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Abstract. Nonlinear interactions of the barotropic Rossby and a pair of trapped modes in the framework of the simplest
waves propagating across the equator with trapped baroclinibivo-layer equatorial beta-plane model with a rigid lid. Let us
Rossby or Yanai modes and mean zonal flow are studiedemind that free modes in the model are barotropic Rosshy
within the two-layer model of the atmosphere, or the oceanwaves, while all baroclinic modes (Kelvin, Inertia-Gravity,
It is shown that the equatorial waveguide with a mean cur-Rossby and Yanai ones) are trapped. We showed in Part 1
rent acts as a resonator and responds to barotropic wavelat although in the linear approximation the barotropic
with certain wavenumbers by making the trapped baroclinicRossby wave does not “feel” the equator and propagates
modes grow. At the same time the equatorial waveguide profreely across the equatorial waveguide, this wave resonantly
duces the barotropic response which, via nonlinear interacexcites the waveguide Rossby or Yanai modes if nonlinear
tion with the mean equatorial current and with the trappedeffects are taken into account. The amplitudes of the excited
waves, leads to the saturation of the growing modes. The exmodes first grow exponentially in time, and then stabilize at
cited baroclinic waves can reach significant amplitudes dethe level greatly exceeding the amplitude of the incoming
pending on the magnitude of the mean current. In the abfree wave. The envelope of the trapped waves obeys the so-
sence of spatial modulation the nonlinear saturation of thuscalled resonantly excited Ginzburg-Landau (GL) equation, or
excited waves is described by forced Landau-type equatiom pair of coupled GL-equations, which describes the forma-
with one or two attracting equilibrium solutions. In the lat- tion of specific spatio-temporal patterns. In turn, nonlinear
ter case the spatial modulation of the baroclinic waves isinteractions of the waveguide modes engender a secondary
expected to lead to the formation of characteristic domain-barotropic wave which propagates out of equator toward the
wall defects. The evolution of the envelopes of the trappedpoles, grows in time and becomes comparable with the pri-
Rossby waves is governed by driven Ginzburg-Landau equamary free wave.
tion, while the enVeIOpeS of the Yanai waves Obey the “first- The above-described mechanism, which will be called
order” forced Ginzburg-Landau equation. The envelopes Ofriad” in what follows, provides an effective exchange of
short baroclinic Rossby waves obey the damped-driven nonenergy between tropics and temperate latitudes. At the same
linear Schrodinger equation well studied in the literature.  time an essential ingredient of the equatorial dynamics, the
equatorial mean currents, is not taken into account, although
one may expect that it can influence such exchanges. In
1 Introduction the present paper we consider the interaction of the free
barotropic Rossby wave with zonal currents confined in the

The present paper is the second part of the geophysical fluidicinity of the equator. The peculiarity of our approach

dynamics investigation of nonlinear phenomena due to resWith respect to the standard wave-mean flow one is that the
onant interaction of free modes and modes trapped in thén€an currents are supposed to be sufficiently weak and not to
equatorial waveguide. In the first paRdznik and Zeitlin ~ change the wave spectrum at the leading order. We will show

2007 we have studied nonlinear interactions of a free wavethat free-wave-mean flow interaction under such circum-
stances can also lead to effective generation of trapped equa-

o torial wave with frequency and zonal wavenumber which co-
Correspondence tov. Zeitlin incide with corresponding parameters of the free wave. As
m (zeitlin@Imd.ens.fr) in the wave-triad excitation, the saturated amplitude of the
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trapped mode greatly exceeds the free wave amplitude, buthe Egs. {-3) are written in non-dimensional form using
the mechanisms of generation and saturation are essentialthe standard equatorial shallow-water dynamics scaling:
different. The study of these mechanisms is the main goal

of the present paper. Preliminary results were presented i z(g’Hs)l/“. T:i- _g&'AH )
Reznik and Zeitlif20078, where some illustrations may be VB BL’ BL2
also found.

The paper is organized as follows: in Se2twe de- The values of the parametersa_ndr (which was calledy
scribe the two-layer shallow water model on the equatorial® Part 1, we reserve the notatignfor other purposes, see
beta-plane, remind the spectrum of its linear excitations and®€!ow) depend on the details of stratification (the standard
derive the synchronism contitions for resonant interactionderivation is based on layer averaging of the primitive equa-
barotropic wave — trapped wave — mean zonal flow. In Sect. ons with flat bottom and rigid lid boundary conditions, cf.
we describe the resonant excitation of the trapped modes fol€-9-Z€itlin, 2007:
lowing from the straightforward asymptotic analysis in non-

. - . H-2H; H; AH

linearity parameter. In Sedd we rearrange the asymptotic r= 7 STy S 5)
expansions in order to take into account the eventual nonlin- s

ear saturation of the growing modes, and show that such satyghere AH denotes a typical variation of the interface,
ration indeed takes place. We derive the equations desc_nbmg;szw, and the nonlinearity parameteis assumed
the effects of spatial modulation in Sebf.and conclude in o pe smalle<1. In the Eqgs. 4), (5) H1, Ho=H —H, are

Sect.6. the the upper and lower layer thicknessgs,is the stan-
In order that technical details do not overshadow the maingard reduced gravity parametéris the baroclinic equatorial

message, we limit ourselves in the main body of the papeRossby radius.

by the mathematically simplest case of the layers of equal The rigid lid boundary condition, often used in studies of

depth, and purely baroclinic zonal flow. The general case isequatorial dynamics (cf. e.tylajda and Biellp2003and ref-

discussed in AppendiR. By the same reason all cumber- grences therein), is well adapted to the problem of free-wave

some calculations/formulae are relegated to Appendiies _ trapped wave interactions we address, as it allows for free

C. propagation of the equatorial beta-plane barotropic waves

(see below). If it is relaxed, the barotropic waves would

be also meridionally confined (although with a larger char-

acteristic decay length, than for the baroclinic waves). We

should note, however, that the barotropic Rossby waves in

2.1 The equations of the model and the linear wave the shallow-water model on the sphere are not trapped in the
spectrum vicinity of the equator (e.g-onguet-Higgins1968 Muller,

2000g; it is also known from observations that extratropical

The simplest model taking into account the phenomena wevaves do arrive towards tropics, ekgamilton et al.(2004.

are interested in is the 2-layer equatorial rotating shallowwa- The linear spectrum of the model consists of plane

ter model with the rigid lid and flat bottom boundary condi- barotropic Rossby waves which may propagate at any angle

tions which was already used Reznik and Zeitlin(2007). with respect to the equator:

The equations of the model may be conveniently rewritten in _ ,

terms of the barotropic streamfunctign baroclinic veloc- 1//0=A¢el(9+ly)+c~c~§ O=kx—ot, (6)

ity u=(u, v), and the thickness deviatidgnof the upper layer

with respect to its mean valuRéznik and Zeitlin2007, Be-

nilov and Reznik1996:

V2i=e [=J (W V2) =50 —0yy) [(Aerh) o)

50y [(1+erh)(u2—v2)]] )

2 The model, its linear wave spectrum and the
synchronism conditions

and have the dispersion relation:

o=—k/(k*+1?), @)
and the trapped baroclinic equatorial waves

(it, D, h)= (iUp, Vin, i Hp) A" +c.c.; Op=kx—cut  (8)

U+ Vh+yZxu=e [—J (. U)+U-V(2x Vi) —ru-Vu+tes with the dispersion relation

(2hu-Vu+uu-Vh)], (2) s o
o, —(k“+2m+1)0,,—k=0; m=0,1, 2, ..., 9)
h4+V-u=e [—1(1#, B)—rV-(Uh)+€sV- (hzu)] ’ 3) wherem is th'e meridiongl wavenumber of the trgpped wave.
We will be interested in low-frequency Yanai (or mixed

where here and below the subscripts are used for the coRossby-gravity) waves correspondingita0, o <1, and in
responding partial derivatives, anddenotes the Jacobian. the trapped Rossby waves correspondingtel, o <1. The
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amplitudesU,,, V,,=¢m, H, decay rapidly away from the 1
equator ¢=0):

2
Hp(y)e =z —k!
Hny)e 7 ,Um(y)=—omy¢;m 2¢m
NyLANGD 04—k
ky‘l’m_am‘f’;/n
02—k?

O (y)=

> 2

Hy (y)= , (10) 1.5

whereH,,(y) are the Hermite polynomials and the prime

meansy-differentiation. Equator, thus, is a wave-guide trans-

parent for some type of waves in the linear approximation. 0.
One can readily see that any equatorial zonal current

i . - . ‘10 -8 “6 -4 -2
is an exact solution tol¢3). In the main body of the paper
we will present the calculations in the technically simplest
case when the zonal flow is purely baroclinic and the upper
and lower layers are of the same depth:

Fig. 1. Solutions to the synchronism conditions in the phase-space
k—1 of the barotropic wave for meridional modes witi*0, 1, 2, 3.

_ therefore 15) is satisfied at ang<0. For trapped Rossby
V), r=0. (12) waves,m>1, (15) is also always satisfied because with high

The discussion of the general case, which is technically mucfccuracy Boyd, 1983

more involved, but not different in essence, is relegated to k
AppendixA. Om = =55 a7
. k*+2m+1
In order to measure the strength of the zonal flow we in-
troduce a parameter. and
_ _ 2
u=e“ii(y), h=eh(y), yi+hy=0. 13) 2~ 2m41-————~2m+1. 18
y ), yi+hy (13) o 2t (18)

In what follows it is assumed that the zonal flow is suffi- The relation £5) defines a curve in the, /) plane and thus,

e e e L1 nke e synivonam condions i et cate(n
"y : . and Zeitlin 2007, only a discrete spectrum of barotropic
modes in the lowest order. This assumptions means that

Rossby waves will resonate with equatorial waveguide
—1<a<O0, (14) modes in the presence of the equatorial current, cf. Fig.

so that nonlinear terms irl€3) remain small. In addition, _
we will suppose that the mean flow rapidly decreases out of R€sonant excitation of the trapped modes

the equator. 3.1 General approach and removal of resonances

2.2 The synchronism conditions The standard method for treating the resonant excitation of

waves consists in applying multiple time-scale asymptotic
expansions in small parameter (n the present case) to
the initial wave configuration, to be completed by multiple
cited by such interaction if its zonal wavenumizeand the ~ SPace-scales if the effects of spatial modulation are to be
frequencyo coincide with the corresponding wavenumber trea}ted. Each approximation is described by the forced lin-
and frequency of the barotropic mode. As follows from €arized Eqs.X-3):

), 9 th|s is possible if the mer|.d|o_nal wavenumber of the Vzlﬂt-i-lﬁx:Qw (19)
barotropic wave obeys the equation:

We will analyze the nonlinear interaction of the barotropic
wave @) with the zonal flow {3). As is easy to see from
(1-3), the m-th baroclinic trapped mode is resonantly ex-

>=2m+1-02>0, m=0, 1, .... (15)

. ) ) . ur—yv+hy=0Qy, vi+yut+hy,=Q,, hitux+vy,=0p, (20)
The dispersion relation for the trapped Yanai waxe( has ' e yo R T

the form: where the r.h.s. are determined from the preceding approx-
imations. The crucial step of the procedure is order-by-
oo=k/24/ 14+k?/4, (16) order removal of resonances, which is necessary to render the
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asymptotic expansions self-consistent, and leads to determand the baroclinic field, which consists of the trapped baro-
nation of the (slow-)time-dependence of the wave amplitudeclinic wave @) on the background of the zonal baroclinic
eventually exhibiting growth. The asymptotic analysis which current (L3):

will be used below involves, as usual, the removal of secular © 0 O\ _ (-0 A 70

terms arising in the r.h.s. of the Eq49(20). The solution is (” v h )_ (” 0. h ) ». 1)

boaneq provided the following orthogonality conditions are i (ﬁ(o), 50, ﬁ(o)) (. y.0.T) 27)
satisfied:
(¥ Qy)x,y.=0, (21) (a((’), 50, iz<°>) (v, 1, T)=a"3 (iU, V,iH) A(T)e'® +c.c.,
+00
N a= / dy (U4+¢°+H?). (28)
dy (1 Qu+0Qu+hQp)x. =0, 22 o o .
/_OO VUQuAvQuth Qs (22) With this normalization the energy density of the trapped

N A _ _ mode is always equal ta2.
wherevr, i1, 0, h is an arbitrary bqunded solution of the ho- Obviously, the baroclinic mode28) and the barotropic
mogeneous Eqsl9), (20), respectively, and the angle brack- \yave @6) are in resonance. The equations for the correc-

ets denote the averaging defined in a usual way: tions(w(l)’ u(l)’ U(l), h(l)) are (for S|mp||c|ty, we put the ex-
L, ponentx in (13) to be zero in the rest of this section):
(...)x=L)!iLnoo 2L, /LX dx ..., (23) V2W1(1)+1/f)51)=N¢’ (29)
and analogously for other variables. In what follows, the uP—yv®+hV=—i® —i P +N,, (30)
source terms are of the form: v,(l)+yu(1)+h;1)=—ﬁ(To)+NU, (31)
Qy...n=)_ QY et @) PP +o ==k —h PN, (32)
q

where the nonlinear interaction terms are given byXe8):
with qu’___’h(y) rapidly decaying ay— to00. One can read- © w2,0, 1
ily show that for suchQ, _, the conditions 21), (220  Ny=—J(W 7, V¢ )_Z[(axx

yeues

are not only necessary, but also sufficient for existence of

0).,(0 02_ (0?
bounded solutions tolQ), (20) if k,#0, o,7#0. Applying —dyy) WOV —ay @@ —0© )] ; (33)
these conditions allows_to determine the slow-time depen-Nu:_J(w(O)’ u(o))+u(°)-V1/f§°), (34)
dence of the wave-amplitudes. o © o o
Another important ingredient of the method is the use Nv=—J (7, v7)—u™"-Vyr 7, (35)
of asymptotic expansions including inverse powers of they,=—jy© r©). (36)

small parameter to study eventual nonlinear saturation (cf.
e.g.Minzoni and Whitham1977), once the resonant growth 3.3 Slow evolution
is confirmed by straightforward expansions.

In the rest of the present section below we will establish!t is €asy to see (cf. alsReznik and Zeitlin2007) that the
the fact of resonance growth of the trapped waves due to th€XpressionVy, does not contain resonant terms due to the
free wave-mean-trapped wave interaction. The nonlinear satfast decay iny of the functionsU (y), ¢ (y), H(y). By this

uration will be studied in Sectt on the basis of rearranged reason the amplitude of the barotropic wave does not depend
asymptotic expansions. on slow time in this approximation.

The equations determining corrections to the baroclinic
3.2 Governing equations for interacting waves and component of the zonal flow are obtained by averaging the

zonal flows Egs. B0-32) in x:
. . . -(1) -(1_ —(0)_R (37)
Following the standard asymptotic approach, the solution of: —YV " ="Ur —Ru,
the Egs. {-3) is sought in the following form: gt(l)+y,;(1)+;‘l(yl>:_lév, (38)
W0, =@ u@ 0@ hO)(x, y. 1, T)+e hV 45D =—h P — Ry, (39)
@O u® oD D)y D+ (@25) where

whereT:et is the slow t!me. Here the quantities withthe su- g — (12¢+kU’) AyAretec.,
perscript(0) satisfy the linearized version of{3) and com- _ .
prise the barotropic Rossby wave: Ry=ik (¢'+2ilp+kU) Ay A*e'V+c.c.,

- . /
Yy O=4,e TV 1., (26)  Ri= (kHe’ly) AyA*+c.c.. (40)
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From the dispersion relatio@)Yand Egs. 10), (15) we obtain  Zeitlin, 2007, the energy balance following from the lowest-

the following relation order equations (linearizeld-3) and the first-order Eqs29-
32
12¢+kU'=—kyH, (41) -~
Eo=2 / dy (2450202
which allows to rewriteR,,, R;, as 2 ~o0
i} _ . + dy (V' @.vy D) =cons 46
R,=—yD, R,=D,, D:—kAlﬂA*He’ly—i—c.c.. (42) /700 y (Vv v ' (46)

means that the growing energy of the trapped mode is com-
pensated by the interaction energy of the primary barotropic
field @ and the correction to this fiels D arising due to

the self-interaction of the baroclinic wave. This correction,
which will be called below the secondary barotropic wave, is
found from the Eq.Z9):

By using the substitution® -3+ D it is easy to show
that bounded solutions 087-39) exist if

i =h'” =0, (43)

and thus the baroclinic zonal flow in the first approximation

does not depend on slow time either. v2y® oy =< [(8“—8y,v)(u(°>v(o))—axv(u(o)z—v(oﬂ)} . (47)
A group of resonant terms in the r.h.s. 080(32) V 4 ' '
is due to the lowest-order trapped wave8) To re- |t is clear thaty¥ should also grow with slow time. The
move the resonances, we use the conditi@@) (with interaction ofy® with the zonal flow and with the baroclinic
(@1, 9, h)=(—iU, ¢, —i H)e™'; as a result we obtain the fol- wave arrests the growth of the amplitude as in the triad
lowing evolution equation for the amplitude case inReznik and Zeitli2007).
The saturation process appears to be rather sensitive to the

Ar=—kLyAy, (44)  strength of the baroclinic zonal flow, i.e. to the value of the

parameter in (13). Therefore, we will not fixe, assum-
where ing only that it obeys4). The situation here is more com-

1 (oo plicated than inReznik and Zeitlin(2007), as the form of
szf/. dy iy [(g“’)U)/+Uﬁ<0>’+HE(°)/_k¢g(0>] . (45)  the asymptotic expansions should be adapted to the relative
Va J-so strength of the zonal flow, and various regimes are possible

depending on the value of. Strictly speaking, the value of

a should be first fixed, and only then the procedure of the

asymptotic expansions be applied. We would like, however,
plo pursue our analysis as far as possible without loss of gener-
ality, and therefore apply below an heuristic semi-qualitative
approach by finding (approximate) solutions without fixing
the value ofx. The results obtained in this way and displayed
below were checked and confirmed by rigorous expansions
for several typical sets of parameters.

Let us represent a solution of Eq$-8) in the form:

As follows from the previous analysis, the r.h.s. &f( does
not depend on the slow ting, i.e. the amplitude of the baro-
clinic wave A grows in absolute value with increasifg
Thus, the interaction of the free barotropic Rossby wave wit
zonal flow results in effective generation of a trapped baro-
clinic mode. An important distinction from the case of triad
interactions Reznik and Zeitlin2007) is linear, and not ex-
ponential, growth in time. We show in Appendixthat this
conclusion is also valid for nonzercand .

Thus, we come to an important conclusion that for any
zonal current there exist infinitely many barotropic Rossby (v, v, n)=(y©@, u©@, v©@, h@) 4D, 4@ @ 7 D) (48)
waves which, by interacting with the current, generate grow-
ing in time trapped baroclinic modes. This growth is linear, The lowest-order fields are written as follows:
and not exponential, unlike the triad caBegnik and Zeitlin
2007). As will be shown below, the saturation mechanism is
also different.

w(o)zAwei(g'Hy)+c.c.+1//(1)(x, v.t,Tg,, €), (49)

(u<o>, O h<o>) —o (L—,<0>’ 0. ,;(0>) (y, Toy)+€P

4 Nonlinear saturation of the growing baroclinic (,;(0), 7@, /;<0>) (x, v, Tg,). (50)
modes: modified asymptotic expansions ia
Here the slow times with yet unknown exponeais 81 are
4.1 The lowest-order approximation defined ag7,,, Tp,)=(€*1, ePt, a1, p1>0, and the quanti-
ties with tilde denote the trapped mode. The amplitude of the
The growth of the trapped baroclinic mode means that the entrapped mode in50) is proportional tae# where the param-
ergy of the system: barotropic wave + zonal flow + trappedeter 8, which defines the level of saturation, is to be deter-
mode is not conserved. As in the triad caRegnik and  mined. Moreover, the secondary barotropic mgd® may
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become, in principle, of the same order of magnitude as the Another group of resonant terms in the r.h.s. $35)
primary barotropic wave. Therefore, it should be taken intois related to the wave proportional ¢&. Eliminating these

account already in the lowest order, which is written48)(

Substitution of §0) into (47) shows thaty ® should have

the form:

w(l):e”“*ﬁAw(zw)+el+2’3A21p(ww)+c.c., (51)

resonances gives the following evolution equation for the am-
plitude A:

P A7, +€2T pA+e?t PP g AP A=—"TPkLy Ay, (61)

Here Ly is given by @5), and p andg are constant com-

where the first term in the r.h.s. arises from the interactionplex coefficients which depend on the parameters of the in-
of the trapped mode with the zonal flow, and the second onderacting waves and of the zonal flow. Their expressions are
from the self-interaction of the trapped wave. The functionsgiven in AppendixC. Two important points are to be stressed:

¥ @) andy @) are calculated in AppendR; the resulting

1) Re p>0, and Re g>0 which insures the saturation of

solution® obeying the radiation boundary conditions at the trapped baroclinic wave; e ¢=0, if 12—3k?<0, and

y— =00 has the form:
1//(1)=61+°‘+ﬂA1@}1)(y)ei9+el+2'3A21/Af}2)(y)e"29+c.c.. (52)
4.2 The first-order corrections

Thus, the solution of the problem has the foré®)( where
the lowest-order approximation is given b9, (50) while
the first-order corrections are supposed to be small.
equations for the first-order correction$?, v® 1D are
written as follows:

u;l)—yv(l)+h)(¢1)=_€a+alﬁ(7~(()¥)l _€ﬁ+ﬁ1ﬁg?g)l+6NL(¢l)’ (53)

vt(l)+yu(1)+h§.1)=—€ﬂ+ﬂll7§~0)+€N1§1), (54)

hl(l)+u}({1)+v)(71)=_€a+alﬁg9) _6}3—&-/31};%1) +€N(1), (55)
a1 1

and the nonlinear terms,”, NP, N have the form:

N£1)=Nu+§r :2h<°) (u(o>u§co>+v<0)u(yo>)

10 (R 1,40)] )
ngl):Nerz :Zh(O) (u‘O)v;°)+v<°>v§,°))

o o 49)] e
g [0 ~(0%0) |

By applying averaging over to the Egs. $3-55) we get
the equations for the zonal flow of the fori®7-39) where
Ru, Ry, Ry are replaced bye(N"),, e(NP),, e(N),,
andugro), h(TO) - bye"‘*"‘lﬁ(&, e"‘“’lﬁf&, respectively.

By using 84-36), (56-58), (49), (52), and @1) we find:
<ngl)>x=_yDlv (N}(,l))xley ’ (59)
where
Dy=—ePkAy A*He™ 42 | AR kHY P tec.,  (60)

cf. (42). As for the analogous syster8-39), the Eq. b9)

Reg # 0,if 2-3k2>0, which gives different properties of
saturated solutions depending on the angle of incidence of
the incoming barotropic wave.

4.3 Analysis of particular cases

As may be seen fron6() the growth of the trapped baro-
clinic mode is provided by the constant forcing in the r.h.s.

Theof the equation, which arises due to the interaction of the

barotropic wave with the mean zonal current. The second
and the third terms in the I.h.s. 081) lead to saturation of
the baroclinic amplitude becau®& p, Re ¢>0. The linear

in A second term arises as a result of the interaction of the
secondary barotropic mode® with the zonal flow, while

the cubic inA third term is a result of the interaction ¢f®

with the trapped baroclinic mode. The exponantwhich
defines the intensity of the zonal flow is fixed. The parame-
ters B and g1 specifying the order of magnitude of the satu-
rated baroclinic mode, and the slow time scale, respectively,
are determined from the balance of pumping and damping in
(61). Let us consider particular cases:

1. Let cubic saturation be dominant, i.e.
1+a—B=2+28<2+2a. (62)

As follows from 62)
1 1
p=3-D, azpz—z. (63)

2. Let linear saturation be dominant, i.e.

1ta—B=2+20<2+28. (64)
Then
p=—latD), fz—za (65)

On the basis of@3), (65) we come to the conclusion that at
a<—3 the linear saturation dominates, whileoat —3 it is

the cubic one. In both casﬁsz—%, i.e. the maximal attain-

1 Dy - . . :
mean that the termav,.") (NP, inthe rh.s. of the equa-  aple baroclinic amplitude is of the ordet : such amplitude
tions for the corrections to the zonal flow do not contain res-js reached at

onances, i.e. we again come to the conclusion that the mean 1

flow does not depend on time.
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The slow time-scale is defined by the relation
Br=1+a—p. (67) LT e
-7 B=2e3+4p3
The dependence @ g1 on« is depicted in Fig2 7 10
At a<—% the Eqg. 61) may be rewritten as e | o8
ATﬂ1+pA=_kL1//A¢; (68) ﬁ1=2(r+,2, L 06
ata>—%,as ,,' - 0.4
2 . - 0.2
ATﬁl-‘ré] |A] AZ—kLwAv,; (69) L7
! 0.0
and, finally, aw=—1 as 1.0 o0
— -0.2
Aty +pAtq |AI? A=—kLyAy. (70) o
. . . B=a/3-1/3 '
While deriving 61), and hence@8-70), we did not use L o6

systematic asymptotic expansions, unlike what was done in

Reznik and Zeitlif2007). We rather used a semi-qualitative Fig. 2. Dependence of the exponents of the slow tifge and of

approach bas?d on the physical consid'eljations of balance @fe saturation leves on the exponent defining the intensity of the
different contributions. To check the validity of the resulting zonal flow.

evolution equations we applied the standard asymptotic pro-
cedure for several typical values of the parametand con-
firmed that in all of these cases the resulting equation for the ) ) - .
baroclinic amplitude coincides with the corresponding equa--€t US consider stationary solutiodsof (72). The following
tion among 68-70). For instance, ak=0 (moderate mean relations hold for the modulus and the argument of
zonal flow) we gep=—1, B1=3%, i.e. the asymptotic expan-

sion in powers ofe3 should be applied. The correspond-

ing amplitude equation has the fori®9j. At a:—% (strong
mean zonal flow) we geﬁ:—%, B1=1, i.e. the asymptotic

expansion in powers af? should be applied and givegq).
2

Finally, ata=—5 (even stronger mean zonal flow) we get . ,
. . . 0 LR
p=—3, B1=3, i.e. the asymptotic expansion should be again|Al"+2COSY |A["+|A|"=c*=0, x=E—n.

in powers ofe3 and results in§8). The limiting amplitude
has the same order of magnitude ag=a®, but saturation is
faster.

In what follows we will limit ourselves by the most general

=_1
casew=—7.

4.4 Analysis of the saturation process

By renormalization ofA andT

lq] o AT8KLyAy) 4
Pl

Tg,—T=|p|Tp,, A— (72)

the number of relevant parameters 1) may be reduced:

Ar+ef A+el AP A=c, (72)
where

1 _3
E=Argp, n=Argq, c=lq|2|p|”2 [kLyAy|. (73)

www.nonlin-processes-geophys.net/16/381/2009/

cosé |A| + cosy M}S =cCOSArg(A),

sing ]A}+sinn |A’3=—csinArg(A), (74)
whence a cubic equation for the square modulus céadily
follows:

(75)

Applying Viet's theorem it is easy to show tha) has either
three positive roots, or a single positive root. An elementary
analysis shows that necessary and sufficient conditions of the
existence of three roots are:

COSX<—§, F(x+)<c2<F(x_), (76)

where

2 4 1
F(x)=x3+2 cosyx’+x, Xp=—z CoSy =t/ 5 co< X3 (77)

If either of the conditions46) is violated, the Eq.15) has a
single positive root. KnowingA | the argumentirg(A) may
be found from 74).

Analysis of stability of stationary solutions shows that in
the case of a single root, it is always stable, and in the case of
three roots, the largest and the smallest ones are stable, while
the intermediate one is unstable. Each stable solution repre-
sents a focus in the phase spac®efA, Im Aand, depending

Nonlin. Processes Geophys., 38238069
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Fig. 4. The phase portrait of the system72] with
Fig. 3. The phase portrait of the system72 with n=—.4r, §=197/40, c=.4 in the planeRe A-Im A Zero lies in
n=—m/2, £=197/40, c=.3 in the planeRe A-Im A Zero lies in  the domain of attraction of the larger stable solution.
the domain of attraction of the smaller stable solution.

on the coefficients, zero may lie in the domain of attraction i\ 2

of either the smaller or of the larger root. Unstable solution <3T1+C 3X1) Ate? [—5 (0’ ) O, x, A+pA

is a saddle point. Examples of the respective phase portraits s

of the system72) are presented in Fig8, 4 (cf. Reznik and + QIAle] =—€2cpAy. (79)
Zeitlin, 20071.

Thus, the resonantly excited baroclinic waves reach eitheHere Ty = ezt obtbe are frequencies of the barotropic and
a unique stationary finite-amplitude state or, if the phase rethe baroclinic waves, as expressed via their corresponding
lation and forcing verify 7€), one of two possible stationary dispersion relations;5"”*= (o*"*°)" are the corresponding
states, depending on initial conditions. We emphasize thatonal group velocmexoszv,, and prime denotes differen-
the stationary states do not depend on the small parameter tiation with respect to zonal wavenumbier
Therefore, the resulting amplitude of the saturated equatorial The group velocity of the Yanai wave may differ signifi-
mode is of the order of?, 8<0, i.e. it is much larger than cantly from the group velocity of the barotropic Rossby wave
the amplitude of the barotropic wave. One can thus say thabf the same frequency. For example for long in the zonal
the equatorial waveguide acts like an amplifier, similar to thedirection waves [k|<1, ci‘~j«cb'~—}. On the con-
case of the triad interactionRé€znik and Zeitlin2007). trary, the group velocities of the baroclinic and the barotropic

The results for non-zerg andy may be obtained (after Rossby waves of the same frequency are practically the same
much heavier calculations) in the same way, and with sim-cgcch,’ .
ilar results, provided some additional detuning of resonant Therefore, the only situation where efficient interaction
frequency is made — see Appendix between barotropic and baroclinic Yanai wave-packets is

possible is that of “gentle” modulation when the fields de-
pend onXo=¢x, and not onX, and onT>=¢¢, and not on

5 The effects of spatial modulation T1. In this case the dispersion effects are weak, and

We consider a case of strong baroclinic zonal curremt 2, oAy ~|—ch dx,Ay=0, (80)
and introduce slow spatial modulation in the zonal direc-

tion of both baroclinic and barotropic waves with the scale

Xi=ec?x (=B=—3). The technicalities of the analysis fol- 97, A+c°9x,A+pA+q|A*PA=—coAy. (81)
low Reznik and Zeitlin(2007). The “synthetic” modulation
equations comprising the leading and the next-to-leading or-
der contributions ford and A, follow:

In the case of interaction between the barotropic and the
baroclinic Rossby wave packets, by choosing the reference
frame moving with the common group velocity we get:

opi+coy. ) Ay—e3 L (o) 92 . A,=0 (78) i\ a2
T Cg X1 y—€ 2 o X1 X, Y=Y aTZAW_E (U t) 8X1X1A¢:0, (82)

i "
A= (o") 0fxA+pA+glAPA==cody.  (83)
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This is a GL-equation for forced by the wave-packet of
barotropic waves which, in turn, is subject to dispersion.
Finally, if there is no spatial modulation of the barotropic

flow intaraction at the equator 389

Yanai and/or Rossby waves which grow to significant am-
plitudes, and then are nonlinearly saturated. In the certain
range of parameters, multiple equilibria of the modulation

wave (plane barotropic wave occupying the whole equato-equation exist, leading to bifurcations in the initial values of
rial plane) we get, by changing the reference frame, a singlehe baroclinic amplitudes. When spatial modulation of the

Eq. 83) with constant4 ;.
For short enough wave®e -0, and the nonlinear satura-
tion is non-operating. This is the case if

2m+1
3

23

for Yanai and Rossby waves, respectively, 23\, By
rescalingA with a time-depending phase a forced nonlinear
Schrodinger equation (NLS) with linear damping results for
the trapped waves.

The detailed analysis of the systen&))( (81) and 82),

|k|> |k|> ,m=12, .. (84)

(83) is out of the scope of the present paper. Some example

of direct numerical simulations of these equations may b
found inReznik and Zeitlin(20078. It should be, however,

emphasized, that the nonlinear dynamics described by the
equations is very rich and may lead both to nontrivial spatio-
temporal organisation and to chaos.

driver, which corresponds in our context to a plane incoming
barotropic Rossby wave, was a subject of numerous studi
following the pioneering workKaup and Newe]l1978. It

is known that depending on the values of damping and forc
ing it may exhibit chaotic (with different types of chaos, e.g.
Shlizerman and Rom-Keda006 or regular behaviorTer-
rones et al.1990, and possesses stationary localized soliton
solutions in some windows of parameteBafashenkov and
Smirnoy, 1996. (It should be noted in this context that for
Re g=0 (72) is a variant of the equation for the so-called flat-
locked states studied in the damped-driven NLS literature
Barashenkov and Smirnp¥996) Thus, such dynamical pat-
terns are to be also expected in equatorial dynamics.

A driven CGL equation arises for long Rossby waves with
Re q#0. The phase diagram of the undriven CGL is well
establishedBrusch et al.2000. There are some works on
driven 1d CGL in the context of turbulence contrBlaftog-
tokh and Mikhailoy 1996. However, we are not aware of a
systematic study of the driven 1d CGL. On general grounds
in the case with two different flat-locked stationary solutions

we expect appearance of the domain-wall like defects, and

hence a possibility of the defect chaos. The coherent stru
tures may be sought by the same method as in the dampe
driven NLS Barashenkov and Smirnp$996. The appear-
ance of defects is also expected in the Yanai wave @&Be (

6 Conclusions

e

Thus, the damped
driven NLS equation, in the case of spatially non-modulated

e

C_

baroclinic waves is taken into account, spatio-temporal orga-
nization and/or chaotic behavior arise.

Similar effects take place for the triad interactioRegnik
and Zeitlin 2007 but there are significant differences be-
tween the two cases. First, only a discrete spectrum of
barotropic Rossby waves can resonantly interact with trapped
waves in the presence of the mean flow, while in the triad
case the resonant domains are dense in the phase space of
barotropic waves. Second, the amplitudes of the excited
trapped waves obey the forced Landau-type equation. The
amplitudes grow linearly at the initial stage, and not expo-
rs1entially like in the triad case, and then saturate at the levels
Substantially exceeding the amplitude of the free wave and
depending on the parameters of the zonal flow. The zonal
flow itself is not changed and plays the role of a catalyser.

hird, the evolution of the envelope of excited waves follows
different types of GL equation. Thus, the envelope of long
tfrapped Rossby waves obeys the forced complex GL equa-
tion, while the envelope of short trapped Rossby waves obeys
tshe forced-damped nonlinear ®dinger equation. The en-
velope of trapped Yanai waves obeys a nonlinear equation

of the simple wave type with cubic nonlinearity. Like in the

triad case, the interaction of the growing trapped mode with
itself and with the zonal flow generates a growing secondary
barotropic wave which has the form of reflected and trans-
mitted waves spreading with time out of the equator. Its in-

teraction with the trapped baroclinic mode arrests the growth
of this latter. The whole problem we are considering may

be alternatively interpreted as a kind of resonant scattering

‘of the free wave on the mean current. Along these lines,

the secondary barotropic wave is the scattered wave. In the
triad case oReznik and Zeitli2007 the scattering is max-
imally efficient: the scattered wave reaches the order of mag-
nitude of the primary free wave at the saturation stage. In the
present case, the amplitude of the secondary wave essentially
depends on the intensity of the mean zonal flow. Therefore,
the efficiency of scattering is determined by the amplitude of
the zonal flow and is maximal f@r:—%.
The key assumption of our analysis is the weakness of the
ean zonal flow, so that it does not affect strongly the struc-
re of the trapped modes. Obviously, for really strong zonal

m

(#':Jw, whena <—1, the structure of the trapped mode depends

on the mean flow profile already in the linear approximation.
Nevertheless, our approach can be applied to this case too if
the nonlinearity is small, provided the trapped modes are cal-
culated. In the presentation above we have adopted the sim-
plifying technical assumtions that both layers of fluid are of

Thus, we have shown that the baroclinic zonal current at thehe same depth, and that the zonal flow is purely baroclinic,
equator acts as a resonator: it responds to certain inconi-e. that its barotropic component is identically zero. Relax-
ing barotropic waves by amplifying the trapped baroclinic ing these assumptions shows that in general situation, after

www.nonlin-processes-geophys.net/16/381/2009/ Nonlin. Processes Geophys., 38238069
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much more involved calculations, we arrive to the same con-As readily follows from A2) the resonant growth (again lin-
clusions modulo some technical details, the most importanear inT) of the baroclinic amplitude takes placeSiL, i.e.
of them being a detuning of resonant frequency. To give arif the frequencys ®? of the barotropic wave is slightly de-
idea of how the general case should be treated we added b&sned from the frequency of the baroclinic waw&<):

low the AppendixA, where the initial “non-saturated” stage

of the evolution of the system free wave + zonal flow + o?=c® —eL. (A4)
trapped wave is treated for nonzerandv.

Our general motivation are mechanisms for dynamicalAt given k, m such detuning may be obtained by a small
teleconnections between tropics and temperate latitudes ighange in the “exact” value of the meridional wavenumber
the atmosphere and ocean. Moderate mean currents com=_ /2, 41— (g(bc))Z, cf. (15):
parable in magnitude with equatorial and extratropical wave
perturbations are indeed found in atmospheric dai@ber-  [—/+eA;, A;=O(). (AS5)
man and Hendan199Q Matthews and Madden200Q
Hamilton et al, 2004. The analysis of possible manifesta- It should be emphasized that fbgiven by the relationA5),
tions of the above-described mechanism in observations wilthe Eq. @1) is not valid any more because
be presented elsewhere.

We believe that an analogous scenario can take place fOﬂ‘2¢+kU/=_kyH_26Al+(’) (Ez) . (AB)
other types of waveguides. For example, the edge waves
trapped near the shore (Miles, 1990, or the modes trapped | turn, cf. @2):
by topography (a ridge or an escarpment, cf. egnguet-

Higgins 1968 can be resonantly excited by the wave com- R,=—yD+0O (¢) . (A7)

ing from the open ocean and interacting with the stationary

flow localized in the waveguide. We will present the study of The small additional term inA7) may lead, in principle, to
these phenomena elsewhere. slow changes in the baroclinic zonal flow on the time-scale
O(e~2). This means that in the presence of the small detun-
ing (A5) the time-scale of the changes in the baroclinic zonal
flow, if any, is much longer than the characteristic time-scale
of the changes in the trapped baroclinic wave and, therefore,
the coefficient in (A2) may be again considered to be time-
independent.

Thus foranyzonal current and the layers’ depths there ex-

Below we generalize the results of Se@<, 3.3to the case ist infinitely many barotropic Rossby waves which, by inter-
of non-zeror and . For simplicity we again se=0 in acting with the mean current generate growing in time baro-
(13), and takej=O(1). The solution of {3) is sought in clinic modes. The frequency of the excited trapped mode

the form @5), where the lowest-order baroclinic component may be slightly detuned from the irequency of the incident

is given by 7-28) while the lowest-order barotropic stream- Earoirop!c Rossby watve]: me detuning bew:g dedﬂrgﬁ d Sy ttr;]e
function is expressed as (&6): arotropic component of the mean current, and the depths

ratio. Saturation of the growing modes can be described in

YO =4, C+HM=IT L 5O () (A1)  the general case along the same lines as in Sect. 4, and the
resulting amplitude equation is again of the forGri)(

Here8=%, andA is a detuning between barotropic and baro-

clinic waves which is assumed to be small so #hatO(1). _

At r0 some additional terms also appeahp,, , 5 in (33-  Appendix B

36). With the new barotropic streamfunctioAX) and al-

tered nonlinear terms the calculations analogous to those dfalculation of the secondary barotropic wave

Sect.3.3 give the following evolution equation for the baro- ,
clinic amplitudea: The “full” problem for the secondary barotropic mode com-

prises the Eq.47) an zero initial condition:

Appendix A

Resonant excitation of trapped modes in the general
case of layers of non-equal depth and nonzero barotropic
component of the mean flow

Ar+iLA=—kLyAye T, (A2)

ASY =0 (B1)

cf. (44), where 0

Correspondingly, the functiong @), ™) gre solutions

L=-1 +md U) +k(U?+¢>+H?
__E/ Y [[(¢ Al )] of the following equations:

—0o0

- — —(0 “ . ~ .
(w(0)/_ru(0))_r(kUH+¢H/)h( )] ) (A3) V2¢(zw)_’_w)gzw):Fl(y)ezQ’ VZVI(wu,v)_i_w)gww):FZ(y)ezZG’ (BZ)
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with zero initial conditions, wheré' (y), F»(y) are given by
the formulae

Fi= (g ®)" 2% (va®) "+k2,

Fom (oU) —2k (U2+¢2>/ 24U, (B3)
The solutions are of the form
VAREAS (v, e, Ilf(ww)=1}(2)(y, Ne'?. (B4)

At any given moment of time the functiony decays
exponentially withy, and at fixedy ands— oo it tends to the
harmonically oscillating solution of the Eg@tY) verifying the
radiation boundary conditions gt +oo:

1p(l)

+€1+2’3A21/A/}2) (y)ei29+c.c.,

1 2 (1 i
N w}(( )261+a+ﬂA1,D'](c )(y)eZG

t—00

(BS)

. 1 oy - R
’ﬁ}l):—g [e"ly/ dy Flelly—l—e’l}/ dy Fle_’ly], (B6)
o oo y
2(2)_ i [ —ily Y d ]A? ily | ily ood I:—~ fil_y-
vy T y F2e’ +e y Fae ,
oL —00 y ]

if 1?=1°—3k%>0, (B7)

~(2 1

-y o e A
FE e_my/ dy ermy—f—e‘l'y/ dy er_|l|y
' 16|l|o L —oc0 y

if 1°=1°—3k?<0. (B8)

391
oo il ? 72_12 2
Reg=——— dy Fo(y)e'”| | if 1°=1*—3k*>0,
9= 16ii0a? ﬁw y Fa(y)
0, if I?=I?>—3k*<0, (C3)
+o0o R e’} R _

Img=— / dy Fz/ dy' F2(y") sinl(y—y")

Adoa? J_o y

+0, if P=1?-3k’>0, (C4)

! [/Wd F *”_'y/y dy' Fp(y)e’
mg=————- e e
1=Teloa ). 12 R0

+o0 - 0 . .
+ / dy Fpe'ly / dy’ Fz(y/)ellly}-l-Q,
- y

o0
if [2=1>—3k°<O0, (C5)
Here
0= 1 /+ood o' H ( ¢? U2+1H2
42 ) © 3

_kUH (3U2+5H2+3¢2)] , (C6)
and
Gr=(2—12) i@ —2k (Uﬁ(o))/ . C7)

The dependence af on the sign of the parametét is due
to the difference inﬁ(fz) in (B7) and B8).
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Appendix C
Expressions for the coefficientp and ¢

2

1
— C1
8llloa (€1)

“+o00 R )
Rep ‘ / dy Fi(y)e'”
—0o0

+00

“4loa o0
1 [t —(0) —(0)
i —(0)s 1—(0)
+%[wdy[¢U(%u +h u)
— 2k Q7@ <U2+H2+¢2)

— — /
—kUH (ﬁ(0)2+h(0)2> tH (¢h(°)2) }

o0
Imp dy Glf dy' F1(y") sinl(y—y")
y

(C2)
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