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Abstract. Images are widely used to visualise physical pro-
cesses. Models may be developed which attempt to repli-
cate those processes and their effects. The technique of cou-
pling model output to images, which is here called “image-
model coupling”, may be used to help understand the under-
lying physical processes, and better understand the limita-
tions of the models. An information theoretic framework is
presented for image-model coupling in the context of com-
munication along a discrete channel. The physical process
may be regarded as a transmitter of images and the model as
part of a receiver which decodes or recognises those images.
Image-model coupling may therefore be interpreted as image
recognition. Of interest are physical processes which exhibit
“memory”. The response of such a system is not only depen-
dent on the current values of driver variables, but also on the
recent history of drivers and/or system description. Exam-
ples of such systems in geophysics include the ionosphere
and Earth’s climate. The discrete channel model is used to
help derive expressions for matching images and model out-
put, and help analyse the coupling.
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1 Introduction

Images describe what is present in a scene, and mathemati-
cal or empirical models may be developed which attempt to
replicate the underlying processes which produce those im-
ages. Given an image, it is interesting to find the model input
producing output which best matches the image. In this way
useful knowledge concerning the mechanisms producing that
image may be discerned. Such image-model coupling, in the
context of sequences of images and systems with memory, is
described below. The particular example application chosen
is the coupling of images of the ionosphere and the output of
ionospheric models. This is a challenging problem because
the ionosphere (Hargreaves, 2003) is a nonlinear system with
regard to the response of its electron content to its driver vari-
ables. Furthermore, the system has “memory” since its re-
sponse at a given time depends not only on the current drivers
but also on the recent history.

There are various questions to consider. What objective
function should be used to describe the match between an
image sequence and model output? More generally, how
can competing models be compared in a quantitative man-
ner? And how can the importance of driver variables, for
replicating image sequences, be assessed?

To attempt to answer these questions in a consistent man-
ner, image-model coupling is presented within a simple in-
formation theoretic context as transmission along a discrete
channel. The simpler and more familiar discrete memory-
less channel is a special case suitable for systems which do
not exhibit memory. This approach clearly separates the true
underlying real-world process producing the image sequence
and the proposed model, and gives a framework to help iden-
tify assumptions in the proposed model and possible sources

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.

http://creativecommons.org/licenses/by/3.0/


198 N. D. Smith et al.: Image-model coupling, a simple information theoretic perspective

of error in coupling model output to images. The objective
function used for coupling is statistical in nature; with an in-
creased availability of data, it should be possible to derive
objective functions which improve the coupling. The context
encourages the use of “tools” drawn from information theory
and statistical modelling.

The approach borrows heavily from joint source-channel
decoding (JSCD), e.g.Garcia-Frias and Villasenor(2001);
Ferrari et al.(2005); Link and Kallel (2000) and speech
recognition, e.g.Rabiner and Juang(1993), where both
maximum a-posteriori (MAP) decoding and evaluation in
terms of error rate are commonplace. Modelling channel
noise is important for communication systems in general,
e.g. Burlina and Alajaji (1998); Beaulieu(1991). Our ap-
proach is very similar to the analysis of stochastic channels
in Ferrari et al.(2005), except we have here assumed specific
conditional independences. This paper seeks to apply con-
cepts from information theory and speech recognition to the
modelling of geophysical systems; memory is often impor-
tant for such systems. The ionosphere (e.g. seeHargreaves,
2003) is used as an illustration in this text. Memory is also
important for Earth’s climate, e.g.Maraun et al.(2004). The
statistical aspects of our framework are embedded in graph-
ical models and the generic Bayesian approach; regarding
geophysical systems, note that graphical models, hierarchical
Bayesian models and hidden Markov models (HMMs) have
previously been applied, e.g.Ihler et al.(2007); Wikle et al.
(1998); Beyreuther and Wassermann(2008). There is signif-
icant overlap with data assimilation, e.g.Wikle and Berliner
(2007); however data assimilation is primarily interested in
using models to improve the prediction of observations rather
than to decode the values of driver variables. Ignoring this
distinction, image-model coupling is essentially a form of
data assimilation. Our distinct separation of real-world pro-
cess and proposed model is similar to that inDuane et al.
(2006), where data assimilation is viewed in terms of the syn-
chronisation of two dynamical systems via a noisy communi-
cation channel. There are similarities between the framework
for data assimilation applied to the ionosphere inGuo et al.
(2003) and our approach, but inGuo et al.(2003) there is no
development in terms of a discrete communication channel.
As far as the authors are aware, the main contribution of this
paper is in the application of concepts from JSCD, speech
recognition and statistical modelling to the “decoding” of the
values of driver variables for geophysical systems, in partic-

ular by highlighting the role of memory and missing vari-
ables, and in analysing the coupling. While the concepts are
not new, the authors hope the approach may encourage extra
insight in modelling geophysical systems.

The paper is organised as follows. First, Sect.2 introduces
discrete channel models with and without memory; the true
underlying process producing the image sequence is consid-
ered as a transmitter, and the proposed model is part of a
receiver which interprets, or decodes, the image sequence.
Section3 then describes the receiver in more detail; the code-
book, noise and state transition models, objective function
for matching, and the search mechanism. In particular, the
assumptions implicit in applying simple sum square error
minimisation are detailed. Sections4 and5 respectively in-
troduce expressions to compare alternative models, and es-
timate the sensitivity of image sequences to different driver
variables. Finally some discussion and conclusions follow in
Sects.6 and7.

2 Communication channel framework

Image-model coupling may be viewed from an information
theoretic perspective as communication via a discrete chan-
nel (e.g. seeMacKay, 2004; Abramson, 1963; Khinchin,
1957). The true-world process generating the images is
viewed as a transmitter, and the model which is used to in-
terpret the images is part of the receiver. Some form of syn-
chronous “online” decoding is attractive for continuous com-
munication, i.e. continuous “online” image-model coupling.
In the context of ionospheric modelling, the true ionosphere
acts as a transmitter and encodes physical driver variables as
an image of the ionosphere, where the image is simply an of-
ten incomplete description of the ionosphere. The image may
be in the form of electron densities or their line integrals.
The ionospheric model is part of a decoder which attempts
to recover the values of those driver variables. This channel
approach allows us to derive an objective function for match-
ing a temporal sequence of images with model output. The
following analysis concerns systems such as the ionosphere
which are not memoryless, so receivers which assume sim-
ple discrete memoryless channel models may not be accu-
rate. However, for reasons of tractability, such receivers may
be applied, though it is useful to understand the limitations
and assumptions in so doing. In the following, “TX” denotes
the transmitter and “RXq” the receiver forq∈{3, 2, 1}.
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Fig. 1. Image-model coupling as a discrete channel model, where the true real-world process is an encoder,δt is the duration of a timestep
when used to describe delay in a temporal buffer, and RXq, q∈{3, 2, 1} denotes different receivers.

2.1 Transmitter (TX)

Figure1 describes the true real-world process assumed to generate the images. The process is assumed driven. The driver
variables of interest are recorded at timet asuTX(t)∈UTX , whereUTX is a discrete, typically open set1. For the ionosphere,
driver variables of interest may include measurements of solar or geomagnetic activity. In addition, there are latent driver
variablesu′

TX(t)∈U ′

TX which are not measured and are typically unknown or not of direct interest to the modeller. Again,
U ′

TX is a discrete set. The current system is fully described byzTX(t)∈ZTX andz′

TX(t)∈Z′

TX , which respectively describe
those variables which form the image, and the complementary set of variables required to complete the full description. For
convenience, define discrete setsZTX⊆Z andZ′

TX⊆Z′. The real-world process is assumed viewed as a codebook which
implements the deterministic mapping, for some fixed and known channel memory length2 hc∈N0 (for channel memory,
e.g. seeKhinchin, 1957),

zTX(t) : (uTX(t − hc, t),u
′

TX(t − hc, t), zTX(t − hc), z
′

TX(t − hc)) 7→ zTX(t), (1)

wheret is the timestep index andhc is expressed in timesteps, and for example,

uTX(t−hc, t)≡(uTX(t−hc), uTX(t−hc+1), . . . ,uTX(t)).

Similar abbreviations are used elsewhere for time-ordered temporal sequences of vectors. HencezTX(t) is fully determined by
the present and past driver variables, both known and latent, and an initial complete description. Hence there are no variables
beyond those in the domain of the mapping which cause variation inzTX(t). The assumption of the deterministic mapping
is thought reasonable due to the inclusion of all driver variables and description variables in the domain. In the case of the
ionosphere, the dependency on initialisation is assumed since the ionosphere is not memoryless; its description may evolve
differently over time under the action of the same sequence of drivers depending on the initial distribution of plasma.

There is also memory in the source. Lettinghs∈N0 denote the length of source memory in timesteps, then it is convenient
to define the state,

xTX(t) = (uTX(t − h, t),u′

TX(t − h, t), zTX(t − h), z′

TX(t − h)), (2)

whereh= max[hs−1, hc], wherexTX(t)∈XTX , and whereXTX=(⊗h+1
i=1 UTX)(⊗h+1

i=1 U ′

TX) ⊗ ZTX ⊗ Z′

TX . This definition of
state allows the transmitter to be modelled as a hidden Markov process (see Sect.3.4).

1The constraint of discrete signals and sets rather than continuous analogues is necessary for a discrete channel model; although real-
world processes are typically continuous, discretisation may be regarded as the result of sampling continuous signals or spaces into the
machine precision of the recording, storage or computing device.

2The notationN0 denotes all positive integers and the zero.

www.nonlin-processes-geophys.net/16/197/2009/ Nonlin. Processes Geophys., 16, 197–210, 2009



200 N. D. Smith et al.: Image-model coupling, a simple information theoretic perspective

The actual image measured or recorded at timet is z̃(t)∈Z. This image is related to the partial descriptionzTX(t) by,

z̃(t) = zTX(t) + nTX(t), (3)

wherenTX(t)∈Z is additive noise describing error in the measuring devices. Unfortunately, if an image is incomplete, it is
sometimes necessary to complete the image, for example using tomographic reconstruction. For the purposes of this analysis,
such images are regarded as if directly imaged by a device, and the error in the reconstruction included into the noise process
nTX(t). Both the true real-world process and noise source may be nonstationary; however for the estimation of the statistical
models described later, properties of stationarity and ergodicity (Korn and Korn, 1968) are convenient. The noise signal
nTX(t) is not transmitted independently along the channel, only the imagez̃(t). In practice, it is usual to consider a finite
length sequence of images, for exampleT imagesz̃(1, T ).

2.2 Level 3 receiver (RX3)

With infinite knowledge, it is possible to construct a receiver which implements the reverse process to the transmitter. Hence
the receiver first “denoises” the image,

zRX3(t) = z̃(t) − nRX3(t), (4)

wherenRX3(t)∈Z, zRX3(t)∈ZRX3, andZRX3 is typically a discrete set denoting the range of the receiver codebook. The
codebook implements deterministic mappings of form,

zRX3(t) : (uRX3(t − hc, t),u
′

RX3(t − hc, t), zRX3(t − hc), z
′

RX3(t − hc)) 7→ zRX3(t), (5)

but is used in the reverse direction. The codebook is typically implemented by a deterministic mathematical or empirical
model. The noise sourcenRX3(t) should model the measurement noise in the imaging devices. This receiver is unrealisable,
but is included since it permits decoding with the lowest possible error rate. Decoding is described more fully in Sect.3.4. For
clarity, the receiver is here called a level 3 receiver, where the higher the level, the deeper the conditional dependencies in the
receiver codebook. For convenience, a receiver state is defined,

xRX3(t) = (uRX3(t − h, t),u′

RX3(t − h, t), zRX3(t − h), z′

RX3(t − h)), (6)

whereh = max[hs − 1, hc] andxRX3(t) ∈ XRX3 = (⊗h+1
i=1 URX3)(⊗

h+1
i=1 U ′

RX3) ⊗ ZRX3 ⊗ Z′

RX3.

2.3 Level 2 receiver (RX2)

This is similar to the level 3 receiver with differences in the codebook mappings and notation. Denoising is,

zRX2(t) = z̃(t) − nRX2(t), (7)

wherenRX2(t)∈Z andzRX2(t)∈ZRX2. The codebook implements deterministic mappings of form,

zRX2(t) : (uRX2(t − hc, t), zRX2(t − hc, t − 1)) 7→ zRX2(t), (8)

where the unmeasured or unknown driver and description variables inU ′

TX andZ′

TX have been omitted. The stochastic variation
in z̃(t) due to these variables is instead incorporated into a more complicated noise sourcenRX2(t). The noise source no longer
models the error in measurement devices alone, but also the stochastic variation due to the omitted variables. Again, define a
state,

xRX2(t) = (uRX2(t − h, t), zRX2(t − h, t − 1)), (9)

whereh = max[hs − 1, hc], andxRX2(t) ∈ XRX2 = (⊗h+1
i=1 URX2)(⊗

h
i=1ZRX2).

2.4 Level 1 receiver (RX1)

This is similar to the level 3 and 2 receivers with differences in the codebook mappings and notation. Denoising is,

zRX1(t) = z̃(t) − nRX1(t), (10)

wherenRX1(t)∈Z andzRX1(t)∈ZRX1. The codebook implements deterministic mappings of form,

zRX1(t) : uRX1(t) 7→ zRX1(t). (11)

Each codebook entryzRX1(t) may be regarded as “typical” for its driver variables, in a similar manner to which the mean of
a Gaussian distribution is typical of samples drawn from that Gaussian. The noise sourcenRX1(t) should now also describe
the stochastic variation due to different initialisations and histories of driver variables. The present drivers form the state so
xRX1(t)=uRX1(t) wherexRX1(t)∈XRX1=URX1.
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2.5 Perfect image-model coupling

In this analysis, perfect image-model coupling is the transmission of a sequence of driver variables, without loss, via the true
real-world process as encoder, the images as the transmitted message, and the proposed model as part of the decoder. Ideally
uTX(t)=uRXq(t). For the example of the level 3 receiver, assume that,

– the codebook mappings are identical, i.e.z−1
RX3(t) ◦ zTX(t)=I , whereI is the identity map,

– the domain of the receiver and transmitter codebooks are identically descriptive, i.e.URX3=UTX ,

– the transmitter noise source is correctly modelled by the receiver noise source, i.e.PRX3(nRX3(t))=PTX(nTX(t)), ∀t , and,

– processes and models implicit in the transmitter and receiver are assumed stationary.

The first two conditions assume the proposed codebook is correct, the third that the noise model is correct. Unfortunately,
even under these conditions where the distribution of noisenRX3(t) is correct, the particular sample drawn from that noise
distribution remains unknown. For this reason, even in the case of the level 3 receiver, perfect coupling may not be achievable.
In many cases, the driver variablesuTX(t) can only be recovered in the sense of maximum a-posteriori (MAP) or other
estimates. For either of the level 3, 2 or 1 receivers, perfect coupling would only be possible if the transmitter and receiver
were identical, and either noise samples were transmitted independently between the transmitter and receiver along a separate
noiseless channel, or the supports of the noise distributions were always strictly less than the distances between neighbouring
entries in the ranges of the transmitter and receiver codebooks. Decoding is described more fully in Sect.3.

3 Receiver

The purpose of the receiver is to decode the image sequencez̃(1, T ) as a sequence of driver variables. Assume the receiver at
levelq implements this by first decoding the most appropriate state sequence through minimising a scalar objective function,

x̂RXq(1, T )(z̃(1, T )) = argxRXq (1,T )∈⊗
T
t=1XRXq

minfRXq(xRXq(1, T ), z̃(1, T )), (12)

subject to the constraint that there exists an underlying consistent driver sequenceûRXq(1, T )(z̃(1, T )), i.e. an extraction
mapping should exist,

x̂RXq(1, T )(z̃(1, T )) 7→ ûRXq(1, T )(z̃(1, T )). (13)

This section explains how the receiver achieves this. The definition of the receiver requires the specification of (1) a codebook,
both the mapping as implemented by a deterministic model and its domain, (2) a noise model, and (3) a state transition model.
The decoder attempts to find the best match between each image and a member of the codebook. This requires careful selection
of (4) the objective function to measure the “goodness of match”, and (5) a search mechanism, often heuristic, to navigate the
codebook and find the member with maximum “goodness of match”. These components are described in the remainder of this
section.

3.1 Codebook

For the levelq receiver, the codebook may be viewed as the set of deterministic mappings,

CRXq = {xRXq(t) 7→ zRXq(t), ∀xRXq(t)∈XRXq}. (14)

These may be implemented using lookup tables, but more typically by empirical or mathematical models. The codebook
domainXRXq may also be constrained by the choice of model. For example an empirical model may impose lower and upper
bounds on its driver variables, which in turn constrain the codebook domain. The domain may be quantised coarsely, or finely
at machine precision. In ionospheric modelling, some codebooks may be more suitable for different tasks than others, e.g. some
deterministic models may be better at describing high latitude processes while others may be more suitable for low latitude
processes.
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3.2 Noise model

Since the codebook is deterministic, stochastic variability must be introduced via a supplementary noise model. For the level
q receiver, the noise process may be fully specified via a set of probability mass functions (PMFs),

NRXq = {PRXq(nRXq(t)|xRXq(t)), ∀nRXq(t)∈Z, ∀xRXq(t)∈XRXq}. (15)

In effect {CRXq ,NRXq} defines a stochastic version of the deterministic codebook. Indeed if the model involved in image-
model coupling is stochastic, then there is no need to defineCRXq andNRXq separately. Ideally the codebook and noise model
should replicate the stochastic variation in the transmitter (i.e. the real-world process). However this is a challenging task since
considerable complexity is expected in the real-world variation, as described in AppendixA.

3.3 State transition model

Another supplementary model must be supplied governing the transitions between consecutive states. This may again be fully
specified by a set of PMFs. For a levelq receiver,

ARXq = {PRXq(xRXq(t)|xRXq(t − 1)), ∀xRXq(t)∈XRXq , ∀xRXq(t − 1)∈XRXq}. (16)

This state transition model must assign zero probability mass to those transitions which do not respect a temporally consistent
sequence, e.g. foruRXq(1, T ).

3.4 Objective function

The objective function should be derived from a decision theoretic perspective. For each samplez̃(1, T ), the decision rule
should seek to minimise the conditional risk (Duda et al., 2001),

R(xRXq(1, T )|z̃(1, T )) =

∑
yRXq (1,T )∈⊗

T
i=1XRXq

l(xRXq(1, T ), yRXq(1, T ))PRXq(yRXq(1, T )|z̃(1, T )), (17)

wherexRXq(t)∈XRXq , ∀t∈[1, T ]. The scalar functionl(·, ·) is the loss, and the conditional risk is expressed as the average
loss over a posterior distribution in the receiver. An intuitive choice of loss function is the squared L2 norm of the difference
between the two arguments. However, under such a “regression-based” loss, the conditional risk is expensive to compute if
samples must be drawn from the posterior. A simpler “classification-based” loss may instead be used (Duda et al., 2001),

l(xRXq(1, T ), yRXq(1, T )) =

{
0 if xRXq(1, T ) = yRXq(1, T )

1 otherwise
. (18)

This is preferable because it reduces computational cost since then,

R(xRXq(1, T )|z̃(1, T )) = 1 − PRXq(xRXq(1, T )|z̃(1, T )), (19)

thereby avoiding the averaging operation. Hence an objective function may be expressed as follows, where logs are taken and
unneccessary terms are discarded from the log posterior,

fRXq(xRXq(1, T ), z̃(1, T )) = − ln PRXq(z̃(1, T )|xRXq(1, T )) − ln PRXq(xRXq(1, T )). (20)

The first of the two terms in the objective function models state-dependent noise, the second models memory in the state space
(which includes memory in the driver source). Stochastic variation originates both in the channel and the source (e.g. see
Khinchin, 1957). The first term is determined by the codebookCRXq and noise modelNRXq , the second by the state transition
modelARXq . The resultant decoder is the well-known maximum a-posteriori (MAP) decoder where the posterior acts as a
measure of “goodness of match”. The objective function may be compared with those derived in variational analysis in other
applications such as meteorology (Daley, 1999). The remainder of this subsection considers how to obtain expressions for the
objective function under different receivers, and details the assumptions implicit in decoding images using least sum square
error optimisation.
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Fig. 2. Temporal portion of hidden Markov model (HMM) for modelling the receiver RXq, q∈{3, 2, 1}.

3.4.1 Discrete channel with memory

All receivers RXq, q∈{3, 2, 1} may be modelled as hidden Markov processes of the form shown in Fig.2, where the state is
assumed to contain all information about the past which can influence the present and the future.

The noise process and state transition process are assumed stationary in time. The posterior is,

PRXq(xRXq(1, T )|z̃(1, T )) =

∏T
t=1 PRXq(z̃(t)|xRXq(t))PRXq(xRXq(t)|xRXq(t − 1))

PRXq(z̃(1, T ))
, (21)

where it is assumed that the statexRXq(0) is fully known, i.e. the history of driver variables and pre-noised images is known
back to a timestep index of−h, if required. The objective function becomes,

fRXq(xRXq(1, T ), z̃(1, T )) = −

T∑
t=1

{ln PRXq(z̃(t)|xRXq(t)) + ln PRXq(xRXq(t)|xRXq(t − 1))}. (22)

Both level 3 and level 2 receivers assume channel memory length and source memory length no greater thanh andh+1
timesteps respectively. Of course, those memory lengths may in practice be reduced by constraining the PMFs inNRXq and
ARXq . For example, channel memory length may be reduced to zero in favour of source memory alone.

3.4.2 Discrete memoryless channel

The discrete memoryless channel is well known and is worthy of further consideration. Assume the probability of a state is
independent of the previous state. This is not possible for a level 3 or 2 receiver. For the level 1 receiver,

fRX1(uRX1(1, T ), z̃(1, T )) = −

T∑
t=1

{ln PRX1(z̃(t)|uRX1(t)) + ln PRX1(uRX1(t))}. (23)

The noise is still state-dependent though it is no longer Markov. This channel assumes there is no source memory, i.e. there is
independence between successive values of driver variables. This independence assumption is severe and most probably unre-
alistic for real-world systems. Driver variables naturally change smoothly, albeit at a certain level of scale. For the ionosphere,
on all but the shortest time scales, any measurement of incident solar radiation may appear discontinous during the arrival of a
solar flare. However for the majority of time, this measurement varies smoothly between consecutive timesteps, and the state
transition model should favour such smooth changes. Also the assumption that the image is conditionally independent of pre-
vious variables given the current driver variables is unrealistic for systems such as the ionosphere where plasma accumulates
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with time. The ionosphere’s response, as illustrated by its description, under the action of a given set of drivers, will vary
depending on its past driver values. However the discrete memoryless assumption is convenient and, at the risk of reduced
decoding accuracy, the likelihoodPRX1(z̃(t)|uRX1(t)) may be regarded as averaged over all possible histories.

3.4.3 Discrete memoryless channel with state-independent Gaussian noise

The objective function for the discrete memoryless channel, as given in Eq. (23), may be simplified to yield the well-known
sum square error and sum weighted square error objective functions. It is useful to consider the additional assumptions.

First, it is sometimes convenient to assume that the mappinguRX1(t) 7→zRX1(t) is injective∀t∈[1, T ] (e.g. see “Mappings”
by I. N. Sneddon inSneddon, 1976). The injective assumption may not be unreasonable, particularly when a vector of few
driver variables maps into a large image with many components. Then the objective function in Eq. (23) becomes,

f ′

RX1(uRX1(1, T ), z̃(1, T )) = −

T∑
t=1

{ln PRX1(z̃(t)|zRX1(t)) + ln PRX1(uRX1(t))}. (24)

The priorPRX1(uRX1(t)) should reflect the frequency of occurrence of different values of driver variables over all possible
histories. For example, for the ionosphere the prior may be calculated using measurements collected over a full solar cycle.

Next consider the noise process is state-independent and is stationary in time. HencePRX1(z̃(t)|zRX1(t)) = δ(z̃(t) −

zRX1(t), nRX1)PRX1(nRX1), where δ(·, ·) is the Kronecker delta, simplifying the noise modelNRX1 considerably to the
specification of a single PMF. This is unlikely for systems such as the ionosphere. Additionally, assume the noise model
is a zero-mean discretised Gaussian soPRX1(nRX1) = N(nRX1; 0, R) where R is the covariance matrix3, and hence
PRX1(z̃(t)|zRX1(t)) = N(z̃(t); zRX1(t), R). Unfortunately, Gaussianity is unlikely for those description variables, for example
line integrals of electron content in the case of the ionosphere, which are naturally nonnegative.

Finally, assume there is no prior preference in the driver variables so there is a uniform priorPRX1(uRX1(t)) over URX1.
Again this is probably unreasonable for many real-world systems. For the case of the ionosphere, quiet space weather occurs
much more frequently than stormy space weather, and the prior over driver variables should reflect this. The objective function
for the discrete memoryless channel in Eq. (24) may now be simplified to the following, where irrelevant terms have been
discarded,

f ′′

RX1(uRX1(1, T ), z̃(1, T )) =

T∑
t=1

zRX1(t)
>R−1(

1

2
zRX1(t) − z̃(t)). (25)

The more negative the objective function, the better is the “goodness of match”. If the covariance matrixR is assumed diagonal,
minimisation is equivalent to the conventional least sum weighted square error solution. The diagonal elements, i.e. weights,
represent the relative “importance” of each component in the image. If each component is of equal importance,R may be set
to Identity and the minimisation yields the least sum square error solution.

3.5 Search

Minimisation of the objective function over the full domain⊗
T
t=1XRXq of the receiver codebook requires a search mechanism.

The simplest approach is full grid search. However computational cost increases with the number of state variables, and coarser
grid searches must often be introduced. Otherwise conventional derivative-based optimisation is recommended. However if the
codebook mapping is implemented by some deterministic empirical model or when a mathematical model is very complicated,
the derivative of an objective function of typefRXq(·) may not be known analytically. In this case, derivative-free optimisation
techniques may then be required. Alternative approaches include numerical approximation of gradients (e.g. see the algorithms
in Powell, 2007) and sampling-based methods. An example of a sampling scheme is simulated annealing (Salamon et al., 2002)
which, although it converges to a global minimum, requires many evaluations of the objective function. A variant of simulated
annealing is fast annealing (Salamon et al., 2002). Further comments on decoders are given in Sect.6.

4 Evaluation

It is sometimes useful to compare different codebooks for image-model coupling. Codebooks should not be compared in
isolation, but in the context of the accompanying noise model, state transition model, objective function and search mechanism.

3Estimation of the covariance matrix is not included in the variational problem, and must be performed apriori.
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The error rate associated with each full receiver is the risk (Duda et al., 2001),

E(RXq) =

∑
z̃(1,T )∈⊗

T
t=1Z

R(x̂RXq(1, T )|z̃(1, T ))PTX(z̃(1, T )), (26)

with the conditional risk as given in Eq. (17) under the loss as given in Eq. (18). If each levelq receiver is correct such
thatMRXq={CRXq ,NRXq ,ARXq} exactly replicates the statistical properties of the transmitter under the constraints imposed
within each receiver, thenE(RX3)≤E(RX2)≤E(RX1). This relationship does not necessarily hold for incorrect receivers.
Indeed when all receivers are incorrect, simpler receivers can often prove more robust and give lower error rates in practice.

However the error rate penalises the decoding of variables, with values which differ from those in the transmitter, with the
same loss independent of the degree of difference. This may be misleading. An alternative quantity is the mutual information
between the sequence of true driver variablesuTX(1, T ) and the sequence of received driver variablesuRXq(1, T ). Perfect
coupling, or lossless transmission, maximises this quantity. Any attempt to improve, learn or adapt incorrect models should
aim to increase this quantity. UsingMacKay(2004), the mutual information may be expressed as,

I (uRXq(1, T ); uTX(1, T )) = H(uTX(1, T )) − H(uTX(1, T )|uRXq(1, T )), (27)

where the first and second terms on the right hand side are respectively source and conditional entropies. Since the source
entropy is assumed fixed, the following simpler quantity may instead be used. UsingMacKay (2004) for the expression for
conditional entropy,

F(MRXq) = −H(uTX(1, T )|uRXq(1, T ))

=
∑

uRXq (1,T )∈⊗
T
t=1URXq

PRXq(uRXq(1, T ))
∑

uTX(1,T )∈⊗
T
t=1UTX

P(uTX(1, T )|uRXq(1, T )) ln P(uTX(1, T )|uRXq(1, T )), (28)

where,

− H(uTX(1, T )) ≤ F(MRXq) ≤ 0. (29)

Note that some form of mutual information decoding would be more compatible with this comparison scheme, but MAP
decoding simplifies the implementation of decoders. Rearranging and introducing the latent variablesz̃(1, T ),

F(MRXq) =

∑
uRXq (1,T )∈⊗

T
t=1URXq

∑
z̃(1,T )∈⊗

T
t=1Z

∑
uTX(1,T )∈⊗

T
t=1UTX

P(uRXq(1, T ), z̃(1, T ),uTX(1, T ))

ln P(uTX(1, T )|uRXq(1, T )). (30)

Making some conditional independence assumptions reasonable for our communication channel,

F(MRXq) =

∑
uRXq (1,T )∈⊗

T
t=1URXq

∑
z̃(1,T )∈⊗

T
t=1Z

∑
uTX(1,T )∈⊗

T
t=1UTX

PRXq(uRXq(1, T )|z̃(1, T ))

PTX(z̃(1, T )|uTX(1, T ))PTX(uTX(1, T )) ln P(uTX(1, T )|uRXq(1, T )). (31)

Unfortunately it is difficult to estimate the distributions defined on the transmitter variables. However for the level 1 receiver, the
quantity may be approximated by assuming the transmitter and receiver codebook mappings are injective (e.g. see “Mappings”
by I. N. Sneddon inSneddon, 1976) and the noise processnTX(t) is negligible. Theñz(t)≈zTX(t), ∀t∈[1, T ]. Drawing `

samples of typeuTX(1, T ) according to the priorPTX(uTX(1, T )) then,

F(MRX1) ≈
1

`

∑̀
l=1

∑
zRX1(1,T )∈⊗

T
t=1ZRX1

PRX1(zRX1(1, T )|z̃l(1, T )) ln PRX1(z̃l(1, T )|zRX1(1, T )), (32)

where z̃l(1, T ) is injectively mapped through the transmitter codebook from thelth sample drawn according to
PTX(uTX(1, T )). Ignoring all posterior probability mass not located at the decoded solution,

F(RX1) ≈
1

`

∑̀
l=1

PRX1(ẑRX1(1, T )|z̃l(1, T )) ln PRX1(z̃l(1, T )|ẑRX1(1, T )), (33)

which yields an expression for the whole receiver RX1. Since the expression is only dependent on the receiver, the quality
of the estimate depends on the veracity of the receiver’s components including its models and the effectiveness of its search
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algorithm. In the context of ionospheric modelling, each of the` samples may be a sequence collected from a different
day’s data. Wheǹ is small, alternative quantities which also penalise model complexity should be considered, for example
stochastic complexity (e.g. seeGrünwald et al., 2005). It is difficult to evaluate a receiver based on a single sample, i.e. when
`=1, though useful insight may still be possible.

Continuing with the level 1 receiver, as in Sect.3.4assume the noise process for the memoryless channel is state-independent,
zero-mean discretised Gaussian and stationary in time. Then,

F(RX1) ≈
1

`

∑̀
l=1

[ T∏
t=1

PRX1(ẑRX1(t)|z̃l(t))
] T∑

t=1

ln PRX1(z̃l(t)|ẑRX1(t)), (34)

where,

PRX1(ẑRX1(t)|z̃l(t)) =
PRX1(z̃l(t)|ẑRX1(t))PRX1(ẑRX1(t))∑

zRX1∈ZRX1
PRX1(z̃l(t)|zRX1)PRX1(zRX1)

, (35)

andPRX1(z̃l(t)|ẑRX1(t))=N(z̃l(t); ẑRX1(t), R).

5 Sensitivity

Sensitivity of a sequence of true imageszTX(1, T ) to the different state variables, including driver variables, inxTX(1, T ) is
of scientific interest. For example, during a geomagnetic storm, what drivers are most influential in producing the particular
electron content patterns in the ionosphere? If the true real-world process is nonlinear, sensitivity must typically be evaluated at
each sequence of state variables of interest. At the state sequenceyTX(1, T ), the Fisher information (see “Fisher information”
in Wikipedia, access: October 2008) is,

Jij (yTX(1, T ); {CTX,ATX}) =

∑
zTX(1,T )∈⊗

T
t=1ZTX

δ2 ln P(zTX(1, T )|xTX(1, T ))

δ[xTX(1, T )]iδ[xTX(1, T )]j

∣∣∣∣
xTX(1,T )=yTX(1,T )

PTX(zTX(1, T )|xTX(1, T ))|xTX(1,T )=yTX(1,T ), (36)

where[xTX(1, T )]i is theith component in the sequence of state variables, and{CTX,ATX} refers to the real-world process. Re-
lating to drivers,δ denotes discrete differences but under the assumption that all values in the relevant component inxTX(1, T )

are uniformly spaced. Since the true images are unknown,

Jij (yTX(1, T ); {CTX,ATX}) ≈ Jij (yTX(1, T );MTX)

=

∑
z̃(1,T )∈⊗

T
t=1Z

δ2 ln P(z̃(1, T )|xTX(1, T ))

δ[xTX(1, T )]iδ[xTX(1, T )]j

∣∣∣∣
xTX(1,T )=yTX(1,T )

PTX(z̃(1, T )|xTX(1, T ))|xTX(1,T )=yTX(1,T ). (37)

Unfortunately, the transmitter distributions are also unknown, but the Fisher information may be approximated at the receiver,

Jij (yTX(1, T );MTX) ≈ Jij (yRXq(1, T );MRXq)

=

∑
z̃(1,T )∈⊗

T
t=1Z

δ2 ln PRXq(z̃(1, T )|xRXq(1, T ))

δ[xRXq(1, T )]iδ[xRXq(1, T )]j

∣∣∣∣
xRXq (1,T )=yRXq (1,T )

PRXq(z̃(1, T )|xRXq(1, T ))|xRXq (1,T )=yRXq (1,T ). (38)

The Fisher information defined upon the receiver is subject to the receiver’s statistical assumptions, and may be a poor ap-
proximation to that defined on the transmitter. Since the Fisher information is defined onMRXq , it does not depend on the
optimisation algorithm. In terms of the objective function, and assumingPRXq(xRXq(1, T )) is uniform,

Jij (yRXq(1, T );MRXq) = −

∑
z̃(1,T )∈⊗

T
t=1Z

δ2fRXq(z̃(1, T ), xRXq(1, T ))

δ[xRXq(1, T )]iδ[xRXq(1, T )]j

∣∣∣∣
xRXq (1,T )=yRXq (1,T )

PRXq(z̃(1, T )|xRXq(1, T ))|xRXq (1,T )=yRXq (1,T ). (39)
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Given a single samplẽzl(1, T ) and a level 1 receiver, a possible estimate at sequencevRX1(1, T ) is,

Jij (vRX1(1, T );MRX1) ≈ −
δ2fRX1(z̃l(1, T ),uRX1(1, T ))

δ[uRX1(1, T )]iδ[uRX1(1, T )]j

∣∣∣∣
uRX1(1,T )=vRX1(1,T )

, (40)

notingxRX1(1, T )=uRX1(1, T ). In this case the Fisher information is estimated using the negative Hessian of the objective
function. However such an estimate may be misleading since it is “tuned” to one particular image sequence only, i.e. all the
conditional probability mass for observed sequences is assumed located atz̃l(1, T ).

6 Discussion

The selection of driver and image variables forURXq and
Z respectively is critical. If the selection is not sufficiently
descriptive, then the noise distributions implied in the trans-
mitter may be very broad due to the effect of latent variables.
Essentially, too much useful information may then be lost
in the encoding process. Unfortunately, the choice of vari-
ables is often restricted by the particular receiver codebook,
e.g. empirical or mathematical model, used.

In designing the receiver, the codebook is intuitively most
important and effort should first be directed at improving
this. The choice of noise model and state transition model
should be data-dependent, since they should be learnt from
data. This influences the choice of objective function and
level of receiver. The simpler receivers should be more ro-
bust if there is a lack of good quality data. However it is
important to understand the assumptions implicit in the sim-
pler receivers, especially regarding the conditional indepen-
dences. Of course, the level 3 and level 2 receivers reduce
to the level 1 receiver if the level 1 assumptions hold in the
transmitter. The choice ofhs , hc andh may be driven by lim-
itations in data rather than scientific knowledge. The inverse
problem of decoding state variablesx̂RXq(1, T ) for a noisy
image sequencẽz(1, T ) has a unique solution providing the
objective function has a single global minimum.

The receiver codebook has been defined using a single
deterministic model. However multiple models may be
used in parallel where the data fusion occurs at the level of
zRXq(1, T ) or xRXq(1, T ). For ionospheric modelling, the
fusion may additionally use geographic information where
alternative ionospheric models are weighted differently at
different global locations, for example according to their
ability to model low latitude or polar/auroral processes.

The approach described above is limited. Our HMM en-
forces specific conditional dependencies; it is possible to ap-
ply different graphical models, e.g.Ihler et al.(2007). For
example, the PMFs in our approach may be further con-
strained by incorporating spatial dependencies between vari-
ables, such as between pixels in an image, e.g.Burlina and
Alajaji (1998); Link and Kallel(2000). When the channel is
not memoryless, our approach also assumes additive Markov
noise; other noise models are possible, for example semi-
Markov noise (e.g.Chvosta and Reineker, 1999), or nonad-
ditive noise. The approach is able to model intersymbol inter-
ference (ISI), as explained inFerrari et al.(2005). It can also

model the finite-state Markov channel (FSMC), e.g.Gold-
smith and Varaiya(1996); Li and Collins(2007), where the
driver variables form the system input. Implementing the de-
coder is challenging; a possible implementation is the Viterbi
algorithm, e.g.Rabiner and Juang(1993); Kavčić and Moura
(2000). However in practice, decoders may be too compu-
tationally expensive to implement unless the codebook map-
ping is computed apriori and stored in lookup tables, or the
codebook mapping is very simple. Regarding decoders, it
may be possible to incorporate concepts from JSCD such as
interleavers, e.g.Li and Collins(2007), and the decoding al-
gorithm, linked to Baum-Welch estimation, inGarcia-Frias
and Villasenor(2001). Generally, it is difficult estimating
PMFs with limited data, though concepts from speech recog-
nition such as state and mixture tying and language model
smoothing, e.g.Rabiner and Juang(1993), may prove ben-
eficial. The accurate estimation of PMFs in the noise and
state transition models is the main drawback of this approach.
In practice, many simplifications may be required, in which
case the receiver may degrade to a much simpler form. As
detailed inMaraun et al.(2004), memory is often associated
with the correlation function, and may be finite or infinite. It
would be useful to analyse our approach by relating it to such
a definition of memory.

Similar “receivers” have been developed in nonlinear
and linear time series analysis. Examples from nonlinear
time series analysis include the non-linear autoreggresive
(NLAR) model (Chatfield, 2004), non-linear moving aver-
age (NLMA) model (Tong, 1990) and state-dependent model
(SDM) (Priestley, 1988); however these examples assume
there is no hidden state, equivalent to there being no chan-
nel noise. Also, Variable order Markov Models (VMMs)
(Begleiter et al., 2004) model memory, but again there are
no hidden states. The ARMA-filtered hidden Markov model
(Michalek et al., 2000) may possibly be regarded as a special
case of the level 2 receiver, at least in concept.

Besides the application to the ionosphere, the approach as-
suming memory may be useful for other geophysical systems
which exhibit “sluggish responses”, e.g. long-term climate
modelling. As stated, a challenge for such systems is the se-
lection of driver and image variables. For example, drivers
for the ionosphere should include measures of solar and geo-
magnetic activity since it is known the sun and geomagnetic
state of the Earth influence the distribution and movement
of ionospheric plasma (Hargreaves, 2003). However if a 3-
dimensional map of electron density measurements is used
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as the image, but the resolution is too coarse, the ability of
the receiver to “recognise” small-scale structures is inhibited.
Image-model coupling is simply an attempt to recognise or
classify an image in terms of its driver variables.

7 Conclusions

Presented above is an information theoretic framework de-
scribing image-model coupling when the true-world system
has memory. Examples of such systems include the iono-
sphere and other geophysical systems with a “sluggish re-
sponse”. A discrete channel model is used to help quantify
the match between images and model output, and analyse the
coupling. The approach is statistical in nature. It should be

possible to harness any increased availability of data to de-
rive objective functions which better reflect the spatial and
temporal statistical relationships in the true underlying pro-
cess, and thereby improve coupling as measured by decoding
error rate. However for complex systems such as the iono-
sphere it is probably more beneficial to first direct effort at
improving the accuracy of the proposed model (i.e. the code-
book). It is hoped that the framework described above may
encourage the further use of statistical and information-based
“tools” in image-model coupling and its analysis. In general,
image-model coupling may be used to help us better under-
stand the underlying processes which produce the effects be-
ing imaged, but also better understand the limitations of our
proposed models too.

Appendix A

Distributions implicit in the transmitter

The noisy imagẽz(t) may be regarded as sampled from a distribution, the functional form of which varies with the number
of conditional variables. An expression for the fully marginalised distributionPTX(z̃(t)|uTX(t)) may be derived under the
following assumptions, consistent with the transmitter illustrated in Fig.1.

– In UTX ⊗ U ′

TX , each driver variable is linearly independent of all other driver variables.

– In Z ⊗ Z′, each description variable is linearly independent of all other description variables.

– Measurement noise is stationary temporally and is state-independent. HencePTX(nTX(t)|zTX(t))=PTX(nTX)∀zTX(t), ∀t .

– The pre-noised imagezTX(t) is fully determined by an initialisationhc timesteps previous wherehc∈N0, and the history
of driver variables since then, so,

(uTX(t−hc, t),u
′

TX(t−hc, t), zTX(t−hc), z
′

TX(t−hc)) 7→ zTX(t). (A1)

If no such value ofhc exists, then a value ofhc is chosen such that the history of driver variables prior to timestep(t−hc)

has no significant effect on the likelihood of the current description given the full description att−hc.

So,

PTX(z̃(t)|uTX(t − hc, t),u
′

TX(t − hc, t), zTX(t − hc), z
′

TX(t − hc)) = PTX(nTX)δ(nTX, z̃(t) − zTX(t)), (A2)

whereδ(·, ·) is the Kronecker delta. Introducing redundant variables into the list of conditional variables,

PTX(z̃(t)|uTX(t − hc, t),u
′

TX(t − hc, t), zTX(t − hc, t), z
′

TX(t − hc, t))

= PTX(z̃(t)|uTX(t − hc, t),u
′

TX(t − hc, t), zTX(t − hc), z
′

TX(t − hc)). (A3)
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Marginalising over the unknown description and driver variables, and substituting from above,

PTX(z̃(t)|uTX(t − hc, t), zTX(t − hc, t))

=

∑
u′

TX(t−hc,t)∈⊗
hc+1
i=1 U ′

TX

∑
z′

TX(t−hc,t)∈⊗
hc+1
i=1 Z′

TX

PTX(u′

TX(t − hc, t), z
′

TX(t − hc, t))

PTX(z̃(t)|uTX(t − hc, t),u
′

TX(t − hc, t), zTX(t − hc, t), z
′

TX(t − hc, t))

=

∑
u′

TX(t−hc,t)∈⊗
hc+1
i=1 U ′

TX

∑
z′

TX(t−hc,t)∈⊗
hc+1
i=1 Z′

TX

PTX(nTX)δ(nTX, z̃(t) − zTX(t))

[

hc−1∏
a=0

PTX(z′

TX(t − a)|z′

TX(t − hc, t − a − 1), u′

TX(t − hc, t))]

PTX(z′

TX(t − hc)|u
′

TX(t − hc, t))[

hc−1∏
a=0

PTX(u′

TX(t − a)|u′

TX(t − hc, t − a − 1))]PTX(u′

TX(t − hc)). (A4)

Then,

PTX(z̃(t)|uTX(t))

=

∑
uTX(t−hc,t−1)∈⊗

hc
i=1UTX

∑
zTX(t−hc,t)∈⊗

hc+1
i=1 ZTX

PTX(z̃(t)|uTX(t − hc, t), zTX(t − hc, t))

PTX(uTX(t − hc, t − 1), zTX(t − hc, t))

=

∑
uTX(t−hc,t−1)∈⊗

hc
i=1UTX

∑
zTX(t−hc,t)∈⊗

hc+1
i=1 ZTX

PTX(z̃(t)|uTX(t − hc, t), zTX(t − hc, t))

[

hc−1∏
a=1

PTX(zTX(t − a)|zTX(t − hc, t − a − 1), uTX(t − hc, t − 1))]

PTX(zTX(t)|zTX(t − hc, t − 1), uTX(t − hc, t − 1))PTX(zTX(t − hc)|uTX(t − hc, t − 1))

[

hc−1∏
a=1

PTX(uTX(t − a)|uTX(t − hc, t − a − 1))]PTX(uTX(t − hc)), (A5)

wherePTX(z̃(t)|uTX(t−hc, t), zTX(t−hc, t)) is as given in Eq. (A4) above. This expression gives an indication of the com-
plexity implied in the distributionPTX(z̃(t)|uTX(t)). Much of the complexity derives from the conditional probability terms
introduced in marginalising over, or “averaging out”, all possible histories. Of course the expression is simplified if the deeper
dependencies do not exist, for example ifhc is small, or if the source memory length is much shorter than the channel mem-
ory length, i.e.hs�hc. If each receiver is correct in the sense described in Sect.4, then the level 3, 2 and 1 receivers must
respectively replicate the statistical distributions in Eqs. (A2), (A4) and (A5).
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