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Abstract. High-speed ferries are known to generate wakes
with unusually long periods, and occasionally large ampli-
tudes which may serve as a qualitatively new forcing factor
in coastal regions that are not exposed to a sea swell. An
intrinsic feature of such wakes is their large spatial varia-
tion. We analyze the variability of wake conditions for the
coasts of Tallinn Bay, the Baltic Sea, a sea area with very
intense fast ferry traffic. The modelled ship wave proper-
ties for several GPS-recorded ship tracks reasonably match
the measured waves in terms of both wave heights and peri-
ods. It is shown that the spatial extent of the wake patterns is
very sensitive to small variations in sailing conditions. This
feature leads to large variations of ship wave loads at differ-
ent coastal sections with several locations regularly receiv-
ing high ship wave energy. The runup of the largest ship
wakes on the beach increases significantly with an increase
in wave height whereas shorter (period<2–5 s) waves merge
into longer waves in the shoaling and runup process.

1 Introduction

Tallinn Bay is a semi-enclosed body of water, approximately
10 km×20 km in size, with the City of Tallinn, Estonia lo-
cated at its southern end (Fig.1). During the high season
there are a large number of high-speed ferry crossings servic-
ing the Tallinn-Helsinki ferry link. These ferries are known
to generate highly nonlinear, at times solitonic wakes, which
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may serve as a qualitatively new forcing factor in confined
sea areas (Parnell and Kofoed-Hansen, 2001; Lindholm et
al., 2001; Soomere, 2005). The fleet includes two high-
speed monohulls (SuperSeaCat, operating speed∼65 km/h),
two medium-sized twin hull vessels (Nordic Jet Line, operat-
ing speeds∼60 km/h), and four conventional but extremely
strongly powered ships operating at relatively high speeds
(Star, Superstar, Superfast(Tallink), andViking XPRS, oper-
ating speeds∼50 km/h). There were an average of 20 cross-
ings in each direction per day in the summer of 2008.

The natural wave conditions in this area are characterized
by an overall mild, but largely intermittent, wave regime.
While the annual mean significant wave heightHs is well
below 0.5 m over the entire bay, rough seas withHs exceed-
ing 3–4 m occasionally occur in its inner sections. As rough
seas are infrequent, high-speed ferry wakes can be consid-
ered as extreme events against this background. The daily
highest ship waves (with a typical height of slightly over 1 m)
are equivalent to the annual highest 1–5% of wind-generated
waves. Ferry wakes are even more extreme in terms of wave
period, with typical periods of 10–12 s, reaching up to 15 s.
Typical peak periods for wind waves are usually below 3 s,
and only exceed 7–8 s in exceptional cases. Due to the in-
tense high-speed traffic, ship waves contribute about 5–8%
of the total wave energy and about 18–35% of the energy
flux (wave power) even in those coastal areas of Tallinn Bay
that are exposed to dominant winds (Soomere, 2005).

Ferry traffic is confined to ship lanes that follow an
under-water trench extending NNW from the port of Tallinn
(Fig. 1b). North-bound ships follow the eastern slope of
the trench and usually pass in close proximity to the island
of Aegna, whereas the south-bound ships mostly follow the
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Fig. 1. (a)The location of Tallinn Bay in the Baltic Sea, and(b) Tallinn Bay (including ship tracks). The location of the wave recorder is
labeled “A”, and locations of virtual wave gauges are numbered 1–6.

deepest part of the bay and enter into relatively shallow water
(depth<50 m) at a distance of∼6–8 km from the harbour. It
is intuitively clear that even small variations to the sailing line
or speed of the north-bound ships may lead to considerable
variation in the wave generation regime, and consequently to
large variations of wake properties along the adjacent coast.
For this reason we focus on the variability of wakes for ships
sailing along this track.

Earlier field studies (Soomere and Rannat, 2003; Soomere,
2005) and recent numerical simulations (Torsvik and
Soomere, 2008) have shown that there is considerable spatial
variation in the impact of ship wakes at the coast in Tallinn
Bay. The most probable reason of this variability is the in-
terplay of high wave generation conditions (that occur along
specific sections of the sailing line and lead to excitation of
spatially limited “fans” of high waves) with a complex pat-
tern of topographic refraction. A preliminary study shows
that “hot-spots” frequently hit by large ship waves are located
at the SW coast of Aegna and parts of the Viimsi Peninsula
for north-bound ship tracks. Similar hot-spots apparently

exist on the southern coast of Tallinn Bay, from the Kopli
Peninsula to Pirita, and at Naissaar for south-bound ships.

An extensive field survey of ship wakes was undertaken
in June–July 2008 at Aegna Island, which was one such hot-
spot. Parnell et al.(2008) analyzed wakes recorded at a dis-
tance of 2.5–3 km from the ship track. As the crests of the
highest ship wakes make quite a large angle with respect to
the sailing line, the waves recorded at Aegna had travelled a
considerably longer distance from their point of generation.

Earlier studies of wakes from high-speed ferries interact-
ing with a variable bottom topography have mostly focused
on waves generated in channels (Mathew and Akylas, 1990;
Jiang et al., 2003; Torsvik et al., 2008), where the side walls
are steep or vertical, causing strong wave reflection at the lat-
eral boundaries. The joint influence of the slope and the wall
causes an interplay of the depth-induced changes of the entire
wake system, bottom refraction and shoaling, and reflection
from the wall. The typical result from such an interplay is
a local increase of the wave heights and slopes of the wa-
ter surface in areas where the incoming ship wakes interfere

Nonlin. Processes Geophys., 16, 351–363, 2009 www.nonlin-processes-geophys.net/16/351/2009/



T. Torsvik et al.: Variability in spatial patterns of waves from fast ferries 353

with the reflected waves (Miles, 1977; Peterson et al., 2003).
This increase may override the refraction-induced decrease
of the local wave height due to energy spreading along the
bottom isolines.

Tallinn Bay is, however, surrounded mostly by natural
beaches, not impermeable walls, which mostly dissipate the
wave energy. This is particularly true for a large part of
the coast of Tallinn Bay with a belt of boulders near the
waterline, down to the depths of about 2 m (Kask et al.,
2003; Parnell et al., 2008). On the other hand, considerable
parts of the coast have gently sloping beaches, where high
runup from ship waves are hazards both in terms of potential
intensification of coastal processes and with respect to the
safety of people and property (Parnell and Kofoed-Hansen,
2001). For waves with a fixed amplitude and wave length,
the steepest wave penetrates inland over the largest distance
(Didenkulova et al., 2006, 2007b; Zahibo et al., 2008). At
the same time runup of symmetric solitary pulses does not
depend on the variations of its shape (Didenkulova et al.,
2007a; Didenkulova and Pelinovsky, 2008). In this con-
text, an estimate of the typical and maximum runup height
of ship-induced waves and identification of potential differ-
ences compared to wind wave runup is especially important
for sustainable coastal management.

The work byBelibassakis(2003), who studied ship waves
propagating over a shoaling region at an oblique angle, con-
tain some features that are similar to our studies.Belibas-
sakis(2003) showed how wave refraction induced by a shelf
located parallel to the direction of ship propagation, would
transform the ship wake by bending the waves towards the
isolines in the bathymetry. However,Belibassakis(2003)
conducted his study with an idealized topography that was
uniform in the direction of the sailing line, and assumed that
the regions of wave generation and shoaling were well sepa-
rated. In our study we use a realistic bottom topography, and
the ship changes direction and speed along the track. This
makes the wave patterns in Tallinn Bay much more complex
and difficult to analyze.

This paper presents a selection of results from the field
survey, as well as from numerical simulations, and it is or-
ganized as follows. The methods of measurement are de-
scribed in Sect.2, along with a brief description of the nu-
merical model. The simulated wave pattern is described in
Sect.3. Wave profiles from the measurements and the nu-
merical model are presented in Sect.4. Wave runup is dis-
cussed in Sect.5. The main results are summarized in the
concluding remarks.

2 Field survey methods of and setup of the numerical
model

Simulations of ship wave patterns are made using a modified
version of the COULWAVE model (Lynett and Liu, 2002;
Lynett et al., 2002) for long and intermediate waves, using

Table 1. Dimensions of the HSCSuperSeaCat.

Length Beam Draught Displacement Service Speed

100.30 m 17.10 m 2.60 m 340 tonnes 35 knots

a similar approach as in (Torsvik and Soomere, 2008). The
ship is represented by a localized pressure disturbance de-
fined by

P(x, y, t)=p0 f (x, t) q(y, t) ,

f (x, t)=

{
cos2

(
π(x−x0(t))

2αL

)
, αL≤|x−x0(t)|≤L,

1 , |x−x0(t)|≤αL,

q(y, t)=

{
cos2

(
π(y−y0(t))

2βR

)
, βR≤|y−y0(t)|≤R,

1 , |y−y0(t)|≤βR ,

restricted to the rectangle|x−x0(t)|≤L, |y−y0(t)|≤R,
where(xo(t), y0(t)) is the coordinate for the center point of
the pressure disturbance (Liu and Wu, 2004). The pressure
disturbance is designed to approximately match the length
and displacement of the real ship hull (see Table1), which
has been accomplished by using the parametersp0=0.1 atm,
L=50 m,R=20 m, andα=β=0.75 in the simulations. The
pressure disturbance is made broader and shallower than the
actual ship hull in order to reduce the generation of large
amplitude, short crested waves. While inaccuracies in the
pressure disturbance are not likely to significantly alter the
periods of the long waves in the ship wake (see e.g.PIANC,
2003), they will contribute to errors with respect to the wave
height.

In contrast to previous studies we have taken full ad-
vantage of the parallelization of the model (Sitanggang and
Lynett, 2005), enabling us to model a substantial part of the
Tallinn Bay area using a spatial grid with a resolution of
1x=7.5 m. The bottom topography is based on data with
a resolution of 0.5′ (470 m) longitude and 0.25′ (463 m) lat-
itude. This results in a very smooth topography when inter-
polated on a 7.5 m×7.5 m grid. Although the bottom topog-
raphy in Tallinn Bay is fairly smooth, details in the bottom
topography, and the coastal zone in particular, may be lost.

It is important that the numerical model is adequate for de-
scribing the waves we want to study. Waves are generated at
depths of up toh=60 m, with dominating wave numbersk in
the range 0.03–0.05 m−1 (corresponding to wave lengthsλ in
the range 200–140 m), and wave amplitudes of up toa=1 m.
This giveskh≤3 andka≤0.05 for the long wave component
of the ship wake, which is within the range of applicabil-
ity for the Boussinesq model. The wave lengths are reduced
in shallow water, and may not be adequately resolved with
a 7.5 m grid resolution. A comparison with a coarser grid
of 10 m resolution showed that the leading wave group in
the ship wake was captured adequately down to 4 m depth,
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Fig. 2. Ship speed for the recorded tracks. The point of reference in
Tallinn is located at 59◦26.5′ N, 24◦46′ E.

but there was some divergence between the results at smaller
depths. However, the main features of the wake waves were
not altered by the difference in grid resolution. An attempt to
reduce the grid size to1x=5 m resulted in severe numerical
instabilities due to grid scale noise. As shown byLøvholt
and Pedersen(2009), most formulations of the Boussinesq
equations contain unstable modes, and the instabilities tend
to increase with higher spatial resolution.Løvholt and Ped-
ersen(2009) analyzed linear waves and found instabilities
due to steep gradients and short oscillations in the water
depth. This particular mechanism may not be the most signif-
icant for simulations of Tallinn Bay, where bottom slopes are
fairly smooth and gentle. However, the combined effect of
three-dimensional bathymetric features and nonlinear waves
may easily introduce similar unstable modes, requiring an in-
crease of dissipative effects in the numerical model to smooth
out grid scale noise.

The nearshore of the coastal slope of Tallinn Bay adjacent
to the north-bound track (along the Viimsi Peninsula and the
western coast of Aegna) usually has a belt of boulders, peb-
bles and cobbles at the shoreline and down to water depths
of 0.5–2 m. The seabed in deeper areas, at depths of 2–4 m,
typically comprise some cobbles and boulders, interspersed
amongst sand and small gravel. The seabed in deeper waters
(down to about 15 m) comprises an almost continuous sheet
of mixed finer sediments (sand and gravel) with some quite
large boulders (∼1 m above seabed) and clusters of boulders
(Kask et al., 2003; Parnell et al., 2008). Below 15 m depth
the seabed is generally smooth and covered with finer sed-
iments. The typical size of bedforms at these depths is a
few hundreds of meters (Lutt and Tammik, 1992; Soomere et
al., 2007). Such a structure of the bottom usually affects the
wave propagation mostly through bottom refraction, which
apparently is adequately reflected in simulations. Therefore,

only small-scale features in the immediate nearshore region
with a width of less than 1 km may be inadequately repre-
sented. The presence of the (small clusters of) boulders evi-
dently does not affect the basic properties of the long waves
such as the wave period and propagation direction, nor does
it cause local wave breaking. However, it obviously leads to a
certain damping of wave energy, in particular, in cases when
long waves propagate over extensive distances as described
above. Bottom friction has been modelled using the classical
quadratic form (Lynett et al., 2002)

Rf =
r

h+η
u|u|,

whereu is the horizontal velocity,h is the water depth,η
is the surface displacement, andr is the bottom friction co-
efficient. A value ofr=0.02 was used to account for these
features by introducing a sufficient level of wave energy dif-
fusion in the numerical model. The same value was success-
fully used byPedrozo-Acũna et al.(2006) in their study of
gravel beaches.

The simulations presented here are based on recent track
records for theSuperSeaCat(Fig. 1b), measured during the
period of field measurements at Aegna. The tracks were
recorded by GPS for two north-bound (track 1 on 29 June
2008 and track 2 on 5 July 2008) and two south-bound
(track 3 on 30 June 2008 and track 4 on 5 July 2008) tracks.
These records also provide information about the ship ve-
locity (Fig. 2) for the four tracks in Fig.1b. While the two
south-bound tracks more or less coincide, there are signif-
icant differences between the two north-bound tracks. The
reason for the difference is not known, but may be due to
traffic or weather conditions.

Records of ship positions were made with a sampling rate
of 1 Hz. The COULWAVE model interpolates track data to
fit with the time stepping of the model, and high frequency
error easily leads to large interpolation errors. In order to
avoid this problem, a 0.1 Hz record sample was used as input
for the numerical model. At this sampling rate we did not
experience any significant overshooting due to the spline in-
terpolation, as was reported byTorsvik and Soomere(2008).

The measurement program was carried out in June–July
2008 on the SW coast of Aegna, immediately west of a jetty
with low wave-reflecting propertiesParnell et al.(2008). An
ultrasonic echosounder (LOGaLevel®) mounted on a tri-
pod approximately 100 m from the coast, was used to record
wave properties offshore, outside the main shoaling and surf
zone. Two 5 m survey staffs anchored to the beach were used
as reference in the observation of wave runup. The maximum
extent of runup was recorded against the staffs for each in-
dividual wave in a wake event by a human observer, as well
as by a video camera mounted on a tripod. Further details
about the measurement program can be found inParnell et
al. (2008).
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The water depth at the tripod location varied from 2.5 to
2.8 m, and was close to 2.7 m on the days discussed in this
paper. Due to inaccuracies in the digitized topography, the
water depth in the numerical model at the tripod location
(WG-A in Fig. 1b) was only 1.2 m. The depth at the nearby
location WG-4 was 3.9 m, so this wave gauge is more rep-
resentative for waves outside the shoaling zone. As the bot-
tom isolines at the location of the measurement device are
more or less parallel to the crests of the largest ship waves,
changes to the wave parameters mostly occur due to shoal-
ing, bottom friction and possibly partial breaking. Although
the numerical model includes an eddy viscosity model for
handling wave breaking, the breaking zone is not resolved in
the numerical simulations, and wave breaking was therefore
excluded from the simulations.

Ship wakes exited in relatively shallow water exhibit group
structure where the appearance of the first group very much
resembles a typical dispersive open sea wave group. Al-
though the group structure is maintained as the waves ap-
proach the shore, wave dispersion is significantly reduced
in shallow water. The typical length of the first group of a
wake from a fast ferry (reduced to the measurement depth of
2.7 m) is about 500–800 m and thus much longer than the dis-
tance from the tripod location (or WG-A) to WG-4, and to the
runup measurement site (about 100 m). For waves with typi-
cal periods of∼10 s the difference of group and phase speed
is quite small for this depth. It can therefore be assumed
that the particular location of the crest of each wave within a
group varies insignificantly between the tripod and the coast,
and that individual waves observed during runup correspond
to individual waves recorded by the echosounder or numer-
ically simulated at WG-A. This assumption was verified vi-
sually: in all cases when ship waves were clearly identifiable
against the wind wave background (Fig.3), their crests kept
their identity all the way from the tripod to the coast.

3 Simulated wake wave patterns

Wave generation by ships is commonly characterized by the
length and depth Froude numbers, defined by

FL=
U

√
gL

, FH =
U

√
gh

,

respectively, whereU is the ship speed,g is acceleration
of gravity, L is the ship length, andh is the water depth.
The wave making resistance has a maximum in the so-called
hump speed region 0.4<FL<0.6. For theSuperSeaCat,
which has a length ofL=100.30 m, the hump speed re-
gion corresponds to velocities in the range from 12.5 m/s to
18.8 m/s, which corresponds to the normal operational speed
for this ship (Fig.2). Shallow water influences both the
wave making resistance, which has a maximum near the crit-
ical depth Froude numberFH =1, and the shape of the wake
wedge (Soomere, 2007). The apex angle of the Kelvin wedge

Fig. 3. Ship wakes approaching the coast of Aegna.

increases for near critical values ofFH , and transverse waves
moving in the direction of ship propagation disappear in the
supercritical regime.

Froude numbers for the two tracks shown in Fig.1 are
shown in Fig.4. South-bound ships frequently exceed the
critical valueFH =1, in the inner part of Tallinn Bay (Torsvik
and Soomere, 2008; Parnell et al., 2008), but they sail at
more moderate Froude numbers in the outer part of the bay
(Fig. 4). Since the location of the measurement site was
largely sheltered from south-bound ship wakes (and wakes
which arrived to the site were generated atFH <0.6 in the
outer part of Tallinn Bay), south-bound ship wakes were not
prominent in the wave records at Aegna. We will therefore
focus only on wakes from the north-bound tracks. North-
bound ships often travel at speeds corresponding to a depth
Froude number in the range 0.6–0.8 throughout the entire
bay. At the same time the length Froude numberFL for
SuperSeaCatis in the hump-speed range of 0.4–0.6, where
large amplitude wake waves regularly occur.

The features of the bathymetry of Tallinn Bay and restric-
tions on the choice of sailing line favour the generation of
wave packets of large, solitonic, very long and long-crested
waves (Soomere, 2005; Soomere et al., 2005). As the loca-
tions where high waves are likely to be generated are gener-
ally consistent, high ship waves almost always affect a few
clearly defined sections of the coast. However, there seems
to be a larger variability connected with north-bound tracks
than south-bound tracks. While the differences in ship speed
(Fig. 2) may be incidental, the topography along the south-
bound track is fairly homogeneous whereas the north-bound
tracks are almost parallel to a slope (Fig.1b). As a conse-
quence, the depth Froude number is more sensitive to slight
deviations in the north-bound tracks than in the south-bound
tracks (Fig.4).
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Fig. 4. Length and depth Froude numbers.(a) north-bound ships;
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Figure5 shows snap shots of wave patterns generated by
the vessel as it is passing Aegna. Although the location of the
ships on the panels do not coincide exactly, the figures show
mostly qualitatively similar wave patterns, but with some im-
portant differences. The wave amplitudes seem to be slightly
larger for track 1 (Fig.5a) than for track 2 (Fig.5b), which is
reasonable given the higher value ofFH for track 1 (Fig.4).
The largest difference is seen on the coast of Viimsi Penin-
sula, where a strong signal is seen in Fig.5a, but is virtually
absent in Fig.5b. We emphasize that the lowest contour level
are at±0.25 m displacement, and that smaller waves are not
represented in these figures.

Sailing in sea areas with variable topography is accompa-
nied by changes in the nature of the wake pattern both in
time and space (Jiang, 2001; Belibassakis, 2003; Jiang et al.,
2003; Torsvik et al., 2006). The most impressive changes
occur when the ship sails along underwater slopes so that the
geometry of the bottom is not symmetric with respect to the
sailing line. The overall shape of the resulting wave pattern
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Fig. 5. Wave patterns from simulations of north-bound leg. Ship
waves are drawn with contour levels at 0.5 m intervals, with the first
contours at±0.25 m.(a) Track 1;(b) Track 2.
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Table 2. Half-angles of the Kelvin wedge for ship wakes in Fig.5.

Western half-angle Eastern half-angle

Fig. 5a 21◦ 30◦

Fig. 5b 22◦ 26◦

(which is symmetric for the classical Kelvin wake for both
deep sea and for finite water depth) is then also asymmetric
(Belibassakis, 2003). For extensive slopes the half-angle of
the corresponding Kelvin wedge on different sides of the fair-
way may differ considerably in the vicinity of the ship. This
feature, which can be identified from Fig.5a and b, was mea-
sured from the images (Table2). While the apex angle of the
western half of the wake is approximately 21◦–22◦ (which is
slightly higher than the relevant deep-water value∼19.5◦),
the eastern apex half angle is noticeably larger.

The increase of the apex angle of the wake system, even
if accompanied by an increase of the largest wave heights,
does not necessarily lead to an increase in the wave loads at
the coastline. The decisive factor here is the geometry of the
coast. For instance, if a section of the coast is oriented so
that the distance to the sailing line increases in the sailing
direction, then the impact of an increase in wave heights at
high Froude numbers is to some extent compensated by an
increase in the apex angle. In such a case the extensive wave
refraction may lead to a decrease in the amount of ship wave
energy per unit length of the shore. This decrease may be
one of the reasons why the middle and northern part of the
Viimsi Peninsula receives relatively little amount of wake en-
ergy (Soomere and Rannat, 2003). Note that the observer at
the coast will simply identify a local decrease of the wave in-
tensity whereas most of the other wave properties remain the
same. An example of a wake “tail” at the coast, where the
waves have been redirected and the wave energy is spread
along the coast by refraction, can be seen along the northern
part of the Viimsi Peninsula in Fig.5a.

On the other hand, wave loads will experience no decrease
for coastal sections that are oriented opposite to the above;
for example, the SW coast of Aegna. For such sections the
impact of refraction-induced spreading may completely van-
ish.

The described asymmetry may considerably increase the
variability of the ship-induced wave field in sea areas with
complex geometry and bathymetry on top of the features de-
scribed in other studies (e.g. the finite extension of the “fan”
of ship wakes,Torsvik and Soomere, 2008; Parnell et al.,
2008). Our calculations show that energetic wakes excited
by the high-speed ferries currently operating in Tallinn Bay
most frequently impact the SW coast of Aegna, the coastal
section westwards from Tallinn Harbour, and the southern
end of Naissaar.

Table 3. Wave periods from measured and simulated wave profiles.

Water Track 1 Track 2
Depth Amplitude Period Amplitude Period

Measurement 2.7 m 0.45 m 10.5 s 0.20 m 8.6 s
WG-A 1.2 m 0.49 m 11.7 s 0.11 m 12.4 s
WG-1 4.5 m 0.52 m 10.2 s 0.38 m 9.8 s
WG-2 2.3 m 0.46 m 12.0 s 0.55 m 12.2 s
WG-3 3.3 m 0.74 m 12.3 s 0.19 m 11.7 s
WG-4 3.9 m 0.46 m 10.8 s 0.27 m 9.2 s
WG-5 2.8 m 0.20 m 11.0 s 0.14 m 8.9 s
WG-6 3.3 m 0.23 m 7.0 s 0.06 m 8.7 s

The above analysis suggests that the exact locations of the
largest wave loads substantially depend on the Froude num-
ber, which affects the geometry of the wake system. The
largest waves are expected to occur along specific sections
which are oriented almost parallel to ship wave crests at some
moderate Froude numbers. For certain sections, changes to
the ship wave geometry may even affect the prevailing direc-
tion of the ship-wave-induced sediment transport.

4 Numerical simulations and comparison with
measurements

Figure 6 show a comparison between simulated data and
wave records at WG-A (59◦34.26′ N, 24◦45.36′ E) and at
WG-4 (59◦34.12′ N, 24◦45.33′ E) (Fig. 1). The mea-
sured data has been filtered to remove high frequency
noise. The measured and simulated records are aligned
so that the largest waves in the first group of large waves
(H>1/2HMAX ) coincide in both the records. We note again
that the depths in the simulations (1.2 and 3.9 m), do not coin-
cide with the actual depth at the measurement site (∼2.7 m).

The simulated and measured records match fairly well for
both tracks in WG-4 (Fig.6c and d), and also for track 1 in
WG-A (Fig. 6a), but the amplitude is too small for the simu-
lated result of track 2 in WG-A (Fig.6b). The group with the
largest amplitude waves arrives first, and subsequent wave
groups have clearly smaller amplitudes. Although track 2
is located in close proximity to track 1 and the speeds of
the vessels along these tracks are almost equal as they pass
Aegna, the wake signal is very much different at the mea-
surement site. Wave profiles from track 2 differ from track
1, in that the first large wave group has a relatively small am-
plitude, and is preceded by a number of smaller amplitude
long waves. The amplitude of waves in the first large group
are also not significantly larger than in the subsequent groups
(Fig. 6b and d).

Table3 shows wave periods for the measured and simu-
lated wave profiles. The periods are calculated by averag-
ing over 4 peak-to-peak wave periods, two periods before
and two periods afterT =0 s in Figs.6 and 7. This result
confirms that the simulated wave periods mostly match well

www.nonlin-processes-geophys.net/16/351/2009/ Nonlin. Processes Geophys., 16, 351–363, 2009



358 T. Torsvik et al.: Variability in spatial patterns of waves from fast ferries

Time, s

W
a
v
e
h
e
ig
h
t,
m

m

measurement
simulation

(a) Time, s

W
a
v
e
h
e
ig
h
t,
m

m

measurement
simulation

(b)

Time, s

W
a
v
e
h
e
ig
h
t,
m

m

measurement
simulation

(c) Time, s

W
a
v
e
h
e
ig
h
t,
m

m

measurement
simulation

(d)

Fig. 6. Comparison between measured and simulated wave profiles. The depth at the measurement site was 2.5 m, and the depth at locations
of virtual wave gauges is indicated in the figures.(a) Track 1: WG-A;(b) Track 2: WG-A;(c) Track 1: WG-4;(d) Track 2: WG-4.

Table 4. Wave period for the leading wave group in Track 2.

Measurement WG-A WG-4

Period 10.4 s 13.0 s 10.2 s

(albeit slightly exceed) the measured wave periods. We also
note that WG-4 gives better agreement with the measurement
than WG-A, even though the latter wave gauge is located at
the measurement site. This result is perhaps not surprising,
given the inaccuracies in the bottom topography used in the
simulations. Given the differences in depth between WG-4
and WG-A one could have expected to see some indication
of wave shoaling, but this effect has been countered by dis-
sipative effects due to the bottom friction model and numer-
ical dissipation inherent in the time stepping scheme of the
model.

The results in Table3 exaggerate the difference in wave
period between the two recordings because the highest waves
at different gauges correspond to different parts of the wake.
Table4 shows estimates for the wave period of the leading
wave group for track 2, which shows that the periods of these
waves were consistently larger than 10 s.

The spatial variability of the ship waves can be, to some
extent, characterized by comparison of records from numeri-
cal gauges around the field measurement site. Figure7 shows
a comparison between simulated results for the two north-
bound tracks, for wave gauges 1–6. The depths at the loca-
tions of these wave gauges lie in the range 2–4.5 m. These
records demonstrate how complex the wake system can be-
come under the influence of a variable ship trajectory and
bottom topography. Figure7a and d show a reasonable agree-
ment between the two results, in Fig.7b the wave amplitudes
are of the same order, but the shape of the leading wave
groups are different, and Fig.7c shows significantly larger
wave amplitudes for track 1 than for track 2. It is evident
from these wave profiles that the main wave impact is on
the SW coast, and that the impact is significantly reduced
further east (Fig.7e and f), where the waves have traveled
longer over a shallow area, and both wave diffraction and
bottom friction have influenced the waves and diffused the
wave energy. Also this area may be indirectly sheltered by
the finite length of the “fan” of large waves. Although the
spatial variability is substantial for some of the wave gauges,
Table3 shows that there is considerably smaller variability
of the periods of the largest waves, which lies in the range of
approximately 9–13 s.
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Fig. 7. Comparison between simulated wave profiles at wave gauges 1–6.(a) WG-1; (b) WG-2; (c) WG-3; (d) WG-4; (e)WG-5; (f) WG-6.

Obviously, the large differences between wave records at
some wave gauges have their origin in the different speeds
and tracks of the ships, and far more tracks should be sim-
ulated to get realistic statistics to work with. Interplay of
wakes and bedforms may create zones of wave focusing,
where waves from different parts of the wake “fan” merge.
Even if these locations are well known, a slight variation in
a ship track may change the sites that the wake waves reach
simultaneously.

Some of the wave profiles (Figs.6c, 7c) show a complex
wave field which may stem from a superposition of two wave
fields originating from different parts of the wake “fan”. It

has been suggested that a ship may generate particularly
large waves during acceleration when it remains in the near-
critical regime for a long time (Torsvik et al., 2006; Torsvik
and Soomere, 2008). Since there are considerable differences
in the speed profiles of the two tracks (Fig.2), this effect may
also contribute to the observed differences in the ship wakes.

5 Observed results of wave runup

The runup of waves from fast ferries has similarity with the
runup of nonlinear tsunami waves generated by so-called
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Fig. 8. Waves measured at the tripod (solid line) and the wave
height measured at the runup stage (dashed line). The red circles
correspond to the heights of the waves at the tripod, which produce
runup on a beach.

finite volume sources that change the volume of the water
column above the source area and thus create a flux of water
carried by the wave. This similarity is due to the fact that
ships sailing in the near-critical regime usually create an ex-
tensive, long-living depression area in the vicinity of the ship
(Grimshaw and Smyth, 1986; Jiang, 2001; Gourlay, 2006;
Soomere, 2007).

It is commonly thought that ship-induced solitons are re-
sponsible for the transport of the water from the depression
area to the far-field. As the amplitude of such solitons is very
small in open sea areas, the highest (equivalently, the most
nonlinear) waves of the ship’s wake could be equally respon-
sible for such transport. The excess water carried by such
waves may considerably impact the runup properties of the
waves when the runup process occurs on top of a temporar-
ily increased water level at the coast, or on the background of
flow of the wave-carried water to the coast and the backwash
of this excess water.

As an example of runup measurements, we analyze data
from 29 June when the simulated and measured wave prop-
erties for track 1 well match each other. This day was not per-
fectly calm, but still offered reasonable conditions for runup
recordings and, in particular, for comparisons of the runup of
wind and ship waves of comparable height.

Wind waves and ship waves were usually clearly distin-
guished on calm days as well as on days with the signifi-
cant wave height of the natural waves below 50–60 cm. Wind
waves with the height of up to 0.5 m produced runup events
up to 20–30 cm above the still water level, with the runup
usually clearly smaller than the wave height. In general, the
runup of ship waves with a height of about 1 m frequently
reached well over 1 m above the still water level. A few
waves (not necessarily the highest) went over the berm crest
located>1.5 m above the still water level. In calm condi-
tions, the ship wave runup process usually started with a
significant rundown. This phenomenon was probably con-
nected with the presence of precursor solitons. Subsequently
a group of about 10 large-amplitude waves reached the coast.
The typical length of these large waves varied from 40 to

80 m (Fig.3). A more detailed description of the features of
the ship wave runup can be found in (Parnell et al., 2008).

A comparison of the measured waves at the tripod and
runup heights on a beach for the wake from track 1 on 29
June is presented in Fig.8. The recordings at the tripod
(solid line) and measurements on the beach (dashed line) are
matched by the time period of the first group of waves. The
red circles correspond to the heights of the waves at the tri-
pod, which produce runup on a beach. These waves are as-
sumed to be the largest waves, recorded at the tripod that fall
within the time intervals defined by two consecutive wave
runups on the beach. It follows from Fig.8 that the runup
recordings miss a few initial waves of the wake, the runup
of which probably was not noticeable to the observers. As
expected, the largest runup heights correspond to the group
of largest waves of the wake. The runup pattern has a group
structure similar to the wake, with a clearly distinguishable
low runup between the first group of the highest waves and
the second group of somewhat smaller but still significant
waves (seeParnell et al., 2008). While the very first waves,
waves between the two groups, and waves at the very end
of the wake produce runup almost equivalent to their mea-
sured heights, several waves (mostly the middle ones of the
groups) produce much larger runup values than one might
expect based on the wave height. As the periods of waves
gradually decrease with time in both groups (Soomere and
Rannat, 2003; Parnell et al., 2008), Fig. 8 confirms that the
difference in wave periods cannot explain the difference in
their runup heights. The excess of water carried to the site ei-
ther by precursor solitons or by the relatively long first wave
group might be an explanation why runup of these waves is
unexpectedly high.

This feature is further illustrated by means of a scatter dia-
gram of measured wave heights and the corresponding runup
(Fig. 9). The dotted line in Fig.9 is simply the diagonal.
The dashed line corresponds toHunt (1959) empirical for-
mula, which determines runup as a function of beach slopeα

(α=0.027 for the beach of Aegna), incident wave heightH ,
and wave steepness based on laboratory data and explains
the behavior of low-height breaking waves, the surf simi-
larity parameter for which is 0.1<ξ<2.3 (in our experiment
ξ∼0.6):

R=Hξ , ξ=α
√

λd/Hd , (1)

whereHd is the wave height andλd is the wavelength of
waves in deep water (at a depth of 30 m). It follows from
Eq. (1) and Fig.9 that the runup of these waves does not
significantly depend on the wave height. The solid line in
Fig. 9 is an enhanced prediction based on the run-up of dis-
persive and breaking waves, proposed byMassel and Peli-
novsky(2001), and describes the behavior of the waves with
medium heights:
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Fig. 9. Scatter diagram of wave heights measured at the tripod and
at the runup stage. The dotted line is the diagonal, the dashed line
corresponds toHunt (1959) Eq. (1), and the solid line corresponds
to Eq. (2), given byMassel and Pelinovsky(2001).

R=2H

∣∣∣∣ 2

J0(ε)−i
√

1+iγ J1(ε)

∣∣∣∣ , (2)

ε=2ω

√
(1+iγ )L

αg
, γ=0.937

δ

π
α0.155

(
Hd

λd

)−0.13

,

whereL is a distance from the wave to the shoreline (L=100
m in the experiment),ω is a wave frequency, andδ is an ex-
perimental parameter of the order one (δ=1 is used in Fig.9).

The distribution of the height and runup properties of
different waves in Fig.9 suggests that the set of recorded
waves can be divided into three classes. About a half of
the waves, mostly the shortest waves from those forming the
ship wake, produce runup heights of 20–40 cm. Their runup
does not significantly depend on the wave height. These low-
height breaking waves (stars in Fig.9) can be described by
means developed byHunt (1959) Eq. (1). The second group
of (medium-height) waves, mostly representing the highest
waves of the second group of the wake (cf.Soomere, 2007),
generally produce larger runup than their heights. The em-
pirical relation between their heights and runup properties
(circles in Fig.9) is in good agreement with Eq. (2), given by
Massel and Pelinovsky(2001). The most interesting group
are the highest waves of the first group of the wake (squares
in Fig. 9), which are usually breaking waves. The presented
results suggest that their runup height can be described nei-
ther by Eq. (1) nor (2). As mentioned above, their excess
runup height may be connected with the excess water carried
to the coast by these evidently nonlinear waves.
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Fig. 10. The scatter diagram of periods of waves measured at the
tripod and at the runup stage. The dotted line is the diagonal.

Partial wave breaking in the nearshore changes to some
extent the observed properties of the waves at the runup mea-
surement site. In realistic conditions, some (usually shorter
and/or smaller) waves from the wave group partially break
before they reach the coast. This phenomenon may be con-
nected with intense backwash from preceding waves. If
smaller waves follow a large wave, the backwash of the larger
wave may completely mask runup of the smaller waves.
Therefore, it is not unexpected that the number of waves cre-
ating measurable runup is smaller than the number of waves
measured at the tripod.

Figure10 shows the scatter diagram of peak-to-peak peri-
ods of waves measured at the tripod and at the runup stage.
The periods of the waves at the beach can be taken directly
from the measurements, and the corresponding wave period
from the tripod is found by taking the peak-to-peak period
between the largest wave within the time interval defined
by two consecutive runup events, and the largest preceding
wave. The wave heights of the waves at the tripod used in
Fig. 10 are marked as red circles in Fig.8. It follows from
Fig. 10 that the periods of the waves at the tripod and at the
runup stage are in a good agreement. Thus, the ship waves
usually do not merge and each runup record reflects the prop-
erties of a single ship wave.

6 Concluding remarks

The results presented from a combined numerical and exper-
imental study of high-speed ferry wakes in Tallinn Bay show
that it is generally feasible to reproduce both qualitative and
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quantitative features of the remote field of ship wakes using a
numerical model. Simulated wave periods mostly well match
(albeit tend to slightly exceed) the measured values. The
reasonable choice of the parameters of the numerical scheme
reflecting local properties of the seabed leads to overall re-
liable estimates of the local ship wave heights in the coastal
zone, even at a distance of several kilometres from the sailing
line.

Our analysis suggests that the largest differences between
the simulated and measured wake properties (equivalently,
uncertainties in estimates of the wave heights) frequently
stem from an inexact representation of the spatial extension
of the high ship waves. The latter is the most sensitive param-
eter of the ship wake, the detailed properties of which depend
on both sailing regime and local topography. The uncertain-
ties stemming from the spatial variability of the extension of
ship wakes may lead to an underestimation of the potential
ship wave loads by an order of magnitude. An exact nu-
merical forecast of extreme ship wake conditions, therefore,
needs not only a more detailed topography in order to im-
prove the quality of the forecast, but also a large number of
simulations for variations in the sailing line and perhaps even
variations of topography in order to account for the poten-
tial changes to the spatial extent of the wake pattern. Other
features may also be improved, such as including a realistic
wave breaking model, or perhaps including filtering of high
frequencies in the near shore region, in order to reduce the
generation of high frequency waves in the shoaling zone. The
representation of the ship may be improved as well, but it is
not clear that this would significantly improve the prediction
of wave conditions at the coast.

The results show a significant variability in the ship wake
profiles in the near shore region. There is both a spatial
variability for each individual track, and variability between
different tracks. However, there seems to be some general
trends in the occurrence of extreme waves at the coast, as
seen when comparing locations further east of WG-A with
locations further west.

There is a clear correlation between the offshore wave
height and the runup height. However, the records suggest
that the relationship between runup height and the parame-
ters of particular waves and perhaps even the particular loca-
tion of a single wave in a group is very complex.

Due to the large variability shown in the data, performing
extensive field studies and the use of statistical methods will
be essential in further analysis of the ship wake properties.
This is achievable with the existing wave records and runup
data at a single point (Parnell et al., 2008), but there is a clear
lack of data about the properties of spatial variability of ship
waves connected with the variations of ship tracks.

As ship wake events consist of a multitude of different
wave forms, such as essentially perfect solitons, highly non-
linear, almost solitonic cnoidal waves, strongly asymmetric
waves, and almost sinusoidal entities (Soomere et al., 2005;
Parnell et al., 2008), they may provide an excellent means

by which to further our understanding of the relationship be-
tween different wave types and coastal processes.
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