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Abstract. MHD solitons are studied in a model where the  All of the theoretical results referred to above, were ob-
usual Hall-MHD model is extended to include the finite Lar- tained in models where MHD equations were extended with
mor radius (FLR) corrections to the pressure tensor. The reHall dispersion. This kind of models will henceforth be re-
sulting 4-dimensional set of differential equations is treatedferred to as Hall-MHD models. However, it has recently
numerically. In this extended model, the point at infinity can been emphasized that the Hall-MHD models in many cases
be of several types. Necessary for the existence of localizethck consistency (Pokhotelov et al., 2005), and that disper-
solutions is that it is either a saddle-saddle, a saddle-centesive contributions of thermal origin must be included for con-
or, possibly, a focus-focus. In cases of saddle-center, numerisistency.
cal solutions for localized travelling structures have been ob- In the present paper, an effort to meet this requirement is
tained, and compared with corresponding results from thepresented. To be more specific: the Hall-MHD model is ex-
Hall-MHD model. tended to include the Finite Larmor Radius (FLR) correction
to the pressure tensor, as derived by MacMahon (1965) and
also presented in Yajima (1966).

This extension is rather challenging. While the assumption
1 Introduction of stationary travelling wave solution in Hall-MHD models

leads to a system of two coupled first order differential equa-

MHD solitons, i.e., stationary localized travelling structures tions plus an algebraic equation, for which a saddle connec-
theoretically derived from MHD models extended with terms tion is to be computed, the FLR extension leads to a singular
introducing dispersion, have recently received some attentiosystem of 5 coupled differential equations. The singularity
(Baumgartel, 1999; McKenzie and Doyle, 2002; Stasiewicz of this system is such as to produce an algebraic equation for
et al., 2003; Stasiewicz, 2004; Mijglhus, 2006; Sauer etconsistency, so that the effective dimensionality of the sys-
al., 2007; Baumartel et al., 2007). Reasons for this are tem is four (Hau and Sonnerup, 1991). In the Hall-MHD
space observations that have recently been interpreted thisase, the upstream state may generically be either a center
way (Baumgrtel, 1999; Stasiewicz et al., 2003; Stasiewicz, or a saddle point. A necessary condition for localized so-
2004). In particular, observed structures that have beenution is that it is a saddle point. In contrast, because of
termed magnetic holes (e.g., Turner et al., 1977; Winterhalthe increased dimensionality, in the FLR case a larger set
ter et al., 1994; Sperveslage et al., 2000) have been prosf possibilities occurs. The cases that allow localized so-
posed to be interpreted in terms of this kind of structuresiutions, include saddle-center, saddle-saddle, and, possibly
(Baumgartel, 1999). More recently, certain peculiar obser- focus-focus.
vations in interplanetary space (Rees et al., 2006) show a Due to lack of adequate numerical method, it has not been
striking similarity with certain MHD soliton solutions ob- possible so far to obtain localized solutions in the two latter
tained by Mjglhus (2006) and further discussed in Sauer etypes of situation. However, in cases of saddle-center, this
al. (2007) and Baundgtel et al. (2007). has been achieved.

The plan of paper is as follows: in Sect. 2, the basic model
is formulated. In Sect. 3 some of its mathematical proper-

Correspondence tcE. Mjglhus ties are described, including in particular the treatment of the
BY (einar.mjolhus@uit.no) singular FLR matrix. In Sect. 4, the analysis of the upstream
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state is described. In Sect. 5, some aspects of the nhumerwhere

cal procedure are discussed. In Sect. 6, some numerical re- L 1 (1 ; o
sults are presented. In Sect. 7, a perturbation method is inP¢ ) = o 12% % (VV +(Vv) ) . E(i + transp}
troduced, which can also be used in saddle-saddle and focus-" “1 ;
focus cases. Section 8 contains a concluding discussion. p® _— _ _— {eb (Vxv)-PO 4 transp} (8)
~i2 Qi ~il
2
2 FLR-Hall-MHD model PO = 18 <Pf°) : V) XV + tranSp}
~i3 0 Qi ~i|
We start with the set of equations In Eq. (8)S2;=eB/m;c is the ion gyro frequency, where only
one kind of ions is assumed. The notatid means the
3 N
a—f +V-(pv)=0 (1)  transpose of tens@; likewise Q+ transp. mean®+Q7 .

In order to complete the modelling, equations oFstate for
p| andp; must be specified. In this paper, only the double-
)] _o adiabatic model will be considered. The double-adiabatic

9 1 2
g(pV)JrV- [pVV+Ei+Ee+E (-B | -BB ) equations of state
pB?/p® = const.

9
p./pB = const. ®)

§=VX|:VXB— miC(VXB)xB] 3) , ,
ot 4rep are based upon the assumption of neglecting the parallel heat
fluxes, which is also underlying the derivation of the FLR
corrections (MacMahon, 1965). It has therefore been argued
that it may be inconsistent to use other pressure assumptions
in combination with FLR corrections (Krauss-Varban et al.,

e
sure tensors, and is the magnetic field! is the unit (iden-  1995). Other authors have argued to use other pressure as-

tity) tensor. Equation (3) is the magnetic induction equation,SUmptions, based, for example, on observations (for exam-
where the last term on the righthand side is the Hall term Ple, Hau et al.,, 2005; Hau and Sonnerup, 1991; Sauer et al.,
The constantsy;, ¢, ¢ are the ion mass, the electron charge, 2007); implying, correctly, that parallel heat fluxes are often
and the speed of light respectively. not negI|g|bI§. In th|s.paper, .|t has bgen chose_n to_ stay with
For the electron pressure, we shall throughout use an ag_he assumption that is consistent with the derivation of the

sumption of scalar pressure and isothermal equation of statELR corrections. , o _
This set of equations is next specialized for stationary

moving localized solutions with all state variables varying in
P =p.l, Pe = pv>,, v, = «T,/m; (4) one direction only. A (_:oordmate system, y, z) is defined
~e ~ by an orthonormal, righthanded, constant basee,, e,.
dHere,ex is the wave normal direction, i.e.,

Equation (1) is the equation of continuity, whepeis the
mass density and is the ion velocity. Equation (2) is the
equation of motion, Wherg are the ion and electron pres-

Here,T, is the electron temperature, which will be assume
constant, since the electron temperature is assumed constagt_ d
along magnetic field lines, andis the Boltzmann constant. T Y dx
For the ion pressure tensor, we set

(10)

Moreover, they- and z-directions are chosen such that the
upstream magnetic field is

P =P% 4P ®)
! ! ! Bo = Bpcoste, + Bgsinbe, (112)
where the gyrotropic part is Without loss of generality, the upstream velocity can be cho-
sen as
PO = pieye, + pr(l —eey) =P + E?Oi (6)
! il " V= 10,6 UpStream 12)

thus, py,1 are the parallel and perpendicular pressures, angyecause the other components can be removed by Galilei

e=B/B 1i5 the unit vector along the magnetic field. The ansformations. Seeking solutions representing structures
tensorP® then represents the FLR correction according O moving without changing form, one can now from the same

MacMahon (1965) and Yajima (1966). It can be expressedorinciple without loss of generality assume that all state vari-

as follows: ables are independent of time
PO = pb 4 p® 4 p® @ 2 (13)
~i ~i,1 ~i,2 ~i,3 ot
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Then,vo, defines the velocity of propagation. Wheg is
negative, the structure is moving in the positiéirection,

253

In Eqg. (16), the function® andy are defined as

. . . 1
and upstream is at—+oc. This will be assumed, and we P(u, b%) = M, <— - 1) + M; [PL(u, p%) — 1
u

shall putC=—uvg, for the soliton velocity.

With these assumptions and definitions, our equations can- [ap Py (u, b>)— P (u, bz)] cos 0/h*—(a,—1) cog 0] (24)

be brought to the following form:

du
LA - — +F(u,b)=0 (14)
~ dx
db
—+Gu,b)=0 (15)
dx
Here,F=F,e.+F,e,+F.e, has components
1 .
Fe=u—1+ Pu,b’+ SMa Sinfo(b2 — 1)
Fy = uy + x(u, b®) cosd sinbb, (16)
F. = u. + (x(u, b®)b, — x0) cosf sing
andG=G,e,+G e, has the components
cosd
Gy = — & e + bz - 1
Uy cosH
7w osing Y

The state variables=ue,+u,e,+u.e;, andb=b,e,+b. e,
are defined by the normalizations
U = V/vox (18)

by . = By ;/Bosing (29)

following McKenzie and Doyle (2002). By this choice, the

upstream state is

u=1, b, =1
(20)
uy=u; =b,=0
Moreover, by the equation of continuity, is related to the
density by

u=(p/po)”* (21)

and, definingP.=p./poL. Pj=p|/pjo Wherepoy, po, are

the upstream values of the pressure components, the equ

tions of state (9) can be expressed as

PL(u,b? =bu?t

. (22)
Pj(u,b%) =b"2u~3
where
b? = b? + b?
v (23)

b? = coL 6 + b2 sirt o

www.nonlin-processes-geophys.net/16/251/2009/

X (u, b?) = M; [apPH (u, b?) — Py (u, bz)] /B2~ M, (25)
and xo=x (1, 1) is the upstream value ¢f. The parameters
are defined as
Me = vsze/v(%x
M; =% v2,
My = vf\/vgx

ap = pjo/pLo

(26)

wherev2 =p,o/po andvi=B3/(4rpo). The dispersive pa-
rameters are

a) £ =v35/(Qivs0)

27
b) &= (2 /v3)Py(u,b?)/cosh @7

Finally, the tensoA can be expressed on dyadic form as

A =1 xr+2bbyx b, (28)
where
by = b.e
b =bye, +be,
b=b,+b, (29)
by, = by sind/b=B, /B
by = cost/b = By/B
and
r= —rHBH +I’J_6J_
= %(1 — 3b7) + 2¢b7
(30)

1 A .
ri=5(1+3bf) — 2

e=(pL—ppP/pL=1-apP/PL

gl the sequel, the tensgrwill be referred to as the 1-D FLR
tensor.

FLR-Hall-MHD equations on the form Egs. (14), (15) for
1-D stationary moving structures have earlier been devel-
oped and studied by Hau and Sonnerup (1991) for the pur-
pose of providing a smooth model of rotational discontinu-
ities. In that case, however, an assumption of scalar pres-
sure was made. The 1-D FLR tensor used by Hau and Son-
nerup (1991) agrees with the present result Egs. (28)—(30) in
the special case=0.
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3 Singularity of the 1-D FLR tensor

At first sight, Egs. (14), (15) looks like a 5-dimensional sys-
tem of first order differential equations. However, matters L-R=1

are made more complicated by the fact that the tegs'm
singular, as also noted by Hau and Sonnerup (1991):

L-A=0

A-R=0 (31)
where the left and right null vectors are

L = (r + 25365 — 2ebh 1)/

R=r/u

where

12 =202 4 25—y -

y = 2813%13%

The normalizations df andR were chosen such thatR=1
(note thatr4r =1).
A consequence of Eq. (31) is the constraint

H(u,b)=0 (33)
where the functior (u, b) is defined by
Hu,b)y=L-F (34)

E. Mjglhus: Finite Larmor radius influence on MHD solitary waves

and these vectors satisfy the orthogonality and normalization
conditions

L-S=L.-T=0
M - R=0 M-S=1 M-T=0 (39)
N-R=0 N-S=0 N.T=1
Then, Eqg. (14) implies
du
6 —=w 40
o (40)
where
W= wrR+wsS+wrT (42)
has to satisfy
A-w=-F (42)

We decompos€ in the baseR, S, T. However, the compo-
nent ofF alongR must vanish because of Egs. (31) and (36).
Therefore

F=FsS+ FrT (43)
where, by Egs. (39),

Fs=M-F (a4)
Fr=N-F

Inserting Egs. (41) and (43) into Eq. (42) and using Egs. (36),

This follows readily by dotting Eq. (14) from the left with :

L. Equation (33) defines a 4-dimensional surface in the 5—(38)’ (39), gives

dimensonalu, b space. This surface is the state space of ws =N-F/u

Egs. (14), (15). wr =—-M-F/u
We proceed to describe how to make Eq. (14) explicit. To

this end, the eigenvectors &f are utilized. In addition to

the eigenvalue O with left and right eigenvectarandR, A

has eigenvaluesipu, whereu is defined by Eq. (32). The
vectors oH 0H

(45)

while wg must be determined from the condition of main-
taining Eq. (33). This condition can be derived as follows:
sinceH remains zero, one had{ /dx=0 implying

w8 —-G=0
S=[B3rs = y)by+ Bfry - ybu] /by " iy
=[O TR 170 VORL | FRHOLO) (35)  which, by Eq. (41) gives
T=({;xb byb
O > bL)/(Byb1) wg = —(wsTs +T5)/Tr (46)
satisfy
where
A-S=—uT
~ oH oH oH
36 'g=—-R, s=—-:5, I'y=§ —-G
A-T=uS (36)  Tr=7, 5= au "= b
, and noting thatd H/du)-T=0. It follows from Eg. (46) that
while solutions cannot cross the set on the surfel@/)=0 in U
M = (l;illB” + Bﬁrubl)/(ul;ll;”) (37) space defined by
N=T Fr(U) =0 (47)
satisfy This condition plays a role similar to the sonic circle occur-
M-A = uN ring in the Hall-MHD theory (see, e.g., Mjglhus, 2006), al-
~ though, the location of this set is not necessarily approximat-
(38) -
N-A=-uM ing the sonic circle.
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4 Necessary condition at the upstream state The coefficientpg vanishes when the velocit=|vg,| is
equal to one of the MHD velocities of propagation (inter-
The upstream staté=(1, 0, 0), bo=(0, 1) is an equilibrium  mediate velocityd; =0, or slow/fast magnetosonic velocity,
point for Eq. (14), (15), i.e.F(uo, bo)=0, G(uo, bp)=0. A 4, =0). The coefficienp is given by
localized solution to Egs. (14), (15) must start and end in this

state asc—+o00. Therefore, a necessary condition for such p, = 30M TCro

solutions to exist, is that the linearization of Egs. (14), (15)

around the upstream state permits both growing and decaywherewo andrgo are the values qf andI'x at the upstream
ing solutions. In the Hall-MHD case, being two-dimensional, state. Foip; we have

this amounts to a condition that the upstream state be a sad-

(54)

dle point. The present case, being essentially 4-dimensional’1 = 90 + doq1 + 56q2 (55)
allows more possibilities. Denoting
where
U= (u,uy,uz, by, b)" )
Uo=(1,0,0,0,1)7 o=1-G/C (56)

U=Up+V
linearizing around the upstream state, and assuming
V(x)=V exp(kx)

leads to
KV =0 (48)
with
K =M+ kN (49)
where the %5 matricesM andN are built up as follows:
_ |:M11 M12:|
M21 M22

where M11=(0F/0u)g (3x3), M12=(3G/du)g (2x3),
M21=(0F/db)g (3x2), andM2,=(dG/db)g (2x2), and

_ | 8040 O
v= o] -
where
80 = v2 /(v2 cosh) (51)

Ap is the matrix of the tensoA (referred to the base

€, &, &), and/, is the 2<2 unit matrix. The condition for
nontrivial V is detk =0, which gives the biquadratic

P(k) =

P(k) = pax™ + p1c? + po 52)
with k=k¢. The coefficients are

po = detM = d;d,,s

di =1— (M + M;(1 - a,))cos o
dps=1—B+D

B =My + M, + M;(2a, cog 6 + 1+ sirf 0) 53)

D=M, co€ 6 [Sa,,MA+M,-—3a§ cog o
+3a,(1+sir? 6)— sir?6 |

+M, co26 [MA+Mi (coZ 0+a, (4 sir? 6—1))]

www.nonlin-processes-geophys.net/16/251/2009/

C% =2 +v3(3a, co 0 + sirt 0)

thus, C; is the acoustic velocity of double adiabatic MHD.
The coefficients;; andgo are given by complicated expres-
sions which are given in the appendix. It can be seen that
30=0 reproduces the Hall-MHD result (e.g., Mjglhus, 2006).

The classification of the upstream state is thus determined
by the biquadraticP (x) in Eq. (52). The biquadratic struc-
ture, which reflects the reversibility described in the next sec-
tion (Symmetry 1), limits the possibilities. The generic cases
are:

(i). Saddle-centerThis is when the two roots far2 have oppo-

site signs; then the four roots ferare one positive, one negative
and two purely imaginary complex conjugates. Consequently, the
tangent space of the upstream state, represented by the lineariza-
tion above, has one expanding=0) and one contractingc&0)
eigenvector direction Eq. (48), and a two- dimensional subspace of
oscillations.

(ii). Saddle-saddleThis is when the two roots far? are both pos-

itive; then the four roots fox are two positive and two negative. In

the tangent space of the upstream state, there is a two-dimensional
expanding subspace and a two-dimensional contracting subspace.

(iii). Center-centerThis is when the two roots far? are both neg-
ative. Then, the four roots far are two pairs of complex conjugate
purely imaginary roots. Then the whole tangent space of the up-
stream state consists of oscillations.

(iv). Focus-focus: Finally, when the two roots fok2 are com-
plex conjugates2=r exp(i6), we get the four roots; » 3 4= +
ﬁexp(ii%), two of which induce a two-dimensional expanding
subspace and two inducing a contracting subspace.

Referring now to Eg. (52), whepo and p have oppo-
site signs, the upstream state is a saddle-center. When they
have the same sign and syblf—4pop2>0, itis saddle-saddle
when p1 has the sign opposite of the sign p§, p2, and
center-center whep, has the same sign ag, p2. Finally,
when p2—4pop,<0 it is focus-focus.

The necessary condition is satisfied when we have saddle-
saddle or saddle-center, while it is not satisfied when we have

Nonlin. Processes Geophys., 26423069
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TYPE OF UPSTREAM STATE CRITICAL VELOCITIES VS. ANGLE
T T T T T T 2 T T T T T T
I saddle - saddle Fast
Parameters: v, =0.4v,, a =1 I Saddle - center 18 Slow
P Center - center Intermediate
Focus - focus 16} Sonic

FLR

14r

Civ A
Velocities

1 \
0 10 20 30 40 S0 60 70 80 0 10 20 30 40 50 60 70 80 90
6 (deg) 6 (deg.)

Fig. 1. Example of the classification of the upstream state. Therig 2. Example of the various critical velocities entering the clas-
electron temperature satisfigs=v . sification of the upstream state. The parameters are the same as for
Fig. 1. The values of the velocities are in unitsugf.

center-center. Cases of focus-focus have not been investi- ) ] ]
gated within this work, although there are cases of this incomputed solutions will be presented. In the present section,

some parameter ranges where the Hall-MHD model yields &50Me of the numerical challenges will be discussed.
solution. The integration of Eq. (14), (15) proceeded by a second or-

In the Hall-MHD case, the necessary condition was Ole_der Adams-Bashforth method, starting up with one step Eu-

termined by the velocity of propagation relative to the MHD Ie_r’s me.thod. The first challer)ge to meet, was tq tre‘?‘ the
velocities and the sonic velocitys. The first of these depend  Singularity of the tensoA entering Eq. (14), which implies
on po, which thus changes sign at the same thresholds as bdbat Eq. (14) is not on explicit form. In the numerical proce-
fore. The coefficienp; changes sign approximately where dure, Eq. (14) is replaced by Eq. (40), wheres calculated
qo=0, i.e.,Cf:Cz, when|8g| is smalll. as de_scribed in Sect. 3. The following shortcut was mﬁge:

An example of the classification is shown in Fig. 1. In €ntering Eq. (46) was calculatedag=5H /5x, wheres H is
Fig. 2, the various MHD velocities have been plotted, andth€ residual value off after the previous step, aid is the
comparing the two figures, the significance of the various re-Step length. _ . .
gions in Fig. 1 can be understood. In addition to the fast and !N order to numerically construct a valid localized solu-
slow MHD velocities (blue), the intermediate velocity (red), tion, it is made use of the following reversibility property of
and the sonic velocitg's given by Eq. (56) (green), also the Eq. (14), (15):
velocity CrLr a_lt whichT'og=0, has b_een plotted (_magenta). Symmetry 1: If U(x) is a solution, then alsé,U
The latter d_efmes the locus at which the coefficipatof is a solution. Here, the operatdy is defined by
Eqg. (52) vanishes.

In Fig. 2, four examples of maximal existence intervals JiU=(u(—x), —uy(=x), uz(=x), —=by(—=x), b;(=x)) (57)
for soliton families (Mjralhus_,, .2006) are.ind_icated by black A consequence of this is that if there exists a solutiiix)
color. We shall return to their interpretation in Sect. 6. Here, for x <0 with 1, (0)=0, b, (0)=0, which approaches the up-
we shall be content to note th.at these mtervgls also §at|sf3gtream state as— —oo, this solution can be joined with
the necessary condition for existence of localized stationary;s, (x)=(J,U1)(x) for x>0 to produce a solution which ap-
solution in our FLR-Hall-MHD model, either exact (1,3,4) Or proaches the upstream stateras +oo. Then
approximately (2).

_JUix) x <0
v = { (AUD() x > 0 (59)
5 Numerical procedure is a localized solution for-co<x<oo. (Here, we exploit

that a solutionU (x) is uniquely determined by its value at
No proof has been obtained that exact solutions in the form obne point,U (xp); in addition, this initial point must be on
solitary waves exist for the 4-dimensional system Egs. (14)the constraint manifold Eq. 33.) Numerically, this can be
(15). In the next section, a few examples of numerically done as follows:

Nonlin. Processes Geophys., 16, 2864 2009 www.nonlin-processes-geophys.net/16/251/2009/
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(i) Start a numerical solution at a poitini; near the up- Now, computing a numerical solution up to the poiptas
stream staté&/p, on (or near) the unstable manifold; i.e., described above in a saddle-center case, since there is no pa-
rameter to vary, it is not obvious that the conditipf(x.)=0
. ) is hit. However, in many cases, very small values pfx.)
Uinit=Uo+tV+0(z%) (59) were obtained, indicating numerically that a soliton solution
exists. Examples will be shown in the next section. Briefly,
this happened for parameter values at which a solution exists
in the Hall-MHD case, although exceptions may occur. In the
next section, this will be further discussed through examples.
In some cases, we have gone a step further, in order to
check this criterion of existence: if the exact value:gtx,)

wherer is small andV satisfies Eq. (48) with a positive
value ofk satisfying Eq. (52). In practice,=10"2 has
been mostly used with' having unit Euclidean norm,
and the®(z?) contributions to the exact unstable mani-
fold were neglected.

(if) Continue the computation untl, changes sign. is zero, then a nonzero numerical value is due to numerical
_ _ o errors. These have two sources: (i) the use of the tangent to
(i) Denote the numerical solution generated this Way),  the unstable manifold instead of the exact unstable manifold

and assume that, changes sign at=x.. Now, if also  for the initial condition; this error depends on the numerical
uy changes sign at=x. (or, numerically, very nearby), parameter as®(z)? (cf. Eq. 59). (i) The other source is the
then one can use the translational invariance to defingntegration error. Since our integration method is of second
U1(x)=U (x+x.), whereU1(x) is now defined numeri-  order, the global integration error is expected to depend on
cally on a grid for—x. <x <0. ThenUz(x)=(J1U1)(x)  the step lengtdx as(sx)2.
will be defined on a numerical grid for<fx <x, and Assume that the exact value of (x.) vanishes. Then, if
the computation is repeated for decreasing valuescaind
(60) t, the numerical value ofu,(x.)| is expected to decrease
as the square of these parameters. On the other hand, if the
will be a numerical approximation defined on a grid €xact valuglu, (x.)|#0 and large enough to be numerically
from —x, to x., ending neat/p at+oco. detectable, then the values|of, (x.)| obtained by the above
procedure will settle on a constant value even when the nu-
In the saddle-saddle cases, this procedure could be thouglhterical parameters are further decreased.
of as the basis for a shooting method. Namely, in those cases, The value ofuy (x.) used in this procedure is obtained by

Ui(x), —x. <x <0

Uix) = { Ux(x),0<x < x,

there are two independent tangent vect®sand V2, span-  linear interpolation, using the two last valuesigf and the
ning the tangent space of the unstable manifold. By startingcorresponding two last values of.

from a sequence of linear combinations @d5+ sing Vs, In practice, a decay a&x)? was not achieved; instead,
one could think of numerically determining a valye for |, (x.)| decayed ax|. A clear explanation of this has not
whichu, (x.)~0. been obtained; the most likely candidate is the shortcut by

This procedure has, however, not been successful. In mosghich the quantityl’, was calculated, as described in the
saddle-saddle cases tried numerically, the numerical SO|UtiO|beginning of this section. However, we have not succeeded
went to overflow. In some casdsz=0 was encountered. At in replacing this with anything better.
low beta, this is not unreasonable: at low beta, one of the two
spanning tangent directions for expanding solutidhs ap-
proximates the one valid for the Hall-MHD model. The other 6 Numerical examples
one,V», must necessarily have a large value of the expansion
rate, ko, tending to infinity as beta goes to zedy-0 in Let us recall from Mjglhus (2006) that the soliton solutions
Eq. 52). Thus, starting on tH& direction in a low beta case, of the Hall-MHD model come in families, characterized by
small numerical errors will make the far more rapid expan- velocity-amplitude relationships. For fixed wave normal di-
sion along\72 take over. In the cases encountered, this growthrectiond, these occur within propagation velocity intervals
did not stop, and thus went to overflow. for which the necessary condition for existence of stationary

In the saddle-center cases, the situation is different: onlylocalized solutions are satisfied. Four such intervals, marked
two numerical solutions generated the way described abovel -4, are indicated by black vertical broken lines in Fig. 2. All
are possible. The two correspond to two possible orientation®f these sets also satisfy the necessary condition in the FLR-
of V, or equivalently, two possible signs of referring to  Hall-MHD model (though, interval 2 only approximately), as
Eq. (57). The two possibilities correspond to the possibilitiesis easily seen by comparing Figs. 2 and 1.
of generating numerically a bright vs. a dark soliton, where Within each of these maximal existence intervals, there is
bright vs. dark refer to whethdr®>1 or b°<1 throughout  potentially two families of solitons, namely a dark, carrying
the soliton (Mjglhus, 2006). They are identified by the sign a dip in?, and a bright, carrying an increasetifi In addi-
of the perturbation ob,; if the latter is positive (negative), a tion to the necessary condition for decaying solutions at the
bright (dark) soliton will result, provided a solution exists.  upstream state, a condition that the solution curve must not
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A dark soliton: Hall-MHD, FLR-Hall-MHD, and perturbation method.
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T
Hall-MHD

. Mjglhus:

1.2

Finite Larmor radius influence on MHD solitary waves

VELOCITY - AMPLITUDE RELATIONSHIP

FLR-Hall-MHD | |
Perturb. I [

1.2

0.8

b2

0.6 Parameter values:

VfOAVA

0.2  9=30°

11

Fig. 3. An example of a solution obtained by the method describedFi9- 4. Velocity-amplitude relationship for the fast magnetosonic
in Sect. 5. The step length of integratién=0.001, andr=0.001 family in the case represented by 1 in Fig. 2. The stars represent
(entering Eq. 59). The residual valuewf(x,)~—4.6x10"". The results of the Hall-MHD model.

parameters were as indicated by the diamond in Fig. 2, with soliton

velocity C=0.9v. The length unit in this figure as well as Figs. 5

and 8, is the dispersive length C=0.8663 the solution curve encountered the sonic circle.

In the present FLR-Hall-MHD model, a solution was, in fact,

numerically obtained in a larger velocity interval abavgt,
encounter the sonic circle (Mjglhus, 2006) also had to be satalthough still tiny. Figure 5 shows the case wiit:=0.867.
isfied. Then, only a subset of these potential families actuallyFor C=0.868, the locusg™x=0 was encountered (cf. Sect. 3).
exist as Hall-MHD soliton solutions. Figure 6 shows the computed velocity-amplitude relationship

The maximal existence interval marked 1 in Fig. 2, con- for this double Alfvenic family. The stars represent compu-
tains a full Hall-MHD dark family, with a small-amplitude tations in the Hall-MHD model. Again, it is observed that
limit when C— Ctast. Itis an example of a fast magnetosonic the two models yield practically the same velocity-amplitude
soliton family, cold case. From Fig. 1, it can be seen that thecurve in terms ob2. In Fig. 7, the hodograms for the two
upstream state is of saddle-center type in this case, and sgplutions indicated by circles in Fig. 6, are exhibited, in or-
we have a case in which the numerical method may work. Inder to demonstrate the circular polarization of solitons in this
this case, the FLR-Hall-MHD model also produces the full Alfvenic family.
fast magnetosonic (dark) family. A typical case of a solu- The existence intervals 2 and 4 are partially of type saddle-
tion in this family is shown in Fig. 3. The green curve was saddle and partially of type focus-focus, and so, FLR solu-
obtained by a perturbation method to be described in Sect. tions have not been obtained in these ranges. In particular,

In Fig. 4, the velocity-amplitude relationshif (versus  interval 4 is in a range which is potentially of physical inter-
min(b?)), as computed from the two models, is plotted. They est, since it contains a slow magnetosonic family (warm case)
are observed to coincide. This does not appear to be an exafjglhus, 2006), which is the kind of solitons invoked in the
relationship between the two models; at higher betaX(1), context of magnetic holes (Bauradel, 1999; Stasiewicz et
the numerical results showed discrepancy between the two.al., 2003; Stasiewicz, 2004).

The existence interval of Hall-MHD bright solitons in the  Existence interval 3 is an existence interval bounded by
maximal existence interval 1 of Fig. 2, is very tiny, though Ciast and the sonic velocity’s. In Hall-MHD, only a dark
nonvanishing. In Mjglhus (2006), it was demonstrated thatfamily can potentially exist in this case (Mjglhus, 2006),
a double family of dark and bright nearly circularly polar- termed the fast magnetosonic family, warm case. In this case,
ized solitons exists sufficiently near the intermediate veloc-our conclusion is that this family does not exist in the FLR-
ity. This double family was termed the Alfvenic soliton fam- Hall-MHD model, for most of the maximal existence inter-
ily. It is implied that the dark branch of this double fam- val, though, the numerics indicate that it does existdor
ily is the same as the magnetosonic family, as argued irsufficiently close toCsast. In part of the interval, the value
Mijglhus (2006). In the Hall-MHD model, the value ¢f of u,(x.) was small, but applying the procedure described
had to be extremely close to the intermediate velocity. Withat the end of Sect. 5, this value did not decrease when the
Cint=v4 €0s6=0.8660 (puttingu4=1), a Hall-MHD bright =~ numerical parameter&x, r were decreased. However, at
soliton was numerically obtained f&r=0.86625, while for ~ C=0.9378 Ctast (=1.1v4), a residual value of, (x.) could
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A BRIGHT FLR SOLITON
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Fig. 7. Hodograms for the two cases indicated by circles in Fig. 6.

Fig. 5. An example of a bright soliton, obtained closedg, the
lower end of the existence interval 1 of Fig. 2. The numerical pa-

rameters were as in Fig. 3; the length unit likewise. The residual

value wasiy (xc)~—2.8x1078.

VELOCITY - AMPLITUDE RELATIONSHIP

SOLITON IN THE FAST MAGNETOSONIC FAMILY, WARM CASE.

14r
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tosonic family, warm case.

Fig. 6. Velocity-amplitude relationship for the double Alfvenic fam-

ily near Cint, for the same set of parameters as in Fig. 4. Also the

Fig. 8. Solutions obtained by FLR-Hall-MHD as well as Hall-MHD
and the perturbation method of Sect. 7, for a case in the fast magne-

It remains to discuss cases exemplified by region 5 of

numerical parameters are the same. Stars mark results from thﬁig. 2: in this case, the upstream state is of type center-saddle
according to the FLR-Hall-MHD model. However, in this
case, the upstream state is of type center in the Hall-MHD
not be detected whesx was halved 16 times, starting with Model, so no solitons exist in Hall-MHD in that range. In
5x=0.01. Similar behaviour has been found at other valuesthe FLR model, computations either hit the §g=0, or a

Hall-MHD model.

of v; and@. This indicates that the FLR-Hall-MHD ver-

nonzero value ofi, (x.) was obtained. It is concluded that

sion of the fast magnetosonic soliton (warm case) at most ex0 new type of MHD soliton was found in this range in the

ists for C sufficiently close to the small-amplitude efgst.

The exampleC=1.1v,4 is shown in Fig. 8, while a velocity-
amplitude relationship obtained in the range in which FLR

solution appears to exist, is shown in Fig. 9.
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VELOCITY - AMPLITUDE RELATIONSHIP Inserting this into Eq. (15) gives
12t . ©
{—— +Gu®?),b®) =0 (66)
X0

Equation (66) is the Hall-MHD model. It is a set of equa-
tions for the two transverse components of the magnetic field.
Next, Egs. (14) and (15) to ordég read

1 8@ d
DyFOUD 4 DpFOp® ¢ —AQ — (wu®b©)) =0 (67)
do ~ dxo

0.4} 1

Parameter values: vl:0.4, 9:60°, ap:l

] db® db©®
£ 0
dxg e dxo

0.2
+ DyGOu® 4+ p,cPpM =0 (68)

0.86 0.88 0.9 092 094 096 0.98 1 1.02 104
CiC

fast

Here,D,F @, DLFO DGO DLGO are the respective Ja-
cobian matrices taken at the unperturbed soluéiéh;is § as
Fig. 9. Velocity-amplitude relationship for the part of the range 3 given by Eq. (27), taken at the unperturbed solution, while
(cf. Fig. 2) in which the numerics indicate that a solution exists in é(o) is the tensoA given by Egs. (28)—(30) taken at the un-
FLR-Hall-MHD. perturbed solution.

ProvidedD,F© is invertible, Eq. (67) can be solved for
u®. This can be inserted into Eq. (68) to yield the linear,
inhomogeneous differential equation

At low beta, it is possible to tredp, i.e., the upstream value
of § entering Eq. (14) and defined in Eq. (27), as a small, d
parameter. Then, one can treat the FLR effects as a perturba- dxo
tion, starting with the Hall-MHD model as zeroth order.

It was found that, in order to do so, the method of strained
coordinates (Nayfeh, 1973) had to be included, because th
perturbation will generally influence the width of the soliton

7 Perturbation method

= P(x0)b™ + Q(x0) (69)

for the perturbation of the magnetic fiehé). Here, the %2
@atrixf and the 2-vecto® are

solutions. Thus, the following expansions are assumed: P = DyGO(DyF)~tpyFO — p,G@ (70)
u=u® 4 5u® +s2u@ 4 ... (61)

b=b® 4 5b® +2b@ 4 ... 50O 4 db©
and Q=¢ |:DUG(0)(DUF(O))_1 Eéw)d_m”(b(m)_sld_m}
x0 = x(1+ 5180 + 5285 + - ) (62) ()

. — . . invertibili © is di ibil
The latter describes a near-identity coordinate transformation Next, the invertibility of D, F™ is discussed. Invertibility

from old coordinater to new coordinater, and where the of this matrix is lost precisely when the sonic circle [4] is
coefficientssy, 5o, . . ., are at our disposal. This transforma- encountered. Thus, when a Hall-MHD solution exists within

tion implies the differentiation rule a maximal existence interval), F© is invertible along the
unperturbed solution.

dv  dvV The parametes; determining the first order coordinate

—_— T — 2 DR
dx — dxg (L4280 + 5285 +---) (63) straining, is determined by the condition

Introducing these expansions, one first gets from Eq. (14);,;l> (x0c) =0 (72)
Fu©,b©@) =0 (64) Here, xo. is the value ofrg at which component,” of the

Hall-MHD solution changes sign, i.e., the “half-way” point,
In the Hall-MHD description, Eq. (64) is solved far in similar to what was described in Sect. 5 for the FLR-Hall-

In practice, solutions to the Hall-MHD model are deter-
u® = um®). (65)  mined numerically. The value of, was determined by
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first solving Eq. (66) to determine the Hall-MHD solution has made the following remark: even an energy conserva-
b©@(xg) and the “half-way” pointxg.. Then Eg. (69) was tion theorem is not known for this model. Such a theorem
solved numerically for two different values of, inserting  can be obtained (i) for the Hall-MHD model with isotropic
the numerically obtained© (x). This produces two values pressure, (ii) MHD with double-adiabatic pressure tensor, but
of b§1)(x0,;), generally violating Eq. (72). A secant method not for Hall-MHD with double-adiabatic pressure, so it be-
calculation using these two valueshﬁ) (xoc) then produces ~ OMes problematic even before the inclusion of _FLR._Thls
anew value ofy. It can readily be demonstrated th&b (xo) may be_connected with thg fact tr_lgt the dgub]e—adlabatlc clo-
depends linearly ony. Therefore, the secant calculation sure builds on the frozen-in condition, which is broken when

gives the correct value of up to numerical errors. Then, the Hall term is included. Obviously, the closure of higher-

the correcb™ (xg) was determined by solving Eq. (69) with moment models S.t'" qleserves some attention ]
this value ofsy. One of the motivations of the present work was to throw

In Figs. 3 and 8, the green curve shows the solution Com_Ilght on the proposed theoretical explanation of magnetic

puted this way. One can observe that for the parameter segOles in terr_ns of propagatin_g Sl.OW magnetosonic dark_soli—
of these cases, the solution calculated by the perturbatiobonséBaumgrtel’ 1939’ Sta&emcz ﬁt ﬁl" ZOOi)I.DInkEatrtllcu— ¢
method practically overlaps the solution calculated from the ar, there was a need to meet the challenge of Pokhotelov e
full FLR-Hall-MHD model. In the case exhibited in Fig. 5, 2 (2005) to study such solutions including dispersive terms
the solution calculated by the perturbation method deviate(ﬂue to finite lon temperature. Although this challenge has

substantially from the FLR solution, and it is not shown here. P€€n partially met by the present contribution, there is no
reason to claim that it throws any new light on the explana-

tion of magnetic holes. Even so, some remarks to this topic
8 Discussion are next given:
it should first be mentioned that in much of the current dis-
In this paper, stationary localized travelling wave solutions cussion, the observed magnetic holes are associated with the
(solitary waves, or “solitons”) for models representing dis- mirror instability (Chandrasekhar et al., 1958; Pokhotelov
persive extensions of MHD models, have been discussecet al., 2004), because they are predominantly observed in
Focus has been on extending the Hall-MHD model (McKen-plasma states near the threshold for this instability (e.g.,
zie and Doyle, 2002) with dispersive effects of thermal ori- Sperveslage et al., 2000). Therefore, they are also sometimes
gin. Such effects are embodied in the finite Larmor radiusreferred to as mirror structures.
extension to the pressure tensor (MacMahon, 1965; Yajima, Since dark solitons of the one-parameter type (Mjglhus,
1966). The relevant set of ordinary differential equations in-2006) discussed in this work have not usually been asso-
cluding this has been developed. The upstream state is atiated with instabilities, their role in this context should at
equilibrium point for this set of equations. Localized solu- most be understood as aftermaths after the instability has
tions are saddle connections for the upstream state. This implayed itself out, and the plasma containing the mirror struc-
plies that the upstream state must be a saddle-saddle, focusires has reached a stable state. This has been the view of
focus, or a saddle-center. Numerical solutions have beetthe present author. The question then becomes whether the-
obtained in saddle-center cases for which a saddle connewry can provide stationary structures as outcome of the mir-
tion exists also in the Hall-MHD case (or for parameter setsror instability, and which are clearly distinct from the slow
nearby, cf. the case of Fig. 5), while in saddle-center casesnagnetosonic solitons that have been proposed (Batteig
where a saddle connection does not exist in the Hall-MHD1999; Stasiewicz et al., 2003). Both in the recent discus-
model, the numerics showed that it does not exist in thesion (Stasiewicz, 2005) as well as elsewhere (Treumann et
FLR-Hall-MHD model either. In saddle-saddle cases, a nu-al., 2004), it was claimed that such an alternative does not
merically constructed saddle connection was not achievedexist.
There is presently no reason to interpret this as nonexistence In the present author's view, this situation has now
of solution; it may equally well be because the numerical ap-changed. Recently, localized static (i.e., nonpropagating)
proach so far attempted, is inadequate. structures were theoretically obtained in fully time depen-
Neither should the numerical solutions that could be ob-dent numerical solutions to a dispersive-MHD model includ-
tained in the saddle-center cases be taken as a proof thatiag both finite Larmor radius dispersion and Landau damp-
solution exists. Only a mathematical proof can decide thating (Borgogno et al., 2007). The numerical run was for a set
Unfortunately, this has not been within reach so far. of parameter values where the pressure anisotpogy pjo
Since the set of differential Egs. (14), (15) has been ob-was slightly above threshold for the mirror instability. In a
tained from a model containing no irreversible effects, oneparticular case where the boundary conditions were chosen
might expect it to have some Hamiltonian structure. Suchso as to maintain the mirror instability, a nonchanging and
a structure could have been useful in the search for a preronpropagating structure developed from initial noise (e.g.,
cise mathematical proof of existence of saddle connectionskig. 4 of Borgogno et al., 2007) having the form of magnetic
However, no such structure has so far been found. [A referedoles, anticorrelated with the density perturbations.
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The results reported in Borgogno et al. (2007) also showedand Mikhailovskii and Smolyakov (1984), the soliton the-
that the perpendicular temperature increased more than thery for fast magnetosonic waves at exactly perpendicular
parallel temperature through the holes, a signature noted ipropagation was discussed. It was pointed out that a the-
several experimental reports (e.g., Tsurutani et al., 2007) asry based upon the FLR pressure tensor correction alone,
well as simulations (Baunggtel et al., 2005). gives the wrong sign for the dispersive term. The point is that

The significant point to note here, is that the struc- the present model does not produce a correct expression for
tures found by Borgogno et al. (2007) show signaturesthe part of coefficienp; which survives ag— /2. Contri-
which are clearly distinct from the slow magnetosonic soli- butions of relative orde¢v, /v4)* originating from omitted
tons of Baum@rtel (1999), Stasiewicz et al. (2003), and terms in the moment hierarchy are needed in order to get this
Stasiewicz (2004). One is that they are nonpropagatinggcorrect.
while the solitions currently being discussed (Stasiewicz et The conditions for validity is therefore notonlyth&i{/vi
al., 2003), have a nonvanishing velocity of propagation.is small, but also that cé¢ is not too small:
However, potentially more significant is it that the polariza-
tion of the structures found by Borgogno et al. (2007) break [ vy 2 2
with (57). Instead, they satisfy the following symmetry: (i) <_> «cos'6
the parallel velocityu(x) must vanish identically; this is a
consequence of the assumption that the structure is nonprog=duation (74) is a rough estimate obtained by comparing
agating. (i) LetW (x)=(b, (x), b (x), uy(x), u;(x)) be the the linear dispersion relation of the present model, Eq. (52),

(74)

solution forx <0. Then the solution far>0 is with that implied by Mikhailovskii and Smolyakov (1985).
Effects of higher moments would influence the te&ﬁqz
Wa(x) = (JLW)(x) (73) of Eq. (55), whiledpq; is reliable. Ast approachesr/2,

and(v, /v4) remains small, Eq. (74) expresses that the ratio
83/80 cosh«1, exploiting thaty;~ cosd while g~O(1) as
0—m /2, and implying that omitted contributions 4e are of
(2W)(0)=(by (=x), bo (=), =y (=), —uz (=) the sa/lme orderF())fymggnitude as those retainmg!;/z.
A consequence is that, (0)#£0 in general, while both, and Since the observed magnetic holes are generally known to
u; have to satisfys, (0)=0, u,(0)=0. It can readily be seen have a wave normal making a large angle to the magnetic
that this symmetry can 0n|y be satisfied by nonpropagatmdleld the present author considers it Un||k6|y that the mag-
solutions. netic holes can be understood as slow magnetosonic solitons,
The model for which these stationary structures were obJn view of the remarks in the two preceding paragraphs.
tained numerically by Borgogno et al. (2007), goes to a Another possible application of dispersive MHD soliton
higher order in thermal dispersion than the present one. It i$olutions to space plasma observations, concern the solar
of interest to know whether such nonpropagating structuredvind observations of satellite Ulysses described by Rees et
exist within the present model. This has been investigated@l- (2006), where isolated structures with fairly peculiar po-
with a negative result: it appears certain that such solutiondarizations were reported. Such structures had been theoret-
do not exist in the present FLR model. Details on this negadcally encountered by Mjglhus (2006) and termed “banana
tive result are omitted. polarizations”. Such solutions exist in cases of anisotropic

It should be remarked that the story regarding the the-Pressure, in particular whepy>p,. Their possible rele-
oretically obtained mirror structures is more complicated vance for the observations of Rees et al. (2006) was discussed

than described above: both magnetic humps and magnetiy Sauer et al. (2007) and Baugrtel et al. (2007). It is of
holes were obtained in the numerical model of Borgogno etinterest to know whether such solutions survive the extension

al. (2007), and this becomes even more pronounced in kinetié0 include the FLR correction to the pressure tensor. How-
simulations (Califano et al., 2008). ever, the effort in this direction has been inconclusive, mainly

Next, the validity of the present model is briefly discussed. because these banana polarizations occur in cases where the
Dispersion relations are often good indicators of what aupstream state is of saddle-saddle or focus-focus type, so that
model contains and what it neglects. In the present caseQur numerical method was inadequate.

the dispersion relation is Eq. (52). It is, strictly speaking, AN alternative is to use the perturbation method of Sect. 7,
only correct up to ordex?, and this leading order disper- in order to obtain banana polarized solutions including FLR

sion is only correct up to ordew, /v4)2. However, both  effects. That has been done, and works fine. However, it
the cold (i.e., Hall) and the leading FLR contribution con- Was chosen not to include any of those results here, because
tain a factor co®d (it requires a certain rescaling of Eq. (52) the banana polarizations always occur in parameter ranges
to see this, which is omitted), so whén— 7/2, terms of  Violating Eq. (74).

higher order inv; /v4 might dominate at nearly perpendic-

ular propagation. That this, in fact, is the case, has been

presentin the literature for a long time: in MacMahon (1968)

where
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