^{1}

^{1}

^{1}

The head-on collision of two equal and two unequal steep solitary waves is investigated numerically. The former case is equivalent to the reflection of one solitary wave by a vertical wall when viscosity is neglected. We have performed a series of numerical simulations based on a Boundary Integral Equation Method (BIEM) on finite depth to investigate during the collision the maximum runup, phase shift, wall residence time and acceleration field for arbitrary values of the non-linearity parameter <i>a/h</i>, where <i>a</i> is the amplitude of initial solitary waves and <i>h</i> the constant water depth. The initial solitary waves are calculated numerically from the fully nonlinear equations. The present work extends previous results on the runup and wall residence time calculation to the collision of very steep counter propagating solitary waves. Furthermore, a new phenomenon corresponding to the occurrence of a residual jet is found for wave amplitudes larger than a threshold value.