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Abstract. The head-on collision of two equal and two un- experimental data.Byatt-Smith (1971 calculated analyti-
equal steep solitary waves is investigated numerically. Thecally to second-order approximation the interaction of two
former case is equivalent to the reflection of one solitarysolitary waves going in opposite directions. Later Byatt-
wave by a vertical wall when viscosity is neglected. We Smith (1988 investigated the head-on collision of two equal
have performed a series of numerical simulations based on solitary waves or the reflection of a solitary wave by a verti-
Boundary Integral Equation Method (BIEM) on finite depth cal wall. Using a perturbation expansion of the Euler equa-
to investigate during the collision the maximum runup, phasetion, he derived interaction equations and showed analyti-
shift, wall residence time and acceleration field for arbitrary cally that the amplitude of the solitary wave after reflection
values of the non-linearity parametafh, wherea is the is reduced. The change is shown to be of fifth-order in wave
amplitude of initial solitary waves anldthe constant water amplitude. This loss of amplitude is due to the presence of
depth. The initial solitary waves are calculated numericallythe third-order dispersive tailOikawa and Yajima1973
from the fully nonlinear equations. The present work extendsused a singular perturbation method developed to second-
previous results on the runup and wall residence time calcuerder to study the interaction between two solitary waves
lation to the collision of very steep counter propagating soli-which propagate in opposite directions. They provided an
tary waves. Furthermore, a new phenomenon correspondingstimate of the phase shifts in the collision process of the
to the occurrence of a residual jet is found for wave ampli-two solitary waves. Maxworthy (1976 conducted experi-
tudes larger than a threshold value. ments on the head collision of two solitary waves. He found
that some of the theories are in qualitative but not quanti-
tative agreement with his experimental results. Namely, he
claimed that the phase shift is independent of initial ampli-
tude in contrast with available theoretical results. Within the
framework of the Lagrangian formulation of the equations,

In this paper we investigate the head-on collision of two_l_ e (1979 | . d the reflecti f i
equal and two unequal solitary waves which are computed emperville (1979 investigated the reflection of a solitary

by using the algorithm developed Banaka(1986. The wave on a rigid wall. Namely, he de.rived the Ieading-qrder
symmetric case is equivalent, in the absence of viscosity, t@symptoélchforn}cllﬂa fo(; the phazefshlfé F’e“’vezr_‘ﬁ?hel incident
the reflection of one solitary wave by a vertical wall. A lot of wave and the reflected wave and found it was difficult to con-

clude, as Maxworthy did, that there is a constant phase shift.
This disagreement is partially explained Bgnton and Rie-
enecker(1983 who emphasized the sensitivity of the results
to the measurement locations. Within the framework of the
shallow water wave equationBglinovsky et al(1999 de-
rived an analytic expression of the maximum run-up ampli-
tude of tsunami wavesSu and Mirie(1980 found analyti-
cally that the wave emerging from the collision of two soli-
tary waves preserve their original identities to the third order

Correspondence tal. Chambarel of accuracy. Furthermore, the collision generates secondary
BY (chambarel@irphe.univ-mrs.fr) wave groups (the dispersive tail) trailing behind their primary
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1 Introduction

works considered analytically, numerically and experimen-
tally this problem, calculating namely the maximum run-up
amplitude, phase shift due to the collision and wall residenc
time. An exhaustive review of this problem is given below.
In order to check the validity of their numerical meth@dan
and Stree(1970 considered the run-up of a solitary wave
on a vertical wall and compared their results with available
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solitary waves. They calculated the maximum run-up ampli-when the initial amplitude of the counter propagating solitary
tude of the two colliding waves up to third-order. In a nu- waves is very large. The second part of the Sect. 3 reports on
merical study based on the approximate equations derivethe collision of two solitary waves of different amplitudes.
by Su and Gardng1969, Mirie and Su(1982 checked the  During the formation of the residual jet, the curvature be-
phase shifts and maximum amplitude of a collision with a comes important and surface tension effect may be taken into
corresponding perturbation calculation and compared withaccount.

experiments. They found a wave train trailing behind each

of emerging solitary waves from the head-on collision. The

properties of the wave train were in agreement with those2 Mathematical formulation and numerical method

of the perturbation solution. After the collision, the solitary

waves recover almost all of their original amplitude for the 2.1 Basic equations

length of time in the numerical simulation. They showed

the difference persists (2% of their original value) and ac-The problem is solved by assuming that the fluid is inviscid,
counts for the energy residing in the wave trafi@nton and incompressible, and the motion irrotational. Hence the ve-
Rienecker(1982 developed a numerical method based onlocity field is given byu=V¢ where the velocity potential

a Fourier decomposition for solving nonlinear water wave ¢(x,z,t)satisfies the Laplace’s equation which is solved in a
problems, namely solitary wave interactions. They investi-domain bounded by the free surface, a horizontal solid bot-
gated the maximum run-up at the wall and the phase shiftom and two vertical solid walls located at the ends of the
during the interaction. The first to report on the wall resi- numerical domain. The horizontal and vertical coordinates
dence time which is the time the wave crest remains attachedre x and z respectively whereasis time. The still-water

to the wall, wasTemperville(1979. Later on,Power and level lies atz=0, and the horizontal impermeable bed lies at
Chwang (1984 confirmed his results through an Eulerian z= — k. The dynamic free surface condition states that the
approach. They considered the reflection of a solitary wavePressure at the surface=n(x, t), is equal to 0. Assuming

by solving the Boussinesq equations analytically as well aghe free surface to be impermeable, the problem to be solved
numerically. Cooker et al.(1997) using a Boundary Inte- is the Laplace equation with the kinematic, dynamic and bot-
gral Equation Method (BIEM) for solving the fully nonlin- tom conditions.

ear equations, showed that the wall residence time provides

an unambiguous characterization of the phase shift incurred

during the reflection.Bona and Cher(1998 as did Power A¢p=0 for —h <z <n(x,1),

and Chwand1984 considered a Boussinesq system to study an + o _ 8_¢=O onz = n(x,1),

the head-on collision of solitary waves. More receryaig a1 ?Lx dx oz

et al.(2006 considered the fully nonlinear equations to study | — + =(V¢)? + gn— ° —_0 on z=n(x,1), (1)
numerically the run-up, phase lag, and generation of a resid- g(; 2 PRe

ual from the head-on collision of two solitary waves. In e onz=—h,

addition to the symmetric case, they investigated the asym-

metric case corresponding to two counter propagating soliyyhereg is the acceleration due to gravity, is the water den-
tary waves of different amplitudes. Note thByatt-Smith ity 4 is the surface tension coefficient aRgl is the radius
(1971, Su and Mirie(1980), Mirie and Su(1982 andBona o cyrvature. During the formation of the residual jet, the

and Cher(199§ considered the asymmetric case too. curvature becomes important and surface tension effect may
Among the fully nonlinear water wave equatiorGooker e taken into account.

et al. (1997 andChan and Stregtl970 considered waves

with normalized amplitude/» up to Q70. The latter authors 2 5 Numerical method

were only concerned with the maximum run-up whereas

Cooker and co-authors investigated more deeply the intera Boundary Integral Equation Method (BIEM) is used to
action. Nevertheless, none of them discussed about a negplve the system of Eq. (1) with a mixed Euler Lagrange
phenomenon peculiar to head-on collision of very steep soli{MEL) time marching scheme. For more details about this
tary waves: the formation of a residual thin jet. This jet is numerical method see the papers Tuboul et al.(2006
observed for the first time during the collision of the two andTouboul and Khari{2009.

counter propagating solitary waves The Green’s second identity is used to solve Laplace’s equa-
In Sect. 2 we present the mathematical statement of the wajon for the velocity potential

ter wave problem, and we describe briefly the numerical
method. Section 3 is devoted to the maximum runup, phase _ G

shift, wall residence time and acceleration field for arbitraryc(Q)q)(Q) N /39 ¢(P)E(P’ Q)dl

amplitude of the two incident solitons, up &g 2=0.80. In

this section, we discussed the generation of a residual jet _fm E(P)G(P’ Q)dl, @)
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Fig. 1. Initial condition : Free surface elevation as a function of Fig. 2. Free surface profiles at different instants of time for initial
abscissa. amplitudea/h=0.5 (from top to bottom).

whereG is the free space Green's function. The fluid domain 3 \umerical simulations and discussion
boundaryd2 is 92 U 9Q2p, the union of the free surface

9Q2r and solid boundarieg2. The unit normal vecton 31 Head-on collision of two solitons of equal amplitude or
points outside the fluid domain. The unknowns agg/dn reflection of high-amplitude solitary wave
ondQr andg ondQRp. Let P and Q denote two points of

the domain and(Q) is the angle between two consecutive 3.1.1 Run-up

panels defined as follows

During the wave collision (the runup) the amplitude reaches
a value larger than the sum of the amplitudes of the inci-
dent solitary waves. After the collision the waves separate
into two solitary waves. The collision leaves imprints on the

wherex is the inner angle relative to the fluid domain at point colliding waves with phase shifts and reduced amplitude and

0 if Qis outside the fluid domain,
c(Q)=1{ a Iif Qison the boundary, 3)
—27 if Qisinside the fluid domain

Q along the boundary. shedding a dispersive tail. The temporal evolution of the pro-
Time stepping is performed using a fourth order Runge & file of the free surface corresponding to the head-on collision
Kutta scheme, with a constant time step. of solitary waves of amplitude//2=0.50 is given in Fig2.
The velocity and acceleration fields are calculated using aVe can observe the dispersive tail when the waves separate
finite-difference method. after the collision.
The maximum surface elevation defines the maximum
2.3 Initial conditions value of the runup. The normalized maximum runi&g,h,

corresponding to the collision of two solitary waves of equal
We consider a rectangular wave tank of lengthnd constant  amplitudes is plotted in Fig8 as a function of the normal-
depthh with two vertical solid walls located at its ends. The ized amp“tude of two incident So”tons/h_ Our results are
horizontal length of the domairt,, is assumed to be large in very good agreement with those Gboker et al (1997
enough to avoid any perturbation generated from the vertigngd extend previous studies to higher values of. Within
cal walls dUring the Computational time of the simulations the framework of the fu”y nonlinear water wave prob|em,
on the solitary wave collision occurring in the middle of the the |atter authors investigated the collision of a solitary wave
tank. We impose the impermeability condition on the vertical with a vertical wall by using a Boundary Integral Equation
walls and horizontal bottom. Hence, the boundary Conditionﬂ\ﬂethod_ In addition, in F|93 are p|0tted the curves corre-
are 8¢/8n=0 on the walls and bottom. The initial free sur- Sponding to ana|ytica| results found in the paper%nd
face is represented by two solitary waves computed withouiirie (1980 andPelinovsky et al(1999 respectively. The

approximation with the method of Tanaka. The free surfaceformer authors obtained to third-order the following expres-

elevation is shown in Figl for two waves of equal ampli-  gjgon
tude (symmetric case) travelling in opposite directions. The
. . .. R a 1 /a\2 3 /a\3
asymmetric case corresponding to the collision of two waves™ _»% | = (_) 2 (_) _ @)

+
of unequal amplitudes is also considered. h h 2\h 4 \h

In the first-order of approximation they considered two inde-
pendent moving solitary waves which satisfy the KdV equa-
tion. Figure3 shows that the analytical expression derived
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Fig. 3. Normalized maximum runup for a collision of two solitary Fig. 5. Normalized time at maximum runup as a function of nor-
waves as a function af/ h, + present results, Su and Mirie(1980), malized incident wave amplitude/ #; — present results; Cooker
—- Pelinovsky et al(1999, B Cooker et al(1997). et al.(1997, - - - Su and Mirie(1980.

We calculated this maximum runup time numerically and
compared our results with the analytical solution and with
the numerical results @€ooker et al(1997) (Fig. 5). We can
observe that the analytical solution is close to the fully non-
linear solution for small values of the amplitudg/ (:<0.20)

but more amazing for a value of the normalized amplitude
near 070.

100 ,
perfect reflection .-

incoming wave

>l8

80f .
7/outgoing wave

3.1.2 Residence time

40

The trajectories of the incident wave crest (incoming wave)
and reflected wave crest (outgoing wave) is schematically de-
scribed in the planx(/ i, t/t) wheret=./g/h (see Fig4).

Fig. 4. Schematic diagram of the wave crest trajectory. Note the increase of the phase velocity in the vicinity of the
vertical wall. Due to the nonlinear interaction between the re-
flected wave and the wall (or nonlinear interaction between

by Su and Mirie(1980 gives results which are in excellent the right- and left-going solitary waves), the phase velocity

agreement with the numerical results upih=0.50. of the reflected (or outgoing) wave is less than that of the
Pelinovsky et al(1999 used a different approach. They incoming wave. The wave crest lingers at the wall during re-
considered the Riemann invariants of the hyperbolic equaflection for a period of time denoted. Lets, andz, be the

tions of the nonlinear shallow water wave equations to obtainattachment time and detachment time respectively at which
the incident wave crest reaches and leaves the vertical wall.

5_4 <1+ a /1+ g) 5) Hence, the wall residence timefis=t;—t,. This period of
h h hl time is an alternative measure of the effects of the wall on
the wave or the effect of the nonlinear interaction between
Let 7o be the time of maximum runup at the wall. The the two solitary waves on their phas@emperville (1979
time origin is chosen to be the time when the crest of thewas the first to report the leading-order asymptotic formula
soIitary wave meets the vertical wall within the framework of for the wall residence time. His result was independenﬂy
a perfect reflection (see Fig). Cooker et al(1997) derived  confirmed byPower and Chwan(.984. The wall residence
an analytical solution forp using Su & Mirie’s solution for  time may be written in the following form
elevation at second-order of approximation during the runup

2=an(D'+56)) - En(ER)6
@) o () .
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Fig. 6. Normalized wall residence timg as a function of normal- ~ Fig. 7. Normalized phase shift as a functionafh, * Present re-
ized amplitude:/ h, — present results; Cooker et al(1997), - - - sults, - - -Su and Mirie(1980, — Oikawa and Yajimg1973.
Power and Chwanl984), - - - Su and Mirie(1980.

From the results oSu and Mirie(1980 we can obtain the

residence time to third-order : %: %% 9)
.2 3+1 -3 . ,
oz In (f+ ) (%) ? The improved formulae for the phase shift found Sy
T V3 \V3-1 and Mirie (1980 s :
1 (+v3+1) ja\3
+Z1n el 8 Ax |la Ta
8 (\/1_’:—1) <h) ®) W V3n <1+§Z . (10)

The comparison of our results with previous analytical andwe compare our numerical results with these analytical for-
numerical works are given in Fig. We have extended be- mulations. The comparison is given in Fig.Fora/h<0.50,
yond a/h=0.50 the numerical results obtained Booker  we can observe that the analytical expression deriveSiby
et al.(1997. For high values of the normalized amplitude and Mirie (1980 is in excellent agreement with the numeri-
a/ h, the residence time at the wall becomes independent oga] result.
the amplitude of the incoming wave. Due to the occurrence
of a residual jet (see Fid.6, top) observed fou/h greater  3.1.4 Accelerations and residual jet formation
than approximately 80, it is not easy to define and calculate
t». The weak increase of the residence time in the vicinity of When the amplitude of the two incident solitons is increased

a/ h=0.60 corresponds to the beginning of the formation of above a threshold value a new phenomenon occurs: the for-

the residual jet. mation of a residual jet. The occurrence of this jet is shown
in Fig. 8 during the rundown for incident solitary wave am-
3.1.3 Phase shift plitudea/h=0.70. At¢/Tt=18 wherer=./g/h, the waves

start to separate and leave a residual jet. This jet does not
The two solitary waves suffer from a phase shift during the occur in the case corresponding to F2g.From our numer-
collision process. Similarly, a solitary wave undergoes ajcal simulations we found that the residual jet occurs above
phase shift due to the reflection by a vertical wall. Conven-a threshold value of the normalized amplitudé /).=0.60.
tionally, the phase shift is the displacement, the differ-  Figure10 shows the ephemeral occurrence of a tiny residual
ence in location between the wave crest (solid line in A)jg. jet for incident wave amplitude/#=0.60. Fora/h=>0.60,
and the crest of a wave which is supposed to be perfectlyve have a residual jet formation whereas it is not the case for
reflected (dashed line in Fig) with no change in phase ve- smaller values.
locity. The phase shiftis computed at an instant of time much  Figure9 shows an enlargement of the jetrat=18 cor-
larger thary, to consider a wave travelling unaffected by the responding to Fig8. The free surface presents undulations
presence of the wall. which have occurred at the maximum of runup for values of

Oikawa and Yajima1973 explicitly computed the spa- the amplitude of the incident solitons larger than the thresh-

tial phase shiftAx incurred after reflection from the wall, old value, (a/h)., defined previously.Maxworthy (1976
namely: observed experimentally at large initial amplitudes that the

vertical accelerations tend to create a jet-like flow at the

www.nonlin-processes-geophys.net/16/111/2009/ Nonlin. Processes Geophys., 12212069
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Fig. 10. Rundown for initial amplitude:/ 2=0.60 : Residual jet ;

Fig. 8. Rundown for initial amplitude:/#=0.70 : Residual jet ~ ~~{/T=17.5 ——1/t=181 — — —1/t=183; —1/1=184.
formation;---1/t=16; - - -t /t=17;0 ¢ /T=18.
15 ‘ ‘ ‘ curs atx/ h=40 (middle of the tank) whereas fay 1=0.20

we have used a longer wave tank. Hence the collision takes
place atc/ h=70 (middle of the tank).

13 | The maximum of the absolute value of the vertical accel-
erationa, is obtained at the crest of the free surface at the
end of the runup or the beginning of the rundown. This value
increases with the amplitude/ h up to a limit, g, the accel-

L1 ] eration due to gravity, as it is shown in FiLz.

For initial amplitudes less thary 1=0.60, the intensity of
the vertical acceleration is always less than gravity whereas
for larger amplitudes the maximum of the ratig/g satu-
rates to the value-1. Fora/ h larger than (60 it is observed
during the rundown that accelerations at the crest and in its
vicinity remain equal to-g (see Fig16, bottom).

During the rundown, when the waves separate after the
collision a new phenomenon occurs: the formation of a resid-
ual jet. This is shown in Figl6 (top) fora/h=0.70. The
residual jet formation does not occur for collisions corre-

wave crest which breaks down into individual drops (Fig. 7 sponding toa/h=0.20 or a/h=0.50. We found that the

in his paper). We suppose we are describing the same phdesidual jet formation starts when the normalized amplitude
nomenon. Figur® shows the initial formation of drops. The Of two incident solitons is larger than@D. The formation of
drop formation depends on the characteristic time scale of théhe residual jet occurs when the crest acceleratiergisThis
instability which develops at the free surface of the residualmeans that the jet is in freefall. We may expect that the resid-
jet. Does interface reconnection occur before the disappeatal jetis due to the Rayleigh-Taylor instability. For more de-
ance of the residual falling jet? To answer this question, thetails on this mechanism see the paperTaylor (1950. As
breakup of the jet may be studied using VOF methods (seénentioned previously, the mechanism of generation of this
for instance the paper bghen et al.1999. The present nu- jet is an open question which will be more deeply investi-
merical Boundary Integral Equation Method cannot capturegated in a future research.

interface reconnection. However, the first step is to consider, During the formation of the residual jet the crest curva-
within the framework of potential water waves, the stability ture becomes important. Hence we may wonder what is
analysis of this unsteady and non-periodic flow which is atthe effect of surface tension on the formation and evolution
the top of our agenda for further research. In Fitk-16 of the residual jet. We consider the surface tension effect
are plotted the profiles of the surface elevation, vertical andon the dynamics of the collision. The relative strength of
horizontal components of the particle acceleration at the fregyravity effects to capillary effects is measured through the
surface during the runup and rundown at several instants oBond numberBo=p gt?/o. For the present case, the wa-
time for different values of the initial amplitude of the soli- ter density iso=10%g.m 3, the acceleration due to gravity
tary waves. Fot/h=0.50 or Q70 the head-on collision oc- is g=9.80 ms ™2, the water depth i#=1m and the surface

>3

0399.7 39.85 40.15 40.:

88t

Fig. 9. Residual jet at the free surface for initial amplitude
a/h=0.70 atr /T=18.
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Fig. 11. Runup for soliton amplitude/2=0.2. Fig. 12. Rundown for soliton amplitude/ 2=0.2.
Free surface elevation and horizontal and vertical acceleration§ree surface elevation and horizontal and vertical accelerations
(from top to bottom) at several instants of time:..r/r=25,  (from top to bottom) at several instants of time:..r/t=32,
——t/1=28,———1t/t=30,—t/7=32. ——t/1=34,———1t/t=35,—1/7=36.5.

tension coefficient is =74x10>N.m~L. The Bond number

in our dimensionless system Bv=1.32x10°. We cancon- 3.1.5 Instantaneous wall force

clude that gravity forces are globally dominant. Neverthe-

less, surface tension effect cannot be neglected locally wherghe head-on collision of two equal solitary waves is equiva-
the free surface curvature is important. Capillarity starts tojent to the reflexion of one solitary wave by a vertical wall.
play a role on the dynamics of the residual jet during the run-gollowing Cooker et al(1997 we have computed the instan-
down as it is shown in Flgl8 Surface tension which has a taneous wall force up t/h=08 The wall is assumed to
stabilizing effect does not avoid the formation of the resid- pe |ocated in the middle of the numerical tank where the col-
ual jet. This feature lead us to believe that the occurrencsjsion of the two solitary waves occurs. Figut8 shows the

of the residual jet is not an numerical artefact of the preseninstantaneous wall forcé,, during the runup as a function
method. of time relative tap. To compute the wall force, the pressure

www.nonlin-processes-geophys.net/16/111/2009/ Nonlin. Processes Geophys., 12212069
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Fig. 13. Runup for soliton amplitude/ #=0.5. . ~ Fig. 14. Rundown for soliton amplitude,/ ~1=0.5.

Free surface elevation and horizontal and vertical accelerationgree surface elevation and horizontal and vertical accelerations
(from top to bottom) at several instants of time:.-r/r=12, (from top to bottom) at several instants of time:--t/r=17,
———t/t=15,—t/t=17. ——t/1=185, ———1/t=19.5, —1/t=20.5.

P(2) along the vertical wall is determined by using Bernoulli  Hence, the wall force is given by :

equation :
n
Fw=/ P(z)dz. (12)
?: — %’_%(v¢)2—gz. (11) ~h

Our results are in very good agreement with those of
Cooker et al(1997) as shown in Figl9. Fora/h<0.3 the
maximum force occurs at maximum runup, the pressure in
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Fig. 15. Runup for soliton amplitude,/ 2=0.7. Fig. 16. Rundown for soliton amplitude/#=0.7.

Free surface elevation and horizontal and vertical acceleration§€€ surface elevation and horizontal and vertical accelerations
(from top to bottom) at several instants of time:--/t=12, (from top to bottom) at several instants of time.-t/r=16.35,
——t/t=15,———1/t=155, —1/1=16.35. ——1/1=1655,——~1/7=16.75,~1/7=16.95.

the fluid is like in hydrostatic case. Fay h>0.4 the verti- a secon_d peak for the casgr=0.7. We have e.xtended_ the
. . : calculation of the wall force ta/ h=0.8 and obtained a simi-
cal acceleration of the free surface is significant during the . A . .
lar behaviour. We plot in Fig0the maximum instantaneous

e T 8(F.) 5 unclonofy . Ot esuls e n areemen
ith those ofCooker et al(1997).

ing wave forms a narrow jet. For large/ i values, a sec-
ond maximum force occurs because there is another increase
in the fluid pressure. For their casgh=0.7 Cooker et al.
(1997 were not sure whether there is also a second peak past
(t—tg)/t=0. Our computations confirm that there is indeed
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Fig. 17. Evolution of the maximum of vertical acceleration as a Fig. 19

. Instantaneous wall force as function of time relative to
function ofa/ h.

to (T=t—tgp) for selected values af/h.o Cooker et al(1997); —
present results.
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Fig. 18. Residual falling jet for initial amplitude / h=0.69 with

and without surface tension: jet with surface tension (solid line), jet

without surface tension (dashed line). Fig. 20. Maximum instantaneous force plotted as function pk.o
Cooker et al(1997); — present results.

3.2 Head-on collision of two unequal amplitude solitary _ o
waves imum runup, R/ h, phase shifts due to the collision of the

two solitons,Ax, /h and Ax;/ h computed numerically and
In this section we consider the collision of two solitary waves the corresponding analytical results derivedsyand Mirie
with different amplitudess,/h anda;/h. Indicesr and! (1980, Rsm/h, Axrsp/h andAxisa/ h:
denote waves propagating from lefttoright and fromrightto go\. o, « 1laa4 3aa sar «
Ieft,_respectlvely. . CTh T + W + > + 82 ( —> ,
Figures21 and22 show free surface profiles at several in-

stant of time for two numerical experiments corresponding to 1
(ar/h, a;/ h)=(0.40,0.10) and (a,/h, a1/ h)=(0.70,0.80),  A¥rsm _ (Eﬂ) 2 (1+ la §a_r) , (14)
respectively. During the maximum of runup the wave % 3h
presents an asymmetric profile. This asymmetry increases
with the wave qmplitude of Fhe two _solito_ns. For large vgl— Axisy 1a, 1 l1a, 3a
ues of the amplitude, an obligue residual jet develops during——= — (——) (1 +-—+ ——> . (15)

- .y : h KN 8h 4h
the rundown as shown in Fig2. Similarly to the symmetric
case the solitons suffer from phase shift. A comparison befor the runup, we found an excellent agreement between our
tween the analytical results obtained ®y and Mirie(1980 numerical results and those obtained from Su and Mirie’s an-
and presents results is given in Talldn the table are given alytical expression whereas for phase shifts the deviation is
for several value on the two initial solitary waves the max- larger.

i + 7 (13)
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Table 1. Comparison between present @d and Mirie(1980 results for the maximum runup and phase shifts for several values of the
amplitudes of the two solitary waves.

ar/h ai/h R/h  Rsmy/h  Axr/h Axpsy/h Axi/h |Axisyl/h

040 010 05239 0.5275 0.4401 0.4108 0.2152 0.2396
0.40 030 0.7867 0.7915 0.5000 0.4656 0.4353 0.4230
0.50 0.25 0.8422 0.8477 0.5627 0.5103 0.3894 0.4059
060 0.20 0.8903 0.8960 0.6100 0.5478 0.3469 0.3808
0.80 0.70 2.6013 2.0950 - 0.8391 - 0.8151

IS

40 50 60 70

Frrrsrres

>3

0.5 1

>3

50

I8
>I88t

Fig. 21. Free surface elevation corresponding to counter propa-_Fig- 22_- Free surface_ elevatiqn corresponding to counter propagat-
gating solitary waves with amplitudes / h=0.40 anda;/h=0.10  ing solitary waves with amplitudes. /h=0.70 anda;/h = 0.80

at several instants of time. (Top)-—t/t=17, ———t/7=21, at several instants of time. (Top)-—t/t=11, ———t/r=15,
—t/T=24. (Bottom)—-—t/t=26, ———t /1=28, —t /1=30. —t/71=16.65. (Bottom)———¢/t=16.95, —¢/t=17.95.
4 Conclusions the occurrence of a thin residual jet when the normalized

amplitude of the solitons is larger thar60. We believe that
The present paper has extended the previous results dhe jet observed experimentally bjaxworthy (1976 is the
the literature on the maximum runup, wall residence timesame phenomenon. The mechanism of generation of this jet
and phase shift, to very high values of the amplitude ofis still an open problem. We also computed the instantaneous
two identical counter propagating solitons. We used theforce on the symmetric axis of the collision. The asymmetric
classical Boundary Integral Equation Method consideringcase corresponding to two counter propagating solitary
when necessary surface tension effects. We observe theaves of different amplitudes has been investigated, too.
same results with and without surface tension. Moreover, theNumerical computations of the maximum runup and phase
particle acceleration at the free surface has been computeghifts have been compared with analytical results provided
A new phenomenon has been discovered corresponding tby Su and Mirie(1980. Like the symmetric case, a thin
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residual jet occurs for high values of the amplitude. Note Maxworthy, T.: Experiments on collisions between solitary waves.,
that the residual jet is now oblique. Additional stability  J. Fluid Mech., 76, 177-185, 1976.
analysis and experiments are needed to confirm the preseMirie, R. M. and Su, C. H.: Collisions between two solitary waves.
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