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Abstract. This paper presents a numerical evaluation of the
randomness which can be observed in the geometry of major
river channels. The method used is based upon that of gen-
erating a Sierpinski triangle via the chaos game technique,
played with the sequence representing the river topography.
The property of the Sierpinski triangle is that it can be con-
structed only by playing a chaos game with random values.
Periodic or chaotic sequences always produce an incomplete
triangle. The quantitative data about the scale of the ran-
dom behaviour of the river channel pathway was evaluated
by determination of the completeness of the triangle, gener-
ated on the basis of sequences representing the river channel,
and measured by its fractal dimension. The results show that
the most random behaviour is observed for the Danube River
when sampled every 715 m. By comparing the maximum di-
mension of the obtained Sierpinski triangle with the gradient
of the river we can see a strong correlation between a higher
gradient corresponding to lower random behaviour. Another
connection can be seen when comparing the length of the
segment where the river shows the most random flow with
the total length of the river. The shorter the river, the denser
the sampling rate of observations has to be in order to obtain
a maximum degree of randomness. From the comparison
of natural rivers with the computer-generated pathways the
most similar results have been produced by a complex super-
position of different sine waves. By adding a small amount
of noise to this function, the fractal dimensions of the gener-
ated complex curves are the most similar to the natural ones,
but the general shape of the natural curve is more similar to
the generated complex one without the noise.

Correspondence to:G. Žibret
(gorazd.zibret@geo-zs.si)

1 Introduction

Fractal analysis has been in use for about thirty years and is
particularly useful for describing non-Euclidean objects such
as the patterns found in nature which are far more complex
than simple objects such as lines, circles, ellipses, etc. (Man-
delbrot, 1983; Feder, 1988). The fractal properties of river
networks and channels were among the first natural objects
to be analysed using fractal methods. Horton’s (1945) well-
known power law of bifurcation and stream-order length and
Hack’s (1957) power law of length and basin area had al-
ready pointed the way. Fractal methodologies for analysis
of river behaviour have been applied to many aspects, such
as describing the self-similarity properties of river networks
(Tarboton, 1996) and quantifying the sinuosity of streams
(Schuller et al., 2001), karst rivers (Kusumayudha et al.,
2000) or fluvial topography (Veneziano and Niemann, 2000).

A fractal scaling system is determined by the fractal di-
mension, which provides insights regarding the origin and
processes involved in forming the fractal objects, and there-
fore the understanding of the physical properties of geolog-
ical materials (Turcotte, 1992; Dillon et al., 2001). This
dimension can consist of non-integer values, as opposed to
the integer values characteristic of Euclidean objects, such
as 2-D surfaces or 3-D cubes. Rivers can be characterised
by two fractal dimensions (Dodds and Rothman, 1999). The
dimensions of individual streams represent measures of the
stream’s irregularity, or the extent of a stream’s meandering
and the dimensions of river networks describe the ability of
a network to fill the plane. Both stream channels and river
networks have been found to exhibit fractal structure (Tar-
boton et al., 1988; La Barbera and Rosso, 1989; Phillips,
1993; Veltri et al., 1996; De Bartolo et al., 2006 and many
others). Fractal dimensions have been observed for several
natural river networks and can vary widely (Schuller et al.,
2001). Variations occur because natural stream networks are
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not strictly self-similar objects, but rather self-affine (Beau-
vais and Montgomery, 1997) and thus, empirically derived
dimensions for these objects are only estimates of their true
fractal dimension. The ideal surface with a fully developed
river network should have a fractal dimension of 2, implying
topological randomness. However, geological, topological
and hydrological effects dictate that the fractal dimension of
networks are always lower than 2 (La Barbera and Rosso,
1989). There are not many studies concerning individual
river channels, as most studies have focused on drainage pat-
terns (Tarboton et al., 1988; Nikora et al., 1993; Schuller
et al., 2001; Angeles et al., 2004; De Bartolo et al., 2006
and others). The multifractal method has also been used for
description of multichannel rivers (Veneziano and Niemann,
2000; De Bartolo et al., 2000; Gaudio et al., 2006 and oth-
ers).

In this paper a novel approach has been used for the quan-
titative analysis of the behaviour of the river channel from
its source to its mouth. It is based on creating a Sierpin-
ski triangle (also known as Sierpinski gasket) via the chaos
game, based on the data of the geometry of the channel.
Thechaos gameis a method of generating deterministic ob-
jects from apparently random ones (Barsnley, 1988; Peitgen
et al., 2004). It can be used to produce a visual represen-
tation of a sequence of random numbers (Mata-Toledo and
Willis, 1997). It has been usefully applied to studies of DNA
sequences (Jeffrey, 1992) and economics (Matsushita et al.,
2007). The complete Sierpinski triangle via chaos game can
be produced only with the help of the “perfect dice”, i.e. by
an entirely random process. Every periodic sequence fails to
reproduce a complete triangle and only some parts of it are
created.

This paper presents an application of the chaos game al-
gorithm to the characterisation of the randomness of river
channel geometry. This approach concerns neither the frac-
tal analysis of a single river channel nor the fractal analysis
of river networks, as both have been already studied exten-
sively by many other authors (see paragraph above). Here,
the river is analysed on the basis of the representation of its
pathway with the sequence of three classes which act as an
input for the chaos game. Following this the fractal dimen-
sion of the outcome of the chaos game (a more or less com-
plete Sierpinski triangle) is the measure of the randomness of
the sequence representing the randomness of the river chan-
nel. When the river forms perfect meanders or when it flows
straight, the obtained sequence would be very deterministic
and only a limited part of the Sierpinski triangle would be
created. Hypothetically when the river behaves completely
unpredictably, as the perfect dice do, the sequence will be
random and a complete triangle should appear. All interme-
diate possibilities produce more or less incomplete triangles.
The higher the randomness of the river geometry, the higher
the dimension of the triangle will be. Another issue to be
mentioned is the sampling rate, which describes the length of
the sequence which represents the river pathway. The denser

 

Fig. 1. Analysed rivers (scale varies, projection to Euclidean plane).

the sampling rate, the longer the sequence and the shorter the
segment between two sequence points and vice versa.

2 Materials and methods

2.1 The choice of rivers and sources of data

Four rivers were analysed in this study – the Amazon, Missis-
sippi, Danube and Sava (the largest tributary of the Danube)
(Fig. 1). These watercourses were selected as their maps
are easily accessible and they belong to different geologic
and climatic environments. The river courses were digitised
from various sources. The Amazon was digitised from the
data on the Microsoft Encarta World Atlas web site1; the
Mississippi from the Google Earth web site2; the Danube
from the topographic maps on a scale of 1:200 000 from the
3rd Military Mapping Survey of Austria-Hungary (between
the years 1889–1915)3; and the Sava from the national maps
of former Yugoslavia on a scale of 1:25 000 (raster TIF im-
ages). Despite the fact that we have used maps of different
scales, all of them were sufficiently precise to present all of
the river meanders and other necessary details. Moreover,
different map scale does not affect the results because rivers
were later in the process split into the 3-class sequence and
this process is not affected by the map scale. Additionally,
all of the rivers are very large so all of them were projected
to the Euclidean plane. This had to be done as on the Eu-
clidean plane all the geometrical calculations and manipula-
tions are much easier to perform and such a projection should
not much affect the obtained dimension of the Sierpinski tri-
angle because the sequencing was done before the triangle
was constructed. Chaos game technique is also not very sen-
sitive to errors because of the iterative nature of the process,
so the results quickly stabilise after approximately 10 steps.

1 http://encarta.msn.com/map701510067/Amazon(river).html
2 http://earth.google.com/
3 http://lazarus.elte.hu/hun/digkonyv/topo/3felmeres.htm
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Fig. 2. The procedure for converting the river topography into a set of angles.(A) – raw tiff map;(B) – digitalisation using polyline method;
(C) – conversion of the polyline into spline;(D) – division of spline into a defined set of segments – points (1000-segment Danube case);(E)
– calculation of the set of angles.

Prior to sequencing, the rivers were digitised using a com-
mercial software AutoCAD package (Autodesk, Inc.) with a
single polyline which was later transformed to spline which
better represents the course of water flow. In cases where
the river behaves as a “braided river” (has several active
channels) only the most active channel was digitised due
to the limitations of our methodology. Although braided
rivers can be analysed using special techniques (Sapozhnikov
and Foufoula-Georgiou, 1996), the chaos game algorithm re-
quires that the rivers are presented with only one channel,
digitised as a continuous line (spline). Similarly, the path-
ways through the lakes were digitised as a spline (as a single
channel) fitting from feeder to effluent locations.

Another issue has to be discussed prior to the generation
of the sequence. Digitalisation started at the river mouth, go-
ing upstream. According to the Horton-Stahler stream order-
ing system, the longest lower-ordered channel was proceeded
along.

2.2 Generation of a direction sequence

The main difficulty of this research was the transformation
of the topography of the river channel into the three differ-
ent classes needed to “play” the chaos game. The proce-
dure was as follows. The river courses were digitised from
the image files (Fig. 2A) using Autodesk AutoCAD soft-
ware with the polyline method (Fig. 2B). The polylines were
then smoothed into splines (Fig. 2C), to simulate the natural
course as much as possible. A fixed number of points were
drawn along the curves for each analysis. Their quantities
were chosen exponentially, as a power of 2: 1000, 2000,
4000, 8000, 16 000 and 32 000 (Fig. 2D) and will be de-

scribed by the terms “sampling rate” or “segment length”
in this article. The lower limit of 1000 points was regarded
as the minimum requirement for a Sierpinski triangle image
analysis. Raising the number of points above 32 000 was
not reasonable because it would yield very monotonous se-
quences of classes. As a result, 24 arrays of points Pi with
coordinates (xi , yi) were obtained for further calculations,
where imax varies from 1000 up to 32 000 (Fig. 2E). The fi-
nal step of this procedure was to calculate the array of the
angles (αi , Fig. 2E) which describe the topography of the
river by using Eq. (1) and Eq. (2). Following this procedure,
the two azimuths from the first point, Pi−1(xi−1, yi−1,) to the
second one Pi(xi , yi), and from the second point to the third
one Pi+1(xi+1, yi+1,) have to be calculated by Eq. (1). That
is how the two azimuths AZi and AZi+1 have been obtained.
The second step is the calculation of the angles (αi) between
these two azimuths using Eq. (2). The number of obtained
angles is therefore equal to the number of points minus two.

AZi =


(xi+1 − xi) > 0 ⇒ AZi = 90◦

−
180◦
π

· arctan
(

yi+1−yi

xi+1−xi

)
(xi+1 − xi) < 0 ⇒ AZi = 270◦

−
180◦
π

· arctan
(

yi+1−yi

xi+1−xi

)
xi+1 = xi ⇒ AZi =

{
(yi+1 − yi) < 0 ⇒ AZi = 180◦

(yi+1 − yi) > 0 ⇒ AZi = 0◦

}
 (1)

αi =

 (AZi+1 − AZi) < −180◦
⇒ αi = (AZi+1 − AZi) + 360◦

(AZi+1 − AZi) > 180◦
⇒ αi = (AZi+1 − AZi) − 360◦

−180◦
≤ (AZi+1 − AZi) ≤ 180◦

⇒ αi = AZi+1 − AZi

 (2)

Finally, the array of the angles was classified into the three
classes. If the direction was inclined to the left more than
the critical angleαL., the segment was assigned a value ofL.
A value of R was assigned if the direction to the right was
greater than a critical angleαR and the valueF (forward)
was allocated if it stayed within the limits ofαL and αR.
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Fig. 3. Technique testing results for various pseudo-random and
non-random generators:(A) – digits ofπ , (B) – digits of e,(C) –
MS Excel RAND() function,(D) – LCG algorithm,(E) – bifurca-
tion equation,(F) – sinus function. In cases D and F the size of the
points has been enhanced due to visibility and in cases E and F the
borders of the triangle have been included for easier visibility.

0,95

1

1,05

1,1

1,15

1,2

1000 10000 100000Number of segments

F
ra

ct
al

 d
im

en
si

on
 o

f t
he

 S
ie

rp
in

sk
i t

ria
ng

le
 (D

)

Mississippi

Sava

Danube
Amazon

 

Fig. 4. The dimensions of the Sierpinski triangle, obtained via the
chaos game procedure in relation to the number of segments.

The angles were determined by the percentiles of 33.33%
and 66.67% of the complete array of angle deviation, to keep
the directions uniformly distributed in all three classes and
also to avoid the impact of angle choice on the results. For
instance, with large critical angles, most of the directions
would fall into the F group, and contrarily, with low criti-
cal angles, great deviations (mostly L and R) would appear.
This was done to obtain the most complete triangle possible.
A sequence with dominant L and R classes will yield a trian-
gle with points concentrated only on one side of the triangle.
On the other hand, a sequence with the F class dominant will
result in a triangle with concentration of points close to the
one corner. Finally, a sequence of letters was assigned to
the river channel pathway, for instance LLRRRFFLRFLLL-
RFRL, which was used as the input for the chaos game.

Fig. 5. Plot of chaos game results for the Amazon River, divided
by different numbers of observations.(A) – 1000,(B) – 2000,(C)
– 4000,(D) – 8000,(E) – 16 000 and(F) – 32 000 observations.
Lower left vertex attracts flow directions to the left (L), lower right
forward (F) and upper vertex directions to the right (R).

2.3 The analysis of chaotic behaviour by the chaos game
technique

The sequences were analysed by the method of the chaos
game (Barnsley 1988; Jeffrey, 1992; Peitgen et al., 2004).
This technique is useful for the determination of random pat-
terns in data. The original method relies on visual estima-
tion and in this paper it has been updated to a quantitative
approach by examining the fractal dimensions of different
approximations of Sierpinski triangles. The “game”, played
long enough with a random sequence, produces a complete
Sierpinski triangle (Mandelbrot, 1983). If a non-random gen-
erating sequence is used, the Sierpinski triangle does not
completely appear, as in the case of pseudo-random number
generators with short periods, logistic equations or periodic
functions (Figs. 3D, E and F). If the random numbers are not
properly balanced (for example if some weight is placed on
the one side of the dice), the triangle appears biased towards
one vertex with greater probability.

The chaos game technique is described in detail in many
references (Jeffrey, 1992; Mata-Toledo and Willis, 1997;
Peitgen et al., 2004 etc.), so only a brief description is pre-
sented here. Points in the equilateral triangle are drawn by
the iteration technique with a simple rule: one class is as-
signed to every corner of the triangle and the seed point is
chosen randomly. The next point is drawn halfway between
the previous point and the corner of the triangle, correspond-
ing to the class in the sequence. In all cases in this research
the seed point of the triangle has been chosen at the origin of
the Euclidean coordinate system P0(0, 0).

Prior to analysing the river data, the method was tested
to check if the triangle could be constructed by the appro-
priate formulas, random or pseudo-random generators and
other functions. For each run, 65 536 data pairs were used
to represent the triangle as faithfully as possible. In the
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Table 1. Results for testing the technique with random and non-
random number generators.D – fractal dimension of the con-
structed triangle;R2 – correlation between dots on the log-log
plot and the linear regression interpolation;dif % – difference be-
tween Sierpinski triangle mathematical dimension andD in per-
cent. The mathematical dimension of the Sierpinski triangle is
D=log(3)/log(2)∼=1.585.

Generator D R2 dif %

pi 1.5567 0.9965 1.78

e 1.5563 0.9964 1.78

RAND() 1.5518 0.9963 1.78

LCG 1.0108 0.8796 36.2

bifurcation 1.0226 0.9807 35.5

sinus 0.4728 0.8125 75

chaos game, theoretically 1.5850 1 0
played with “perfect dice”

literature is stated that 10 000 points are needed to construct
a Sierpinski triangle (Peitgen et al., 2004). The sequences
are:

– Digits of the constantπ . The digits were grouped into
packets of 8 decimals and divided by 108. Thus, a num-
ber in the range of 0 to 1 was obtained. By the rules of
the chaos game, the numbers were classified into three
equal sized groups, each corresponding to the triangle
vertices. A similar approach was applied to the follow-
ing formulas.

– Digits of the constante, grouped into 10 digits.

– Bifurcation equation. The sequence was obtained by
the iterated equation:a(n+1) = 3.999· a(n) · (1 - a(n))
(Peitgen et al., 2004) with the value a1 between 0 and 1.
This sequence exhibits chaotic behaviour as its period is
infinite or nearly infinite and the sequence is very sensi-
tive to the initial conditions.

– LCG: linear congruential generator generates pseudo-
random sequences and has a general equation of the
form f(x+1) = (a · f(x) + n) (mod m)(Mata-Toledo
and Willis, 1997). It requires three parameters (a, n

and m), and in this study the formulaa(n + 1)=
(600·a(n)+500) (mod 977) with the number 5 as a seed
has been used. Using this array of parameters the func-
tion is periodical with a period of 976 iterations.

– RAND() random generator, as an internal function in
MS Excel application. This generator is supposed to be
superior to other pseudo-random number generators and
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Fig. 6. The comparison of fractal dimensions of natural rivers and
the artificially computer-generated curves.

is guaranteed not to repeat the sequence until the value
of 1013 iterations (MS Excel help).

– Sinus function:a(n)=sin(n); n∈N where n is expressed
in radians to avoid periodical sampling of the sinus
function.

2.4 Determination of the fractal dimension of obtained
Sierpinski triangles by box-counting method

The fractal dimensions of the Sierpinski triangles were de-
termined by the box-counting method, which has the most
applications in science (Peitgen et al., 2004) and is probably
also the most commonly used, as the principle of its use is
rather simple. The digitised map of an object (for instance,
a river or fracture network) is covered by boxes of differ-
ent side lengthss, and then the number of occupied boxes
N(s) is counted for each box size (Feder, 1988; Bonnet et
al., 2001). The process is repeated by reducing the box sizes
until the minimum size is reached. For fractal objects, the
number of occupied boxesN(s) follows the power-law rela-
tionship with the box sizes Eq. (3).

N(s) ≈ s−D (3)

The fractal dimensionD is therefore calculated as the slope
of linear regression best-fit line of log–log data, Eq. (4)
(Foroutan-pour et al., 1999).

D = − logN(s)/ logs (4)

The coefficient of determinationR2 represents the value of
how closely the linear regression fits to the plotted log-log
data.

The box-counting method was used to measure the dimen-
sions of the generated image approximations of the Sierpin-
ski triangles and thus to determine the degree of random be-
haviour of the rivers. The computer code from BCFD pro-
gram (Verbov̌sek, 2009) was used for calculation of fractal
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Fig. 7. Scaling between average gradient of the river, expressed in
metres per kilometre with the maximum dimension of the triangle,
acquired via the chaos game.
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Fig. 8. Length of the segment where the river expresses the most
random behaviour in relation to its total length.

dimensions. In this way, the generated image of the tri-
angle was quantified and subjective visual judgments were
avoided. All of the triangles were drawn as 1024×1024 black
and white bitmap images prior to the box counting procedure.
This resolution provides a satisfactory compromise between
the resolution of the image and the number of pixels.

2.5 Computer generated lines

In order to evaluate our results, the same procedure was ap-
plied to three different mathematical functions which might
represent the natural rivers. Since the angles are not pre-
served when the stretching of channel geometry in any of co-
ordinate axes is performed, the precise functions will be pre-
sented. First one is a simple sinus function (Eq. 5). The sec-
ond one, named as “supersin” is a superposition of four sine
waves (Eq. 6) with different amplitudes and wavelengths. In
all cases empirical coefficients are chosen in such way that
the functions behave similarly to the natural rivers.

sinus
( x

500

)
= sin

(
x

100

)
x=1...32 000rad

(5)

supersin
(

2πx
360

)
=0.7 · sin(x/50) + sin(x/100)

+1.4 · sin(x/250) + 2 · sin(x/1000)

x=1...30 000rad

(6)

The third function is a complex superposition of sine waves
named “complex” (Eq. 7) where we tried to simulate the nat-
ural flow of the river as accurately as possible.

complex
(

2πx
360

)
= 5 · sin(0.5x) + 0.1 · e

(x−150)2

5000 · sin(7x)

+
x·360·sin(0.1x)

2·π ·1000 + 10 · sin(3
√

x)

x = 1...30 000rad

(7)

A complex function is made from four waves (in the same
order as in the Eq. 7):

– a basic wave with constant wavelength and amplitude;

– a high frequency wave with a changing amplitude de-
scribed by a gaussian function, which is set to be maxi-
mum in the first third, resembling small meanders in the
upper flow of the river;

– a low frequency wave with an increasing amplitude to
resemble long-wavelength meanders at the lower flow
of the river;

– a steady amplitude but an increasing frequency wave to
simulate flow without meanders, conditioned by the re-
gional tectonic conditions in the upper part of the rivers.

Finally we added a low amount of noise to the complex func-
tion. Two different approaches have been used.Internal
noiseapproach means that the noise has been added to the
dependent variable andexternal noiseapproach means that
the noise has been added to the functional result (Eq. 8). In
both cases noise influenced approximately 1% of the fluctu-
ations.

internal(x)=complex(x + noise)
external(x)=complex(x) + noise

(8)

External noise can be explained geologically by the influ-
ence of external geological factors, such as geomorphology
or tectonic control on a greater observation scale, with pos-
sible major faults dictating the directions and deviations of
the river course while internal noise is explained by devia-
tions inside the river channels, and these are obviously less
important than the external deviations.

3 Results

3.1 Results of testing of the method used in the research

The results from preliminary testing (Table 1) show that the
best random sequence is the sequence of decimal digits of
the constantπ . Also the randomness of the sequence ofe
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Fig. 9. The dimension of the triangle in relation to the variability of the angles.

Table 2. Results for the four analysed rivers. N – number of segments; AA – average angle (degrees); SD – standard deviation of the angles;
D – fractal dimension of the “triangle”;R2 – coefficient of determination.

Amazon River Danube River

N AA SD D R2 N AA SD D R2

1000 −0.073 39.35 0.9981 0.8901 1000−0.090 32.07 1.0108 0.8891

2000 −0.017 28.99 1.0974 0.9243 2000−0.049 26.32 1.1172 0.9231

4000 −0.004 18.73 1.1338 0.9399 4000−0.029 18.95 1.1705 0.9453

8000 −0.001 11.10 1.1110 0.9459 8000−0.016 12.68 1.1421 0.9480

16000 −0.001 6.20 1.0796 0.9423 16000−0.008 8.25 1.0953 0.9476

32 000 0.000 3.30 1.0615 0.9453 32 000−0.002 4.81 1.0598 0.9499

Mississippi River Sava River

N AA SD D R2 N AA SD D R2

1000 −0.230 36.40 1.0076 0.8951 1000 0.019 36.93 0.9881 0.8846

2000 −0.134 28.06 1.1031 0.9225 2000 0.003 25.20 1.0784 0.9177

4000 −0.054 25.52 1.1525 0.9512 4000 0.002 15.76 1.0925 0.936

8000 −0.031 23.63 1.1585 0.9477 8000−0.003 9.52 1.0666 0.9314

16000 −0.015 18.25 1.1383 0.9503 16000−0.001 5.65 1.0735 0.94

32 000 −0.007 13.76 1.1379 0.9552 32 000 0.000 3.24 1.0815 0.9462

digits and the RAND() function is satisfactory as the Sier-
pinski triangle was drawn accurately (Fig. 3A, B and C) and
the obtained dimension is the greatest. The small difference
between the dimensions of the triangle generated by decimal

numbers ofπ and the theoretical dimension is probably due
to a systemic error (computing with finite accuracy, imag-
ing and box counting with finite resolution, etc.). Examples
of incomplete triangles, generated with the deterministic or
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chaotic sequences, are presented in Fig. 3D, E and F where
the triangle was incomplete or even indistinguishable. The
conclusion is that the methods used for creating the trian-
gle and calculating its fractal dimension are acceptable and
that the systematic error encountered in using this specific
methodology is less than 2%.

3.2 Chaos game representation of the analysed rivers

Since it has been established that the methodology yields ac-
curate results, the sequence from the river directions was
used to construct the Sierpinski triangle. As a result, the
calculated dimension was used as a measure of how much
a river channel flows randomly in its course. The more ran-
domness it contains or, in other words, the more non-periodic
behaviour it exhibits, the more faithfully the complete trian-
gle is reproduced and the larger is the dimensionD. Table 2
shows the results and also basic statistical parameters of the
set of angles prior to 3-class transformation, while Fig. 4 rep-
resents the results graphically.

3.2.1 The Amazon

Obtained triangles for the Amazon River sequence are pre-
sented in Fig. 5. The largest dimension of the triangle is for a
segment length of 4000 points (Table 2, Fig. 4), as the trian-
gle was reproduced most closely in this case (Fig. 5C). With
a total length of approximately 6400 km, this means that the
Amazon River exhibits the greatest random behaviour at a
sampling rate of every 1.6 km. For the largest amount of data
(32 000), the points in the triangle are drawn mostly on its
edges.

As the segment length increases (or number of points de-
creases), it is expected that the random behaviour is less pro-
nounced on this scale, because the river channel topography
on a large scales follows the macrotectonic environment and
regional geological structures and is not very sensitive to lo-
cal conditions, as is seen in denser observations. In addition,
the meanders cannot be seen at this sampling rate. The re-
sults clearly confirm these expectations.

3.2.2 The Mississippi

Similar results were obtained for the Mississippi River, and
the dimension is greatest for a number of segments between
4000 and 8000 (Fig. 4, Table 2). This value corresponds to a
density of observation of between 0.93 and 0.47 km. Visual
inspection of the triangles indicates that different behaviour
than that of the Amazon River is observed for segments num-
bering 8000 and especially 16 000 and 32 000. Most of the
points in the triangle lie between the lower left and upper
vertices, indicating that river directions alternate mostly be-
tween left (L) and right (R) without intermediate F class.
This indicates that most of the shapes of the river which en-
hance randomness are larger than 230 m. Smaller shapes are
of a more deterministic nature. In comparison with the other

three triangles, the points in these images lie mostly inside
the triangle, indicating more random behaviour. With 32 000
segments, almost all points lie on all three of the borders of
the triangle. This is a consequence of the observation rate
being too dense compared to the size of the meanders. How-
ever, in comparison with the Amazon River, where points lie
only on two edges of the triangle (Fig. 5F), we can see in the
case of the Mississippi that meanders are less regular (less si-
nusoidal) because they turn from left (L) to right (R) without
an intermediate forward (F) flow direction. Regarding this, it
is obvious that the standard deviation of the angles at a higher
frequency of observation for the Mississippi is much greater
than that for the Amazon River (Table 2).

3.2.3 The Danube

The results for the Danube are very comparable with those of
the Amazon for all groups of segments (Table 2), except for
the fact that the overall dimension of the triangle is greater.
The dimension is greatest for the 4000 segments, which cor-
responds to a sampling rate of every 715 m. Up to 4000
segments, the points lie mostly inside the triangle and, for
a higher number of segments, they concentrate on the two
triangle edges, indicating more deterministic behaviour or a
greater predictability of the meander shapes.

3.2.4 The Sava

Of all the analysed rivers, the Sava exhibits the highest trian-
gle dimension of between 2000 and 4000 observation points.
This corresponds to a sampling rate of approximately every
450 m. Another interesting fact that makes the Sava River
different from the other three rivers is that when a denser
sampling rate is used, the fractal dimension of the triangle
slightly increases. At the river sequencing with 8000 ob-
servations the points on the triangle are concentrated on its
edges on all levels. Contrary to this, when sampling with
16 000 and 32 000 sequence objects, the sampling rate be-
came too dense and the sub-sequences representing particu-
lar parts of the meanders became very long. So we obtained
sub-sequences of same classes and this resulted in the points
on the triangle being concentrated only on its outer sides.
This is the main reason why a smaller dimension of the tri-
angle is observed.

3.3 Comparison with computer generated lines

Results for all rivers are represented and compared to com-
puter generated functions with and without noise (Fig. 6).
First, the classical sinus function, which is by definition com-
pletely deterministic and periodic, so the fractal dimensions
of Sierpinski triangles are, as predicted, very low. More im-
portantly, they are much lower than the ones of the natural
rivers. The results from the supersin curve (Eq. 6) are sim-
ilar to the former sinus function, and as the superposition
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of several sinus functions is still periodical, the fractal di-
mensions are still low; below 0.8. Rather higher dimensions
can be observed at the higher sampling frequency, at 32 000
points per complete length. Results for the complex func-
tion (Eq. 7) yielded the most similar results to natural rivers
in the sense that their general shape is the most similar but
lower dimensions have been observed. For these reasons, the
complex function was used further to investigate the effect of
noise on the results. The curves (triangle dimensions) with
the added noise intersect curves of natural rivers. Deviations
from the natural rivers occur at the higher sampling inter-
vals, as the noise is more pronounced at smaller sampling
intervals. Slightly better approximation is obtained with the
external noise.

4 Discussion

The shape of the curves (Fig. 4), which represents the de-
pendence of the dimension of the Sierpinski triangle on the
density of the observation points, tells us how the random
behaviour of the river topography changes in relation to the
sampling pattern or, in other words, to the observation pat-
terns. The Sava and the Mississippi Rivers have more or less
regular meanders of various sizes and this is the reason why
the dimension of the triangle does not drop significantly with
an increase in the density of observation. In contrast, both
the Danube and Amazon Rivers flow for a significant part
of their total length in mountainous and hilly regions with
a relatively small amount of discharge. When they reach
the lowlands, the discharge is so great that it is not possible
any longer to develop small meanders so only large ones are
formed. The similarity between the Sava and Mississippi and
between the Danube and Amazon Rivers in the sense of ran-
dom behaviour in relation to sampling rate can be observed
from Fig. 5. It is likely that the Sava and Mississippi have de-
veloped some features regarding the observation scale (irreg-
ular meanders of all sizes for example) while in the Danube
and Amazon this is likely not the case.

Another interesting pattern can be discovered from plot-
ting the maximum dimension of the triangle against the av-
erage gradient of the river, expressed in metres per kilome-
tre. Figure 7 shows the dependence, expressed with a linear
trend line. While with a larger gradient, the river has greater
energy and small-scale parameters, as geological or vege-
tational parameters became less significant to the direction
of water flow which has a high energy. The consequence is
that the topography of a river channel becomes less random
and more deterministic, controlled by large scale geological,
tectonic and climatic settings. On the other hand, when the
energy of the river is low, its flow is very sensitive to the
initial condition in the sense that the shape of one meander
has a major influence on the shape of the complete river flow
downstream, and also the flow of the river is more influenced
by small irregularities in the topography, vegetation, geology
or other more local parameters. However, to prove the rela-

tion more of the same type of analysis from different world
rivers would be needed.

Another conclusion can be made by examining the scat-
ter plot of the length of the segment when the dimension of
the triangle is greatest versus the total length of the river. The
plot (Fig. 8) suggests a strong dependence between these two
values. This can be explained by the hypothesis that every
river develops a maximum degree of random behaviour for
a certain observation density, and this density is strongly de-
pendent on the total length of the river. The connection could
be the consequence of the self-similar fractal properties of all
rivers, since with the shorter rivers (Sava), the length of the
segment of maximum chaotic behaviour is shortest, and vice-
versa for the longest rivers (Amazon). The argument that the
map scale influences this property is not valid because all of
the river features were digitised and included. For example,
for the Mississippi case Google earth satellite images allow
us to digitise the river course with high precision. Despite
that, the point representing Mississippi fits well into the re-
gression and is not placed nearby Sava River point (Fig. 8)
where the most accurate maps were used. Thus the size of
the meanders is connected with the river length or, more pos-
sibly, with the river discharge at the mouth of the river, since
the discharge is mostly also dependent on the river length.
This might represent a problem for further investigations,
namely a problem with applying the same technique to rivers
in arid environments.

Intuitionally the non-predictable behaviour of the river is
expected to be connected with the intensity of the river me-
andering in its pathway or with the number and sharpness
of the curves it makes. One should expect that sharper the
curves are the less deterministic is the river behaviour and
vice versa. As shown in Fig. 9 (rivers dots) this is not the
case. The most random behaviour is observed at one specific
interval of variance (or curvature of meanders) between 15
and 25. This is likely to be the consequence of some flow
regime between regular sinusoidal meanders formed by low
gradient rivers and the more or less straight flow of highly
energetic waters. But, more probably, the low dimensions
of Sierpinski triangles at high angle variances are a conse-
quence of the fact that an insufficient number of points has
been used for triangle construction in these cases.

When comparing these four rivers we can divide them
into two groups. Firstly,the Danube and Amazon rivers that
have meanders of mostly one size. They exhibit the most
random behaviour on only one particular observation scale
(Fig. 4). The second group of rivers, the Mississippi and
the Sava, similarly exhibit one particular peak of random be-
haviour, but as the magnification increases the rate of ran-
dom behaviour does not drop significantly (Fig. 4). A pos-
sible explanation is that there are two different flow regimes
or two different meander sizes: smaller ones when the river
has a small current intensity, especially in the upper parts
of the flow, and larger ones when the discharge increases.
This is likely to be connected with the formation of river

www.nonlin-processes-geophys.net/16/419/2009/ Nonlin. Processes Geophys., 16, 419–429, 2009
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valleys, especially in the upper parts of the Danube and Ama-
zon rivers, where the narrow width of the valleys does not
allow rivers to develop meanders and the flow is mostly in-
fluenced by tectonic and other regional settings.

The last point discussed is how the size of the meanders,
the observation rate and dimensions of the obtained Sier-
pinski triangle are interconnected. When the observation
rate is infrequent, the meanders cannot be detected prop-
erly by the sequencing and periodic behaviour is exhibited
in the sense that the flow can be described by a ...LRLR...
sequence in the case of meandering and, contrarily, with a
...FFF... sequence in the case of a more or less straight flow.
On the other hand, if the observation rate is too dense, the
sequence also exhibits periodic behaviour in the sense that
one meander is described with a long sequence of the same
classes, such as ....FFFFFFFF RRRRRRRRR FFFFFFF LL-
LLLLLL... In such a case, the nondeterministic behaviour
does not appear, as the points on the Sierpinski triangle are
concentrated on the two edges (between F and R and F and L
vertices). Only with a specific sampling density does the se-
quence exhibit such behaviour that the majority of the points
lie inside the triangle, meaning that the sequence is more or
less non-periodic or random. Therefore, we propose that the
best measure of the randomness in the river topography is the
determination of the maximum dimension of the Sierpinski
triangle.

As a final comment, the authors would like to state that
word “randomness” in the article is used to describe the sen-
sitivity to a large number of factors influencing the river path-
way, such as tectonic and geological settings, types of rock
and sediment, vegetation, climatic regime, tributaries etc...
We think that if the river exhibits more random behaviour
its flow is more influenced by these factors and vice versa.
So, random behaviour in this article should be recognised as
random behaviour of dice which is, if viewed from a strictly
theoretical point, actually deterministic but influenced by a
vast number of factors which are all impossible to predict
and thus almost impossible to simulate by a computer.

By comparing the fractal dimensions of the natural rivers
with the computer generated rivers at different sampling in-
tervals (Fig. 6), some differences are observed which can be
explained geologically. Rivers can be best approximated by
the complex function, and not by simple sinus function or
a linear superposition of different sinus functions. The lat-
ter are in any way periodic and their fractal dimensions are
much lower than the ones of natural rivers. The complex
function includes the changes of the river course at short and
long wavelengths, plus some greater deviations in the mid-
dle segment of river course (represented by the inclusion of
the Gauss function). The natural rivers in the sense of pro-
posed methodology are best approximated by the addition
of noise, and the external noise fits the data slightly better
than the internal, indicating greater external geological con-
trol (for example major faults) than the internal (inside the
river channels). At the smaller sampling intervals (higher

sampling resolution) noise did not seem to have a major in-
fluence on the natural river pathway, contrary to the lower
resolutions (large sampling intervals) where rivers’ “natural
regional geological noise” outreach high resolution artificial
noise added to the artificial curves.

5 Conclusions

All rivers exhibit some sort of random behaviour which is
far greater than the “chaotic” behaviour of the periodic si-
nus function (Tables 1 and 2, Fig. 6). The dimensions of
the generated triangles are even greater than some pseudo-
random functions with a short period (LCG for example) or
than a completely chaotic bifurcation function. A compara-
tive study of the chaotic behaviour of four major rivers using
the chaos game technique shows that the Danube River ex-
hibits the greatest ratio of random behaviour when we sample
our observations at every 715 km. Overall, the Mississippi
River exhibits the largest proportion of random behaviour,
which is not so strongly dependent on the observation fre-
quency and is probably connected with low gradient.

Conclusions drawn from the comparison of natural rivers
with the computer generated rivers show that the rivers can
be best approximated by computer by the inclusion of ran-
dom noise into the complex combinations of sinus functions.
Any combination or superposition of sinus functions without
the noise gives greater deviations with lower fractal dimen-
sions of the Sierpinski triangles. Some noise obviously exists
in nature, and this can be detected and quantified by our pro-
posed chaos game method.

The method developed in this article can be further applied
to the analysis of other natural geometric patterns, for ex-
ample coastlines, mountain ridges or everywhere where the
transformation of an object geometry into a three-class se-
quence can be applied. The method is not sensitive to the
map scale, as prior to the usage of the chaos game technique
sequencing has to take place and this is independent of linear
map transformations. But one issue needs to be addressed –
the low fractal dimension of the Sierpinski triangles at short
sequences. The results at this scale are probably not accurate
while too few points are present. Our estimation is that for
accurate results at least 4000 points will be necessary.

The main limitation of the proposed method is that it can
not evaluate multifractal properties as a measure of network
or channel complexity (De Bartolo et al., 2006; Gaudio et al.,
2006; Gangodagamage et al., 2007; Gupta et al., 2007 and
others). In the case of braided rivers where the most active
channel is undistinguishable, or in the case of several equally
active channels, some approximations have to be made and
the method should be accompanied by other methods.

This method can be further applied to more detailed stud-
ies of drainage basins where sequences of all rivers might be
joined together. In this way we might study the random pat-
terns in drainage basins. Moreover, the same method might
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be applied to coastlines or lines of mountain ridges. We hope
that the ideas presented in this paper will provoke some new
research. In this paper it has only been possible to provide
some remarks about how we should interpret the results. This
is why it is crucial to study the results for several different
rivers in different climatic and geological settings (and from
such institutions which have access to detailed topographic
maps) before drawing any final conclusions on how to ap-
propriately interpret the results.

The supplementary files used in this research with exam-
ples and original data are available upon request.
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