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Abstract. In this brief communication, we discuss the impli-
cation of the hypothesis that “non-linearity and multi-point
pattern recognition can improve the spatial mapping of com-
plex patterns of groundwater contamination”. The discus-
sion is based on our recently published work in Stochastic
Environmental Research and Risk Assessment. Therein we
have found that the use of a highly non-linear pattern learning
technique in the form of an artificial neural network (ANN)
can yield significantly superior results under the same set of
constraints when compared to the more linear two-point or-
dinary kriging method.

1 Introduction

In the history of spatial mapping (or spatial interpolation),
the technique with the longest heritage and widespread fa-
miliarity among practitioners today is perhaps the “kriging”
method (Matheron, 1971). Generally speaking, kriging can
be considered as a class of methods used to interpolate the
value of the random field at a non-sampled location using
a weighting scheme applied to sampled values in the neigh-
borhood. While the weighting scheme may be a combination
of linear (i.e., ordinary kriging) or a non-linear (i.e. disjunc-
tive kriging; Chiles and Delfiner, 1999) functions, all kriging
methods assign weights according to a two-point spatial sta-
tistical characterization called the “variogram” (Deutsch and
Journel, 1998). Theoretically, the variogram is a variance
functionγ (h) describing the spatial dependence of the ran-
dom field separated by a distance lag ofh.

This two-point approach of the variography analysis com-
bined with the linear combination of weights (for ordinary
kriging) used in kriging methods often fails to recognize the
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underlying spatial patterns manifested by the complex inter-
actions between geology and fluid flow dynamics (Srinivasan
and Caers, 2001). In these geostatistical methods, the spatial
characteristics of the “random” function (contaminant con-
centration) are described at most by the second order mo-
ment (covariance). Hence, most kriging approaches are op-
timum for representing multi-Gaussian random fields (per-
haps with the exception of indicator kriging; Deutsch and
Journel, 1998). In the presence of complex subsurface het-
erogeneities and given the non-linearity of the contaminant
transport process, it is highly unlikely that the contaminant
distribution will exhibit a multi-Gaussian characteristic (Fay-
bishenko, 2004).

For the case of groundwater contamination in resource-
limited settings, a high level of uncertainty can hamper cost-
effective management and remediation efforts. As an ex-
ample, suppose the unbiased uncertainty (i.e., standard de-
viation) of ordinary kriging (comprising only random error)
for a contaminant variable is observed to be higher than the
specified safe limit prescribed by the United States Environ-
mental Protection Agency (USEPA). It is likely that many
unsampled regions could be predicted as completely safe by
kriging and hence, safe for public consumption. Sustainable
water resources management in resource-poor settings (such
as developing countries) therefore requires us to explore al-
ternative approaches that seek to minimize these well-known
limitations of linear and two-point geostatistical techniques.

In this brief communication, we discuss the implication
of the hypothesis that “non-linearity and multi-point pattern
recognition can improve the spatial mapping of complex pat-
terns of groundwater contamination significantly”. Our dis-
cussion is cast in perspective of a recently published work
in Stochastic Environmental Research and Risk Assessment
where the hypothesis was found to be valid. Herein, spa-
tial mapping refers exclusively to the data-driven technique
of spatial interpolation based on sampling data at finite loca-
tions. Our purpose behind the discussion is to communicate
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Figure 1. Mean arsenic concentration shown on a district basis in Bangladesh. Note that 
most district’s mean arsenic concentration in groundwater exceed the EPA safe limit of 
10 µg/l. This map was reproduced from Rahman and Hossain (2008), “A Forensic Look 
at Groundwater Arsenic Contamination in Bangladesh” in Environmental Forensics, vol. 
8(1). The numbers shown in each district are the number of wells that have been sampled 
in that district. 
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Fig. 1. Mean arsenic concentration shown on a district basis in
Bangladesh. Note that most district’s mean arsenic concentration
in groundwater exceed the EPA safe limit of 10µg/l. This map was
reproduced from Rahman and Hossain (2008), “A Forensic Look
at Groundwater Arsenic Contamination in Bangladesh” in Environ-
mental Forensics, vol. 8(1). The numbers shown in each district are
the number of wells that have been sampled in that district.

to the public health community the impact of using a con-
trasting (and non-linear) technique for water resources man-
agement, one that is conceptually different from the gen-
eral kriging approaches based on two-point statistics and lin-
earity. Herein, we selected the assumption-free and non-
linear multi-point pattern recognition (or “learning”) tech-
nique based on artificial neural networks (ANN).

Using the well known example of extensive groundwater
contamination by arsenic in Bangladesh, we demonstrated
that the use of a highly non-linear pattern learning technique
simultaneously trained on multi-point data in the ANN can
yield significantly superior results under the same set of con-
straints when compared to the ordinary kriging method (see
Chowdhury et al. 2009). For the kriging method, we selected
the simplest and most popular method of ordinary kriging to
articulate our point on the impact of non-linearity and multi-

point pattern recognition (both of which are completely ab-
sent in ordinary kriging). Later in the paper, we also discuss
possible implications of using a more sophisticated variant
of kriging such as disjunctive kriging or indicator kriging.

2 Arsenic contamination of groundwater in Bangladesh

Estimates show that about 103 million (70% of the
Bangladesh rural population) depend on shallow wells that
have been excavated at a depth of less than 150 m (Nahar
et al., 2008), and more than half of the Bangladesh popula-
tion may be at risk due to the high levels of arsenic in these
groundwaters (Yu et al., 2003; see Fig. 1). Based on cur-
rent literature, it seems that the actual causes of high arsenic
concentration in the groundwater of Bangladesh have not yet
been clearly pinpointed. Among the few hypotheses initially
proposed to explain the possible mechanism of arsenic re-
lease, the scientific community appears to have converged on
two versions: i)Pyrite Oxidation Hypothesis(Kinniburg and
Smedley, 2001) – oxidation of arsenic mineral “Arsenopy-
rite” (FeAsS) or arsenic rich “Pyrite,” resulting in release of
arsenic in groundwater and ii)Oxy-Hydroxide Reduction Hy-
pothesis(Nickson et al., 1998) – reduction of arsenic rich
iron-oxi-hydroxides leaching the arsenic that remain at ad-
sorbed state on its surface. The prevailing lack of a unified
theory behind the mobilization of arsenic in groundwater ap-
pears to be delaying the achievement of a long-term struc-
tural solution for policy planners in Bangladesh. Hence, spa-
tial mapping of the field of arsenic contamination on the ba-
sis of sparse in situ data is a prime candidate for promoting
sustainable water resources management as an interim mea-
sure. Because each one of the vast number of drinking wells
(exceeding 10 million for Bangladesh) cannot be frequently
and directly tested, a spatial mapping scheme based on lim-
ited field measurements can bridge the gap between lack of
adequate testing resources and the urgency of quarantining
unsafe zones or identifying regions of the aquifer unaffected
by contamination.

3 Artificial neural network versus ordinary kriging

To test the hypothesis, we set up a fair competition be-
tween an artificial neural network and ordinary kriging (for
details, see Chowdhury et al., 2009). The source of in-
formation was the arsenic concentration database of wells
in Bangladesh surveyed by the British Geological Survey
(BGS) and the local Department of Public Health and En-
gineering (DPHE) during the 1999–2000 timeframe (com-
monly referred to as BGS-DPHE, 2001). This database com-
prised sampling data from 3534 wells distributed almost uni-
formly over Bangladesh (Fig. 1). Both schemes were given
the task of predicting arsenic concentration at unsampled lo-
cations using as input, only the spatial coordinates of the lo-
cation. The calibration of the kriging scheme (for variogram
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modeling) and the training of the ANN scheme used the
same data (i.e., spatial coordinates of the wells and the corre-
sponding arsenic concentration). As part of pre-processing,
data were grouped in 5×5 km2 grids and then converted to
a class-based numeric value for management (Fig. 2). Four
classes were used as follows. Class One (Safe; colored blue):
0.0–5 ppb; Class Two (Possible Concern; colored cyan): 5–
10 ppb; Class Three (Unsafe-USEPA limit; colored orange):
10–50 pbb and Class Four (Unsafe-Bangladesh limit; colored
red): >50 ppb (note: one ppb is equivalent to oneµg/l).
This preprocessing was performed for defining the classes
of arsenic contamination for use as input in kriging or ANN
model.

For the ANN, a 2 hidden layer (two input nodes for spa-
tial coordinates) network was set up that was trained us-
ing the back propagation algorithm (Govindaraju and Rao,
2000). For kriging, empirical variograms were modeled us-
ing the exponential variogram function. Each mapping tech-
nique (ANN and kriging) was compared for two specific con-
figurations. In the first configuration, it was assumed that
one model was representative of the whole study region (i.e,
for kriging this implied one variogram for the whole region
of Bangladesh in Fig. 1). In the second configuration, the
study region was divided into four quadrants in a manner that
closely matched the administrative boundaries of divisions
(i.e. a group of districts make up a division in Bangladesh in
Fig. 2). The idea behind the first configuration was to iden-
tify the technique that had better capabilities for generaliza-
tion of pattern. The second configuration was implemented
to test each technique’s capability in deciphering the finer-
scale features of the contamination pattern under a limited
data scenario. Noise removal took place via preprocessing
using the same filter for both techniques. Training and cal-
ibration was performed on 50% of randomly selected wells
in each region. Validation was performed on the remaining
50% of the wells (Fig. 2; Chowdhury et al., 2009).

Table 1 reproduces from Chowdhury et al. (2009) the com-
parative performance of the ANN versus kriging for each
configuration in terms of probability of successful detection
(i.e, probability that the predicted class value matches with
the in-situ class value), probability of false hope (probability
that the predicted class value is underestimated significantly
leading to an unsafe well being predicted wrongly as safe)
and the probability of false alarm (probability that the pre-
dicted class value is overestimated significantly leading to a
safe well being predicted wrongly as unsafe).

ANN, by virtue of its ability to generalize the spatial pat-
tern using a highly non-linear network, shows superior per-
formance when compared to kriging. For the first configura-
tion, the difference in performance between ANN and krig-
ing (in terms of successful detection of wells) is around 17%
(see Table 1, first row). However, this probability for suc-
cessful detection magnifies considerably (by∼3 times) for
the second configuration when the finer-scale features and
limited data scenario are considered (see Table 1, bottom
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Figure 2. Distribution of arsenic data in terms of the four management classes. 
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Fig. 2. Distribution of arsenic data in terms of the four management
classes.

four rows). More importantly, the probability of false hopes,
which is a serious issue in public health monitoring, is signif-
icantly lower for ANN (by around 50%) than that by kriging.

Our findings reveal an interesting picture on the pitfalls
of applying the kriging method for small-scale applications.
When the whole study region is considered with adequate
sampling data for calibration of models, kriging appears a
reasonably comparable approximator of the contamination
pattern with respect to the ANN. This may be attributed to an
accurate generalization of the empirical variogram represen-
tative of the whole study region. On the other hand, when a
smaller region is considered with considerably lesser amount
of sampling data for calibration of the models, kriging fails to
capture the finer-scale features of contamination and yields
significantly higher prediction error. This is possibly due
to a grossly inaccurate variogram model which is known
to be sensitive to the amount of sampling data and correla-
tion structure. In both cases, the ANN technique manages to
demonstrate superior performance and adapt accordingly to
each situation without being influenced too negatively by the
lack of adequate data for calibration. Clearly therefore, this
superiority is a manifestation of the inclusion of non-linearity
and multi-point pattern recognition in the ANN technique.

4 What should be the future of spatial mapping in
resource-poor settings?

The use of ANNs or ANN-type tools for spatial mapping is
not new (see for example Besaw and Rizzo, 2007). However,
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Table 1. Comparative performance of ANN versus ordinary kriging for spatial mapping of arsenic concentration in Bangladesh (taken from
Chowdhury et al. (2009) in Stochastic Environmental Research and Risk Assessment). The correlation coefficient is between estimated and
observed values of contamination.

Probability of Probability of Probability of Correlation
Successful False Hope False Alarms Coefficient
Detection

ANN Kriging ANN Kriging ANN Kriging ANN Kriging

Whole Region 67.23% 50.65% 14.39% 25.47% 18.38% 23.88% 0.6033 0.5590
(Bangladesh)
Region 1 71.22% 25.58% 14.82% 44.47% 13.95% 29.94% 0.7311 0.4925
Region 2 73.58% 22.74% 13.04% 34.45% 13.37% 42.81% 0.7663 0.4531
Region 3 65.64% 36.89% 18.37% 36.33% 15.99% 26.79% 0.6011 0.4070
Region 4 56.21% 20.05% 21.75% 39.83% 22.03% 40.11% 0.6253 0.4750
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Figure 3. Division of the study region in 
four quadrants. 
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Fig. 3. Division of the study region in four quadrants.

successful applications reported in literature so far pertain
mostly to the mapping of geophysical parameters. These
parameters remain fairly static and exhibit spatially much
smoother patterns in the timescales of interest (such as hy-
draulic conductivity, soil porosity etc.), making them rela-
tively easier to be modeled. Our study demonstrates that
ANNs can also be confidently used to map with higher accu-
racy than ordinary kriging the complex and seemingly erratic
spatial pattern of groundwater contamination provided there
is adequate data preprocessing performed.

It is not unreasonable now to argue that the use of more so-
phisticated kriging techniques that account for non-linearity
in spatial pattern could have provided more accurate results

on spatial mapping of arsenic contamination. One such po-
tential candidate among the kriging group of methods is
called disjunctive kriging (Chiles and Delfiner, 1999). Dis-
junctive Kriging is a non-linear method wherein the original
dataset is transformed using a series of additive non-linear
functions (typically Hermite polynomials; Webster, 1991).
However, this method, on account of requiring more restric-
tive assumptions than ordinary kriging (Deutsch and Journel,
1998) has been found to fare more poorly for spatial map-
ping of arsenic contamination in Bangladesh (Kinniburg and
Smedley, 2001). The Hermite-transformed concentrations
of arsenic were not found to follow a normal distribution,
thereby resulting in more spurious estimates of arsenic con-
centration at non-sampled locations. This may also be the
reason why other reports using disjunctive kriging on arsenic
data in Bangladesh have usually not been assessed of their
limits on accuracy (Gaus et al., 2003).

One way to overcome the normality requirement of krig-
ing could be to employ the method of indicator kriging
(Goovaerts, 1997). While the promise of this technique re-
mains to be thoroughly tested for groundwater contamina-
tion, we must note that it is essentially a linear technique
and still relies on the two-point statistics of variograms. Fur-
thermore, our experience with indicator kriging over arsenic
data revealed that the technique is rather time consuming as it
does not directly produce a map of estimates but functions on
the basis of thresholds and exceedance probabilities. For all
these reasons, the use of indicator kriging or disjunctive krig-
ing would not have allowed us to comprehensively test our
hypothesis that “non-linearity and multi-point pattern recog-
nition can improve the spatial mapping of complex patterns
of groundwater contamination significantly”. It is appropri-
ate to mention herein that the problem of two-point statistics
in ordinary kriging has also been perceived for a long time
by the kriging community, and that a new approached has
been developed, called “multipoint geostatistics” (Strebelle
and Zhang, 2005).
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The logical challenge now is to explore ways to leverage
knowledge of the physics of the contamination process in
non-linear mapping schemes used by tools like ANN. Tra-
ditional ANNs are black-box tools and are often criticized as
lacking in the ability to provide or ingest physical insights.
However, using the theory of chaos, we have recently been
able to demonstrate that the spatial randomness can indeed
be deterministic (Hossain and Sivakumar, 2006) and there-
fore has promise to be deterministically modeled (Hill et
al., 2008). Our next steps should therefore be to find prac-
tical ways to leverage the information gained from chaos
analysis towards the robust design of ANN-type mapping
schemes that can build upon kriging methods. Such an ef-
fort can potentially blend the recently acquired knowledge
on the physical factors governing contamination and act as
a bridge between the data-based spatial mapping commu-
nity and the process-based contamination community. So far,
both communities have advanced their fields somewhat inde-
pendently and we believe it is now time to explore competing
paradigms simultaneously to minimize mapping uncertainty
in resource-poor settings.
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