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Abstract. Statistical frequency-size (frequency-magnitude)
properties of earthquake occurrence play an important role
in seismic hazard assessments. The behavior of earthquakes
is represented by two different statistics: interoccurrent be-
havior in a region and recurrent behavior at a given point on
a fault (or at a given fault). The interoccurrent frequency-
size behavior has been investigated by many authors and
generally obeys the power-law Gutenberg-Richter distribu-
tion to a good approximation. It is expected that the recur-
rent frequency-size behavior should obey different statistics.
However, this problem has received little attention because
historic earthquake sequences do not contain enough events
to reconstruct the necessary statistics. To overcome this
lack of data, this paper investigates the recurrent frequency-
size behavior for several problems. First, the sequences
of creep events on a creeping section of the San Andreas
fault are investigated. The applicability of the Brownian
passage-time, lognormal, and Weibull distributions to the re-
current frequency-size statistics of slip events is tested and
the Weibull distribution is found to be the best-fit distribu-
tion. To verify this result the behaviors of numerical slider-
block and sand-pile models are investigated and the Weibull
distribution is confirmed as the applicable distribution for
these models as well. Exponentsβ of the best-fit Weibull
distributions for the observed creep event sequences and for
the slider-block model are found to have similar values rang-
ing from 1.6 to 2.2 with the corresponding aperiodicitiesCV

of the applied distribution ranging from 0.47 to 0.64. We
also note similarities between recurrent time-interval statis-
tics and recurrent frequency-size statistics.
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1 Introduction

The statistics of earthquake occurrence exhibit two types of
behavior. In this paper we will follow the terminology in-
troduced by Abaimov et al. 2007b). The term“interoccur-
rent” (or “interoccurrence”) refers to earthquake sequences
on all faults in a region. The term“recurrent” (or “recur-
rence”) refers to earthquake sequences on a single fault or
fault segment. Earthquakes will be referred to ascharacter-
istic earthquakes if they have approximately the same rupture
area equivalent to the area of the fault or fault segment. More
specifically, the probability density function (pdf) of areas
must have a well-defined maximum and a coefficient of vari-
ation in the range 0.3 to 0.7. Two examples of characteristic
earthquakes are the sequence of large earthquakes that have
occurred on the Parkfield section of the San Andreas fault
in California (Bakun et al., 2005) and the sequence of great
earthquakes that have occurred on the southern section of the
San Andreas fault (Biasi et al., 2005).

An important aspect of earthquake behavior concerns the
statistical properties of time intervals between successive
earthquakes. We refer to these as thetime-intervalstatis-
tics. Another important aspect of earthquake occurrence is
the distribution of earthquake sizes (magnitudes). We refer
to these as thefrequency-sizestatistics. This paper investi-
gates therecurrent frequency-sizestatistics ofcharacteristic
earthquakeson a fault(or fault segment) or at a given point
on a fault. We will be primarily concerned with the slip am-
plitudesS.

To estimate the seismic hazards for a region it is neces-
sary to know the statistical properties of earthquake occur-
rence. The interoccurrent statistics play an important role in
these assessments. Theinteroccurrent frequency-sizestatis-
tics have been investigated by many authors and have been
shown to obey the power-law Gutenberg-Richter distribution
(Gutenberg and Richter, 1954) under a wide range of condi-
tions. This type of interoccurrent scale-invariant behavior
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was also found for simulations of the slider-block model
(Carlson and Langer, 1989), and for the sand-pile model
(Bak et al., 1988).

Alternative measures of the size of an event are avail-
able. Earthquake size can be measured not only by the earth-
quake’s emitted energy or seismic moment, but also by the
average slip amplitude. The energy of an eventE has a power
law dependence on the average slip amplitudeS

E ∝ Sδ (1)

where δ is typically equal to 3 (Kanamori and Anderson,
1975). Gutenberg-Richter power law dependence is invariant
to power law transformations. Therefore Gutenberg-Richter
power law statistics for a region are valid not only for the
frequency-energy distributions but also for the frequency-
amplitude distributions.

However, knowledge of only interoccurrent properties is
often not sufficient to inherently improve seismic hazard es-
timations. It is also necessary to know the statistical prop-
erties of another type of behavior – therecurrent behavior
at a given point on a fault or on a given fault. Unfortu-
nately, there is much less information available on this type
of behavior. The reason for this is that this type of behav-
ior is much more difficult to investigate (Savage, 1994). For
the interoccurrent frequency-size statistics of a region it is
only necessary to count magnitudes of earthquakes that have
occurred in this region. For the recurrent behavior it is re-
quired to associate these earthquakes with a specific fault or
fault segment. As a result, the question of which statistics
correspond to the recurrent behavior of earthquakes remains
controversial. In addition, while the recurrent time-interval
statistics have been investigated by many authors (Abaimov
et al., 2007a, b; Matthews et al., 2002; Molchan, 1990, 1991;
Nishenko and Buland, 1987; Rikitake, 1982; Utsu, 1984),
only a few attempts have been made to investigate there-
current frequency-sizestatistics (e.g., Abaimov et al., 2007a;
Bakun et al., 2005).

This paper focuses on investigating therecurrent
frequency-sizestatistics of characteristic earthquakes on a
fault or at a given point on a fault. As a specific example we
will consider the recurrent frequency-size statistics of creep
events on a creeping section of the San Andreas fault. We
previously carried out a detailed study of the recurrent time-
interval statistics of these events (Abaimov et al., 2007a). We
will note the strong similarities between time-interval and
frequency size statistics for these events. Because of this
similarity we will apply the same trial distributions in this
paper for the frequency-size distributions that we previously
applied to the time-interval distributions. For this reason we
consider the Weibull, Brownian passage-time, and lognormal
distributions. It can be argued that the Weibull distribution
(also known as the Rosin-Rammler distribution) is the pre-
ferred distribution since it is widely applied to both time in-
terval statistics, i.e. earthquakes, and to frequency-size statis-

tics, i.e. fragments. We will conclude that the Weibull distri-
bution is in fact the preferred trial distribution.

If there were no fault complexity and displacements were
applied to a fault at a constant rate, then the statistics of re-
current time-intervals and sizes would be identical. However,
this would imply the applicability of the time-predictable
or slip-predictable models (Shimazaki and Nakata, 1980).
Abaimov et al. (2007a) studied the applicability of these
models to the recurrent slip events on the San Andreas fault
and found no well defined predictability. However, the simi-
larities in the distributions of time-intervals and sizes demon-
strated in this paper are striking.

In Appendix A we briefly describe these distributions. The
measures of goodness-of-fit that we use to evaluate the appli-
cability of these distributions are described in Appendix B.
These include the Kolmogorov-Smirnov test, the root-mean-
squared error test, and visual inspection.

Ideally, observed sequences of earthquakes on a fault
would be used to establish the applicable statistical distribu-
tion. However, the numbers of events in observed earthquake
recurrent sequences are not sufficient to establish the validity
of a particular distribution (Savage, 1994). To illustrate this,
in Sect. 2 we will consider the sequence of earthquakes on
the Parkfield segment of the San Andreas fault.

In Sect. 3 of this paper we study sequences with a large
number of recurrent events. For this purpose we investigate
a creeping section of the San Andreas fault. Creep events
on the central section of the San Andreas fault have been
studied extensively. Creep measurements have been carried
out since the 1960s by US Geological Survey and show both
steady-state creep and well defined slip events (Langbein,
2004; Schulz et al., 1982, 1983; Schulz, 1989). We consider
the recurrent statistics of slip events that are superimposed on
the steady-state creep. In this case, we have enough events
to differentiate among alternative proposed distributions. In
each case we compare the data (sample distribution) with the
three trial distributions and provide tests of goodness-of-fit.

Although the creep records provide enough (up to 100)
events in a sequence to differentiate among the alternative
trial distributions, we extend our testing with the aid of nu-
merical simulations. A slider-block model is often used to
study earthquake behavior on a given fault (see e.g. Abaimov
et al., 2007b; Abaimov et al., 2008; Carlson and Langer,
1989). Therefore, in Sect. 4 we investigate the recurrent be-
havior of the stiff slider-block model.

A sand-pile model was a basic model for developing the
original theory of self-organized criticality (Bak et al., 1988).
The applicability of self-organized principles to earthquakes
is often discussed in the literature. Therefore we extend our
recurrent behavior analysis to this model as well in Sect. 5.
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2 Parkfield sequence

Ideally, recurrent sequences of earthquakes would be used
to establish a preferred statistical distribution. Unfortu-
nately, the number of earthquakes available through histori-
cal records is generally too small for adequate statistical test-
ing.

As an example we consider the sequence of seven char-
acteristic earthquakes that occurred on the Parkfield (Cal-
ifornia) section of the San Andreas fault between 1857
and 2004 (Bakun et al., 2005). The slip rate is quite
high (≈30 mm/year) and the earthquake magnitudes are rel-
atively small (m≈6.0), thus the recurrent times are short
(≈25 years). Also, this fault is subject to a nearly constant
driving velocity due to the relative motion between the Pa-
cific and North American plates. Earthquakes on the Park-
field section of the San Andreas fault occurred in 1881, 1901,
1922, 1934, 1966, and 2004 with magnitudes ranging be-
tween 6.0 and 6.05 from instrumental estimates and from 5.9
to 6.1 using the modified Mercalli intensity for an epicenter
location on the 2004 rupture (Bakun et al., 2005). For the
size of an event here we use the seismic moment or energy
of this event.

However, the small number of registered earthquakes
makes the application of statistical estimations impossible
(Savage, 1994). And this problem is relevant not only for
the Parkfield sequence. Other earthquake sequences are also
similarly short (e.g., Okada et al., 2003; Park and Mori,
2007). Studying sequences of smaller events also has intrin-
sic difficulties. Although smaller earthquakes have shorter
periods of recurrence, another problem appears when one at-
tempts to reconstruct the associated recurrent statistics on
a particular fault. In other words, while for large magni-
tude earthquakes, like the Parkfield sequence, it is possible
to associate the events with a particular fault, the sequences
are short. In contrast, for small magnitude earthquakes it
is generally impossible to reconstruct the recurrent statistics
due to the difficulty of associating the earthquake waveform
with the rupture of a particular fault or fault segment. Even
nearby locations and waveforms could belong to different
faults for small magnitude earthquakes. And, vice versa, dif-
ferent waveforms can be generated by the same fault. There-
fore it is impossible to solve the problem using only historic
recorded earthquake sequences.

The sequence of Parkfield earthquakes does, however, give
a suggestion that the actual recurrent frequency-size distri-
bution of characteristic events is much more repetitive (has a
much lower aperiodicity) than the interoccurrent power-law
Gutenberg-Richter distribution. Indeed, it is difficult to as-
sociate the almost repetitive magnitudes (in the range from
5.9 to 6.1) of the Parkfield sequence with the scale-invariant,
power-law Gutenberg-Richter distribution. In fact, exactly
repetitive distribution (δ-function, all magnitudes are equal)
is often used in probabilistic seismic hazard assessments.
Is the recurrent frequency-size distribution of characteristic

events indeed exactly repetitive? Do earthquake magnitudes
have no variability? Is there an actual statistical distribution
that should be used instead of theδ-function? This paper
examines these questions.

3 Slip events on a creeping section of the San Andreas
fault

We now consider the recurrent statistics of slip events on the
creeping section of the San Andreas fault in California. To
do this we utilize records from two creepmeters on the San
Andreas fault (Schulz, 1989). One of these is located near
the Cienega Winery, 16.9 km southeast of San Juan Bautista
(station “cwn1”, latitude 36◦45.0′, longitude 121◦23.1′). The
creep measurements have been recorded since June 1972 by
the US Geological Survey (USGS), and show that the aver-
age long-term creep rate is about 11.5 mm/year. The second
creepmeter is located near Harris Ranch, 12.8 km southeast
of San Juan Bautista, and 4.1 km northwest from cwn1 (sta-
tion “xhr2”, latitude 36◦46.3′, longitude 121◦25.3′). These
creep measurements have been recorded by the USGS since
April 1985, and show that the average long-term creep rate
is in the range of 6 to 9 mm/year. The recorded data for
both creepmeters can be downloaded from the USGS web
site (Langbein, 2004).

Each creep record provides a unique opportunity to deter-
mine the complete sequence of events taking place at a given
creepmeter location. In contrast to earthquakes, the rate of
occurrence for creep events is much higher. Also each ob-
served sequence of creep events provides a complete record
of all events which occurred at a given location. This pro-
vides an opportunity to associate events not only with the
given fault but also with a given point of this fault. There-
fore the reconstruction of event sequences from creep records
gives both the longest possible sequences (up to 100 events)
and the most accurate determination of the location of recur-
rent events.

For both creepmeters the data contain both daily and
10 min telemetry records. Although there are longer se-
quences of daily records, the 10 min data also are used inde-
pendently because they provide more accurate slip amplitude
resolution. Details of our investigation of the creep events
have been given in our previous publication (Abaimov et al.,
2007a). The recurrent time-interval statistics were studied in
detail. In this paper we carry out a similar analysis of the
recurrent frequency-size statistics.

For earthquakes, the duration of an event is on the order
of seconds to minutes and can be neglected in comparison
with the preceding period of slow stress accumulation. In
contrast, for creep records, the duration of an event can be on
the same order as the interval between events. Therefore spe-
cial techniques are required to distinguish one event from the
next. To do this we use the criterion “separated by stationary
creep”. If, after a well defined jump, the slip rate returns to
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Fig.1(a): Abaimov S.G. Self-organized...
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Fig.1(b): Abaimov S.G. Self-organized...
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Fig.1(d): Abaimov S.G. Self-organized...
Fig. 1. Recurrent creep events (at a given point on a fault): cumulative number of slip events greater thanS0, N(S≥S0), versus the slip
amplitude,S0, for the (a) xhr2 10 min record,(b) cwn1 10 min record,(c) xhr2 daily record, and(d) cwn1 daily record. The cumulative
distribution functions are integrated from large to small amplitudes and are not normalized (similar to the Gutenberg-Richter distribution
except only linear scales for both axes).

a stationary creeping state before the next jump, these two
jumps are treated as separate. Otherwise, if one jump trig-
gers another one in a transient, non-stationary process, these
jumps are considered to be a single event.

Of course, there is a possibility that one independent event
can occur shortly after another while the creep record is still
in the non-stationary regime. For this case we would miss
the real independent event. The same problem holds for a
system with discrete events such as earthquakes when it is
not possible to distinguish among aftershocks just immedi-
ately after a mainshock. For the creep events the situation
is even worse as sometimes the duration of an event can be
comparable with the interval between events. In the creep
records there are eight suspicious event occurrences (of the
total 104 number of events) for the cwn1 daily record and
four suspicious events (of the total 76 events) for the xhr2
daily record. Although this error can disturb the statistics we
see that it is about 8% or less and therefore can be neglected.
However, one important consequence is that this error can

produce outliers when amplitudes of several events are com-
bined into one. In fact, we see one of these combined outliers
with the amplitude about 9 mm in Fig. 1.

To filter the telemetry noise, threshold levels for slip am-
plitude are used: 0.077 mm for 10 min xhr2 telemetry,
0.078 mm for 10 min cwn1 telemetry, 0.3 mm for xhr2 daily
telemetry, and 0.31 mm for cwn1 daily telemetry. These
thresholds are chosen to be as low as possible. For the ampli-
tudes below these thresholds it is not possible to distinguish
individual creep events from the noise in the signal.

For the size of an event we will use its slip amplitude.
The cumulative recurrent frequency-amplitude distributions
of slip events for the 10 min xhr2 and cwn1 records are
given in Fig. 1a and bon linear axes. For each value of
slip amplitudeS0, N(S≥S0) is the number of events with
amplitudesS greater thanS0. The data show a smooth
dependence except for small amplitudes. The anomaly of
small amplitudes could be associated with the presence of
non-characteristic events. In order to obtain sequences of
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Table 1. Creep event sequences: The recurrent slip amplitude statistics at a given point on a fault. For all sequences the parameters of the
best-fit Brownian passage-time, lognormal, and Weibull distributions are given as well as the goodness-of-fit estimators.

Sequence Data or fit Data or fit parametersa Goodness-of-fit estimators
DKS QKS Cdf

RMSE
Weibull
plot
RMSE

xhr2 10 min 51 events

Sample distribution µ=2.4 mm CV =0.56 Not applicable
Brownian passage-time µ=2.4±0.2 mm CV =0.72±0.08 0.18 0.07 0.09 0.3
Lognormal ȳ=0.71±0.09b σ y=0.65±0.06b

(CV =0.72±0.09)
0.14 0.2 0.07 0.2

Weibull τ=2.7±0.2 mm β=1.9±0.2
(CV =0.55±0.05)

0.09 0.8 0.04 0.09

cwn1 10 min 45 events

Sample distribution µ=3.4 mm CV =0.48 Not applicable
Brownian passage-time µ=3.4±0.3 mm CV =0.60±0.07 0.15 0.2 0.07 0.4
Lognormal ȳ=1.10±0.08b σ y=0.55±0.06b

(CV =0.59±0.07)
0.13 0.4 0.06 0.3

Weibull τ=3.9±0.3 mm β=2.2±0.2
(CV =0.47±0.05)

0.07 0.97 0.03 0.08

xhr2 daily 76 events

Sample distribution µ=2.6 mm CV =0.58 Not applicable
Brownian passage-time µ=2.6±0.2 mm CV =0.83±0.08 0.19 0.007 0.10 0.2
Lognormal ȳ=0.73±0.08b σ y=0.73±0.06b

(CV =0.83±0.09)
0.15 0.07 0.07 0.19

Weibull τ=2.9±0.2 mm β=1.78±0.16
(CV =0.58±0.05)

0.08 0.7 0.04 0.09

cwn1 daily 104 events

Sample distribution µ=3.2 mm CV =0.52 Not applicable
Brownian passage-time µ=3.2±0.3 mm CV =0.81±0.07 0.18 0.002 0.10 0.3
Lognormal ȳ=0.98±0.07b σ y=0.70±0.05b

(CV =0.80±0.07)
0.13 0.05 0.07 0.3

Weibull τ=3.63±0.19 mm β=2.00±0.16
(CV =0.52±0.04)

0.10 0.3 0.04 0.12

a The error bars are 95% confidence limits.b Units of data in mm.

characteristic events we impose an amplitude threshold of
0.3 mm and discard small amplitude events below this thresh-
old. This approach appears to be reasonable. Indeed, the
peak of non-characteristic events is narrow therefore its re-
moval does not influence the statistics of the remaining char-
acteristic events significantly.

The discussion above seems to be ambiguous because it
appears as if we are removing the peak of small ampli-
tudes only because it does not follow the ‘smooth’ curve of
statistics and because we attribute these events to be non-
characteristic. The difficulty here, as for the case of earth-
quakes, is that we cannot determine the real extension of the
rupture of an event under Earth’s surface. Therefore we do
not have a specific, detailed criterion for the separation of
characteristic events. The technique, described above, is in
fact inspired by the numerical simulations of the slider-block
model. As we will see below (Fig. 5a–c), the statistics of
events in this model are quite similar to the statistics of creep
events. We see the same peak for small amplitudes, followed

by an inverse “s”-shaped curve. But for events in the slider-
block model we exactly know their spatial extension. Below
we will attribute only system-wide events (when all blocks
of the model participate in an avalanche) as the characteris-
tic events. If then we take a closer look at what the influ-
ence is of non-characteristic events in the distribution of the
slider-block model, we see that the peak of small amplitudes
is primarily composed by them. Figure 5d–f illustrate what
happens if we filter the non-characteristic events out of the
statistics. The only significant change is that we no longer
see the peak of small amplitudes. This behavior is what led
to our decision to remove the peak of small amplitudes for
the statistics of creep events also in order to obtain the distri-
butions only of characteristic events.

The cumulative recurrent frequency-amplitude distribu-
tions of slip events for the xhr2 and cwn1 daily records are
given in Fig. 1c and don linear axes. Here the low resolution
of the telemetry data does not allow us to distinguish small
amplitude events. Therefore we assume that these sequences
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Fig. 2. Creep events (at a given point on a fault): the recurrent cumulative frequency-amplitude distributions for the sequences of 51 slip
amplitudes of the xhr2 10 min record,(a) and (b), and of 45 slip amplitudes of the cwn1 10 min record,(c) and (d). In (a) and (c) the
cumulative distribution functions of recurrent slip amplitudes are given as solid lines. The corresponding Weibull plots are given in (b)
and (d) as diamonds. In all cases the data are compared with the best-fit Brownian passage-time distributions (dashdot lines), the best-fit
lognormal distributions (short-dash lines), and the best-fit Weibull distributions (long-dash lines).

already contain only characteristic events. The telemetry res-
olution acts here as the amplitude threshold 0.3 mm.

The frequency-amplitude distributions given in Fig. 1a–
d clearly are not the power-law Gutenberg-Richter statis-
tics normally associated with the frequency-magnitude dis-
tribution of earthquakes in a large region (Gutenberg and
Richter, 1954; Kanamori and Anderson, 1975; Pacheco et
al., 1992; Rundle and Klein, 1993). This is not surprising
since Gutenberg-Richter statistics are associated with earth-
quakes that occur on many faults. For the recurrent statistics
of “characteristic events” more repetitive distributions (with
lower aperiodicity) should be considered.

The traditional way to construct the Gutenberg-Richter
distribution is to integrate eventsfrom large to small am-
plitudes. The cumulative distribution function (cdf) repre-
sents the number of events with amplitudes equal or greater
than the current and is not normalized. Gutenberg and
Richter (1954) introduced this technique for the interoccur-
rent statistics because the number of small events in a region
is infinite and it is impossible to integrate cdf starting from
zero. Frequency-size statistics in Fig. 1a–d have been con-
structed in the similar way, only, in our case, for a linear-

linear scale for both axes. This technique is relevant and
works well for the case of the interoccurrent statistics in a
region. However, the recurrent frequency-size statistics have
a tendency to be more periodic and the power law divergence
of statistics at zero amplitude is absent in this case. There-
fore, the using of the Gutenberg-Richter technique for the
case of the recurrent statistics is confusing and not required.

We will construct the recurrent statistics as it would be
done by statisticians. For this purpose we integrate events
from small to large amplitudesand divide the result by the
total number of events. The cumulative distribution of 51
recurrent slip amplitudesP(S) for the xhr2 10 min event
sequence is given as a function of the slip amplitudeS in
Fig. 2a. The cumulative distribution of 45 recurrent slip am-
plitudesP(S) for the cwn1 10 min event sequence is given as
a function of the slip amplitudeS in Fig. 2c. The means and
coefficients of variation of these recurrent slip amplitudes are
given in Table 1. Also included in Fig. 2a and c are the best-
fits (maximum likelihood fits) of the Brownian passage-time,
lognormal, and Weibull distributions. Both the parameters of
these fits and the goodness-of-fit estimators are given in Ta-
ble 1.
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Fig. 3. Creep events (at a given point on a fault): the recurrent cumulative frequency-amplitude distributions for the sequences of 76 slip
amplitudes of the xhr2 daily record,(a) and (b), and of 104 slip amplitudes of the cwn1 daily record,(c) and (d). In (a) and (c) the
cumulative distribution functions of recurrent slip amplitudes are given as solid lines. The corresponding Weibull plots are given in (b)
and (d) as diamonds. In all cases the data are compared with the best-fit Brownian passage-time distributions (dash-dot lines), the best-fit
lognormal distributions (short-dash lines), and the best-fit Weibull distributions (long-dash lines).

In Fig. 2b and d the recurrent statistics for the xhr2
and cwn1 10 min event sequences are plotted in the form
−ln(1−P(S)) versusS in log10–log10 axes. In this form the
Weibull distribution is a straight-line fit with slopeβ so that
this is known as a Weibull plot. Also included in these figures
are the previous best-fits of the Brownian passage-time, log-
normal, and Weibull distributions with RMSE in the log10–
log10 axes given in Table 1.

Equivalent results for 76 recurrent slip amplitudes for the
xhr2 daily event sequence and 104 recurrent slip amplitudes
for the cwn1 daily event sequence are given in Fig. 3a–d.
The means, coefficients of variation, and parameters of fits
are given in Table 1.

The goodness-of-fit estimators shown in Table 1 demon-
strate that the fits of the Weibull distribution for all four
sequences are better than those of either the lognormal or
Brownian passage-time distributions. In particular, the val-
ues ofDKS and RMSE for both the cdf and Weibull plots are
significantly smaller, and the values ofQKS are significantly
larger for the Weibull distribution than the corresponding val-
ues for the fits of the other distributions. However, only the
Brownian passage-time distribution for the daily records can

be rejected at the 5% confidence level. Also, direct visual in-
spections indicate the strong tendency of the sample distribu-
tions to be linear on Weibull plots, i.e., the intrinsic property
of the Weibull distribution.

4 Slider-block model

In this section we consider the behavior of a slider-block
model in order to study the statistics of event sizes. We uti-
lize the linear 500 block model considered by Abaimov et
al. (2007b). The model is illustrated in Fig. 4. It is our ob-
jective here to study the recurrent frequency-size statistics of
the model with the same parameter values used in the recur-
rent time-interval studies. Details of the model are given in
Appendix C.

For the stiff system withα=1000 the system-wide
(500 block) events dominate. If we assume that each block
represents an asperity and the whole model represents a fault
or fault segment it is reasonable to conclude that the system-
wide events correspond to characteristic events. It is im-
portant here to understand what happens when the slider-
block model reaches its critical point (infinite stiffness of
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VL
kLkLkL

m m m

F1 F2 FN

kC kC kC 

Fig. 4. Illustration of one-dimensional slider-block model. A linear
array ofN=500 blocks of mass m is pulled along a surface at a con-
stant velocityVL by a loader plate. The loader plate is connected to
each block with a loader spring with spring constantkL and adja-
cent blocks are connected by springs with spring constantkC . The
frictional resisting forces areF1, F2, ...,FN .

the infinite model; Abaimov, 2009). In the limit of infinite
model size (infinite number of blocks) the frequency-size dis-
tributions of events are power-laws. However for a model of
finite size the statistics are influenced by the finite-size ef-
fect. System-wide events occur instead of events with infi-
nite size. The power-law distribution is still valid for smaller
non-system wide events but the statistics of “virtual” events
with sizes larger than the model size are accumulated in the
statistics of system-wide events. The system-wide events can
be associated with the characteristic events of a finite model.
The term “characteristic” intrinsically assumes the presence
of the finite size in the model because the infinite model at
the critical state does not have a characteristic length. The
same situation is observed in the case of earthquakes. The
frequency-size statistics in a region are power-law distribu-
tions. However, the characteristic events in this region are
determined by the length of the largest fault (or fault seg-
ment) and are in situ determined by the finite-size effect of
the most catastrophic slip elongation that this region can sus-
tain. Indeed, we do not expect the occurrence of events with
magnitudes greater than e.g. 20 in any region of Earth in spite
of the fact that the possibility of these events (events with ar-
bitrarily large magnitudes) is always permitted by the power-
law Gutenberg-Richter distribution without magnitude cut-
offs. It is well accepted that Gutenberg-Richter distribution
is not valid for datasets of strong earthquakes with magni-
tudes greater than 8 (Kagan and Knopoff, 1976). Therefore,
as it was first suggested by Abaimov et al. (2007b, 2008),
we attribute the recurrent properties of characteristic events
to the recurrent behavior of the model system-wide events.

First, we will consider the recurrent statistics at a given
point on a fault. In the case of the slider-block model this cor-
responds to a given block of the model. We consider statistics
for the “strongest”, “weakest”, and “medium” blocks. As a
strongest block we choose the block with the highest coeffi-
cient of friction, i.e., a block with the highestβi . As a weak-
est block we choose the block with the lowest coefficient of
friction. And as a medium block we choose the block with
the friction coefficient which is close to the friction coeffi-

cient averaged over the model. As the size of an event we
choose the total slip amplitude of the given block during this
event.

First we construct the cumulative recurrent statistics in the
Gutenberg-Richter style. The frequency-amplitude distribu-
tions of recurrent slip amplitudesP(S) for event sequences
of the strongest, weakest and medium blocks are given as a
function of block’s slip amplitudeS in Fig. 5a–c respectively.
These figures are visually similar to Fig. 1a–d. We see here
the same anomaly due to the presence of non-characteristic
(non-system-wide) events. However, for these numerical
simulations we have the opportunity to separate characteris-
tic events directly as being system-wide events (without the
introduction of the amplitude threshold). The cumulative re-
current statistics of all events are compared to the statistics
of only characteristic events in Fig. 5d–f. We see that indeed
the influence of non-characteristic events results only in the
distortion of the statistics at small amplitudes. As done in
our study of the creep events (above), we will remove non-
characteristic events from the statistics, integrate the cdf from
small to large amplitudes, and normalize the statistics by di-
viding by the total number of events.

The cumulative distribution of recurrent slip amplitudes
P(S) for the event sequences of the strongest, weakest, and
medium blocks are given as functions of the slip amplitude
S in Fig. 6a, c, and e. The means and coefficients of varia-
tion of these sequences are given in Table 2. Also included
in Figs. 6a, c, and e are the best-fits (maximum likelihood) of
the Brownian passage-time, lognormal, and Weibull distribu-
tions. Both the parameters of these fits and the goodness-of-
fit estimators are given in Table 2.

Figure 6b, d, and f present the Weibull plots corresponding
to Fig. 6a, c, and e respectively. Also included in these Fig-
ures are the corresponding best-fits of the Brownian passage-
time, lognormal, and Weibull distributions with the RMSE in
log10–log10 axes given in Table 2.

Both the creep sequences and the sequences of the slider-
block model investigated above are the sequencesat a given
point on a fault. But for the slider-block model we can obtain
sequenceson a given fault. We consider again the system-
wide events as the characteristic events. Then we can con-
sider energy dissipated by the whole model (by all blocks)
during an event as the size of this event. Indeed, the energy
dissipated by all blocks during an event is already not associ-
ated with the slip amplitude at a given point of the model but
is associated with the slip amplitude averaged over the model
(roughly speaking, Eq.1). The frequency-size statistics can
be constructed both for energies and slip amplitudes. There-
fore as the size of an event we can use the energy of this event
as well as the slip amplitude. See below for a discussion of
these differences.

The cumulative distribution of 715 recurrent energies
P(E) for the sequence of system-wide events is given as a
function of the dissipated energyE in Fig. 7a. The mean and
coefficient of variation of these recurrent energies are given
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Fig. 5. Slider-block model, recurrent events: cumulative number of events greater thanS0, N(S≥S0), versus slip amplitudeS0 for event
sequences of the(a) strongest block,(b) weakest block, and(c) medium block (at a given point of the model). In(d), (e), and(f) the same
statistics (solid lines) are compared to the statistics of only characteristic events. The cumulative distribution functions are integrated from
large to small amplitudes and are not normalized (similar to the Gutenberg-Richter distribution except only linear scales for both axes).

in Table 3. Also included in Fig. 7a are the best-fits (maxi-
mum likelihood) of the Brownian passage-time, lognormal,
and Weibull distributions. Both the parameters of these fits
and the goodness-of-fit estimators are given in Table 3.

Figure 7b presents the Weibull plot corresponding to
Fig. 7a. Also included in this Figure are the correspond-
ing best-fits of the Brownian passage-time, lognormal, and

Weibull distributions with the RMSE in log10–log10 axes
given in Table 3.

The estimators of goodness-of-fits given above demon-
strate convincingly that the fits of the Weibull distribution
for all four sequences are much better than the lognormal or
Brownian passage-time distributions. In particular, the val-
ues ofDKS and RMSE for both the cdf and Weibull plots are
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Table 2. Slider-block model: The recurrent slip amplitude statistics at a given point of the model. For all sequences the parameters of
the best-fit Brownian passage-time, lognormal, and Weibull distributions are given as well as the goodness-of-fit estimators. Units of slip
amplitude are non-dimensional, introduced by Eq. (C5).

Sequence Data or fit Data or fit parametersa Goodness-of-fit estimators
DKS QKS Cdf

RMSE
Weibull
plot
RMSE

Strongest block 734 events

Sample distribution µ=0.128 CV =0.64 Not applicable
Brownian passage-time µ=0.128±0.005 CV =1.03±0.03 0.16 1.2×10−16 0.10 0.6
Lognormal ȳ=−2.31±0.03 σ y=0.80±0.02

(CV =0.95±0.03)
0.07 0.0007 0.04 0.3

Weibull τ=0.142±0.003 β=1.61±0.05
(CV =0.638±0.017)

0.02 0.87 0.009 0.04

Weakest block 730 events

Sample distribution µ=0.127 CV =0.63 Not applicable
Brownian passage-time µ=0.127±0.005 CV =1.03±0.03 0.16 9.×10−18 0.10 0.6
Lognormal ȳ=−2.30±0.03 σ y=0.80±0.02

(CV =0.94±0.03)
0.08 8.×10−5 0.04 0.3

Weibull τ=0.142±0.003 β=1.63±0.05
(CV =0.629±0.017)

0.019 0.96 0.006 0.04

Medium block 733 events

Sample distribution µ=0.127 CV =0.62 Not applicable
Brownian passage-time µ=0.127±0.005 CV =1.01±0.03 0.17 1.2×10−19 0.10 0.6
Lognormal ȳ=−2.30±0.03 σ y=0.79±0.02

(CV =0.93±0.03)
0.09 1.7×10−5 0.05 0.3

Weibull τ=0.142±0.003 β=1.65±0.05
(CV =0.621±0.016)

0.03 0.7 0.011 0.05

a The error bars are 95% confidence limits.

Table 3. Slider-block model: The cumulative distribution of recurrent energies for the system-wide event sequence (on a given fault). The
parameters of the best-fit Brownian passage-time, lognormal, and Weibull distributions are given as well as the goodness-of-fit estimators.
Units of energy are non-dimensional, introduced by Eq. (C5).

Sequence Data or fit Data or fit parametersa Goodness-of-fit estimators
DKS QKS Cdf

RMSE
Weibull
plot
RMSE

Energies dissipated Sample distribution µ=94. CV =0.61 Not applicable
during 715 system- Brownian passage-timeµ=94.±3. CV =0.95±0.03 0.14 1.4×10−13 0.09 0.5
wide events Lognormal ȳ=4.31±0.03 σ y=0.76±0.02 (CV =0.88±0.03) 0.07 0.0009 0.04 0.3

Weibull τ=105.±2. β=1.70±0.05 (CV =0.607±0.016) 0.02 0.88 0.009 0.05

a The error bars are 95% confidence limits.

significantly smaller, and the values ofQKS are significantly
larger for the Weibull distribution than the corresponding val-
ues for the fits of other distributions. Also, direct visual in-
spections indicate the strong tendency of the sample distribu-
tions to be linear on the Weibull plots, a recognized property
of the Weibull distribution.

The frequency-size statistics can be constructed both for
energies and slip amplitudes. However, the fact that both
statistics have the same behavior (linear on Weibull plot)
means that the applied distribution should be invariant rel-
atively a power law transformation. Indeed, the energy dis-
sipated by all blocks during an event is associated with the

slip amplitude averaged over the model. The seismic mo-
ment of a characteristic event is expected to have a power
law dependence on the averaged slip along the fault (Eq.1).
Therefore, the logarithm of the energy dissipated during this
event by all blocks should be proportional to the logarithm of
the averaged slip amplitude. If the cumulative distribution of
event energies were linear on the Weibull plot then the cumu-
lative distribution of slip amplitudes would be also linear on
the Weibull plot. In other words, the functional dependence
of the applied distribution should be invariant relatively to
the power law transformations. And the Weibull distribu-
tions shown above have this invariant property. This gives
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Fig. 6. Slider-block model: The recurrent cumulative frequency-amplitude distributions for the sequences of 734 slip amplitudes of the
strongest block,(a) and(b), of 730 slip amplitudes of the weakest block,(c) and(d), and of 733 slip amplitudes of the medium block (at a
given point of the model). In(a), (c), and(e) the cumulative distribution functions of recurrent slip amplitudes are given as solid lines. The
corresponding Weibull plots are given in(b), (d), and(f) as diamonds. In all cases the data are compared with the best-fit Brownian passage-
time distributions (dash-dot lines), the best-fit lognormal distributions (short-dash lines), and the best-fit Weibull distributions (long-dash
lines).

an additional verification that the Weibull distribution is the
relevant distribution.

Thus, the Weibull distribution is the preferred distribution
of three trials both for the creep event sequences and for the
sequences of characteristic events in the slider-block model
analyzed here. It is encouraging that independent analyses
of signals which are considered good proxies for earthquake
behavior, one natural and one simulated, produce consistent
results.

The exponentsβ of the trial Weibull distributions for the
investigated creep sequences have similar values, ranging
from 1.8 to 2.2. In accordance with Eq. (A7) the aperiod-
icities of the best-fit Weibull distributions (and therefore the
coefficients of variationCV of the sample distributions) have
values from 0.47 to 0.58. For the slider-block model the ex-
ponentsβ have lower but close values from 1.6 to 1.7. This
corresponds to the coefficients of variation from 0.61 to 0.64,
which are also close to the values for creep events.
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Fig. 7. Slider-block model: The recurrent cumulative frequency-energy distribution for the sequence of 715 system-wide events (on a given
fault). In (a) the cumulative distribution function of recurrent energies is given as a solid line. The corresponding Weibull plot is given in(b)
as diamonds. In both cases the data are compared with the best-fit Brownian passage-time distribution (dash-dot lines), the best-fit lognormal
distribution (short-dash lines), and the best-fit Weibull distribution (long-dash lines).

The similarity of Weibull exponents of the creep events
and slider-block model is valid and for the recurrenttime-
interval statistics as well. The recurrent time-interval be-
havior of the characteristic creep events was investigated by
Abaimov et al. (2007a). The Weibull distribution was found
to be the preferred distribution for the recurrent time-interval
statistics and the exponentsβ of the best-fit Weibull dis-
tributions produced values ranging from 2.2 to 2.7. This
corresponds to an aperiodicity of the applied distribution of
CV =0.40−0.48. In parallel, the recurrent time-interval be-
havior of the system-wide events of the stiff slider-block
model was investigated by Abaimov et al. (2007b). The
Weibull distribution also was found to be the preferred dis-
tribution for the recurrent time-interval statistics and the ex-
ponentβ of the trial Weibull distribution equaled 2.6. This
corresponds to an aperiodicity of the applied distribution of
CV =0.41, which falls within the range of the creep events
results,CV =0.40−0.48. Therefore, both these independent
systems whose applicability to earthquakes has been fre-
quently noted and studied (Abaimov et al., 2007a; Abaimov
et al., 2007b; Carlson and Langer, 1989), creep events and
the slider-block model, exhibit closely related recurrent be-
havior of both frequency-size and time-interval statistics.
This supports our hypothesis that the stiff slider-block model,
which obeys the principles of critical point (Abaimov, 2009),
could represent the behavior of actual sequences of charac-
teristic earthquakes on a given fault.

5 Sand-pile model

The stiff slider-block model obeys the principles of self-
organized criticality (Abaimov et al., 2007b; Carlson and
Langer, 1989). Applicability of this concept to earthquakes
is discussed in the literature (Bak et al., 2002). Therefore it
would be interesting to take a look at the recurrent frequency-

size behavior of a sand-pile model as a classical representa-
tive of this theory (Bak et al., 1988). We utilize the simplest
variation of two-dimensional sand-pile model. A square grid
of 100 by 100 sites is strewn with sand grains. When a site
accumulates four or more grains it becomes unstable and re-
distributes four grains to its four neighbors. Instability of
one site can trigger instability of others, forming a complex
avalanche in the system. The sand redistribution during an
avalanche is assumed to be much faster than the rate of the
stable sand accumulation (similarly, velocity of earthquake
propagation is much faster than tectonic rate of stress accu-
mulation). Therefore, the slow sand strewing is neglected
during avalanches. Boundaries of the model are assumed to
be free so the sand can leave the model at boundaries when
it is redistributed by a boundary site.

To construct the recurrent statistics at a given point of the
model we choose a site in the middle of the lattice. All
avalanches with participation at this site will be counted as
events at this site of the model. To separate characteristic
events we need to construct a criterion similar to the system-
wide criterion for the slider-block. For the sand-pile model
we choose a percolation criterion as a criterion for an event
to be characteristic: An event will be considered as charac-
teristic if it percolates the lattice and connects all four bound-
aries (up-right-down-left percolation). As the size of an event
we choose the number of different sites participating in this
avalanche. Each site can repeatedly lose stability during this
event but will be counted only once in the size of the event.

The cumulative distribution of 2013 recurrent eventsP(S)

is given as a function of the event sizeS in Fig. 8a. The
mean and coefficient of variation of this statistics are given
in Table 4. Also included in Fig. 8a are the best-fits (maxi-
mum likelihood) of the Brownian passage-time, lognormal,
and Weibull distributions. Both the parameters of these fits
and the goodness-of-fit estimators are given in Table 4.
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Table 4. Sand-pile model: The cumulative recurrent frequency-size distribution for the sequence of percolating events (at a given point of the
model). The parameters of the best-fit Brownian passage-time, lognormal, and Weibull distributions are given as well as the goodness-of-fit
estimators.

Sequence Data or fit Data or fit parametersa Goodness-of-fit estimators
DKS QKS Cdf

RMSE
Weibull
plot
RMSE

2013 left-right- Sample distribution µ=6720. CV =0.143 Not applicable
up-down percolating Brownian passage-timeµ=6720.±20. CV =0.152±0.002 0.05 0.00018 0.02 0.2
events Lognormal ȳ=8.80±0.003 σ y=0.151±0.002

(CV =0.152±0.002)
0.05 1.6×10−5 0.03 0.19

Weibull τ=7130.±20. β=8.09±0.14
(CV =0.147±0.002)

0.02 0.3 0.011 0.04

a The error bars are 95% confidence limits.
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Fig. 8. Sand-pile model: The recurrent cumulative frequency-size distribution for the sequence of 2013 percolating events (at a given point
of the model). In(a) the cumulative distribution function of recurrent event sizes is given as a solid line. The corresponding Weibull plot
is given in(b) as diamonds. In both cases the data are compared with the best-fit Brownian passage-time distribution (dash-dot lines), the
best-fit lognormal distribution (short-dash lines), and the best-fit Weibull distribution (long-dash lines).

Figure 8b presents the Weibull plot corresponding to
Fig. 8a. Also included in this figure are the correspond-
ing best-fits of the Brownian passage-time, lognormal, and
Weibull distributions with the RMSE in log10–log10 axes
given in Table 4.

Again, the Weibull distribution is the best-fit distribution.
However, now its exponentβ has much higher valueβ=8.09
which corresponds to the aperiodicityCV =0.15. This is
likely due to the effect of the percolation criterion as a cri-
terion for an event to be characteristic. Although for this
case we see the same functional (Weibull) dependence of the
recurrent frequency-size statistics, the sand-pile model has
another symmetry and belongs to another universality class
with different anomalous dimensions. This question requires
further investigation.

6 Conclusions

Recurrent frequency-size distributions play an important role
in earthquake hazard assessments. However, observed se-
quences of characteristic earthquakes at a given point on a
fault or on a given fault are not able to differentiate among
alternative statistical distributions. To overcome this diffi-
culty this paper investigates the sequences of creep events on
the creeping section of the San Andreas fault. For four se-
quences the Weibull distribution is shown to be the preferred
distribution. Applicability of this distribution is confirmed
by the goodness-of-fit estimators. Direct visual inspections
also support the applicability of the Weibull distribution be-
cause the sample distribution has the tendency to be linear on
the Weibull plot.

To verify our results we extend our study of slip event
statistics to numerical simulations. The same technique is
used to investigate both the stiff slider-block model and
the original sand-pile model. Both models support the
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applicability of the Weibull distributions to the recurrent
frequency-size statistics.

Another noteworthy fact is that both the creep event se-
quences and the sequences of system-wide events of the
slider-block model have similar values of coefficients of vari-
ationCV =0.47÷0.64 for the recurrent frequency-size statis-
tics. The same tendency was also found by Abaimov et
al. (2007a,b) for the recurrent time-interval behavior of these
two systems. The fact that two independent systems whose
applicability to earthquakes is often discussed in the litera-
ture have closely related recurrent behavior supports the hy-
pothesis that these two systems actually represent the recur-
rent earthquake behavior on a given fault or fault segment.

The recurrent statistics at a given point on a fault or
on a given fault can contain both characteristic and non-
characteristic events. For the frequency-size statistics Figs. 1
and 5 suggest that the non-characteristic events are described
by a distribution which is different from the distribution of
characteristic events. Indeed, for the mutual statistics of both
characteristic and non-characteristic events in Figs. 1 and 5
we see the anomaly for small size events which clearly indi-
cates the mixture of two different statistics. The same ten-
dency is seen for the time-interval statistics. Of primary in-
terest is the distribution of events with large sizes. Therefore
it is reasonable to filter off the non-characteristic events and
to study only the pure statistics of characteristic events as has
been done in this paper.

However when we study the recurrent statistics of charac-
teristic events the word “characteristic” assumes that there
is a characteristic length in the system. This length rep-
resents the length of the fault or fault segment or, in other
words, the size of the system. Therefore the recurrent statis-
tics of characteristic events are actually the result of the fi-
nite size effect in the system when we consider only events
whose correlation length exceeds the system size (system-
wide events). Both time-interval and frequency-size recur-
rent statistics are determined by the finite size effect there-
fore it is peculiar that in the case of the ‘earthquake similar
systems’ such as the stiff slider-block model or creep events
this finite size effect has a similar appearance (the Weibull
distribution) both for the time-interval and frequency-size
statistics. An even more important fact is that not only both
the recurrent time-interval and frequency-size statistics of
characteristic events obey the Weibull distribution but also
that the exponents of these distributions have similar values.
This provides coefficients of variation of 0.40–0.48 for the
recurrent time-intervals of creep events, 0.47–0.58 for the
recurrent sizes of creep events, 0.41 for the recurrent time-
intervals in the slider-block model, and 0.61–0.64 for the re-
current sizes in the slider block model. We see that the co-
efficients of variation have similar values both for the time-
interval and frequency-size statistics (only for the recurrent
sizes of the characteristic events in the slider-block model
we have slightly higher but still close values). This supports
the point of view that the finite-size effect, which determines

the behavior of characteristic events in the model, prescribes
not only the same shape (Weibull) but also the same coeffi-
cient of variation (in the range 0.40–0.64) both for the recur-
rent time-interval and frequency-size statistics. The validity
of this hypothesis would provide a unique opportunity to re-
store the recurrent frequency-size statistics of characteristic
earthquakes if we know their recurrent time-interval behavior
from paleo-studies.

An interesting question is whether the statistical variabil-
ity of slip magnitudes can be obtained for actual earthquakes.
Unfortunately a coefficient of variation of 0.5 implies only
a 0.1 magnitude variability for a magnitude six earthquake.
This is outside the accuracy of magnitude specification. Thus
our studies of creep events provide a unique opportunity to
better understand the relationship between recurrent time-
interval and frequency-size statistics.

The strong similarities between the recurrent time-interval
and frequency-size statistics are evidence for their comple-
mentarity. This complementarity supports the applicability
of either time-predictable or slip-predictable forecast mod-
els, however we have shown that these forecast models are
not applicable to the recurrent statistics of the creep events
(Abaimov et al., 2007a). Nevertheless, the applicability
of Weibull statistics with similar coefficients of variation is
striking. The general concept of complementarity appears to
be valid but noise prevents predictability.

Appendix A

Applicable distributions

Three widely used statistical distributions in geophysics are
the Brownian passage-time, lognormal, and Weibull. We
compare each of them with our data (sample distribution).

A1 Brownian passage-time distribution

The probability density function (pdf) of amplitudesS for
the Brownian passage-time distribution is given by (Chhikara
and Folks, 1989)

p(S) =

(
µ

2πC2
V S3

) 1
2

exp

[
−

(S − µ)2

2C2
V µS

]
(A1)

whereµ is the mean,σ is the standard deviation, andCV =
σ
µ

is the aperiodicity (coefficient of variation) of the distribu-
tion. The corresponding cumulative distribution function
(cdf) can be obtained analytically (Matthews et al., 2002)
but the expression is lengthy and is not given here explic-
itly. The Brownian passage-time distribution was originally
introduced in the theory of Brownian motion. Later it was
used to model many other phenomena including earthquake
time-interval statistics (Working Group on California Earth-
quake Probabilities, 2003).
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A2 Lognormal distribution

The lognormal is one of the most widely used statistical dis-
tributions in a wide variety of fields. The pdf of amplitudesS

for the lognormal distribution is given by (Patel et al., 1976)

p(S) =
1

(2π)1/2σyS
exp

[
−

(ln S − ȳ)2

2σ 2
y

]
(A2)

The lognormal distribution can be transformed into the
normal distribution by making the substitutiony= ln S; ȳ

andσy are the mean and standard deviation of this equiva-
lent normal distribution. The meanµ, standard deviationσ ,
and aperiodicity (coefficient of variation)CV for the lognor-
mal distribution are given by

µ = exp

[
ȳ +

σ 2
y

2

]
, σ = µ

√
eσ2

y − 1, and

CV =
σ

µ
=

√
eσ2

y − 1 (A3)

The corresponding cdfP(S) for the lognormal distribution
is

P(S) =
1

2

(
1 + erf

[
ln S − ȳ
√

2σy

])
(A4)

whereerf (x)= 2
√

π

x∫
0

e−y2
dy is the error function. The log-

normal distribution is closely related to the normal distribu-
tion and is often used when an a priori positive quantity is
distributed normally.

A3 Weibull distribution

The pdf for the Weibull distribution is given by (Patel et al.,
1976)

p(S) =
β

τ

(
S

τ

)β−1

exp

[
−

(
S

τ

)β
]

(A5)

whereβ andτ are fitting parameters. The meanµ and the
aperiodicity (coefficient of variation)CV of the Weibull dis-
tribution are given by

µ = τ 0

(
1 +

1

β

)
(A6)

CV =


0
(
1 +

2
β

)
[
0
(
1 +

1
β

)]2
− 1


1
2

(A7)

where0(x) is the gamma function ofx. The cdf for the
Weibull distribution is given by

P(S) = 1 − exp

[
−

(
S

τ

)β
]

(A8)

If β=1 the Weibull distribution becomes the exponential
distribution with σ=µ and CV =1. In the limit β→+∞

the Weibull distribution becomes exactly repetitive (aδ-
function) with σ=CV =0. The Weibull distribution is often
used in engineering because in accordance with the weak-
link hypothesis this distribution represents the strength of
materials (Meeker and Escobar, 1991; Weibull, 1951).

Appendix B

Measures of goodness-of-fit

In order to determine whether a specific distribution is an
applicable representation of our statistics, it is necessary to
utilize measures of goodness-of-fit. Many such tests are
available (Press et al., 1995). In this paper we quantify the
goodness-of-fit of distributions using three tests.

B1 One-sample Kolmogorov-Smirnov test

The first measure we employ is the one-sample Kolmogorov-
Smirnov test (Press et al., 1995). To use this test the maxi-
mum absolute differenceDKS between the cdf of the sample
distribution (actual data)yi and the fitted distribution

_
yi is

determined:

DKS = max
∣∣∣yi −

_
yi

∣∣∣ (B1)

Then the significance level probability of the goodness-
of-fit (the probability that the trial distribution is relevant) is
given by

QKS(λ) = 2
+∞∑
i=1

(−1)i−1e−2i2λ2
(B2)

where

λ = DKS

(
√

n + 0.12+
0.11
√

n

)
, (B3)

andn is the number of data points. The preferred distribution
has the smallest value ofDKS and the largest value ofQKS .

B2 Root mean squared error test

The second test of goodness-of-fit we employ is the root
mean squared error (RMSE). As is suggested by the test
name, it is the square root of the sum of squares of errors
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divided by the difference between the number of data points
and the number of fitting parameters

RMSE=

√√√√√ n∑
i=1

(yi −
_
yi)

2

n − k
(B4)

whereyi are the sample distribution (actual data),
_
yi are pre-

dicted fit values,n is the number of data point, andk is the
number of fitting parameters (k=2 for our three distributions).
This test is also known as the fit standard error and the stan-
dard error of the regression. The preferred distribution has
the smallest RMSE value.

It should be noted that the data points in the cumulative
distribution function or its specific plot are dependent and,
therefore, the RMSE measure is not applicable rigorously to
estimate the deviation of the distribution. However, we still
apply this measure because it serves as a good indicator of
the local pdf deviations. A local deviation of pdf between
the sample and trial distributions causes the constant shift
of one distribution relative to another on the cdf plot and,
correspondently, high values of the RMSE measure.

B3 Visual inspection

In spite of its simplicity a visual inspection often plays an
important role in verifying the applicability of a statistical
distribution. For this purpose, a specific plot usually is used
where the trial distribution becomes a straight line. For ex-
ample, if the trial distribution is the Weibull distribution the
specific plot (called in this case the “Weibull” plot) is con-
structed in the form−ln(1−P(S)) versusS in log10–log10
axes. In this form the Weibull distribution is a straight line
with slopeβ. The difference between sample and trial dis-
tributions, which is usually disguised on a usual cdf plot, is
magnified and clearly exposed on a specific plot of the trial
distribution. Therefore the visual inspection of a sample dis-
tribution (to determine whether or not it is a straight line on
a specific plot) serves as an important goodness-of-fit esti-
mator. Because the result of this paper is the preference of
the Weibull distribution, all results will be demonstrated on
“Weibull” plots as well as cdf plots.

Appendix C

Formulation of the slider-block model

The slider-block model utilized in this paper is a varia-
tion of the linear slider-block model which Carlson and
Langer (1989) used to illustrate the self-organization of such
models. We consider a linear chain of 500 slider blocks of
massm pulled over a surface at a constant velocityVL by a
loader plate as illustrated in Fig. 4. Each block is connected
to the loader plate by a spring with spring constantkL. Ad-
jacent blocks are connected to each other by springs with

spring constantkC . Boundary conditions are assumed to be
periodic: the last block is connected to the first one.

The blocks interact with the surface through friction. In
this paper we prescribe a static-dynamic friction law. The
static stability of each slider-block is given by

kLyi + kC (2yi − yi−1 − yi+1) < FSi (C1)

whereFSi is the maximum static friction force on blocki
holding it motionless, andyi is the position of blocki relative
to the loader plate.

During strain accumulation due to loader plate motion, all
blocks are motionless relative to the surface and have the
same increase in their coordinates relative to the loader plate

dyi

dt
= VL (C2)

When the cumulative force of the springs connecting to block
i exceeds the maximum static frictionFSi , the block begins
to slide. We include inertia, and the dynamic slip of blocki

is controlled by the equation

m
d2yi

dt2
+ kLyi + kC (2yi − yi−1 − yi+1) = FDi (C3)

whereFDi is the dynamic (sliding) frictional force on block
i. The loader plate velocity is assumed to be much smaller
than the slip velocity, requiring

VL �
F

ref
S

√
kLm

(C4)

so the movement of the loader plate is neglected during a slip
event (F ref

S is the minimum value of allFSi). The sliding
of one block can trigger the instability of the other blocks
forming a many block event. When the velocity of a block is
zero it sticks with zero velocity.

It is convenient to introduce the non-dimensional variables
and parameters

τf = t

√
kL

m
, τs =

tkLVL

F ref
S

, Yi =
kLyi

F
ref
S

, φ =
FSi

FDi

,

α =
kC

kL

, βi =
FSi

F ref
S

(C5)

The ratio of static to dynamic frictionφ is assumed to be the
same for all blocks but the values themselvesβi vary from
block to block withF ref

S as a reference value of the static
frictional force. Stress accumulation occurs during the slow
time τs when all blocks are stable, and slip of blocks occurs
during the fast timeτf when the loader plate is assumed to
be approximately motionless.

In terms of these non-dimensional variables the static sta-
bility condition Eq. (C1) becomes

Yi + α (2Yi − Yi−1 − Yi+1) < βi (C6)
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the strain accumulation Eq. (C2) becomes

dYi

dτS

= 1 (C7)

and the dynamic slip Eq. (C3) becomes

d2Yi

dτ2
f

+ Yi + α (2Yi − Yi−1 − Yi+1) =
βi

φ
(C8)

Before obtaining solutions, it is necessary to prescribe the
parametersφ, α, andβi . The parameterα is a tuning param-
eter and is the stiffness of the system. For theα parameter, as
the stiffness of the model, we should use some high value. In-
deed, the stiffness of the fault may be lower than the stiffness
of the surrounding intact rocks but we should associate the
springs to the loader here with the stiffness of the total elon-
gation of a tectonic plate. Therefore the fault must be much
stiffer than the loader elements. We considerα=1000 which
corresponds to a very stiff model. The important fact here
is that we use this high value for the stiffness because the
stiff slider-block model is believed to represent the proper-
ties of earthquake recurrence (Abaimov et al., 2007b, 2008).
When the stiffness of the system tends to infinity, the model
reaches its critical point (Abaimov, 2009). At the state close
to the critical the system exhibits power-law behavior.

The ratioφ of static friction to dynamic friction is taken
to be the same for all blocksφ=1.5, while the values of fric-
tional parametersβi are assigned to blocks by uniform ran-
dom distribution from the range 1<βi<3.5. This random
variability in the system is a “noise” required to thermalize
the system and generate event variability.

The loader plate springs of all blocks extend according to
Eq. (C7) until a block becomes unstable from Eq. (C6). The
dynamic slip of that block is calculated using the Runge-
Kutta numerical method to obtain a solution of Eq. (C8). A
coupled 4th-order iterational scheme is used, and all equa-
tions are solved simultaneously (the Runge-Kutta coeffi-
cients of neighboring blocks participate in the generation of
the next order Runge-Kutta coefficient for the given block).
The dynamic slip of one block may trigger the slip of other
blocks and the slip of blocks is followed until they all become
stable. Then the procedure repeats.
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