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Abstract. Nonlinear interactions of the barotropic Rossby
waves propagating across the equator with trapped baroclinic
Rossby or Yanai modes and mean zonal flow are studied
within the two-layer model of the atmosphere, or the ocean.
It is shown that the equatorial waveguide with a mean cur-
rent acts as a resonator and responds to barotropic waves
with certain wavenumbers by making the trapped baroclinic
modes grow. At the same time the equatorial waveguide pro-
duces the barotropic response which, via nonlinear interac-
tion with the mean equatorial current and with the trapped
waves, leads to the saturation of the growing modes. The ex-
cited baroclinic waves can reach significant amplitudes de-
pending on the magnitude of the mean current. In the ab-
sence of spatial modulation the nonlinear saturation of thus
excited waves is described by forced Landau-type equation
with one or two attracting equilibrium solutions. In the lat-
ter case the spatial modulation of the baroclinic waves is
expected to lead to the formation of characteristic domain-
wall defects. The evolution of the envelopes of the trapped
Rossby waves is governed by driven Ginzburg-Landau equa-
tion, while the envelopes of the Yanai waves obey the “first-
order” forced Ginzburg-Landau equation. The envelopes of
short baroclinic Rossby waves obey the damped-driven non-
linear Schrodinger equation well studied in the literature.

1 Introduction

The present paper is the second part of the geophysical fluid
dynamics investigation of nonlinear phenomena due to res-
onant interaction of free modes and modes trapped in the
equatorial waveguide. In the first part (Reznik and Zeitlin,
2007) we have studied nonlinear interactions of a free wave
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and a pair of trapped modes in the framework of the simplest
two-layer equatorial beta-plane model with a rigid lid. Let us
remind that free modes in the model are barotropic Rossby
waves, while all baroclinic modes (Kelvin, Inertia-Gravity,
Rossby and Yanai ones) are trapped. We showed in Part 1
that although in the linear approximation the barotropic
Rossby wave does not “feel” the equator and propagates
freely across the equatorial waveguide, this wave resonantly
excites the waveguide Rossby or Yanai modes if nonlinear
effects are taken into account. The amplitudes of the excited
modes first grow exponentially in time, and then stabilize at
the level greatly exceeding the amplitude of the incoming
free wave. The envelope of the trapped waves obeys the so-
called resonantly excited Ginzburg-Landau (GL) equation, or
a pair of coupled GL-equations, which describes the forma-
tion of specific spatio-temporal patterns. In turn, nonlinear
interactions of the waveguide modes engender a secondary
barotropic wave which propagates out of equator toward the
poles, grows in time and becomes comparable with the pri-
mary free wave.

The above-described mechanism, which will be called
“triad” in what follows, provides an effective exchange of
energy between tropics and temperate latitudes. At the same
time an essential ingredient of the equatorial dynamics, the
equatorial mean currents, is not taken into account, although
one may expect that it can influence such exchanges. In
the present paper we consider the interaction of the free
barotropic Rossby wave with zonal currents confined in the
vicinity of the equator. The peculiarity of our approach
with respect to the standard wave-mean flow one is that the
mean currents are supposed to be sufficiently weak and not to
change the wave spectrum at the leading order. We will show
that free-wave-mean flow interaction under such circum-
stances can also lead to effective generation of trapped equa-
torial wave with frequency and zonal wavenumber which co-
incide with corresponding parameters of the free wave. As
in the wave-triad excitation, the saturated amplitude of the
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trapped mode greatly exceeds the free wave amplitude, but
the mechanisms of generation and saturation are essentially
different. The study of these mechanisms is the main goal
of the present paper. Preliminary results were presented in
Reznik and Zeitlin(2007b), where some illustrations may be
also found.

The paper is organized as follows: in Sect.2 we de-
scribe the two-layer shallow water model on the equatorial
beta-plane, remind the spectrum of its linear excitations and
derive the synchronism contitions for resonant interaction
barotropic wave – trapped wave – mean zonal flow. In Sect.3
we describe the resonant excitation of the trapped modes fol-
lowing from the straightforward asymptotic analysis in non-
linearity parameter. In Sect.4 we rearrange the asymptotic
expansions in order to take into account the eventual nonlin-
ear saturation of the growing modes, and show that such satu-
ration indeed takes place. We derive the equations describing
the effects of spatial modulation in Sect.5, and conclude in
Sect.6.

In order that technical details do not overshadow the main
message, we limit ourselves in the main body of the paper
by the mathematically simplest case of the layers of equal
depth, and purely baroclinic zonal flow. The general case is
discussed in AppendixA. By the same reason all cumber-
some calculations/formulae are relegated to AppendicesB,
C.

2 The model, its linear wave spectrum and the
synchronism conditions

2.1 The equations of the model and the linear wave
spectrum

The simplest model taking into account the phenomena we
are interested in is the 2-layer equatorial rotating shallow wa-
ter model with the rigid lid and flat bottom boundary condi-
tions which was already used inReznik and Zeitlin(2007).
The equations of the model may be conveniently rewritten in
terms of the barotropic streamfunctionψ , baroclinic veloc-
ity u=(u, v), and the thickness deviationh of the upper layer
with respect to its mean value (Reznik and Zeitlin, 2007; Be-
nilov and Reznik, 1996):

∇
2ψt+ψx=ε

[
−J (ψ,∇2ψ)−s(∂xx−∂yy) [(1+εrh)(uv)]

+s∂xy

[
(1+εrh)(u2

−v2)
]]

(1)

ut+∇h+yẑ×u=ε
[
−J (ψ,u)+u·∇(ẑ×∇ψ)−ru·∇u+εs

(2hu·∇u+u u·∇h)] , (2)

ht+∇·u=ε
[
−J (ψ, h)−r∇·(uh)+εs∇·

(
h2u

)]
, (3)

where here and below the subscripts are used for the cor-
responding partial derivatives, andJ denotes the Jacobian.

The Eqs. (1–3) are written in non-dimensional form using
the standard equatorial shallow-water dynamics scaling:

L=
(g′Hs)

1/4

√
β

; T=
1

βL
; U=

g′1H

βL2
. (4)

The values of the parameterss and r (which was calledq
in Part 1, we reserve the notationq for other purposes, see
below) depend on the details of stratification (the standard
derivation is based on layer averaging of the primitive equa-
tions with flat bottom and rigid lid boundary conditions, cf.
e.g.Zeitlin, 2007):

r=
H−2H1

H
, s=

Hs

H
, ε=

1H

Hs
, (5)

where 1H denotes a typical variation of the interface,
Hs=

H1(H−H1)
H

, and the nonlinearity parameterε is assumed
to be smallε�1. In the Eqs. (4), (5) H1, H2=H−H1 are
the the upper and lower layer thicknesses,g′ is the stan-
dard reduced gravity parameter,L is the baroclinic equatorial
Rossby radius.

The rigid lid boundary condition, often used in studies of
equatorial dynamics (cf. e.g.Majda and Biello, 2003and ref-
erences therein), is well adapted to the problem of free-wave
– trapped wave interactions we address, as it allows for free
propagation of the equatorial beta-plane barotropic waves
(see below). If it is relaxed, the barotropic waves would
be also meridionally confined (although with a larger char-
acteristic decay length, than for the baroclinic waves). We
should note, however, that the barotropic Rossby waves in
the shallow-water model on the sphere are not trapped in the
vicinity of the equator (e.g.Longuet-Higgins, 1968; Muller,
2000a); it is also known from observations that extratropical
waves do arrive towards tropics, e.g.Hamilton et al.(2004).

The linear spectrum of the model consists of plane
barotropic Rossby waves which may propagate at any angle
with respect to the equator:

ψ̃0=Aψe
i(θ+ly)

+c.c.; θ=kx−σ t, (6)

and have the dispersion relation:

σ=−k/(k2
+l2), (7)

and the trapped baroclinic equatorial waves

(ũ, ṽ, h̃)= (iUm, Vm, iHm) Ae
iθm+c.c.; θm=kx−σmt (8)

with the dispersion relation

σ 3
m−(k2

+2m+1)σm−k=0; m=0,1,2, ..., (9)

wherem is the meridional wavenumber of the trapped wave.
We will be interested in low-frequency Yanai (or mixed
Rossby-gravity) waves corresponding tom=0, σ≤1, and in
the trapped Rossby waves corresponding tom≥1, σ<1. The
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amplitudesUm, Vm=φm, Hm decay rapidly away from the
equator (y=0):

φm(y)=
Hm(y)e−

y2

2√
2mm!

√
π
, Um(y)=

σmyφm−kφ′
m

σ 2
m−k2

,

Hm(y)=
kyφm−σmφ

′
m

σ 2
m−k2

, (10)

whereHm(y) are the Hermite polynomials and the prime
meansy-differentiation. Equator, thus, is a wave-guide trans-
parent for some type of waves in the linear approximation.

One can readily see that any equatorial zonal current

u=ū(y), h=h̄(y), v=0, yū+h̄y=0, ψ=ψ̄(y) (11)

is an exact solution to (1–3). In the main body of the paper
we will present the calculations in the technically simplest
case when the zonal flow is purely baroclinic and the upper
and lower layers are of the same depth:

ψ̄(y), r=0. (12)

The discussion of the general case, which is technically much
more involved, but not different in essence, is relegated to
AppendixA.

In order to measure the strength of the zonal flow we in-
troduce a parameterα:

u=εαū(y), h=εαh̄(y), yū+h̄y=0. (13)

In what follows it is assumed that the zonal flow is suffi-
ciently strong, so thatα is negative, but at the same time it is
sufficiently weak and does not alter the structure of the wave
modes in the lowest order. This assumptions means that

−1<α≤0, (14)

so that nonlinear terms in (1–3) remain small. In addition,
we will suppose that the mean flow rapidly decreases out of
the equator.

2.2 The synchronism conditions

We will analyze the nonlinear interaction of the barotropic
wave (6) with the zonal flow (13). As is easy to see from
(1–3), them-th baroclinic trapped mode is resonantly ex-
cited by such interaction if its zonal wavenumberk and the
frequencyσ coincide with the corresponding wavenumber
and frequency of the barotropic mode. As follows from
(7), (9) this is possible if the meridional wavenumber of the
barotropic wave obeys the equation:

l2=2m+1−σ 2
m>0, m=0,1, .... (15)

The dispersion relation for the trapped Yanai wave,m=0 has
the form:

σ0=k/2+

√
1+k2/4, (16)
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k
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l

Fig. 1. Solutions to the synchronism conditions in the phase-space
k−l of the barotropic wave for meridional modes withm=0, 1, 2, 3.

therefore (15) is satisfied at anyk<0. For trapped Rossby
waves,m≥1, (15) is also always satisfied because with high
accuracy (Boyd, 1983)

σm ' −
k

k2+2m+1
, (17)

and

l2 ' 2m+1−
k2

(k2+2m+1)2
≈2m+1. (18)

The relation (15) defines a curve in the(k, l) plane and thus,
unlike the synchronism conditions in the triad case (Reznik
and Zeitlin, 2007), only a discrete spectrum of barotropic
Rossby waves will resonate with equatorial waveguide
modes in the presence of the equatorial current, cf. Fig.1

3 Resonant excitation of the trapped modes

3.1 General approach and removal of resonances

The standard method for treating the resonant excitation of
waves consists in applying multiple time-scale asymptotic
expansions in small parameter (ε in the present case) to
the initial wave configuration, to be completed by multiple
space-scales if the effects of spatial modulation are to be
treated. Each approximation is described by the forced lin-
earized Eqs. (1–3):

∇
2ψt+ψx=Qψ (19)

ut−yv+hx=Qu, vt+yu+hy=Qv, ht+ux+vy=Qh, (20)

where the r.h.s. are determined from the preceding approx-
imations. The crucial step of the procedure is order-by-
order removal of resonances, which is necessary to render the
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asymptotic expansions self-consistent, and leads to determi-
nation of the (slow-)time-dependence of the wave amplitude,
eventually exhibiting growth. The asymptotic analysis which
will be used below involves, as usual, the removal of secular
terms arising in the r.h.s. of the Eqs. (19–20). The solution is
bounded provided the following orthogonality conditions are
satisfied:

〈ψ̂Qψ 〉x,y,t=0, (21)

∫
∞

−∞

dy 〈ûQu+v̂Qv+ĥQh〉x,t=0, (22)

whereψ̂, û, v̂, ĥ is an arbitrary bounded solution of the ho-
mogeneous Eqs. (19), (20), respectively, and the angle brack-
ets denote the averaging defined in a usual way:

〈...〉x= lim
Lx→∞

1

2Lx

∫ Lx

−Lx

dx ..., (23)

and analogously for other variables. In what follows, the
source terms are of the form:

Qψ,...,h=

∑
q

Q
q
ψ,...,h(y)e

i(kqx−σq t), (24)

with Qq
ψ,...,h(y) rapidly decaying aty→±∞. One can read-

ily show that for suchQψ,...,h the conditions (21), (22)
are not only necessary, but also sufficient for existence of
bounded solutions to (19), (20) if kq 6=0, σq 6=0. Applying
these conditions allows to determine the slow-time depen-
dence of the wave-amplitudes.

Another important ingredient of the method is the use
of asymptotic expansions including inverse powers of the
small parameter to study eventual nonlinear saturation (cf.
e.g.Minzoni and Whitham, 1977), once the resonant growth
is confirmed by straightforward expansions.

In the rest of the present section below we will establish
the fact of resonance growth of the trapped waves due to the
free wave-mean-trapped wave interaction. The nonlinear sat-
uration will be studied in Sect.4 on the basis of rearranged
asymptotic expansions.

3.2 Governing equations for interacting waves and
zonal flows

Following the standard asymptotic approach, the solution of
the Eqs. (1–3) is sought in the following form:

(ψ, u, v, h)=(ψ (0), u(0), v(0), h(0))(x, y, t, T )+ε

(ψ (1), u(1), v(1), h(1))(x, y, t, T )+..., (25)

whereT=εt is the slow time. Here the quantities with the su-
perscript(0) satisfy the linearized version of (1–3) and com-
prise the barotropic Rossby wave:

ψ (0)=Aψe
i(θ+ly)

+c.c., (26)

and the baroclinic field, which consists of the trapped baro-
clinic wave (8) on the background of the zonal baroclinic
current (13):(
u(0), v(0), h(0)

)
=

(
ū(0),0, h̄(0)

)
(y, T )

+

(
ũ(0), ṽ(0), h̃(0)

)
(x, y, t, T ) (27)

(
ũ(0), ṽ(0), h̃(0)

)
(x, y, t, T )=a−

1
2 (iU, V, iH)A(T )eiθ + c.c.,

a=

∫
+∞

−∞

dy (U2
+φ2

+H 2). (28)

With this normalization the energy density of the trapped
mode is always equal toA2.

Obviously, the baroclinic mode (28) and the barotropic
wave (26) are in resonance. The equations for the correc-
tions(ψ (1), u(1), v(1), h(1)) are (for simplicity, we put the ex-
ponentα in (13) to be zero in the rest of this section):

∇
2ψ

(1)
t +ψ (1)x =Nψ , (29)

u
(1)
t −yv(1)+h(1)x =−ū

(0)
T −ũ

(0)
T +Nu, (30)

v
(1)
t +yu(1)+h(1)y =−ṽ

(0)
T +Nv, (31)

h
(1)
t +u(1)x +v(1)y =−h̄

(0)
T −h̃

(0)
T +Nh, (32)

where the nonlinear interaction terms are given by (cf.1–3):

Nψ=−J (ψ (0),∇2ψ (0))−
1

4
[(∂xx

−∂yy ) (u
(0)v(0))−∂xy(u

(0)2
−v(0)

2
)
]
, (33)

Nu=−J (ψ (0), u(0))+u(0)·∇ψ (0)y , (34)

Nv=−J (ψ (0), v(0))−u(0)·∇ψ (0)x , (35)

Nh=−J (ψ (0), h(0)). (36)

3.3 Slow evolution

It is easy to see (cf. alsoReznik and Zeitlin, 2007) that the
expressionNψ does not contain resonant terms due to the
fast decay iny of the functionsU(y), φ(y),H(y). By this
reason the amplitude of the barotropic wave does not depend
on slow time in this approximation.

The equations determining corrections to the baroclinic
component of the zonal flow are obtained by averaging the
Eqs. (30–32) in x:

ū
(1)
t −yv̄(1)=−ū

(0)
T −R̄u, (37)

v̄
(1)
t +yū(1)+h̄(1)y =−R̄v, (38)

h̄
(1)
t +v̄(1)y =−h̄

(0)
T −R̄h, (39)

where

R̄u=
(
l2φ+kU ′

)
AψA

∗eily+c.c.,

R̄v=ik
(
φ′

+2ilφ+kU
)
AψA

∗eily+c.c.,

R̄h=
(
kHeily

)′

AψA
∗
+c.c.. (40)
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From the dispersion relation (9) and Eqs. (10), (15) we obtain
the following relation

l2φ+kU ′
=−kyH, (41)

which allows to rewriteR̄u, R̄h as

R̄u=−yD, R̄h=Dy, D=−kAψA
∗Heily+c.c.. (42)

By using the substitution̄v(1)→v̄(1)+D it is easy to show
that bounded solutions of (37–39) exist if

ū
(0)
T =h̄

(0)
T =0, (43)

and thus the baroclinic zonal flow in the first approximation
does not depend on slow time either.

A group of resonant terms in the r.h.s. of (30–32)
is due to the lowest-order trapped wave (28). To re-
move the resonances, we use the condition (22) with
(û, v̂, ĥ)=(−iU, φ,−iH)e−iθ ; as a result we obtain the fol-
lowing evolution equation for the amplitudeA:

AT=−kLψAψ , (44)

where

Lψ=
1

√
a

∫
+∞

−∞

dy eily
[
(u(0)U)′+Uu(0)′+Hh

(0)′
−kφu(0)

]
. (45)

As follows from the previous analysis, the r.h.s. of (44) does
not depend on the slow timeT , i.e. the amplitude of the baro-
clinic waveA grows in absolute value with increasingT .
Thus, the interaction of the free barotropic Rossby wave with
zonal flow results in effective generation of a trapped baro-
clinic mode. An important distinction from the case of triad
interactions (Reznik and Zeitlin, 2007) is linear, and not ex-
ponential, growth in time. We show in AppendixA that this
conclusion is also valid for nonzeror andψ̄ .

Thus, we come to an important conclusion that for any
zonal current there exist infinitely many barotropic Rossby
waves which, by interacting with the current, generate grow-
ing in time trapped baroclinic modes. This growth is linear,
and not exponential, unlike the triad case (Reznik and Zeitlin,
2007). As will be shown below, the saturation mechanism is
also different.

4 Nonlinear saturation of the growing baroclinic
modes: modified asymptotic expansions inε

4.1 The lowest-order approximation

The growth of the trapped baroclinic mode means that the en-
ergy of the system: barotropic wave + zonal flow + trapped
mode is not conserved. As in the triad case (Reznik and

Zeitlin, 2007), the energy balance following from the lowest-
order equations (linearized1–3) and the first-order Eqs. (29–
32)

E0=
s

2

∫
∞

−∞

dy 〈u(0)2+v(0)2+h(0)2〉x

+

∫
∞

−∞

dy 〈∇ψ (0)·∇ψ (1)〉x=const, (46)

means that the growing energy of the trapped mode is com-
pensated by the interaction energy of the primary barotropic
field ψ (0) and the correction to this fielsψ (1) arising due to
the self-interaction of the baroclinic wave. This correction,
which will be called below the secondary barotropic wave, is
found from the Eq. (29):

∇
2ψ

(1)
t +ψ (1)x =−

ε

4

[
(∂xx−∂yy)(u

(0)v(0))−∂xy(u
(0)2

−v(0)2)
]
. (47)

It is clear thatψ (1) should also grow with slow time. The
interaction ofψ (1) with the zonal flow and with the baroclinic
wave arrests the growth of the amplitudeA, as in the triad
case inReznik and Zeitlin(2007).

The saturation process appears to be rather sensitive to the
strength of the baroclinic zonal flow, i.e. to the value of the
parameterα in (13). Therefore, we will not fixα, assum-
ing only that it obeys (14). The situation here is more com-
plicated than inReznik and Zeitlin(2007), as the form of
the asymptotic expansions should be adapted to the relative
strength of the zonal flow, and various regimes are possible
depending on the value ofα. Strictly speaking, the value of
α should be first fixed, and only then the procedure of the
asymptotic expansions be applied. We would like, however,
to pursue our analysis as far as possible without loss of gener-
ality, and therefore apply below an heuristic semi-qualitative
approach by finding (approximate) solutions without fixing
the value ofα. The results obtained in this way and displayed
below were checked and confirmed by rigorous expansions
for several typical sets of parameters.

Let us represent a solution of Eqs. (1–3) in the form:

(ψ, u, v, h)=(ψ (0), u(0), v(0), h(0))+(ψ (1), u(1), v(1), h(1)). (48)

The lowest-order fields are written as follows:

ψ (0)=Aψe
i(θ+ly)

+c.c.+ψ (1)(x, y, t, Tβ1, ε), (49)

(
u(0), v(0), h(0)

)
=εα

(
ū(0),0, h̄(0)

)
(y, Tα1)+ε

β(
ũ(0), ṽ(0), h̃(0)

)
(x, y, Tβ1). (50)

Here the slow times with yet unknown exponentsα1, β1 are
defined as(Tα1, Tβ1)=(ε

α1, εβ1)t, α1, β1>0, and the quanti-
ties with tilde denote the trapped mode. The amplitude of the
trapped mode in (50) is proportional toεβ where the param-
eterβ, which defines the level of saturation, is to be deter-
mined. Moreover, the secondary barotropic modeψ (1) may
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become, in principle, of the same order of magnitude as the
primary barotropic wave. Therefore, it should be taken into
account already in the lowest order, which is written in (49).

Substitution of (50) into (47) shows thatψ (1) should have
the form:

ψ (1)=ε1+α+βAψ (zw)+ε1+2βA2ψ (ww)+c.c., (51)

where the first term in the r.h.s. arises from the interaction
of the trapped mode with the zonal flow, and the second one
from the self-interaction of the trapped wave. The functions
ψ (zw) andψ (ww) are calculated in AppendixB; the resulting
solutionψ (1) obeying the radiation boundary conditions at
y→±∞ has the form:

ψ (1)=ε1+α+βAψ̂
(1)
f (y)eiθ+ε1+2βA2ψ̂

(2)
f (y)ei2θ+c.c.. (52)

4.2 The first-order corrections

Thus, the solution of the problem has the form (48), where
the lowest-order approximation is given by (49), (50) while
the first-order corrections are supposed to be small. The
equations for the first-order correctionsu(1), v(1), h(1) are
written as follows:

u
(1)
t −yv(1)+h(1)x =−εα+α1ū

(0)
Tα1

−εβ+β1ũ
(0)
Tβ1

+εN (1)
u , (53)

v
(1)
t +yu(1)+h(1)y =−εβ+β1ṽ

(0)
T +εN (1)

v , (54)

h
(1)
t +u(1)x +v(1)y =−εα+α1h̄

(0)
Tα1

−εβ+β1h̃
(0)
Tβ1

+εN
(1)
h , (55)

and the nonlinear termsN (1)
u , N

(1)
v , N

(1)
h have the form:

N (1)
u =Nu+

ε

4

[
2h(0)

(
u(0)u(0)x +v(0)u(0)y

)
+u(0)

(
u(0)h(0)x +v(0)h(0)y

)]
, (56)

N (1)
v =Nv+

ε

4

[
2h(0)

(
u(0)v(0)x +v(0)v(0)y

)
+v(0)

(
u(0)h(0)x +v(0)h(0)y

)]
, (57)

N
(1)
h =Nh+

ε

4

[(
h(0)2u(0)

)
x
+

(
h(0)2v(0)

)
y

]
. (58)

By applying averaging overx to the Eqs. (53–55) we get
the equations for the zonal flow of the form (37–39) where
R̄u, R̄v, R̄h are replaced byε〈N (1)

u 〉x, ε〈N
(1)
v 〉x, ε〈N

(1)
h 〉x ,

andu(0)T , h
(0)
T – by εα+α1ū

(0)
Tα1
, εα+α1h̄

(0)
Tα1

, respectively.

By using (34–36), (56–58), (49), (52), and (41) we find:

〈N (1)
u 〉x=−yD1, 〈N

(1)
h 〉x=D1y , (59)

where

D1=−εβkAψA
∗Heily−ε1+α+2β

|A|
2 kHψ̂

(1)
f +c.c., (60)

cf. (42). As for the analogous system (37–39), the Eq. (59)
mean that the terms〈N (1)

u 〉x, 〈N
(1)
h 〉x in the r.h.s. of the equa-

tions for the corrections to the zonal flow do not contain res-
onances, i.e. we again come to the conclusion that the mean
flow does not depend on time.

Another group of resonant terms in the r.h.s. of (53–55)
is related to the wave proportional toeiθ . Eliminating these
resonances gives the following evolution equation for the am-
plitudeA:

εβ1ATβ1
+ε2+2αpA+ε2+2βq|A|

2A=−ε1+α−βkLψAψ . (61)

HereLψ is given by (45), andp andq are constant com-
plex coefficients which depend on the parameters of the in-
teracting waves and of the zonal flow. Their expressions are
given in AppendixC. Two important points are to be stressed:
1) Re p>0, andRe q≥0 which insures the saturation of
the trapped baroclinic wave; 2)Re q=0, if l2−3k2<0, and
Re q 6= 0, if l2−3k2>0, which gives different properties of
saturated solutions depending on the angle of incidence of
the incoming barotropic wave.

4.3 Analysis of particular cases

As may be seen from (61) the growth of the trapped baro-
clinic mode is provided by the constant forcing in the r.h.s.
of the equation, which arises due to the interaction of the
barotropic wave with the mean zonal current. The second
and the third terms in the l.h.s. of (61) lead to saturation of
the baroclinic amplitude becauseRe p, Re q≥0. The linear
in A second term arises as a result of the interaction of the
secondary barotropic modeψ (1) with the zonal flow, while
the cubic inA third term is a result of the interaction ofψ (1)

with the trapped baroclinic mode. The exponentα which
defines the intensity of the zonal flow is fixed. The parame-
tersβ andβ1 specifying the order of magnitude of the satu-
rated baroclinic mode, and the slow time scale, respectively,
are determined from the balance of pumping and damping in
(61). Let us consider particular cases:

1. Let cubic saturation be dominant, i.e.

1+α−β=2+2β≤2+2α. (62)

As follows from (62)

β=
1

3
(α−1), α≥β≥−

1

2
. (63)

2. Let linear saturation be dominant, i.e.

1+α−β=2+2α≤2+2β. (64)

Then

β=−(α+1), β≥−
1

2
≥α. (65)

On the basis of (63), (65) we come to the conclusion that at
α<−

1
2 the linear saturation dominates, while atα>−

1
2 it is

the cubic one. In both casesβ≥−
1
2, i.e. the maximal attain-

able baroclinic amplitude is of the orderε−
1
2 ; such amplitude

is reached at

α=β=−
1

2
. (66)
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The slow time-scale is defined by the relation

β1=1+α−β. (67)

The dependence ofβ, β1 onα is depicted in Fig.2
At α<−

1
2 the Eq. (61) may be rewritten as

ATβ1
+pA=−kLψAψ ; (68)

atα>−
1
2, as

ATβ1
+q |A|

2A=−kLψAψ ; (69)

and, finally, atα=−
1
2 as

ATβ1
+pA+q |A|

2A=−kLψAψ . (70)

While deriving (61), and hence (68–70), we did not use
systematic asymptotic expansions, unlike what was done in
Reznik and Zeitlin(2007). We rather used a semi-qualitative
approach based on the physical considerations of balance of
different contributions. To check the validity of the resulting
evolution equations we applied the standard asymptotic pro-
cedure for several typical values of the parameterα and con-
firmed that in all of these cases the resulting equation for the
baroclinic amplitude coincides with the corresponding equa-
tion among (68–70). For instance, atα=0 (moderate mean
zonal flow) we getβ=−

1
3, β1=

4
3, i.e. the asymptotic expan-

sion in powers ofε
1
3 should be applied. The correspond-

ing amplitude equation has the form (69). At α=−
1
2 (strong

mean zonal flow) we getβ=−
1
2, β1=1, i.e. the asymptotic

expansion in powers ofε
1
2 should be applied and gives (70).

Finally, at α=−
2
3 (even stronger mean zonal flow) we get

β=−
1
3, β1=

2
3, i.e. the asymptotic expansion should be again

in powers ofε
1
3 and results in (68). The limiting amplitude

has the same order of magnitude as atα=0, but saturation is
faster.

In what follows we will limit ourselves by the most general
caseα=−

1
2.

4.4 Analysis of the saturation process

By renormalization ofA andT

Tβ1→T=|p|Tβ1, A→

√
|q|

|p|
eiArg(kLψAψ )A, (71)

the number of relevant parameters in (70) may be reduced:

AT+eiξA+eiη|A|
2A=c, (72)

where

ξ=Arg p, η=Arg q, c=|q|
1
2 |p|

−
3
2
∣∣kLψAψ ∣∣ . (73)

Fig. 2. Dependence of the exponents of the slow timeβ1, and of
the saturation levelβ on the exponentα defining the intensity of the
zonal flow.

Let us consider stationary solutionsĀ of (72). The following
relations hold for the modulus and the argument ofĀ:

cosξ
∣∣Ā∣∣ + cosη

∣∣Ā∣∣3 =c cosArg(Ā),

sinξ
∣∣Ā∣∣ + sinη

∣∣Ā∣∣3 =−c sinArg(Ā), (74)

whence a cubic equation for the square modulus ofĀ readily
follows:

|Ā|
6
+2 cosχ |Ā|

4
+|Ā|

2
−c2

=0, χ=ξ−η. (75)

Applying Viet’s theorem it is easy to show that (75) has either
three positive roots, or a single positive root. An elementary
analysis shows that necessary and sufficient conditions of the
existence of three roots are:

cosχ<−

√
3

2
, F (x+)<c

2<F(x−), (76)

where

F(x)=x3
+2 cosχx2

+x, x±=−
2

3
cosχ±

√
4

9
cos2χ−

1

3
. (77)

If either of the conditions (76) is violated, the Eq. (75) has a
single positive root. Knowing|Ā| the argumentArg(Ā)may
be found from (74).

Analysis of stability of stationary solutions shows that in
the case of a single root, it is always stable, and in the case of
three roots, the largest and the smallest ones are stable, while
the intermediate one is unstable. Each stable solution repre-
sents a focus in the phase space ofRe A, Im Aand, depending
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-1

-0.5

0.5

1

1.5

Fig. 3. The phase portrait of the system (72) with
η=−π/2, ξ=19π/40, c=.3 in the planeRe A−Im A. Zero lies in
the domain of attraction of the smaller stable solution.

on the coefficients, zero may lie in the domain of attraction
of either the smaller or of the larger root. Unstable solution
is a saddle point. Examples of the respective phase portraits
of the system (72) are presented in Figs.3, 4 (cf. Reznik and
Zeitlin, 2007b).

Thus, the resonantly excited baroclinic waves reach either
a unique stationary finite-amplitude state or, if the phase re-
lation and forcing verify (76), one of two possible stationary
states, depending on initial conditions. We emphasize that
the stationary states do not depend on the small parameterε.
Therefore, the resulting amplitude of the saturated equatorial
mode is of the order ofεβ , β<0, i.e. it is much larger than
the amplitude of the barotropic wave. One can thus say that
the equatorial waveguide acts like an amplifier, similar to the
case of the triad interactions (Reznik and Zeitlin, 2007).

The results for non-zeroq andψ̄ may be obtained (after
much heavier calculations) in the same way, and with sim-
ilar results, provided some additional detuning of resonant
frequency is made – see AppendixA.

5 The effects of spatial modulation

We consider a case of strong baroclinic zonal current∼ ε−
1
2 ,

and introduce slow spatial modulation in the zonal direc-
tion of both baroclinic and barotropic waves with the scale

X1=ε
1
2x (α=β=−

1
2). The technicalities of the analysis fol-

low Reznik and Zeitlin(2007). The “synthetic” modulation
equations comprising the leading and the next-to-leading or-
der contributions forA andAψ follow:(
∂T1+c

bt
g ∂X1

)
Aψ−ε

1
2
i

2

(
σ bt

)′′

∂2
X1X1

Aψ=0, (78)

0.2 0.4 0.6 0.8 1

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0.25

Fig. 4. The phase portrait of the system (72) with
η=−.4π, ξ=19π/40, c=.4 in the planeRe A−Im A. Zero lies in
the domain of attraction of the larger stable solution.

(
∂T1+c

bc
g ∂X1

)
A+ε

1
2

[
−
i

2

(
σ bt

)′′

∂2
X1X1

A+pA

+ q|A|
2A

]
=−ε

1
2 c0Aψ . (79)

HereT1=ε
1
2 t , σ bt,bc are frequencies of the barotropic and

the baroclinic waves, as expressed via their corresponding
dispersion relations,cbt,bcg =

(
σ bt,bc

)′
are the corresponding

zonal group velocities,c0=kLψ , and prime denotes differen-
tiation with respect to zonal wavenumberk.

The group velocity of the Yanai wave may differ signifi-
cantly from the group velocity of the barotropic Rossby wave
of the same frequency. For example for long in the zonal
direction waves,|k|�1, cbcg ≈

1
2�cbtg ≈−

1
k
. On the con-

trary, the group velocities of the baroclinic and the barotropic
Rossby waves of the same frequency are practically the same
cbcg ≈cbtg .

Therefore, the only situation where efficient interaction
between barotropic and baroclinic Yanai wave-packets is
possible is that of “gentle” modulation when the fields de-
pend onX2=εx, and not onX1, and onT2=εt , and not on
T1. In this case the dispersion effects are weak, and

∂T2Aψ+cbtg ∂X2Aψ=0, (80)

∂T2A+cbcg ∂X2A+pA+q|A|
2A=−c0Aψ . (81)

In the case of interaction between the barotropic and the
baroclinic Rossby wave packets, by choosing the reference
frame moving with the common group velocity we get:

∂T2Aψ−
i

2

(
σ bt

)′′

∂2
X1X1

Aψ=0, (82)

∂T2A−
i

2

(
σ bt

)′′

∂2
X1X1

A+pA+q|A|
2A=−c0Aψ . (83)
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This is a GL-equation forA forced by the wave-packet of
barotropic waves which, in turn, is subject to dispersion.

Finally, if there is no spatial modulation of the barotropic
wave (plane barotropic wave occupying the whole equato-
rial plane) we get, by changing the reference frame, a single
Eq. (83) with constantAψ .

For short enough wavesRe q=0, and the nonlinear satura-
tion is non-operating. This is the case if

|k|>
1

2
√

3
, |k|≥

√
2m+1

3
, m=1,2, ... (84)

for Yanai and Rossby waves, respectively, cf. (C3). By
rescalingA with a time-depending phase a forced nonlinear
Schrodinger equation (NLS) with linear damping results for
the trapped waves.

The detailed analysis of the systems (80), (81) and (82),
(83) is out of the scope of the present paper. Some examples
of direct numerical simulations of these equations may be
found inReznik and Zeitlin(2007b). It should be, however,
emphasized, that the nonlinear dynamics described by these
equations is very rich and may lead both to nontrivial spatio-
temporal organisation and to chaos. Thus, the damped-
driven NLS equation, in the case of spatially non-modulated
driver, which corresponds in our context to a plane incoming
barotropic Rossby wave, was a subject of numerous studies
following the pioneering work (Kaup and Newell, 1978). It
is known that depending on the values of damping and forc-
ing it may exhibit chaotic (with different types of chaos, e.g.
Shlizerman and Rom-Kedar, 2006) or regular behavior (Ter-
rones et al., 1990), and possesses stationary localized soliton
solutions in some windows of parameters (Barashenkov and
Smirnov, 1996). (It should be noted in this context that for
Re q=0 (72) is a variant of the equation for the so-called flat-
locked states studied in the damped-driven NLS literature;
Barashenkov and Smirnov, 1996.) Thus, such dynamical pat-
terns are to be also expected in equatorial dynamics.

A driven CGL equation arises for long Rossby waves with
Re q 6=0. The phase diagram of the undriven CGL is well
established (Brusch et al., 2000). There are some works on
driven 1d CGL in the context of turbulence control (Battog-
tokh and Mikhailov, 1996). However, we are not aware of a
systematic study of the driven 1d CGL. On general grounds,
in the case with two different flat-locked stationary solutions
we expect appearance of the domain-wall like defects, and
hence a possibility of the defect chaos. The coherent struc-
tures may be sought by the same method as in the damped-
driven NLS (Barashenkov and Smirnov, 1996). The appear-
ance of defects is also expected in the Yanai wave case (81).

6 Conclusions

Thus, we have shown that the baroclinic zonal current at the
equator acts as a resonator: it responds to certain incom-
ing barotropic waves by amplifying the trapped baroclinic

Yanai and/or Rossby waves which grow to significant am-
plitudes, and then are nonlinearly saturated. In the certain
range of parameters, multiple equilibria of the modulation
equation exist, leading to bifurcations in the initial values of
the baroclinic amplitudes. When spatial modulation of the
baroclinic waves is taken into account, spatio-temporal orga-
nization and/or chaotic behavior arise.

Similar effects take place for the triad interactions (Reznik
and Zeitlin, 2007) but there are significant differences be-
tween the two cases. First, only a discrete spectrum of
barotropic Rossby waves can resonantly interact with trapped
waves in the presence of the mean flow, while in the triad
case the resonant domains are dense in the phase space of
barotropic waves. Second, the amplitudes of the excited
trapped waves obey the forced Landau-type equation. The
amplitudes grow linearly at the initial stage, and not expo-
nentially like in the triad case, and then saturate at the levels
substantially exceeding the amplitude of the free wave and
depending on the parameters of the zonal flow. The zonal
flow itself is not changed and plays the role of a catalyser.
Third, the evolution of the envelope of excited waves follows
different types of GL equation. Thus, the envelope of long
trapped Rossby waves obeys the forced complex GL equa-
tion, while the envelope of short trapped Rossby waves obeys
the forced-damped nonlinear Scrödinger equation. The en-
velope of trapped Yanai waves obeys a nonlinear equation
of the simple wave type with cubic nonlinearity. Like in the
triad case, the interaction of the growing trapped mode with
itself and with the zonal flow generates a growing secondary
barotropic wave which has the form of reflected and trans-
mitted waves spreading with time out of the equator. Its in-
teraction with the trapped baroclinic mode arrests the growth
of this latter. The whole problem we are considering may
be alternatively interpreted as a kind of resonant scattering
of the free wave on the mean current. Along these lines,
the secondary barotropic wave is the scattered wave. In the
triad case ofReznik and Zeitlin(2007) the scattering is max-
imally efficient: the scattered wave reaches the order of mag-
nitude of the primary free wave at the saturation stage. In the
present case, the amplitude of the secondary wave essentially
depends on the intensity of the mean zonal flow. Therefore,
the efficiency of scattering is determined by the amplitude of
the zonal flow and is maximal forα=−

1
2.

The key assumption of our analysis is the weakness of the
mean zonal flow, so that it does not affect strongly the struc-
ture of the trapped modes. Obviously, for really strong zonal
flow, whenα≤−1, the structure of the trapped mode depends
on the mean flow profile already in the linear approximation.
Nevertheless, our approach can be applied to this case too if
the nonlinearity is small, provided the trapped modes are cal-
culated. In the presentation above we have adopted the sim-
plifying technical assumtions that both layers of fluid are of
the same depth, and that the zonal flow is purely baroclinic,
i.e. that its barotropic component is identically zero. Relax-
ing these assumptions shows that in general situation, after
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much more involved calculations, we arrive to the same con-
clusions modulo some technical details, the most important
of them being a detuning of resonant frequency. To give an
idea of how the general case should be treated we added be-
low the AppendixA, where the initial “non-saturated” stage
of the evolution of the system free wave + zonal flow +
trapped wave is treated for nonzeror andψ̄ .

Our general motivation are mechanisms for dynamical
teleconnections between tropics and temperate latitudes in
the atmosphere and ocean. Moderate mean currents com-
parable in magnitude with equatorial and extratropical wave
perturbations are indeed found in atmospheric data (Lieber-
man and Hendon, 1990; Matthews and Madden, 2000;
Hamilton et al., 2004). The analysis of possible manifesta-
tions of the above-described mechanism in observations will
be presented elsewhere.

We believe that an analogous scenario can take place for
other types of waveguides. For example, the edge waves
trapped near the shore (cf.Miles, 1990), or the modes trapped
by topography (a ridge or an escarpment, cf. e.g.Longuet-
Higgins, 1968) can be resonantly excited by the wave com-
ing from the open ocean and interacting with the stationary
flow localized in the waveguide. We will present the study of
these phenomena elsewhere.

Appendix A

Resonant excitation of trapped modes in the general
case of layers of non-equal depth and nonzero barotropic
component of the mean flow

Below we generalize the results of Sects.3.2, 3.3 to the case
of non-zeror and ψ̄ . For simplicity we again setα=0 in
(13), and takeψ̄=O(1). The solution of (1–3) is sought in
the form (25), where the lowest-order baroclinic component
is given by (27–28) while the lowest-order barotropic stream-
function is expressed as (cf.26):

ψ (0)=Aψe
i(θ+ly)−iδT

+ψ̄ (0)(y). (A1)

Hereδ=1
ε

, and1 is a detuning between barotropic and baro-
clinic waves which is assumed to be small so thatδ=O(1).
At r 6=0 some additional terms also appear inNψ,u,v,h in (33–
36). With the new barotropic streamfunction (A1) and al-
tered nonlinear terms the calculations analogous to those of
Sect.3.3 give the following evolution equation for the baro-
clinic amplitudeA:

AT+iLA=−kLψAψe
−iδT , (A2)

cf. (44), where

L=−
1

a

∫
+∞

−∞

dy
[[
(φU)′+k(U2

+φ2
+H 2)

]
(ψ̄ (0)′−ru(0))−r(kUH+φH ′)h

(0)
]
. (A3)

As readily follows from (A2) the resonant growth (again lin-
ear inT ) of the baroclinic amplitude takes place ifδ=L, i.e.
if the frequencyσ (bt) of the barotropic wave is slightly de-
tuned from the frequency of the baroclinic waveσ (bc):

σ (bt)=σ (bc)−εL. (A4)

At given k,m such detuning may be obtained by a small
change in the “exact” value of the meridional wavenumber

l=

√
2m+1−

(
σ (bc)

)2, cf. (15):

l→l+ε1l, 1l=O(1). (A5)

It should be emphasized that forl given by the relation (A5),
the Eq. (41) is not valid any more because

l2φ+kU ′
=−kyH−2ε1l+O

(
ε2

)
. (A6)

In turn, cf. (42):

R̄u=−yD+O (ε) . (A7)

The small additional term in (A7) may lead, in principle, to
slow changes in the baroclinic zonal flow on the time-scale
O(ε−2). This means that in the presence of the small detun-
ing (A5) the time-scale of the changes in the baroclinic zonal
flow, if any, is much longer than the characteristic time-scale
of the changes in the trapped baroclinic wave and, therefore,
the coefficientL in (A2) may be again considered to be time-
independent.

Thus foranyzonal current and the layers’ depths there ex-
ist infinitely many barotropic Rossby waves which, by inter-
acting with the mean current generate growing in time baro-
clinic modes. The frequency of the excited trapped mode
may be slightly detuned from the frequency of the incident
barotropic Rossby wave, the detuning being defined by the
barotropic component of the mean current, and the depths
ratio. Saturation of the growing modes can be described in
the general case along the same lines as in Sect. 4, and the
resulting amplitude equation is again of the form (61).

Appendix B

Calculation of the secondary barotropic wave

The “full” problem for the secondary barotropic mode com-
prises the Eq. (47) an zero initial condition:

ψ (1)
∣∣∣
t=0

=0. (B1)

Correspondingly, the functionsψ (zw), ψ (ww) are solutions
of the following equations:

∇
2ψ (zw)+ψ (zw)x =F̂1(y)e

iθ , ∇
2ψ (ww)+ψ (ww)x =F̂2(y)e

i2θ , (B2)
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with zero initial conditions, wherêF1(y), F̂2(y) are given by
the formulae

F̂1=

(
φu(0)

)′′

−2k
(
Uu(0)

)
′
+k2φu(0),

F̂2= (φU)
′′
−2k

(
U2

+φ2
)′

+4k2φU. (B3)

The solutions are of the form

ψ (zw)=ψ̂ (1)(y, t)eiθ , ψ (ww)=ψ̂ (2)(y, t)ei2θ . (B4)

At any given moment of timet the functionψ (1) decays
exponentially withy, and at fixedy andt→∞ it tends to the
harmonically oscillating solution of the Eq. (47) verifying the
radiation boundary conditions aty→±∞:

ψ (1)
∣∣∣
t→∞

→ ψ
(1)
f =ε1+α+βAψ̂

(1)
f (y)eiθ

+ε1+2βA2ψ̂
(2)
f (y)ei2θ+c.c., (B5)

ψ̂
(1)
f =−

1

8lσ

[
e−ily

∫ y

−∞

dy F̂1e
ily

+eily
∫

∞

y

dy F̂1e
−ily

]
, (B6)

ψ̂
(2)
f =−

i

16l̄σ

[
e−il̄y

∫ y

−∞

dy F̂2e
il̄y

+eil̄y
∫

∞

y

dy F̂2e
−il̄y

]
,

if l̄2=l2−3k2>0, (B7)

ψ̂
(2)
f =

1

16
∣∣l̄∣∣ σ

[
e−

∣∣l̄∣∣y ∫ y

−∞

dy F̂2e
∣∣l̄∣∣y

+e
∣∣l̄∣∣y ∫

∞

y

dy F̂2e
−

∣∣l̄∣∣y] ,
if l̄2=l2−3k2<0. (B8)

In the calculations in the main text of the paper we use the
limiting solution (B5), see (53), for the secondary barotropic
mode instead of (51), which leads to essential simplifica-
tions. The validity of such simplification may be formally
proved, but its plausibility is qualitatively clear, asψ (1) tends
to ψ (1)f very rapidly with growing time in the vicinity of the
equator.

Appendix C

Expressions for the coefficientsp and q

Re p=
1

8|l|σa

∣∣∣∣∫ +∞

−∞

dy F̂1(y)e
ily

∣∣∣∣2 , (C1)

Imp=
1

4lσa

∫
+∞

−∞

dy G1

∫
∞

y

dy′ F̂1(y
′) sinl(y−y′)

+
1

4a

∫
+∞

−∞

dy
[
φU

(
2h
(0)
u(0)′+h

(0)′u(0)
)

−2kh
(0)
u(0)

(
U2

+H 2
+φ2

)
− kUH

(
u(0)2+h

(0)2
)

+H
(
φh

(0)2
)′

]
(C2)

Re q=
1

16|l̄|σa2

∣∣∣∣∫ +∞

−∞

dy F2(y)e
il̄y

∣∣∣∣2 , if l̄2=l2−3k2>0,

0, if l̄2=l2−3k2<0, (C3)

Imq=
1

4l̄σ a2

∫
+∞

−∞

dy F̂2

∫
∞

y

dy′ F̂2(y
′) sin l̄(y−y′)

+Q, if l̄2=l2−3k2>0, (C4)

Im q=
1

16|l̄|σa2

[∫
+∞

−∞

dy F̂2e
−|l̄|y

∫ y

−∞

dy′ F̂2(y
′)e|l̄|y

′

+

∫
+∞

−∞

dy F̂2e
|l̄|y

∫
∞

y

dy′ F̂2(y
′)e−|l̄|y′

]
+Q,

if l̄2=l2−3k2<0, (C5)

Here

Q=
1

4a2

∫
+∞

−∞

dy

[
φ′H

(
φ2

−U2
+

1

3
H 2

)
−kUH

(
3U2

+5H 2
+3φ2

)]
, (C6)

and

G1=(k
2
−l2)φū(0)−2k

(
Uū(0)

)′

. (C7)

The dependence ofq on the sign of the parameterl̄2 is due
to the difference inψ̂ (2)f in (B7) and (B8).
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