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Abstract. MHD solitons are studied in a model where the
usual Hall-MHD model is extended to include the finite Lar-
mor radius (FLR) corrections to the pressure tensor. The re-
sulting 4-dimensional set of differential equations is treated
numerically. In this extended model, the point at infinity can
be of several types. Necessary for the existence of localized
solutions is that it is either a saddle-saddle, a saddle-center,
or, possibly, a focus-focus. In cases of saddle-center, numeri-
cal solutions for localized travelling structures have been ob-
tained, and compared with corresponding results from the
Hall-MHD model.

1 Introduction

MHD solitons, i.e., stationary localized travelling structures
theoretically derived from MHD models extended with terms
introducing dispersion, have recently received some attention
(Baumg̈artel, 1999; McKenzie and Doyle, 2002; Stasiewicz
et al., 2003; Stasiewicz, 2004; Mjølhus, 2006; Sauer et
al., 2007; Baumg̈artel et al., 2007). Reasons for this are
space observations that have recently been interpreted this
way (Baumg̈artel, 1999; Stasiewicz et al., 2003; Stasiewicz,
2004). In particular, observed structures that have been
termed magnetic holes (e.g., Turner et al., 1977; Winterhal-
ter et al., 1994; Sperveslage et al., 2000) have been pro-
posed to be interpreted in terms of this kind of structures
(Baumg̈artel, 1999). More recently, certain peculiar obser-
vations in interplanetary space (Rees et al., 2006) show a
striking similarity with certain MHD soliton solutions ob-
tained by Mjølhus (2006) and further discussed in Sauer et
al. (2007) and Baumg̈artel et al. (2007).
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All of the theoretical results referred to above, were ob-
tained in models where MHD equations were extended with
Hall dispersion. This kind of models will henceforth be re-
ferred to as Hall-MHD models. However, it has recently
been emphasized that the Hall-MHD models in many cases
lack consistency (Pokhotelov et al., 2005), and that disper-
sive contributions of thermal origin must be included for con-
sistency.

In the present paper, an effort to meet this requirement is
presented. To be more specific: the Hall-MHD model is ex-
tended to include the Finite Larmor Radius (FLR) correction
to the pressure tensor, as derived by MacMahon (1965) and
also presented in Yajima (1966).

This extension is rather challenging. While the assumption
of stationary travelling wave solution in Hall-MHD models
leads to a system of two coupled first order differential equa-
tions plus an algebraic equation, for which a saddle connec-
tion is to be computed, the FLR extension leads to a singular
system of 5 coupled differential equations. The singularity
of this system is such as to produce an algebraic equation for
consistency, so that the effective dimensionality of the sys-
tem is four (Hau and Sonnerup, 1991). In the Hall-MHD
case, the upstream state may generically be either a center
or a saddle point. A necessary condition for localized so-
lution is that it is a saddle point. In contrast, because of
the increased dimensionality, in the FLR case a larger set
of possibilities occurs. The cases that allow localized so-
lutions, include saddle-center, saddle-saddle, and, possibly
focus-focus.

Due to lack of adequate numerical method, it has not been
possible so far to obtain localized solutions in the two latter
types of situation. However, in cases of saddle-center, this
has been achieved.

The plan of paper is as follows: in Sect. 2, the basic model
is formulated. In Sect. 3 some of its mathematical proper-
ties are described, including in particular the treatment of the
singular FLR matrix. In Sect. 4, the analysis of the upstream
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state is described. In Sect. 5, some aspects of the numeri-
cal procedure are discussed. In Sect. 6, some numerical re-
sults are presented. In Sect. 7, a perturbation method is in-
troduced, which can also be used in saddle-saddle and focus-
focus cases. Section 8 contains a concluding discussion.

2 FLR-Hall-MHD model

We start with the set of equations

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

∂

∂t
(ρv)+∇·

[
ρvv+P

∼i
+P

∼e
+

1

4π

(
1

2
B2 I

∼
−BB

)]
=0 (2)

∂B
∂t

= ∇ ×

[
v × B −

mic

4πeρ
(∇ × B) × B

]
(3)

Equation (1) is the equation of continuity, whereρ is the
mass density andv is the ion velocity. Equation (2) is the
equation of motion, whereP

∼i,e
are the ion and electron pres-

sure tensors, andB is the magnetic field.I
∼

is the unit (iden-

tity) tensor. Equation (3) is the magnetic induction equation,
where the last term on the righthand side is the Hall term.
The constantsmi , e, c are the ion mass, the electron charge,
and the speed of light respectively.

For the electron pressure, we shall throughout use an as-
sumption of scalar pressure and isothermal equation of state

P
∼e

= pe I
∼

, pe = ρv2
se , v2

se = κTe/mi (4)

Here,Te is the electron temperature, which will be assumed
constant, since the electron temperature is assumed constant
along magnetic field lines, andκ is the Boltzmann constant.
For the ion pressure tensor, we set

P
∼i

= P
∼

(0)

i
+ P

∼

(1)

i
(5)

where the gyrotropic part is

P
∼

(0)

i
= p‖ebeb + p⊥( I

∼
− ebeb) = P
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(0)

i,‖
+ P

∼

(0)

i,⊥
(6)

thus,p‖,⊥ are the parallel and perpendicular pressures, and
eb=B/B is the unit vector along the magnetic field. The
tensorP

∼

(1)

i
then represents the FLR correction according to

MacMahon (1965) and Yajima (1966). It can be expressed
as follows:

P
∼
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In Eq. (8)�i=eB/mic is the ion gyro frequency, where only
one kind of ions is assumed. The notationQ

∼

T means the

transpose of tensorQ
∼

; likewiseQ
∼

+ transp. meansQ
∼

+Q
∼

T .

In order to complete the modelling, equations of state for
p‖ andp⊥ must be specified. In this paper, only the double-
adiabatic model will be considered. The double-adiabatic
equations of state

p‖B
2/ρ3

= const.

p⊥/ρB = const.
(9)

are based upon the assumption of neglecting the parallel heat
fluxes, which is also underlying the derivation of the FLR
corrections (MacMahon, 1965). It has therefore been argued
that it may be inconsistent to use other pressure assumptions
in combination with FLR corrections (Krauss-Varban et al.,
1995). Other authors have argued to use other pressure as-
sumptions, based, for example, on observations (for exam-
ple, Hau et al., 2005; Hau and Sonnerup, 1991; Sauer et al.,
2007); implying, correctly, that parallel heat fluxes are often
not negligible. In this paper, it has been chosen to stay with
the assumption that is consistent with the derivation of the
FLR corrections.

This set of equations is next specialized for stationary
moving localized solutions with all state variables varying in
one direction only. A coordinate system(x, y, z) is defined
by an orthonormal, righthanded, constant baseex, ey, ez.
Here,ex is the wave normal direction, i.e.,

∇ = ex

d

dx
(10)

Moreover, they- andz-directions are chosen such that the
upstream magnetic field is

B0 = B0 cosθex + B0 sinθez (11)

Without loss of generality, the upstream velocity can be cho-
sen as

v = v0xex upstream (12)

because the other components can be removed by Galilei
transformations. Seeking solutions representing structures
moving without changing form, one can now from the same
principle without loss of generality assume that all state vari-
ables are independent of time

∂

∂t
= 0 (13)
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Then,v0x defines the velocity of propagation. Whenv0x is
negative, the structure is moving in the positivex direction,
and upstream is atx→+∞. This will be assumed, and we
shall putC=−v0x for the soliton velocity.

With these assumptions and definitions, our equations can
be brought to the following form:

`δA
∼

·
du
dx

+ F(u, b) = 0 (14)

`
db
dx

+ G(u, b) = 0 (15)

Here,F=Fxex+Fyey+Fzez has components

Fx = u − 1 + P(u, b2) +
1

2
MA sin2 θ(b2

− 1)

Fy = uy + χ(u, b2) cosθ sinθby

Fz = uz + (χ(u, b2)bz − χ0) cosθ sinθ

(16)

andG=Gyey+Gzez has the components

Gy = −
uz

u

cosθ

sinθ
+ bz − 1

Gz =
uy

u

cosθ

sinθ
− by

(17)

The state variablesu=uex+uyey+uzez, andb=byey+bzez

are defined by the normalizations

u = v/v0x (18)

by,z = By,z/B0 sinθ (19)

following McKenzie and Doyle (2002). By this choice, the
upstream state is

u = 1 , bz = 1

uy = uz = by = 0
(20)

Moreover, by the equation of continuity,u is related to the
density by

u = (ρ/ρ0)
−1 (21)

and, definingP⊥=p⊥/p0⊥, P‖=p‖/p‖0 wherep0⊥, p0‖ are
the upstream values of the pressure components, the equa-
tions of state (9) can be expressed as

P⊥(u, b2) = b̂u−1

P‖(u, b2) = b̂−2u−3
(22)

where

b2
= b2

y + b2
z

b̂2
= cos2 θ + b2 sin2 θ

(23)

In Eq. (16), the functionsP andχ are defined as

P(u, b2) = Me

(
1

u
− 1

)
+ Mi

{
P⊥(u, b2) − 1

+

[
apP‖(u, b2)−P⊥(u, b2)

]
cos2 θ/b̂2

−(ap−1) cos2 θ
}

(24)

χ(u, b2) = Mi

[
apP‖(u, b2) − P⊥(u, b2)

]
/b̂2

− MA (25)

andχ0=χ(1, 1) is the upstream value ofχ . The parameters
are defined as

Me = v2
se/v

2
0x

Mi = v2
⊥
/v2

x0

MA = v2
A/v2

0x

ap = p‖0/p⊥0

(26)

wherev2
⊥
=p⊥0/ρ0 andv2

A=B2
0/(4πρ0). The dispersive pa-

rameters are

a) ` = v2
A/(�civx0)

b) δ = (v2
⊥
/v2

A)P⊥(u, b2)/ cosθ
(27)

Finally, the tensorA
∼

can be expressed on dyadic form as

A
∼

= I
∼

× r + 2εb̂b̂‖ × b̂⊥ (28)

where

b̂‖ = b̂xex

b̂⊥ = b̂yey + b̂zez

b̂ = b̂‖ + b̂⊥

b̂y,z = by,z sinθ/b̂ = By,z/B

b̂x = cosθ/b̂ = Bx/B

(29)

and

r = −r‖b̂‖ + r⊥b̂⊥

r‖ =
1

2
(1 − 3b̂2

‖
) + 2εb̂2

‖

r⊥ =
1

2
(1 + 3b̂2

‖
) − 2εb̂2

‖

ε = (p⊥ − p‖)/p⊥ = 1 − apP‖/P⊥

(30)

In the sequel, the tensorA
∼

will be referred to as the 1-D FLR
tensor.

FLR-Hall-MHD equations on the form Eqs. (14), (15) for
1-D stationary moving structures have earlier been devel-
oped and studied by Hau and Sonnerup (1991) for the pur-
pose of providing a smooth model of rotational discontinu-
ities. In that case, however, an assumption of scalar pres-
sure was made. The 1-D FLR tensor used by Hau and Son-
nerup (1991) agrees with the present result Eqs. (28)–(30) in
the special caseε=0.
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3 Singularity of the 1-D FLR tensor

At first sight, Eqs. (14), (15) looks like a 5-dimensional sys-
tem of first order differential equations. However, matters
are made more complicated by the fact that the tensorA

∼
is

singular, as also noted by Hau and Sonnerup (1991):

L · A
∼

= 0

A
∼

· R = 0
(31)

where the left and right null vectors are

L = (r + 2εb̂2
⊥

b̂2
‖
− 2εb̂2

‖
b̂⊥)/µ

R = r/µ

where

µ2
= r2

⊥
b̂2
⊥

+ r2
‖
b̂2
‖

− γ

γ = 2εb̂2
⊥
b̂2
‖

(32)

The normalizations ofL andR were chosen such thatL ·R=1
(note thatr‖+r⊥=1).

A consequence of Eq. (31) is the constraint

H(u, b) = 0 (33)

where the functionH(u, b) is defined by

H(u, b) = L · F (34)

This follows readily by dotting Eq. (14) from the left with
L . Equation (33) defines a 4-dimensional surface in the 5-
dimensonalu, b space. This surface is the state space of
Eqs. (14), (15).

We proceed to describe how to make Eq. (14) explicit. To
this end, the eigenvectors ofA

∼
are utilized. In addition to

the eigenvalue 0 with left and right eigenvectorsL andR, A
∼

has eigenvalues±iµ, whereµ is defined by Eq. (32). The
vectors

S =

[
(b̂2

⊥
r⊥ − γ )b̂‖ + (b̂2

‖
r‖ − γ )b̂⊥

]
/(µb̂⊥b̂‖)

T = (b̂‖ × b̂⊥)/(b̂‖b⊥)

(35)

satisfy

A
∼

· S = −µT

A
∼

· T = µS
(36)

while

M = (b̂2
⊥
r⊥b̂‖ + b̂2

‖
r‖b⊥)/(µb̂⊥b̂‖)

N = T
(37)

satisfy

M · A
∼

= µN

N · A
∼

= −µM
(38)

and these vectors satisfy the orthogonality and normalization
conditions

L ·R=1 L ·S=L ·T=0

M · R=0 M ·S=1 M ·T=0 (39)

N·R=0 N·S=0 N·T=1

Then, Eq. (14) implies

`δ
du
dx

= w (40)

where

w = wRR + wSS+ wT T (41)

has to satisfy

A
∼

· w = −F (42)

We decomposeF in the baseR, S, T. However, the compo-
nent ofF alongR must vanish because of Eqs. (31) and (36).
Therefore

F = FSS+ FT T (43)

where, by Eqs. (39),

FS = M · F

FT = N · F
(44)

Inserting Eqs. (41) and (43) into Eq. (42) and using Eqs. (36),
(38), (39), gives

wS = N · F/µ

wT = −M · F/µ
(45)

while wR must be determined from the condition of main-
taining Eq. (33). This condition can be derived as follows:
sinceH remains zero, one hasdH/dx=0 implying

∂H

∂u
·w+δ

∂H

∂b
·G=0

which, by Eq. (41) gives

wR = −(wS0S + 0b)/0R (46)

where

0R=
∂H

∂u
·R , 0S=

∂H

∂u
·S, 0b=δ

∂H

∂b
·G

and noting that(∂H/∂u)·T=0. It follows from Eq. (46) that
solutions cannot cross the set on the surfaceH(U)=0 in U

space defined by

0R(U) = 0 (47)

This condition plays a role similar to the sonic circle occur-
ring in the Hall-MHD theory (see, e.g., Mjølhus, 2006), al-
though, the location of this set is not necessarily approximat-
ing the sonic circle.
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4 Necessary condition at the upstream state

The upstream stateu0=(1, 0, 0), b0=(0, 1) is an equilibrium
point for Eq. (14), (15), i.e.,F(u0, b0)=0, G(u0, b0)=0. A
localized solution to Eqs. (14), (15) must start and end in this
state asx→±∞. Therefore, a necessary condition for such
solutions to exist, is that the linearization of Eqs. (14), (15)
around the upstream state permits both growing and decay-
ing solutions. In the Hall-MHD case, being two-dimensional,
this amounts to a condition that the upstream state be a sad-
dle point. The present case, being essentially 4-dimensional,
allows more possibilities. Denoting

U = (u, uy, uz, by, bz)
T

U0 = (1, 0, 0, 0, 1)T

U = U0 + V

linearizing around the upstream state, and assuming

V (x)=V̂ exp(kx)

leads to

KV̂ = 0 (48)

with

K = M + `kN (49)

where the 5×5 matricesM andN are built up as follows:

M=

[
M11 M12
M21 M22

]
where M11=(∂F/∂u)0 (3×3), M12=(∂G/∂u)0 (2×3),
M21=(∂F/∂b)0 (3×2), andM22=(∂G/∂b)0 (2×2), and

N =

[
δ0A0 0

0 I2

]
(50)

where

δ0 = v2
⊥
/(v2

A cosθ) (51)

A0 is the matrix of the tensorA
∼

(referred to the base

ex, ey, ez), andI2 is the 2×2 unit matrix. The condition for
nontrivial V̂ is detK=0, which gives the biquadratic

P(κ) = 0

P(κ) = p2κ
4
+ p1κ

2
+ p0

(52)

with κ=k`. The coefficients are

p0 = detM = didms

di = 1 − (MA + Mi(1 − ap)) cos2 θ

dms = 1 − B + D

B = MA + Me + Mi(2ap cos2 θ + 1 + sin2 θ)

D=Mi cos2 θ
[
3apMA+Mi−3a2

p cos2 θ

+3ap(1+ sin2 θ)− sin2 θ
]

+Me cos2 θ
[
MA+Mi(cos2 θ+ap(4 sin2 θ−1))

]
(53)

The coefficientp0 vanishes when the velocityC=|v0x | is
equal to one of the MHD velocities of propagation (inter-
mediate velocity,di=0, or slow/fast magnetosonic velocity,
dms=0). The coefficientp2 is given by

p2 = δ2
0µ2

00R0 (54)

whereµ0 and0R0 are the values ofµ and0R at the upstream
state. Forp1 we have

p1 = q0 + δ0q1 + δ2
0q2 (55)

where

q0 = 1 − C2
s /C2

C2
s = v2

se + v2
⊥
(3ap cos2 θ + sin2 θ)

(56)

thus,Cs is the acoustic velocity of double adiabatic MHD.
The coefficientsq1 andq2 are given by complicated expres-
sions which are given in the appendix. It can be seen that
δ0=0 reproduces the Hall-MHD result (e.g., Mjølhus, 2006).

The classification of the upstream state is thus determined
by the biquadraticP(κ) in Eq. (52). The biquadratic struc-
ture, which reflects the reversibility described in the next sec-
tion (Symmetry 1), limits the possibilities. The generic cases
are:

(i). Saddle-center:This is when the two roots forκ2 have oppo-
site signs; then the four roots forκ are one positive, one negative
and two purely imaginary complex conjugates. Consequently, the
tangent space of the upstream state, represented by the lineariza-
tion above, has one expanding (κ>0) and one contracting (κ<0)
eigenvector direction Eq. (48), and a two- dimensional subspace of
oscillations.

(ii). Saddle-saddle:This is when the two roots forκ2 are both pos-
itive; then the four roots forκ are two positive and two negative. In
the tangent space of the upstream state, there is a two-dimensional
expanding subspace and a two-dimensional contracting subspace.

(iii). Center-center:This is when the two roots forκ2 are both neg-
ative. Then, the four roots forκ are two pairs of complex conjugate
purely imaginary roots. Then the whole tangent space of the up-
stream state consists of oscillations.

(iv). Focus-focus: Finally, when the two roots forκ2 are com-
plex conjugates,κ2

=r exp(±iθ), we get the four rootsκ1,2,3,4= ±
√

r exp(±i θ
2), two of which induce a two-dimensional expanding

subspace and two inducing a contracting subspace.

Referring now to Eq. (52), whenp0 andp2 have oppo-
site signs, the upstream state is a saddle-center. When they
have the same sign and stillp2

1−4p0p2>0, it is saddle-saddle
when p1 has the sign opposite of the sign ofp0, p2, and
center-center whenp1 has the same sign asp0, p2. Finally,
whenp2

1−4p0p2<0 it is focus-focus.
The necessary condition is satisfied when we have saddle-

saddle or saddle-center, while it is not satisfied when we have
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Fig. 1. Example of the classification of the upstream state. The
electron temperature satisfiesvte=v⊥.

center-center. Cases of focus-focus have not been investi-
gated within this work, although there are cases of this in
some parameter ranges where the Hall-MHD model yields a
solution.

In the Hall-MHD case, the necessary condition was de-
termined by the velocity of propagation relative to the MHD
velocities and the sonic velocityCS . The first of these depend
onp0, which thus changes sign at the same thresholds as be-
fore. The coefficientp1 changes sign approximately where
q0=0, i.e.,C2

s =C2, when|δ0| is small.
An example of the classification is shown in Fig. 1. In

Fig. 2, the various MHD velocities have been plotted, and
comparing the two figures, the significance of the various re-
gions in Fig. 1 can be understood. In addition to the fast and
slow MHD velocities (blue), the intermediate velocity (red),
and the sonic velocityCS given by Eq. (56) (green), also the
velocity CFLR at which00R=0, has been plotted (magenta).
The latter defines the locus at which the coefficientp2 of
Eq. (52) vanishes.

In Fig. 2, four examples of maximal existence intervals
for soliton families (Mjølhus, 2006) are indicated by black
color. We shall return to their interpretation in Sect. 6. Here,
we shall be content to note that these intervals also satisfy
the necessary condition for existence of localized stationary
solution in our FLR-Hall-MHD model, either exact (1,3,4) or
approximately (2).

5 Numerical procedure

No proof has been obtained that exact solutions in the form of
solitary waves exist for the 4-dimensional system Eqs. (14),
(15). In the next section, a few examples of numerically
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Fig. 2. Example of the various critical velocities entering the clas-
sification of the upstream state. The parameters are the same as for
Fig. 1. The values of the velocities are in units ofvA.

computed solutions will be presented. In the present section,
some of the numerical challenges will be discussed.

The integration of Eq. (14), (15) proceeded by a second or-
der Adams-Bashforth method, starting up with one step Eu-
ler’s method. The first challenge to meet, was to treat the
singularity of the tensorA

∼
entering Eq. (14), which implies

that Eq. (14) is not on explicit form. In the numerical proce-
dure, Eq. (14) is replaced by Eq. (40), wherew is calculated
as described in Sect. 3. The following shortcut was made:0b

entering Eq. (46) was calculated as0b=δH/δx, whereδH is
the residual value ofH after the previous step, andδx is the
step length.

In order to numerically construct a valid localized solu-
tion, it is made use of the following reversibility property of
Eq. (14), (15):

Symmetry 1: If U(x) is a solution, then alsoJ1U

is a solution. Here, the operatorJ1 is defined by

J1U=(u(−x), −uy(−x), uz(−x), −by(−x), bz(−x)) (57)

A consequence of this is that if there exists a solutionU1(x)

for x<0 with uy(0)=0, by(0)=0, which approaches the up-
stream state asx→−∞, this solution can be joined with
U2(x)=(J1U1)(x) for x>0 to produce a solution which ap-
proaches the upstream state asx→+∞. Then

U(x) =

{
U1(x) x < 0
(J1U1)(x) x > 0

(58)

is a localized solution for−∞<x<∞. (Here, we exploit
that a solutionU(x) is uniquely determined by its value at
one point,U(x0); in addition, this initial point must be on
the constraint manifold Eq. 33.) Numerically, this can be
done as follows:
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(i) Start a numerical solution at a pointUinit near the up-
stream stateU0, on (or near) the unstable manifold; i.e.,

Uinit=U0+τ V̂ +O(τ2) (59)

whereτ is small andV̂ satisfies Eq. (48) with a positive
value ofk satisfying Eq. (52). In practice,τ=10−3 has
been mostly used witĥV having unit Euclidean norm,
and theO(τ2) contributions to the exact unstable mani-
fold were neglected.

(ii) Continue the computation untilby changes sign.

(iii) Denote the numerical solution generated this wayÛ (x),
and assume thatby changes sign atx=xc. Now, if also
uy changes sign atx=xc (or, numerically, very nearby),
then one can use the translational invariance to define
U1(x)=Û (x+xc), whereU1(x) is now defined numeri-
cally on a grid for−xc<x<0. ThenU2(x)=(J1U1)(x)

will be defined on a numerical grid for 0<x<xc, and

U(x) =

{
U1(x), −xc < x < 0
U2(x), 0 < x < xc

(60)

will be a numerical approximation defined on a grid
from −xc to xc, ending nearU0 at±∞.

In the saddle-saddle cases, this procedure could be thought
of as the basis for a shooting method. Namely, in those cases,
there are two independent tangent vectors,V̂1 andV̂2, span-
ning the tangent space of the unstable manifold. By starting
from a sequence of linear combinations cosϕV̂1+ sinϕV̂2,
one could think of numerically determining a valueϕc for
whichuy(xc)'0.

This procedure has, however, not been successful. In most
saddle-saddle cases tried numerically, the numerical solution
went to overflow. In some cases,0R=0 was encountered. At
low beta, this is not unreasonable: at low beta, one of the two
spanning tangent directions for expanding solutions,V̂1, ap-
proximates the one valid for the Hall-MHD model. The other
one,V̂2, must necessarily have a large value of the expansion
rate, k2, tending to infinity as beta goes to zero (δ0→0 in
Eq. 52). Thus, starting on thêV1 direction in a low beta case,
small numerical errors will make the far more rapid expan-
sion alongV̂2 take over. In the cases encountered, this growth
did not stop, and thus went to overflow.

In the saddle-center cases, the situation is different: only
two numerical solutions generated the way described above,
are possible. The two correspond to two possible orientations
of V̂ , or equivalently, two possible signs ofτ , referring to
Eq. (57). The two possibilities correspond to the possibilities
of generating numerically a bright vs. a dark soliton, where
bright vs. dark refer to whetherb2>1 or b2<1 throughout
the soliton (Mjølhus, 2006). They are identified by the sign
of the perturbation ofbz; if the latter is positive (negative), a
bright (dark) soliton will result, provided a solution exists.

Now, computing a numerical solution up to the pointxc as
described above in a saddle-center case, since there is no pa-
rameter to vary, it is not obvious that the conditionuy(xc)=0
is hit. However, in many cases, very small values ofuy(xc)

were obtained, indicating numerically that a soliton solution
exists. Examples will be shown in the next section. Briefly,
this happened for parameter values at which a solution exists
in the Hall-MHD case, although exceptions may occur. In the
next section, this will be further discussed through examples.

In some cases, we have gone a step further, in order to
check this criterion of existence: if the exact value ofuy(xc)

is zero, then a nonzero numerical value is due to numerical
errors. These have two sources: (i) the use of the tangent to
the unstable manifold instead of the exact unstable manifold
for the initial condition; this error depends on the numerical
parameterτ asO(τ )2 (cf. Eq. 59). (ii) The other source is the
integration error. Since our integration method is of second
order, the global integration error is expected to depend on
the step lengthδx as(δx)2.

Assume that the exact value ofuy(xc) vanishes. Then, if
the computation is repeated for decreasing values ofδx and
τ , the numerical value of|uy(xc)| is expected to decrease
as the square of these parameters. On the other hand, if the
exact value|uy(xc)|6=0 and large enough to be numerically
detectable, then the values of|uy(xc)| obtained by the above
procedure will settle on a constant value even when the nu-
merical parameters are further decreased.

The value ofuy(xc) used in this procedure is obtained by
linear interpolation, using the two last values ofby , and the
corresponding two last values ofuy .

In practice, a decay as(δx)2 was not achieved; instead,
|uy(xc)| decayed as|δx|. A clear explanation of this has not
been obtained; the most likely candidate is the shortcut by
which the quantity0b was calculated, as described in the
beginning of this section. However, we have not succeeded
in replacing this with anything better.

6 Numerical examples

Let us recall from Mjølhus (2006) that the soliton solutions
of the Hall-MHD model come in families, characterized by
velocity-amplitude relationships. For fixed wave normal di-
rectionθ , these occur within propagation velocity intervals
for which the necessary condition for existence of stationary
localized solutions are satisfied. Four such intervals, marked
1-4, are indicated by black vertical broken lines in Fig. 2. All
of these sets also satisfy the necessary condition in the FLR-
Hall-MHD model (though, interval 2 only approximately), as
is easily seen by comparing Figs. 2 and 1.

Within each of these maximal existence intervals, there is
potentially two families of solitons, namely a dark, carrying
a dip inb2, and a bright, carrying an increase inb2. In addi-
tion to the necessary condition for decaying solutions at the
upstream state, a condition that the solution curve must not
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Fig. 3. An example of a solution obtained by the method described
in Sect. 5. The step length of integrationδx=0.001, andτ=0.001
(entering Eq. 59). The residual value ofuy(xc)'−4.6×10−7. The
parameters were as indicated by the diamond in Fig. 2, with soliton
velocity C=0.9v. The length unit in this figure as well as Figs. 5
and 8, is the dispersive length`.

encounter the sonic circle (Mjølhus, 2006) also had to be sat-
isfied. Then, only a subset of these potential families actually
exist as Hall-MHD soliton solutions.

The maximal existence interval marked 1 in Fig. 2, con-
tains a full Hall-MHD dark family, with a small-amplitude
limit whenC→Cfast. It is an example of a fast magnetosonic
soliton family, cold case. From Fig. 1, it can be seen that the
upstream state is of saddle-center type in this case, and so
we have a case in which the numerical method may work. In
this case, the FLR-Hall-MHD model also produces the full
fast magnetosonic (dark) family. A typical case of a solu-
tion in this family is shown in Fig. 3. The green curve was
obtained by a perturbation method to be described in Sect. 7.

In Fig. 4, the velocity-amplitude relationship (C versus
min(b2)), as computed from the two models, is plotted. They
are observed to coincide. This does not appear to be an exact
relationship between the two models; at higher beta (v⊥&1),
the numerical results showed discrepancy between the two.

The existence interval of Hall-MHD bright solitons in the
maximal existence interval 1 of Fig. 2, is very tiny, though
nonvanishing. In Mjølhus (2006), it was demonstrated that
a double family of dark and bright nearly circularly polar-
ized solitons exists sufficiently near the intermediate veloc-
ity. This double family was termed the Alfvenic soliton fam-
ily. It is implied that the dark branch of this double fam-
ily is the same as the magnetosonic family, as argued in
Mjølhus (2006). In the Hall-MHD model, the value ofC

had to be extremely close to the intermediate velocity. With
Cint=vA cosθ=0.8660 (puttingvA=1), a Hall-MHD bright
soliton was numerically obtained forC=0.86625, while for
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Fig. 4. Velocity-amplitude relationship for the fast magnetosonic
family in the case represented by 1 in Fig. 2. The stars represent
results of the Hall-MHD model.

C=0.8663 the solution curve encountered the sonic circle.
In the present FLR-Hall-MHD model, a solution was, in fact,
numerically obtained in a larger velocity interval aboveCint,
although still tiny. Figure 5 shows the case withC=0.867.
ForC=0.868, the locus0R=0 was encountered (cf. Sect. 3).
Figure 6 shows the computed velocity-amplitude relationship
for this double Alfvenic family. The stars represent compu-
tations in the Hall-MHD model. Again, it is observed that
the two models yield practically the same velocity-amplitude
curve in terms ofb2. In Fig. 7, the hodograms for the two
solutions indicated by circles in Fig. 6, are exhibited, in or-
der to demonstrate the circular polarization of solitons in this
Alfvenic family.

The existence intervals 2 and 4 are partially of type saddle-
saddle and partially of type focus-focus, and so, FLR solu-
tions have not been obtained in these ranges. In particular,
interval 4 is in a range which is potentially of physical inter-
est, since it contains a slow magnetosonic family (warm case)
(Mjølhus, 2006), which is the kind of solitons invoked in the
context of magnetic holes (Baumgärtel, 1999; Stasiewicz et
al., 2003; Stasiewicz, 2004).

Existence interval 3 is an existence interval bounded by
Cfast and the sonic velocityCs . In Hall-MHD, only a dark
family can potentially exist in this case (Mjølhus, 2006),
termed the fast magnetosonic family, warm case. In this case,
our conclusion is that this family does not exist in the FLR-
Hall-MHD model, for most of the maximal existence inter-
val, though, the numerics indicate that it does exist forC

sufficiently close toCfast. In part of the interval, the value
of uy(xc) was small, but applying the procedure described
at the end of Sect. 5, this value did not decrease when the
numerical parametersδx, τ were decreased. However, at
C=0.9378Cfast (=1.1vA), a residual value ofuy(xc) could
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Fig. 5. An example of a bright soliton, obtained close toCint, the
lower end of the existence interval 1 of Fig. 2. The numerical pa-
rameters were as in Fig. 3; the length unit likewise. The residual
value wasuy(xc)'−2.8×10−8.
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Fig. 6. Velocity-amplitude relationship for the double Alfvenic fam-
ily nearCint, for the same set of parameters as in Fig. 4. Also the
numerical parameters are the same. Stars mark results from the
Hall-MHD model.

not be detected whenδx was halved 16 times, starting with
δx=0.01. Similar behaviour has been found at other values
of v⊥ and θ . This indicates that the FLR-Hall-MHD ver-
sion of the fast magnetosonic soliton (warm case) at most ex-
ists forC sufficiently close to the small-amplitude endCfast.
The exampleC=1.1vA is shown in Fig. 8, while a velocity-
amplitude relationship obtained in the range in which FLR
solution appears to exist, is shown in Fig. 9.
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Fig. 7. Hodograms for the two cases indicated by circles in Fig. 6.
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Fig. 8. Solutions obtained by FLR-Hall-MHD as well as Hall-MHD
and the perturbation method of Sect. 7, for a case in the fast magne-
tosonic family, warm case.

It remains to discuss cases exemplified by region 5 of
Fig. 2: in this case, the upstream state is of type center-saddle
according to the FLR-Hall-MHD model. However, in this
case, the upstream state is of type center in the Hall-MHD
model, so no solitons exist in Hall-MHD in that range. In
the FLR model, computations either hit the set0R=0, or a
nonzero value ofuy(xc) was obtained. It is concluded that
no new type of MHD soliton was found in this range in the
FLR-Hall-MHD model.
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Fig. 9. Velocity-amplitude relationship for the part of the range 3
(cf. Fig. 2) in which the numerics indicate that a solution exists in
FLR-Hall-MHD.

7 Perturbation method

At low beta, it is possible to treatδ0, i.e., the upstream value
of δ entering Eq. (14) and defined in Eq. (27), as a small
parameter. Then, one can treat the FLR effects as a perturba-
tion, starting with the Hall-MHD model as zeroth order.

It was found that, in order to do so, the method of strained
coordinates (Nayfeh, 1973) had to be included, because the
perturbation will generally influence the width of the soliton
solutions. Thus, the following expansions are assumed:

u = u(0)
+ δ0u(1)

+ δ2
0u(2)

+ · · ·

b = b(0)
+ δ0b(1)

+ δ2
0b(2)

+ · · ·
(61)

and

x0 = x(1 + s1δ0 + s2δ
2
0 + · · · ) (62)

The latter describes a near-identity coordinate transformation
from old coordinatex to new coordinatex0, and where the
coefficientss1, s2, . . . , are at our disposal. This transforma-
tion implies the differentiation rule

dV

dx
=

dV

dx0
(1 + s1δ0 + s2δ

2
0 + · · · ) (63)

Introducing these expansions, one first gets from Eq. (14):

F(u(0), b(0)) = 0 (64)

In the Hall-MHD description, Eq. (64) is solved foru in
terms ofb:

u(0)
= u(b(0)) . (65)

Inserting this into Eq. (15) gives

`
db(0)

dx0
+ G(u(b(0)), b(0)) = 0 (66)

Equation (66) is the Hall-MHD model. It is a set of equa-
tions for the two transverse components of the magnetic field.
Next, Eqs. (14) and (15) to orderδ0 read

DuF(0)u(1)
+DbF(0)b(1)

+`
δ(0)

δ0
A
∼

(0) d

dx0
(u(b(0))) = 0 (67)

`
db(1)

dx0
+ `s1

db(0)

dx0
+ DuG(0)u(1)

+ DbG(0)b(1)
= 0 (68)

Here,DuF(0), DbF(0), DuG(0), DbG(0) are the respective Ja-
cobian matrices taken at the unperturbed solution;δ(0) is δ as
given by Eq. (27), taken at the unperturbed solution, while
A
∼

(0) is the tensorA
∼

given by Eqs. (28)–(30) taken at the un-

perturbed solution.
ProvidedDuF(0) is invertible, Eq. (67) can be solved for

u(1). This can be inserted into Eq. (68) to yield the linear,
inhomogeneous differential equation

`
db(1)

dx0
= P

∼
(x0)b(1)

+ Q(x0) (69)

for the perturbation of the magnetic fieldb(1). Here, the 2×2
matrixP

∼
and the 2-vectorQ are

P
∼

= DuG(0)(DuF(0))−1DbF(0)
− DbG(0) (70)

Q=`

[
DuG(0)(DuF(0))−1 δ(0)

δ0
A
∼

(0) d

dx0
u(b(0))−s1

db(0)

dx0

]
(71)

Next, the invertibility ofDuF(0) is discussed. Invertibility
of this matrix is lost precisely when the sonic circle [4] is
encountered. Thus, when a Hall-MHD solution exists within
a maximal existence interval,DuF(0) is invertible along the
unperturbed solution.

The parameters1 determining the first order coordinate
straining, is determined by the condition

b(1)
y (x0c) = 0 (72)

Here,x0c is the value ofx0 at which componentb(0)
y of the

Hall-MHD solution changes sign, i.e., the “half-way” point,
similar to what was described in Sect. 5 for the FLR-Hall-
MHD model.

In practice, solutions to the Hall-MHD model are deter-
mined numerically. The value ofs1 was determined by
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first solving Eq. (66) to determine the Hall-MHD solution
b(0)(x0) and the “half-way” pointx0c. Then Eq. (69) was
solved numerically for two different values ofs1, inserting
the numerically obtainedb(0)(x0). This produces two values
of b

(1)
y (x0c), generally violating Eq. (72). A secant method

calculation using these two values ofb
(1)
y (x0c) then produces

a new value ofs1. It can readily be demonstrated thatb(1)(x0)

depends linearly ons1. Therefore, the secant calculation
gives the correct value ofs1 up to numerical errors. Then,
the correctb(1)(x0) was determined by solving Eq. (69) with
this value ofs1.

In Figs. 3 and 8, the green curve shows the solution com-
puted this way. One can observe that for the parameter sets
of these cases, the solution calculated by the perturbation
method practically overlaps the solution calculated from the
full FLR-Hall-MHD model. In the case exhibited in Fig. 5,
the solution calculated by the perturbation method deviated
substantially from the FLR solution, and it is not shown here.

8 Discussion

In this paper, stationary localized travelling wave solutions
(solitary waves, or “solitons”) for models representing dis-
persive extensions of MHD models, have been discussed.
Focus has been on extending the Hall-MHD model (McKen-
zie and Doyle, 2002) with dispersive effects of thermal ori-
gin. Such effects are embodied in the finite Larmor radius
extension to the pressure tensor (MacMahon, 1965; Yajima,
1966). The relevant set of ordinary differential equations in-
cluding this has been developed. The upstream state is an
equilibrium point for this set of equations. Localized solu-
tions are saddle connections for the upstream state. This im-
plies that the upstream state must be a saddle-saddle, focus-
focus, or a saddle-center. Numerical solutions have been
obtained in saddle-center cases for which a saddle connec-
tion exists also in the Hall-MHD case (or for parameter sets
nearby, cf. the case of Fig. 5), while in saddle-center cases
where a saddle connection does not exist in the Hall-MHD
model, the numerics showed that it does not exist in the
FLR-Hall-MHD model either. In saddle-saddle cases, a nu-
merically constructed saddle connection was not achieved.
There is presently no reason to interpret this as nonexistence
of solution; it may equally well be because the numerical ap-
proach so far attempted, is inadequate.

Neither should the numerical solutions that could be ob-
tained in the saddle-center cases be taken as a proof that a
solution exists. Only a mathematical proof can decide that.
Unfortunately, this has not been within reach so far.

Since the set of differential Eqs. (14), (15) has been ob-
tained from a model containing no irreversible effects, one
might expect it to have some Hamiltonian structure. Such
a structure could have been useful in the search for a pre-
cise mathematical proof of existence of saddle connections.
However, no such structure has so far been found. [A referee

has made the following remark: even an energy conserva-
tion theorem is not known for this model. Such a theorem
can be obtained (i) for the Hall-MHD model with isotropic
pressure, (ii) MHD with double-adiabatic pressure tensor, but
not for Hall-MHD with double-adiabatic pressure, so it be-
comes problematic even before the inclusion of FLR. This
may be connected with the fact that the double-adiabatic clo-
sure builds on the frozen-in condition, which is broken when
the Hall term is included. Obviously, the closure of higher-
moment models still deserves some attention.]

One of the motivations of the present work was to throw
light on the proposed theoretical explanation of magnetic
holes in terms of propagating slow magnetosonic dark soli-
tons (Baumg̈artel, 1999; Stasiewicz et al., 2003). In particu-
lar, there was a need to meet the challenge of Pokhotelov et
al. (2005) to study such solutions including dispersive terms
due to finite ion temperature. Although this challenge has
been partially met by the present contribution, there is no
reason to claim that it throws any new light on the explana-
tion of magnetic holes. Even so, some remarks to this topic
are next given:

it should first be mentioned that in much of the current dis-
cussion, the observed magnetic holes are associated with the
mirror instability (Chandrasekhar et al., 1958; Pokhotelov
et al., 2004), because they are predominantly observed in
plasma states near the threshold for this instability (e.g.,
Sperveslage et al., 2000). Therefore, they are also sometimes
referred to as mirror structures.

Since dark solitons of the one-parameter type (Mjølhus,
2006) discussed in this work have not usually been asso-
ciated with instabilities, their role in this context should at
most be understood as aftermaths after the instability has
played itself out, and the plasma containing the mirror struc-
tures has reached a stable state. This has been the view of
the present author. The question then becomes whether the-
ory can provide stationary structures as outcome of the mir-
ror instability, and which are clearly distinct from the slow
magnetosonic solitons that have been proposed (Baumgärtel,
1999; Stasiewicz et al., 2003). Both in the recent discus-
sion (Stasiewicz, 2005) as well as elsewhere (Treumann et
al., 2004), it was claimed that such an alternative does not
exist.

In the present author’s view, this situation has now
changed. Recently, localized static (i.e., nonpropagating)
structures were theoretically obtained in fully time depen-
dent numerical solutions to a dispersive-MHD model includ-
ing both finite Larmor radius dispersion and Landau damp-
ing (Borgogno et al., 2007). The numerical run was for a set
of parameter values where the pressure anisotropyp⊥0/p‖0
was slightly above threshold for the mirror instability. In a
particular case where the boundary conditions were chosen
so as to maintain the mirror instability, a nonchanging and
nonpropagating structure developed from initial noise (e.g.,
Fig. 4 of Borgogno et al., 2007) having the form of magnetic
holes, anticorrelated with the density perturbations.
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The results reported in Borgogno et al. (2007) also showed
that the perpendicular temperature increased more than the
parallel temperature through the holes, a signature noted in
several experimental reports (e.g., Tsurutani et al., 2007) as
well as simulations (Baumgärtel et al., 2005).

The significant point to note here, is that the struc-
tures found by Borgogno et al. (2007) show signatures
which are clearly distinct from the slow magnetosonic soli-
tons of Baumg̈artel (1999), Stasiewicz et al. (2003), and
Stasiewicz (2004). One is that they are nonpropagating,
while the solitions currently being discussed (Stasiewicz et
al., 2003), have a nonvanishing velocity of propagation.
However, potentially more significant is it that the polariza-
tion of the structures found by Borgogno et al. (2007) break
with (57). Instead, they satisfy the following symmetry: (i)
the parallel velocityu(x) must vanish identically; this is a
consequence of the assumption that the structure is nonprop-
agating. (ii) LetW(x)=(by(x), bz(x), uy(x), uz(x)) be the
solution forx<0. Then the solution forx>0 is

W2(x) = (J2W)(x) (73)

where

(J2W)(x)=(by(−x), bz(−x), −uy(−x), −uz(−x))

A consequence is thatby(0)6=0 in general, while bothuy and
uz have to satisfyuy(0)=0, uz(0)=0. It can readily be seen
that this symmetry can only be satisfied by nonpropagating
solutions.

The model for which these stationary structures were ob-
tained numerically by Borgogno et al. (2007), goes to a
higher order in thermal dispersion than the present one. It is
of interest to know whether such nonpropagating structures
exist within the present model. This has been investigated,
with a negative result: it appears certain that such solutions
do not exist in the present FLR model. Details on this nega-
tive result are omitted.

It should be remarked that the story regarding the the-
oretically obtained mirror structures is more complicated
than described above: both magnetic humps and magnetic
holes were obtained in the numerical model of Borgogno et
al. (2007), and this becomes even more pronounced in kinetic
simulations (Califano et al., 2008).

Next, the validity of the present model is briefly discussed.
Dispersion relations are often good indicators of what a
model contains and what it neglects. In the present case,
the dispersion relation is Eq. (52). It is, strictly speaking,
only correct up to orderκ2, and this leading order disper-
sion is only correct up to order(v⊥/vA)2. However, both
the cold (i.e., Hall) and the leading FLR contribution con-
tain a factor cos2 θ (it requires a certain rescaling of Eq. (52)
to see this, which is omitted), so whenθ → π/2, terms of
higher order inv⊥/vA might dominate at nearly perpendic-
ular propagation. That this, in fact, is the case, has been
present in the literature for a long time: in MacMahon (1968)

and Mikhailovskii and Smolyakov (1984), the soliton the-
ory for fast magnetosonic waves at exactly perpendicular
propagation was discussed. It was pointed out that a the-
ory based upon the FLR pressure tensor correction alone,
gives the wrong sign for the dispersive term. The point is that
the present model does not produce a correct expression for
the part of coefficientp1 which survives asθ→π/2. Contri-
butions of relative order(v⊥/vA)4 originating from omitted
terms in the moment hierarchy are needed in order to get this
correct.

The conditions for validity is therefore not only thatv2
⊥
/v2

A

is small, but also that cos2 θ is not too small:(
v⊥

vA

)2

� cos2 θ (74)

Equation (74) is a rough estimate obtained by comparing
the linear dispersion relation of the present model, Eq. (52),
with that implied by Mikhailovskii and Smolyakov (1985).
Effects of higher moments would influence the termδ2

0q2
of Eq. (55), whileδ0q1 is reliable. Asθ approachesπ/2,
and(v⊥/vA) remains small, Eq. (74) expresses that the ratio
δ2

0/δ0 cosθ�1, exploiting thatq1∼ cosθ while q2∼O(1) as
θ→π/2, and implying that omitted contributions toq2 are of
the same order of magnitude as those retained asθ→π/2.

Since the observed magnetic holes are generally known to
have a wave normal making a large angle to the magnetic
field, the present author considers it unlikely that the mag-
netic holes can be understood as slow magnetosonic solitons,
in view of the remarks in the two preceding paragraphs.

Another possible application of dispersive MHD soliton
solutions to space plasma observations, concern the solar
wind observations of satellite Ulysses described by Rees et
al. (2006), where isolated structures with fairly peculiar po-
larizations were reported. Such structures had been theoret-
ically encountered by Mjølhus (2006) and termed “banana
polarizations”. Such solutions exist in cases of anisotropic
pressure, in particular whenp‖>p⊥. Their possible rele-
vance for the observations of Rees et al. (2006) was discussed
by Sauer et al. (2007) and Baumgärtel et al. (2007). It is of
interest to know whether such solutions survive the extension
to include the FLR correction to the pressure tensor. How-
ever, the effort in this direction has been inconclusive, mainly
because these banana polarizations occur in cases where the
upstream state is of saddle-saddle or focus-focus type, so that
our numerical method was inadequate.

An alternative is to use the perturbation method of Sect. 7,
in order to obtain banana polarized solutions including FLR
effects. That has been done, and works fine. However, it
was chosen not to include any of those results here, because
the banana polarizations always occur in parameter ranges
violating Eq. (74).
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Appendix A

The expressions forq1 andq2 entering Eq. (55) have been
obtained as follows

q2=µ2
00R0−[

(r‖0−2ε0 sin2 θ)m5+(r⊥0−2ε0 cos2 θ)(B1+C1)
]

cos2 θ sin2 θ

(A1)

q1 =

[
A10R0 + (A2m21 + B1m12) cos2 θ sin2 θ

]
cosθ

(A2)

Here,µ0, 0R0, r‖0, r⊥0, andε0 are defined in Sect. 3, while

m5 = MA + Mi[1 + (1 − 4ap) cos2 θ ] (A3)

B1 = MA + Mi(1 − ap) (A4)

C1 = Mi(4ap − 1) (A5)

A1 = (m5 + B1)r⊥0 sin2 θ − (2B1 + C1)r‖0 cos2 θ (A6)

A2 = m5(r‖0 − 2ε0 sin2 θ) + (B1 + C1)(r⊥0 − 2ε0 cos2 θ)

(A7)

m21 =

[
(1 − q0)r‖0r⊥0 + m3r

2
‖0 cos2 θ

]
/µ2

0 (A8)

m12 =

[
(1 − q0)(r‖0 − 2ε0 sin2 θ)(r⊥0 − 2ε0 cos2 θ)

−m3(r⊥0 − 2ε0 cos2 θ)2 sin2 θ
]
/µ2

0 (A9)

m3 = (3ap − 1)Mi (A10)
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