propose
an inverse-gamma probability distribution, characterized by
a power-law decay for medium and large landslides and an
exponential rollover for small landslides. Both these ap-
proaches retrieve the characteristic distribution a posteriori
as the best fit of data sets of specific events.

Conversely, we propose a cellular automaton model (CA)
aimed at reproducing the landslide size distribution a priori
by means of some characteristic parameters (Piegari et al.,
2006a). In this way, our attention is mainly focused on the
determination of the key ingredients that lead a landslide of
sizes to have a probability of occurrencep(s), rather than
finding a general frequency-size distribution. We find that
the behaviour ofp(s) strongly depends on the rateν at which
the system approaches instability, changing from power-law
to non power-law behaviour.

In the following, we analyse the behaviour of both the
probability density function (pdf) of having a landslide of
sizes, p(s), and the pdf of having a landslide of lifetimetL,
p(tL), in the limit of vanishingν and for finite values ofν.
We discuss the shift of the maximum ofp(s) with the in-
creasing ofν in connection with the behaviour ofp(tL), by
indicating a change in the dynamics of the landslide process.
Moreover, we compare the syntheticp(s) of our CA with
the real landslide area pdf of three landslide events provid-
ing an estimate for the units of measure of the CA cells. We
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Fig. 1. Flow chart of the cellular automaton model. The param-
eterν represents the driving rate, i.e. the rate at which instability
is approached, while thefnn coefficients quantify how instability
is transmitted from a cell to its nearest cells. The subindexnn(i)
stands for all nearest neighbours of the celli (i.e.,nn(i)=up, down,
left, right).

also propose an intensity scale related to the rate at which the
system approaches instability.

2 The Cellular Automaton model (CA)

In order to simulate a landslide event, we partition a natural
slope by means of a two-dimensional square grid ofL×L

cells. Each celli of the grid represents an area characterized
by a local value of the factor of safety,FSi . In slope stabil-
ity analysis, the factor of safety,FS, is defined in terms of
the ratio of the maximum shear strengthτmax, given by the
empirical Mohr-Coulomb expression, to the disturbing shear
stressτ (Fredlund and Rahardjo, 1993). IfFS>1, resisting
forces exceed driving forces and the slope remains stable.
Slope failure starts when the safety factor reaches the critical
valueFS=1. To simplify numerical simulation, we consider
the inverse of the local factor of safety,ei=1/FSi as the dy-
namical variable of our model. We start from a random initial
stable configuration, i.e. we attribute to each cell a uniformly
distributed random value ofei with 0<ei<1∀i. The dynam-
ics of the CA model is defined by the following two rules:{

ei(t + 1t) = ei(t) + δ + ν1t

δ = eth − max{ei}
(1)

ei ≥ eth →

{
enn(i)(t + 1t) = enn(i)(t) + fnn(i)ei(t)

ei = emin
(2)

wherenn(i) denotes the four neighbour sites of the overcrit-
ical sitei (i.e. nn(i)=up, down, left, right). To aid the reader,
a list of variables used in the text is given in Table 1.

The first rule, Eq. (1), is an overall driving that provides
an increase ofei at the same rate approaching the system to
the instability threshold,eth=1. We set to 1 the elementary

time step1t. The parameterν controls the rate at which all
sites are driven towards instability, while the differenceδ be-
tween the instability thresholdeth and the largestei value is
just a technical expedient to treat the limit of vanishing driv-
ing rateν. In this case, only the site (or very few sites) with
ei= max{ei} reaches the instability threshold first. The sec-
ond rule, Eq. (2), is a relaxation rule: when a cell becomes
unstable (i.e.ei≥eth), it affects, via a chain reaction, the sta-
bility of the neighbour cells, as a fractionfnn(i) of ei toppling
on nn(i). After a failure, we setei=emin with emin=10−6.
We mention that any other finite level would work (Jensen,
1998) and our numerical results do not change up to values
of emin=10−1. During each iteration of Eq. (2), an amount
of ei is lost from the system, that is the difference between
ei and the amountfnnei added to each of the four neighbour
sites. Only if

∑
nn

fnn=1, the algorithm conserves the dynam-

ical variable of the system.
Thus, another crucial parameter of the CA is the quan-

tity C=
∑
nn

fnn that fixes the degree of conservation of the

system. Contrary to most numerical models for avalanches
(Hergarten and Neugebauer, 2000; Hergarten, 2003), we
consider a nonconservative case,C<1, to describe land-
slide processes, since many complex dissipative phenomena
(Fredlund and Rahardjo, 1993) can contribute to stress trans-
fer processes. The dependence of the CA pdf onC is shown
in Piegari et al. (2006a), while the dependence on the coeffi-
cientsfnn has been studied in detail in Piegari et al. (2006b).
In particular, we have found that the pdf of having a land-
slide with s cells involved,p(s), has a negative power-law
exponent that is a decreasing function ofC, while it is not
significantly affected by the values of the coefficientsfnn in
the range of values that supply power-law distributions.

The algorithm of the proposed CA is illustrated by the flow
chart shown in Fig. 1: the inner loop of the chart describes
the stages of an individual landslide, while the outer loop
describes a sequence of landslide events. We study the spatial
and temporal pdf of the CA once the system has attained a
stationary state in its dynamics, i.e. the mean value of the
dynamical variable,ei , on the grid sites fluctuates between
an average value.

We notice that the values of the transfer coefficients,fnn,
may be different for each site, by opening the possibility to
treat with relaxation processes that take into account the to-
pography of a specific slope (Piegari et al., 2009).

3 Probability density functions of landslide events of
definite size and lifetime

In this section, we discuss the behaviour of both the proba-
bility density functions, pdf, of having a landslide of sizes,
p(s), and of having a landslide of lifetimetL, p(tL), in the
limit of vanishingν and for finite values ofν. In the pro-
posed CA model, the sizes is defined as the number of cells
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Table 1. Variables used in the text.

Variable Description Equation/Section
introduced

α Critical index that controls how the finite-size cutoff scales with the system size. Eq. (4)
β Critical index related to the renormalization of the probability density function Eq. 4
ν Parameter that controls the rate at which instability is approached. Eq. (1)
a Coefficient ins∗

×a=A∗. Sect. 3.2
A Area of landslide. Sect. 3.2
A∗ Landslide area corresponding to the maximum of the probability density function of having a

landslide of areaA.
Sect. 3.2

C Level of conservation of the systemC=
∑
nn

fnn. Sect. 2

ei Inverse of the local value of the safety factor for the celli. Sect. 2
eth Instability threshold. Eq. (2)
emin Relaxation threshold. Eq. (2)
fnn Instability transfer coefficients. Eq. (2)
FS Safety factor. Sect. 2
FSi Local value of the safety factor for the celli. Sect. 2
g Scaling function of the ratios/Lα . Eq. (4)
L Square root of the total number of cells. Sect. 2

ML Magnitude of a landslide event, withML= log10

(
TL

ν−1

)
. Eq. (7)

nn(i) Neighbour sites of the overcritical sitei (up, down, left, right). Eq. (2)
p(s) Probability density function of having a landslide of sizes. Sect. 1
p(tL) Probability density function of having a landslide of lifetimetL. Sect. 3
s Total number of cells that reach the instability threshold in a chain relaxation process. Sect. 3
s∗ Value ofs corresponding to the maximum ofp(s). Sect. 3.2
<s> Mean value ofs. Eq. (5)
tL Landslide lifetime: number of loops up to when an unstable site exists. Sect. 3
<tL> Mean value oftL. Eq. (6)
TL Time interval between two landslide events in a specific area. Sect. 4

that reach the instability threshold in a chain relaxation pro-
cess, and, therefore,s can be considered a proxy for the area
of a real landslide. The lifetime of an avalanche event,tL,
is defined by the number of avalanching loops up to when
an unstable site exists, and, therefore,tL can be considered a
proxy for the lifetime of a landslide.

3.1 The limit of vanishing driving rate

In the limit ν=0, the model provides results similar to
those of the most studied cellular automaton for earthquakes,
i.e. the Olami-Feder-Christensen model (OFC) (Olami et al.,
1992). In such a limit, no scales characterize the model: the
connections between the sizes and the linear dimension of
the systemL, as well as the connections between the life-
time tL andL, are described by a scale-independent relation,
i.e. by a power-law.

Letp(s, L) be the probability density of having a landslide
of sizes in a system of linear sizeL. If p(s, L) is a power
law, we can define the power law exponent,B:

p(s, L) ≈ s−(1+B). (3)

The scaling properties of the system are investigated by
finite-size-scaling analysis (Privman, 1990), i.e. it is assumed
that the pdf scales with the system size as:

p(s, L) ≈ L−β
· g

( s

Lα

)
, (4)

whereg is a so-called universal scaling function andβ andα

are known as critical indices that describe the scaling prop-
erties of the system:β is related to the renormalization of
the distribution function, whileα controls how the finite-size
cutoff scales with the system size. Ifp(s, L) is a power law,
then 1+B=

β
α

(Christensen and Olami, 1992).
We calculate the indicesB, α andβ by considering statis-

tics of over 109 events per run and fix the values of the
anisotropic transfer coefficientsfnn, which we set equal to:
fup=0.1, fdown=0.3, fleft=fright=0.2. This choice for the
fnn values implies thatC=

∑
nn

fnn=0.8. The results are

shown in Figs. 2 and 3. In Fig. 2, we plot the product
Lβp(s, L) as a function of the ratios/Lα for two different
linear sizeL, in a log-log scale. We find the values of the
critical indicesα=1.43 andβ=2.34, as the values for which
the two curves are overlapped. The value of the exponent of
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Fig. 2. Lβp(s, L) vs.s/Lα for two values of the linear system sizes,
L=35 andL=70. The values of the finite scaling exponents that
determine the overlapping of the curves areα=1.43 andβ=2.34.
Variables on axes are unitless.

the negative power-law,−(1+B), is obtained from the lin-
ear fit of the curves, by neglecting the points relative to the
cut-off due to the finite size of the CA. We notice that the
values obtained forα andβ in Fig. 2 differ from those pro-
vided by the OFC model for the same level of conservation
C=0.8 (Christensen and Olami, 1992). In contrast to the
anisotropy investigated in the OFC model, the anisotropy in-
troduced in our modelling breaks the up-down symmetry. It
has showed that such a symmetry breaking can change the
universality class in driven non-equilibrium systems (Pruess-
ner and Jensen, 2002).

In Fig. 3, we report the productLβp(tL, L) as a function
of the ratiotL/Lα for the same values ofL shown in Fig. 2.
We find the values of the critical indicesα=1.03 andβ=1.70
as the values for which the curves, corresponding to different
values of the linear size, are overlapped. The slope of the
linear fit (solid line) gives the value of the exponent of the
negative power-law,−(1+B)=−1.65.

A landslide lifetime distribution in nature would be a func-
tion that records the number of landslides with time duration
betweentL andt+δtL, divided by the total number of land-
slides in a complete landslide inventory and divided byδtL.
The authors are not aware of landslide lifetime distributions
from empirical data and suggest an inventory analysis as a
further testing of the model.

3.2 Finite values of the driving rate

Let us focus, now, on the features of the model when finite
values of the driving rateν are taken into account. As dis-
cussed in previous papers (Piegari et al., 2006a, b), when
the driving rateν increases, the landslide size pdf develops
a maximum that shifts towards larger sizes. For small land-

Fig. 3. Lβp(tL, L) vs. tL/Lα for two values of the linear sys-
tem sizes,L=35 andL=70. The values of the finite scaling ex-
ponents that determine the overlapping of the curves areα=1.03
andβ=1.70. Variables on axes are unitless.

slides, we find a positive power-law, while for medium and
large landslides the CA model provides a negative power-
law. We studied the evolution of the positive and negative
power-law exponents with the driveν in Piegari et al. (2006b)
and we found that the slope coefficient of the negative power-
law is not a monotonic function ofν, while for the positive
power-law the slope coefficient is an increasing function of
ν.

We compare our synthetic pdf with those coming from
three landslide inventories and the inverse gamma distribu-
tion proposed by Malamud et al. (2004a). Figure 4 shows
this comparison considering the synthetic distributions ob-
tained for three sets of the parametersν andC (ν=0.003 and
C=0.5; ν=0.003 andC=0.4; ν=0.005 andC=0.4). In the
figure, our distributions are plotted as a function of the land-
slide area, which is a measure of the size of the cells involved
in the avalanche event. We convert the landslide sizes in the
corresponding area by multiplying the unitary size of a cell
for an area factora. Such a factor has been obtained by im-
posing thats∗

×a=A∗, wheres∗ is the size corresponding
to the maximum of a synthetic pdf andA∗ is the area cor-
responding to the maximum of the pdf from real data. As it
can be seen, the agreement between the synthetic and the real
curves is quite good. By varying the value of the conserva-
tion levelC, while ν is kept fixed, we find that the slope of
the negative power-law changes smoothly up to include all
the real data. IfC is kept fixed, small variations ofν take
into account the tiny differences in the slope of the rollover
for small landslides. In Fig. 4, it is also shown the inverse
gamma distribution (black solid line) proposed by Malamud
et al. (2004a). As observed, the agreement between such a
curve and our synthetic distribution is also quite good, with
the difference that the inverse gamma distribution is found a
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posteriori as the best fit of the real data and it is unique for all
the landslide events, while our pdf is generated a priori from
the proposed CA model and depends on the values of some
key parameters. We point out that, for very large areas, the
deviation of the synthetic pdf from the real ones is an effect
of the finite size of the system that produces the cut-off. If
grids with largerL are considered, such a cut-off shifts to
larger areas.

Moreover, it is worth noticing that the comparison with the
real data, shown in Fig. 4, allows us to determine the typical
size of a single cell of our grid, which is crucial information if
we are interested in monitoring a test area. In detail, we find
that the area of a single cella ranges from 35 m2 to 60 m2 in
the caseC=0.4, and it is of the order of 100 m2 in the case
C=0.5.

As discussed in Malamud et al. (2004a), even if the three
landslide inventories of Fig. 4 correspond to three differ-
ent triggering mechanisms, they seem to obey the same pdf.
From the analysis of our CA, we realize that triggers of dif-
ferent origins can affect the stability of a slope with the same
rate of approaching instability, i.e. with the sameν. Such an
observation suggests that to characterize the probability of
occurrence of landslide events in a specific area, it is crucial
to get information about such a rateν that controls the time
evolution of the slope stability, rather than the nature of the
triggering mechanism.

It is worth pointing out that varyingν in the CA model
means changing the rate at which the system reaches insta-
bility. As fresh inventories come from a mapping carried out
shortly after a triggered landslide event, it can be described
by a synthetic pdf corresponding to a fixed value ofν, since it
seems reasonable to assume that the landslides are essentially
triggered with the same rate to approach instability. On the
contrary, an historical inventory, which is the sum of many
landslide events over time, very likely includes landslides
corresponding to different rates of their approach to insta-
bility, and, therefore, the relative pdf could be considered a
weighted average of distributions with differentν.

As discussed in detail below, we find that large values of
ν cause the simultaneous instability of large areas. This fea-
ture of the model could explain the shift to the right of the
pdf maximum that describes historical inventories: as time
moves on, the evidence of smaller landslides is more likely
to be lost, and the historical inventories include just the most
catastrophic events corresponding to larger values ofν. As
a result, the rollover of the pdf moves to the right. Finally,
we notice that our explanation for the shift of the maximum
rollover typical of historical inventories is compatible with
that proposed by Malamud et al. (2004b). They attribute the
shift of the pdf maximum to the incompleteness of the histor-
ical inventories caused by the erosion: when going to histor-
ical data sets, the evidence for the existence of many smaller
and medium landslides is lost due to wasting processes over
time and, therefore, an historical inventory turns out to con-
tain only the largest landslides (Malamud et al., 2004b).

Fig. 4. Landslide probability densities as a function of the area.
Symbols are used for the three landslide inventories from Malamud
et al (2004a). The black solid line corresponds to the inverse gamma
distribution proposed by Malamud et al. (2004a). The colour lines
refer to our synthetic curves for different values of the driving rate
ν and the conservation levelC, as shown in the legend.

3.3 Analysis of the landslide dynamics with the driving
rate

To better understand the features of the model by varying the
driving rateν, we study the evolution ofp(s) in connection
with the behaviour ofp(tL) with increasingν.

In Figs. 5 and 6, we plot, respectively,p(s) andp(tL) for
different values ofν and for a smaller system linear size than
that of Fig. 4, to reduce the computation time. In the limit of
vanishing driving rate, it has been shown that the distribution
functionp(s) describes avalanche events that are essentially
compact clusters of sites (Pietronero and Schneider, 1991;
Piegari et al., 2006a). In such a case, the instability starts
from a single cell and, then, propagates to neighbour cells
generating avalanche events of sizes that are power-law dis-
tributed. Increasing the value of the driving rateν means to
enhance the chances to generate the simultaneous instability
of more than one cell. Thus, the largerν is, the larger the
number of relaxation chain processes that may originate in
the system. For this reason, we realize that the sizes∗, cor-
responding to the maximum ofp(s) for finite values ofν,
is essentially an estimate of the total number of cells that,
at the start, simultaneously reach instability. Interestingly
enough, we find that (see Fig. 5), for a given range of very
low ν values, the maximum ofp(s) is followed by a power-
law regime that resembles the landslide frequency-size dis-
tributions from catalogues. As it can be seen in Fig. 5, a
further increase ofν causes a crossover to a clearly differ-
ent regime where power-laws are no longer apparent and a
bell-shaped distribution emerges, whose peak shifts towards
larger sizes and shrinks up. In this limit, an avalanche event
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Fig. 5. Evolution of the probability densityp(s) of landslides of
size s with the driving rateν, in a log-log scale. A crossover
from power-law to non power-law behaviour is apparent and a bell-
shaped (Gaussian) distribution emerges, whose peak shifts towards
larger sizes with increasingν. Variables on axes are unitless.

Fig. 6. Evolution of the probability densityp(tL) of landslides of
lifetime tL with the driving rateν, in a log-log scale. A crossover
from power-law to non power-law is apparent and a bell-shaped dis-
tribution emerges, whose peak shifts towards smaller sizes with in-
creasingν. Variables on axes are unitless.

occurs because a very large number of cells instantaneously
reach instability, instead of resulting from a propagation of a
local instability.

Such features of the model, which demonstrate a change in
the model dynamics with increasingν, can also be observed
in the behaviour of the landslide lifetime distributionp(tL).
As seen in Fig. 6, the probability density functionp(tL) has
a non-trivial behaviour withν. In the limit of vanishingν, it
shows a power-law scaling that is well evident for the same

Fig. 7. The maximum ofp(s), s∗, and the landslide mean size,
<s>, as functions of the landslide mean lifetime<tL> for different
values of the driving rateν, as shown in Figs. 5 and 6. Variables on
axes are unitless.

values ofν for which p(s) shows power-law scaling. Then,
p(tL) starts to bend for an increasing interval ofν values and
becomes, for very largeν, a bell-shaped distribution, whose
peak shifts towards smaller lifetimes. The behaviour ofp(tL)

at varying values ofν reveals a continuous modification with
ν of the dynamical processes causing landslides. An increase
of ν causes an enhancement of the number of cells that ini-
tially reach instability,s∗. Initially, the largers∗ is, the larger
the lifetime of the more likely events, i.e. the larger is the
number of cells involved in avalanching loops that generate
chain relaxation processes. Then, we find that for a further
increase ofν, the maximum ofp(tL) moves towards lower
values oftL. To better explain this feature, we calculate for
each examined value ofν the predicted landslide mean size
<s> and the predicted landslide mean lifetime<tL> respec-
tively defined as:

< s >=

∫
sp(s)ds (5)

< tL >=

∫
tLp(tL)dtL. (6)

In Fig. 7, we report boths∗ and<s> as a function of<tL>

for the values ofν considered in Figs. 5 and 6. As it can
be seen, boths∗ and<s> are increasing functions of<tL>

up to ν≈10−1. A further increase ofν causes larger events
characterized by smaller lifetimes. We realize that in this
regime the domino processes, which characterize the land-
slide events for small and mediumν, are no more effective in
causing avalanching processes and the instability is reached
simply because a very large number of cells almost instan-
taneously reach the critical threshold. Thus, it is reason-
able to consider that a very largeν describes the effects of
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critical strengths of triggering mechanisms that cause land-
slide events involving very large areas in a short time.

Finally, we notice that from our study it follows that the
value of the parameterν is strictly connected to the maximum
rollover s∗. The analysis of landslide inventories has shown
that landslide events associated with different triggers can
be characterized by the same probability distribution, and,
therefore, by the sames∗. Since in the proposed CA model
s∗ is essentially an estimate of the most likely number of cells
that simultaneously reach instability at the start of the land-
slide processes, we argue that such a quantity for a triggered
event inventory is not a mere artefact of limited mapping res-
olution (Guzzetti et al., 2002; Malamud et al., 2004a, b) and
might represent afixed thickness of an unconsolidated layer
situated at the upper part of a slope as suggested by Katz and
Aharonov (2006). It is also worth noticing that in the CA
model the absence of a rollover in the frequency-size proba-
bility distribution is found in the limit of very small values of
ν, which describe chain reactions that originate from a single
cell and are power-law distributed. Thus, in our approach the
typical power-law behaviour of rock-fall size distributions,
which do not show a rollover, can be explained as a result of
a specific mechanism of instability propagation rather than
the absence of an unconsolidated layer (Katz and Aharonov,
2006).

4 A proposal for a landslide-event intensity scale

Whereas for earthquakes well-known magnitude scales have
been identified, which help the general understanding of the
implications of an earthquake, for landslide events this issue
is still open. Keefer (1984) has proposed a magnitude scale
to quantify the number of landslides in earthquake-triggered
landslide events. Recently, Malamud et al. (2004a) have sug-
gested a landslide-event magnitude scale independent on the
triggering mechanism and based on the logarithm to the base
10 of the total number of landslides associated with an event.
Alternatively to these approaches, which relate the landslide
magnitude scale to the mapped mass movements, i.e. to the
visible effects of the triggering mechanisms, we attempt to
relate the landslide event magnitude scale to the strength of
the trigger. We introduce, in fact, the intensity scaleML in
terms of the rapidityν of the system to reach instability:

ML = A + log10ν (7)

whereA is a constant introduced to get dimensionless the
scaleML. We defineA= log10TL, with TL the time inter-
val between two landslide events in a specific area. Such a
choice is motivated by the following consideration. As dis-
cussed above,ν is the rapidity at which the system reaches
instability, thereforeν−1 is an estimate of the time needed to
build up the critical stress in the slope. In an actual slope,
we realize that the random distribution of the safety factor

values, which captures the heterogeneity of the soil, fluctu-
ate around a mean value as response to the interaction with
climate and/or external perturbations. Only if the action of
a trigger causes a monotonic change (a decrease) of theFS
values, the whole system moves towards the instability in
the timeν−1. It follows that the characteristic timeν−1 is
always smaller thanTL and, therefore,ML= log10

(
TL

ν−1

)
is

positively defined. We point out that the limit caseν=0 is not
attainable in actual landslide processes (where physical inter-
actions are controlled by finite characteristic times), whereas
very small finite values ofν describe mass movements char-
acterized by only a chain process, typical of rockfalls, which
are not considered in this work.

From Eq. (7), it follows that large values of the proposed
intensity scale are related to events with long time distances
and short build-up stress timesν−1 (i.e. with fast approaching
of instability), while small values ofmL correspond to events
close together in time and approaching instability slowly.
Obviously, the quantitym can be measured only if the sys-
tem is time monitored, in such a way it would be possible to
appreciate the temporal variations of the safety factor related
to ν. This is, surely, not an easy task, like the estimation of
the safety factor, but it is not an unattainable task.

Recently, in fact, Juanico et al. (2008) have demonstrated
experimentally our theoretical result (Piegari et al., 2006a)
concerning the existence of a crossover from power-law to
non power-law statistics with the driving rate. They exam-
ine avalanche statistics of rain- and vibration-driven granular
slides in sand mounds and give an estimate ofν in terms of
experimental parameters. Moreover, to evaluate the safety
factor for shallow landslide, it is often the approximation of
an infinite-slope used for the expression ofFS (Sidle, 1995;
Montgomery and Dietrich, 1994; Dietrich et al., 1995; Wu
and Sidle, 1995). By using this analytical expression for the
safety factor, its time variation, i.e.ν, has been evaluated by
Iverson (2000) in relation to a pressure-head response func-
tion, which depends on the intensity and duration of the trig-
ger (rainfall). Another approach for the estimation of the
safety factor, and its temporal variation, has been recently
proposed also by the authors (Piegari et al., 2009). In par-
ticular, we suggest relating the local slope stability of pyro-
clastic covers to the local slope angle and the mean electrical
resistivity value measured in a cell of the grid test area. In
such a case, the value ofν is related to variations of the wa-
ter content of the pyroclastic cover, which can be monitored
through the changes of the electrical resistivity values.

Let us proceed now in giving an estimation of the land-
slide magnitude values based on the proposed intensity scale
(Eq.7). From a previous analysis of the model in the range of
parameter valuesν∈

[
10−4, 10−2

]
andC=0.4 (Piegari et al.,

2006a, b), we have found that the frequency-size distribution
exhibits inverse power-law behaviours with exponents simi-
lar to those of the pdf from real data. In this case, if we put
TL equal to the largest value ofν−1 for which the distribution
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Fig. 8. The most probable event sizes∗ and the predicted mean
event size<s> as functions of the magnitudeML in the range [0,
2]. The sizes are given on logarithmic axis andML on linear axis.
Variables on axes are unitless.

resembles a maximum, i.e.TL=104, we obtain a magnitude
scale for landslides that varies in the range 0<ML<2. We
remind the reader that in our theoretical approach, the char-
acteristic timesν−1 andTL are unitless and they can be mea-
sured only if the model is applied to a specific monitored
survey area.

Finally, in Fig. 8, we show the most likely event sizes∗

– corresponding to the maximum ofp(s) – and the pre-
dicted mean event size<s>, as functions of the magnitude
ML. The value ofs∗ and<s> are obtained from the dis-
tributions that resemble the experimental ones shown in the
previous works (Piegari et al., 2006a, b). Conversely to
the approach that proposes a general landslide probability
distribution (Malamud et al., 2004a), we find that both the
characteristic sizess∗ and<s> increase with the magnitude
scale. The dependence of<s> on ML is essentially linear
in a log-linear scale. Instead, the enhancement ofs∗ is such
thats ∗ →<s> in the limit of very large values ofML (i.e.,
ML>2). This evidence could be justified considering that for
such values ofML the frequency-size distribution becomes
a good approximation of a Gaussian distribution, where the
most probable event coincides with the mean event.

5 Conclusions

Summarizing, we have found that the rate of approaching in-
stability,ν, is a crucial ingredient to quantify the probability
of the occurrence of a landslide of sizes. We have performed
a statistical analysis of the proposed CA model by varying
ν in an uniform way. From the analysis of the spatial and
temporal probability distributions, we have found that land-
slide events triggered by different rateν arise from different
dynamical processes to propagate the instability and, conse-

quently, are characterized by different probability distribu-
tions. For small values ofν, chain processes dominate the
landslide dynamics: a few cells (a single cell in the limit of
vanishingν) initially reach the instability threshold and, then,
the event occurs as the effect of the relaxation processes that
propagate the instability to neighbour cells. For very large
values ofν, an increasing number of cells initially reach in-
stability and the domino effect is no more effective in deter-
mining the landslide event.

We found quite a good agreement between the synthetic
pdf of the CA model and the landslide area pdf of three land-
slide inventories, and estimated the area of the cells of our
grid, ranging from 35 m2 to 100 m2. From the comparison
with the real data we realize that triggers of different ori-
gins can affect the stability of a slope with the same rate of
approaching the instability. Therefore, it is crucial to get in-
formation about such a rate, rather than the nature of the trig-
gering mechanism.

Finally, we propose a landslide-event magnitude scale re-
lated toν, which is a first attempt to relate the magnitude
scale,ML, to the strength of the perturbation acting on the
system, instead of its visible effects. In such a classification
of the landslide events, large values of the scaleML corre-
spond to events with a fast approach to instability in a long
distance of time, while small values ofML correspond to
events with a slow approach to instability in a very close pe-
riod of time. Conversely, from the approach of Malamud et
al. (2004a) that predicts the same mean landslide area for all
landslide events, from the analysis of the statistical proper-
ties of our CA model, we find that both the most likely event
size and the mean event size are increasing functions ofML.
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