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Abstract. The head-on collision of two equal and two un-
equal steep solitary waves is investigated numerically. The
former case is equivalent to the reflection of one solitary
wave by a vertical wall when viscosity is neglected. We
have performed a series of numerical simulations based on a
Boundary Integral Equation Method (BIEM) on finite depth
to investigate during the collision the maximum runup, phase
shift, wall residence time and acceleration field for arbitrary
values of the non-linearity parametera/h, wherea is the
amplitude of initial solitary waves andh the constant water
depth. The initial solitary waves are calculated numerically
from the fully nonlinear equations. The present work extends
previous results on the runup and wall residence time calcu-
lation to the collision of very steep counter propagating soli-
tary waves. Furthermore, a new phenomenon corresponding
to the occurrence of a residual jet is found for wave ampli-
tudes larger than a threshold value.

1 Introduction

In this paper we investigate the head-on collision of two
equal and two unequal solitary waves which are computed
by using the algorithm developed byTanaka(1986). The
symmetric case is equivalent, in the absence of viscosity, to
the reflection of one solitary wave by a vertical wall. A lot of
works considered analytically, numerically and experimen-
tally this problem, calculating namely the maximum run-up
amplitude, phase shift due to the collision and wall residence
time. An exhaustive review of this problem is given below.
In order to check the validity of their numerical methodChan
and Street(1970) considered the run-up of a solitary wave
on a vertical wall and compared their results with available
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experimental data.Byatt-Smith (1971) calculated analyti-
cally to second-order approximation the interaction of two
solitary waves going in opposite directions. Later on,Byatt-
Smith(1988) investigated the head-on collision of two equal
solitary waves or the reflection of a solitary wave by a verti-
cal wall. Using a perturbation expansion of the Euler equa-
tion, he derived interaction equations and showed analyti-
cally that the amplitude of the solitary wave after reflection
is reduced. The change is shown to be of fifth-order in wave
amplitude. This loss of amplitude is due to the presence of
the third-order dispersive tail.Oikawa and Yajima(1973)
used a singular perturbation method developed to second-
order to study the interaction between two solitary waves
which propagate in opposite directions. They provided an
estimate of the phase shifts in the collision process of the
two solitary waves. Maxworthy (1976) conducted experi-
ments on the head collision of two solitary waves. He found
that some of the theories are in qualitative but not quanti-
tative agreement with his experimental results. Namely, he
claimed that the phase shift is independent of initial ampli-
tude in contrast with available theoretical results. Within the
framework of the Lagrangian formulation of the equations,
Temperville(1979) investigated the reflection of a solitary
wave on a rigid wall. Namely, he derived the leading-order
asymptotic formula for the phase shift between the incident
wave and the reflected wave and found it was difficult to con-
clude, as Maxworthy did, that there is a constant phase shift.
This disagreement is partially explained byFenton and Rie-
necker(1982) who emphasized the sensitivity of the results
to the measurement locations. Within the framework of the
shallow water wave equations,Pelinovsky et al.(1999) de-
rived an analytic expression of the maximum run-up ampli-
tude of tsunami waves.Su and Mirie(1980) found analyti-
cally that the wave emerging from the collision of two soli-
tary waves preserve their original identities to the third order
of accuracy. Furthermore, the collision generates secondary
wave groups (the dispersive tail) trailing behind their primary
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solitary waves. They calculated the maximum run-up ampli-
tude of the two colliding waves up to third-order. In a nu-
merical study based on the approximate equations derived
by Su and Gardner(1969), Mirie and Su(1982) checked the
phase shifts and maximum amplitude of a collision with a
corresponding perturbation calculation and compared with
experiments. They found a wave train trailing behind each
of emerging solitary waves from the head-on collision. The
properties of the wave train were in agreement with those
of the perturbation solution. After the collision, the solitary
waves recover almost all of their original amplitude for the
length of time in the numerical simulation. They showed
the difference persists (2% of their original value) and ac-
counts for the energy residing in the wave train.Fenton and
Rienecker(1982) developed a numerical method based on
a Fourier decomposition for solving nonlinear water wave
problems, namely solitary wave interactions. They investi-
gated the maximum run-up at the wall and the phase shift
during the interaction. The first to report on the wall resi-
dence time which is the time the wave crest remains attached
to the wall, wasTemperville(1979). Later on,Power and
Chwang(1984) confirmed his results through an Eulerian
approach. They considered the reflection of a solitary wave
by solving the Boussinesq equations analytically as well as
numerically. Cooker et al.(1997) using a Boundary Inte-
gral Equation Method (BIEM) for solving the fully nonlin-
ear equations, showed that the wall residence time provides
an unambiguous characterization of the phase shift incurred
during the reflection.Bona and Chen(1998) as didPower
and Chwang(1984) considered a Boussinesq system to study
the head-on collision of solitary waves. More recently,Craig
et al.(2006) considered the fully nonlinear equations to study
numerically the run-up, phase lag, and generation of a resid-
ual from the head-on collision of two solitary waves. In
addition to the symmetric case, they investigated the asym-
metric case corresponding to two counter propagating soli-
tary waves of different amplitudes. Note thatByatt-Smith
(1971), Su and Mirie(1980), Mirie and Su(1982) andBona
and Chen(1998) considered the asymmetric case too.
Among the fully nonlinear water wave equations,Cooker
et al. (1997) andChan and Street(1970) considered waves
with normalized amplitudea/h up to 0.70. The latter authors
were only concerned with the maximum run-up whereas
Cooker and co-authors investigated more deeply the inter-
action. Nevertheless, none of them discussed about a new
phenomenon peculiar to head-on collision of very steep soli-
tary waves: the formation of a residual thin jet. This jet is
observed for the first time during the collision of the two
counter propagating solitary waves
In Sect. 2 we present the mathematical statement of the wa-
ter wave problem, and we describe briefly the numerical
method. Section 3 is devoted to the maximum runup, phase
shift, wall residence time and acceleration field for arbitrary
amplitude of the two incident solitons, up toa/h=0.80. In
this section, we discussed the generation of a residual jet

when the initial amplitude of the counter propagating solitary
waves is very large. The second part of the Sect. 3 reports on
the collision of two solitary waves of different amplitudes.
During the formation of the residual jet, the curvature be-
comes important and surface tension effect may be taken into
account.

2 Mathematical formulation and numerical method

2.1 Basic equations

The problem is solved by assuming that the fluid is inviscid,
incompressible, and the motion irrotational. Hence the ve-
locity field is given byu=∇φ where the velocity potential
φ(x,z,t)satisfies the Laplace’s equation which is solved in a
domain bounded by the free surface, a horizontal solid bot-
tom and two vertical solid walls located at the ends of the
numerical domain. The horizontal and vertical coordinates
are x and z respectively whereast is time. The still-water
level lies atz=0, and the horizontal impermeable bed lies at
z= − h. The dynamic free surface condition states that the
pressure at the surface,z=η(x, t), is equal to 0. Assuming
the free surface to be impermeable, the problem to be solved
is the Laplace equation with the kinematic, dynamic and bot-
tom conditions.



1φ=0 for − h < z < η(x, t),
∂η

∂t
+

∂η

∂x

∂φ

∂x
−

∂φ

∂z
=0 on z = η(x, t),

∂φ

∂t
+

1

2
(∇φ)2

+ gη−
σ

ρRc

= 0 on z = η(x, t),

∂φ

∂n
=0 on z = −h,

(1)

whereg is the acceleration due to gravity,ρω is the water den-
sity, σ is the surface tension coefficient andRc is the radius
of curvature. During the formation of the residual jet, the
curvature becomes important and surface tension effect may
be taken into account.

2.2 Numerical method

A Boundary Integral Equation Method (BIEM) is used to
solve the system of Eq. (1) with a mixed Euler Lagrange
(MEL) time marching scheme. For more details about this
numerical method see the papers byTouboul et al.(2006)
andTouboul and Kharif(2009).
The Green’s second identity is used to solve Laplace’s equa-
tion for the velocity potential

c(Q)φ(Q) =

∫
∂�

φ(P )
∂G

∂n
(P, Q)dl

−

∫
∂�

∂φ

∂n
(P )G(P, Q)dl, (2)
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Fig. 1. Initial condition : Free surface elevation as a function of
abscissa.

whereG is the free space Green’s function. The fluid domain
boundary∂� is ∂�F ∪ ∂�B , the union of the free surface
∂�F and solid boundaries∂�B . The unit normal vectorn
points outside the fluid domain. The unknowns are∂φ/∂n

on ∂�F andφ on ∂�B . Let P andQ denote two points of
the domain andc(Q) is the angle between two consecutive
panels defined as follows

c(Q)=

0 if Q is outside the fluid domain,
α if Q is on the boundary,
−2π if Q is inside the fluid domain,

(3)

whereα is the inner angle relative to the fluid domain at point
Q along the boundary.

Time stepping is performed using a fourth order Runge &
Kutta scheme, with a constant time step.

The velocity and acceleration fields are calculated using a
finite-difference method.

2.3 Initial conditions

We consider a rectangular wave tank of lengthL and constant
depthh with two vertical solid walls located at its ends. The
horizontal length of the domain,L, is assumed to be large
enough to avoid any perturbation generated from the verti-
cal walls during the computational time of the simulations
on the solitary wave collision occurring in the middle of the
tank. We impose the impermeability condition on the vertical
walls and horizontal bottom. Hence, the boundary conditions
are∂φ/∂n=0 on the walls and bottom. The initial free sur-
face is represented by two solitary waves computed without
approximation with the method of Tanaka. The free surface
elevation is shown in Fig.1 for two waves of equal ampli-
tude (symmetric case) travelling in opposite directions. The
asymmetric case corresponding to the collision of two waves
of unequal amplitudes is also considered.
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Fig. 2. Free surface profiles at different instants of time for initial
amplitudea/h=0.5 (from top to bottom).

3 Numerical simulations and discussion

3.1 Head-on collision of two solitons of equal amplitude or
reflection of high-amplitude solitary wave

3.1.1 Run-up

During the wave collision (the runup) the amplitude reaches
a value larger than the sum of the amplitudes of the inci-
dent solitary waves. After the collision the waves separate
into two solitary waves. The collision leaves imprints on the
colliding waves with phase shifts and reduced amplitude and
shedding a dispersive tail. The temporal evolution of the pro-
file of the free surface corresponding to the head-on collision
of solitary waves of amplitudea/h=0.50 is given in Fig.2.
We can observe the dispersive tail when the waves separate
after the collision.

The maximum surface elevation defines the maximum
value of the runup. The normalized maximum runup,R/h,
corresponding to the collision of two solitary waves of equal
amplitudes is plotted in Fig.3 as a function of the normal-
ized amplitude of two incident solitons,a/h. Our results are
in very good agreement with those ofCooker et al.(1997)
and extend previous studies to higher values ofa/h. Within
the framework of the fully nonlinear water wave problem,
the latter authors investigated the collision of a solitary wave
with a vertical wall by using a Boundary Integral Equation
Method. In addition, in Fig.3 are plotted the curves corre-
sponding to analytical results found in the papers bySu and
Mirie (1980) andPelinovsky et al.(1999) respectively. The
former authors obtained to third-order the following expres-
sion

R

h
=2

a

h
+

1

2

(a

h

)2
+

3

4

(a

h

)3
. (4)

In the first-order of approximation they considered two inde-
pendent moving solitary waves which satisfy the KdV equa-
tion. Figure3 shows that the analytical expression derived
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Fig. 3. Normalized maximum runup for a collision of two solitary
waves as a function ofa/h, + present results, *Su and Mirie(1980),
–- Pelinovsky et al.(1999), � Cooker et al.(1997).
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by Su and Mirie(1980) gives results which are in excellent
agreement with the numerical results up toa/h=0.50.

Pelinovsky et al.(1999) used a different approach. They
considered the Riemann invariants of the hyperbolic equa-
tions of the nonlinear shallow water wave equations to obtain

R

h
=4

(
1 +

a

h
−

√
1 +

a

h

)
. (5)

Let t0 be the time of maximum runup at the wall. The
time origin is chosen to be the time when the crest of the
solitary wave meets the vertical wall within the framework of
a perfect reflection (see Fig.4). Cooker et al.(1997) derived
an analytical solution fort0 using Su & Mirie’s solution for
elevation at second-order of approximation during the runup

t0

τ
=

1

2
√

3

((a

h

) 1
2

+
43

8

(a

h

) 3
2
)

+ O

((a

h

)2
)

. (6)
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Fig. 5. Normalized time at maximum runup as a function of nor-
malized incident wave amplitudea/h; — present results,∗ Cooker
et al.(1997), - - - Su and Mirie(1980).

We calculated this maximum runup time numerically and
compared our results with the analytical solution and with
the numerical results ofCooker et al.(1997) (Fig. 5). We can
observe that the analytical solution is close to the fully non-
linear solution for small values of the amplitude (a/h≤0.20)
but more amazing for a value of the normalized amplitude
near 0.70.

3.1.2 Residence time

The trajectories of the incident wave crest (incoming wave)
and reflected wave crest (outgoing wave) is schematically de-
scribed in the plan (x/h, t/τ ) whereτ=

√
g/h (see Fig.4).

Note the increase of the phase velocity in the vicinity of the
vertical wall. Due to the nonlinear interaction between the re-
flected wave and the wall (or nonlinear interaction between
the right- and left-going solitary waves), the phase velocity
of the reflected (or outgoing) wave is less than that of the
incoming wave. The wave crest lingers at the wall during re-
flection for a period of time denotedtr . Let ta andtd be the
attachment time and detachment time respectively at which
the incident wave crest reaches and leaves the vertical wall.
Hence, the wall residence time istr=td−ta . This period of
time is an alternative measure of the effects of the wall on
the wave or the effect of the nonlinear interaction between
the two solitary waves on their phase.Temperville(1979)
was the first to report the leading-order asymptotic formula
for the wall residence time. His result was independently
confirmed byPower and Chwang(1984). The wall residence
time may be written in the following form

tr

τ
=

2
√

3
ln

(√
3 + 1

√
3 − 1

)(a

h

)−
1
2

+ O

((a

h

) 1
2
)

. (7)
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Fig. 6. Normalized wall residence timetr as a function of normal-
ized amplitudea/h, — present results,∗ Cooker et al.(1997), - · -
Power and Chwang(1984), - - - Su and Mirie(1980).

From the results ofSu and Mirie(1980) we can obtain the
residence time to third-order :

tr

τ
=

2
√

3
ln

(√
3 + 1

√
3 − 1

)(a

h

)−
1
2

+
1

8
ln

(√
3 + 1

√
3 − 1

)(a

h

) 1
2
. (8)

The comparison of our results with previous analytical and
numerical works are given in Fig.6. We have extended be-
yond a/h=0.50 the numerical results obtained byCooker
et al. (1997). For high values of the normalized amplitude
a/h, the residence time at the wall becomes independent of
the amplitude of the incoming wave. Due to the occurrence
of a residual jet (see Fig.16, top) observed fora/h greater
than approximately 0.60, it is not easy to define and calculate
tr . The weak increase of the residence time in the vicinity of
a/h=0.60 corresponds to the beginning of the formation of
the residual jet.

3.1.3 Phase shift

The two solitary waves suffer from a phase shift during the
collision process. Similarly, a solitary wave undergoes a
phase shift due to the reflection by a vertical wall. Conven-
tionally, the phase shift is the displacement1x, the differ-
ence in location between the wave crest (solid line in Fig.4)
and the crest of a wave which is supposed to be perfectly
reflected (dashed line in Fig.4) with no change in phase ve-
locity. The phase shift is computed at an instant of time much
larger thantd to consider a wave travelling unaffected by the
presence of the wall.

Oikawa and Yajima(1973) explicitly computed the spa-
tial phase shift1x incurred after reflection from the wall,
namely:
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Fig. 7. Normalized phase shift as a function ofa/h, * Present re-
sults, - - -Su and Mirie(1980), — Oikawa and Yajima(1973).
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h
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The improved formulae for the phase shift found bySu
and Mirie(1980) is :

1x

h
=

√
1

3

a

h

(
1 +

7

8

a

h

)
. (10)

We compare our numerical results with these analytical for-
mulations. The comparison is given in Fig.7. Fora/h≤0.50,
we can observe that the analytical expression derived bySu
and Mirie(1980) is in excellent agreement with the numeri-
cal result.

3.1.4 Accelerations and residual jet formation

When the amplitude of the two incident solitons is increased
above a threshold value a new phenomenon occurs: the for-
mation of a residual jet. The occurrence of this jet is shown
in Fig. 8 during the rundown for incident solitary wave am-
plitude a/h=0.70. At t/τ=18 whereτ=

√
g/h, the waves

start to separate and leave a residual jet. This jet does not
occur in the case corresponding to Fig.2. From our numer-
ical simulations we found that the residual jet occurs above
a threshold value of the normalized amplitude(a/h)c=0.60.
Figure10 shows the ephemeral occurrence of a tiny residual
jet for incident wave amplitudea/h=0.60. Fora/h>0.60,
we have a residual jet formation whereas it is not the case for
smaller values.

Figure9 shows an enlargement of the jet att/τ=18 cor-
responding to Fig.8. The free surface presents undulations
which have occurred at the maximum of runup for values of
the amplitude of the incident solitons larger than the thresh-
old value, (a/h)c, defined previously.Maxworthy (1976)
observed experimentally at large initial amplitudes that the
vertical accelerations tend to create a jet-like flow at the
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Fig. 8. Rundown for initial amplitudea/h=0.70 : Residual jet
formation;··· t/τ=16; - - - t/τ=17;◦ t/τ=18.
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Fig. 9. Residual jet at the free surface for initial amplitude
a/h=0.70 att/τ=18.

wave crest which breaks down into individual drops (Fig. 7
in his paper). We suppose we are describing the same phe-
nomenon. Figure9 shows the initial formation of drops. The
drop formation depends on the characteristic time scale of the
instability which develops at the free surface of the residual
jet. Does interface reconnection occur before the disappear-
ance of the residual falling jet? To answer this question, the
breakup of the jet may be studied using VOF methods (see
for instance the paper byChen et al., 1999). The present nu-
merical Boundary Integral Equation Method cannot capture
interface reconnection. However, the first step is to consider,
within the framework of potential water waves, the stability
analysis of this unsteady and non-periodic flow which is at
the top of our agenda for further research. In Figs.11–16
are plotted the profiles of the surface elevation, vertical and
horizontal components of the particle acceleration at the free
surface during the runup and rundown at several instants of
time for different values of the initial amplitude of the soli-
tary waves. Fora/h=0.50 or 0.70 the head-on collision oc-
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Fig. 10. Rundown for initial amplitudea/h=0.60 : Residual jet ;
···t/τ=17.5; −·−t/τ=18.1; − −−t/τ=18.3; − t/τ=18.4.

curs atx/h=40 (middle of the tank) whereas fora/h=0.20
we have used a longer wave tank. Hence the collision takes
place atx/h=70 (middle of the tank).

The maximum of the absolute value of the vertical accel-
erationaz is obtained at the crest of the free surface at the
end of the runup or the beginning of the rundown. This value
increases with the amplitudea/h up to a limit,g, the accel-
eration due to gravity, as it is shown in Fig.17.

For initial amplitudes less thana/h=0.60, the intensity of
the vertical acceleration is always less than gravity whereas
for larger amplitudes the maximum of the ratioaz/g satu-
rates to the value−1. Fora/h larger than 0.60 it is observed
during the rundown that accelerations at the crest and in its
vicinity remain equal to−g (see Fig.16, bottom).

During the rundown, when the waves separate after the
collision a new phenomenon occurs: the formation of a resid-
ual jet. This is shown in Fig.16 (top) for a/h=0.70. The
residual jet formation does not occur for collisions corre-
sponding toa/h=0.20 or a/h=0.50. We found that the
residual jet formation starts when the normalized amplitude
of two incident solitons is larger than 0.60. The formation of
the residual jet occurs when the crest acceleration is−g. This
means that the jet is in freefall. We may expect that the resid-
ual jet is due to the Rayleigh-Taylor instability. For more de-
tails on this mechanism see the paper byTaylor (1950). As
mentioned previously, the mechanism of generation of this
jet is an open question which will be more deeply investi-
gated in a future research.

During the formation of the residual jet the crest curva-
ture becomes important. Hence we may wonder what is
the effect of surface tension on the formation and evolution
of the residual jet. We consider the surface tension effect
on the dynamics of the collision. The relative strength of
gravity effects to capillary effects is measured through the
Bond numberBo=ρ gh2/σ . For the present case, the wa-
ter density isρ=103kg.m−3, the acceleration due to gravity
is g=9.80 m.s−2, the water depth ish=1 m and the surface
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Fig. 11. Runup for soliton amplitudea/h=0.2.
Free surface elevation and horizontal and vertical accelerations
(from top to bottom) at several instants of time.···t/τ=25,
−·−t/τ=28,−−−t/τ=30,−t/τ=32.

tension coefficient isσ=74×103 N.m−1. The Bond number
in our dimensionless system isBo=1.32×106. We can con-
clude that gravity forces are globally dominant. Neverthe-
less, surface tension effect cannot be neglected locally where
the free surface curvature is important. Capillarity starts to
play a role on the dynamics of the residual jet during the run-
down as it is shown in Fig.18. Surface tension which has a
stabilizing effect does not avoid the formation of the resid-
ual jet. This feature lead us to believe that the occurrence
of the residual jet is not an numerical artefact of the present
method.
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Fig. 12. Rundown for soliton amplitudea/h=0.2.
Free surface elevation and horizontal and vertical accelerations
(from top to bottom) at several instants of time.···t/τ=32,
−·−t/τ=34,−−−t/τ=35,−t/τ=36.5.

3.1.5 Instantaneous wall force

The head-on collision of two equal solitary waves is equiva-
lent to the reflexion of one solitary wave by a vertical wall.
FollowingCooker et al.(1997) we have computed the instan-
taneous wall force up toa/h=0.8. The wall is assumed to
be located in the middle of the numerical tank where the col-
lision of the two solitary waves occurs. Figure19 shows the
instantaneous wall forceFw during the runup as a function
of time relative tot0. To compute the wall force, the pressure
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Fig. 13. Runup for soliton amplitudea/h=0.5.
Free surface elevation and horizontal and vertical accelerations
(from top to bottom) at several instants of time.···t/τ=12,
−−−t/τ=15,−t/τ=17.

P(z) along the vertical wall is determined by using Bernoulli
equation :

P(z)

ρ
= −

∂8

∂t
−

1

2
(∇8)2

−gz. (11)
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Fig. 14. Rundown for soliton amplitudea/h=0.5.
Free surface elevation and horizontal and vertical accelerations
(from top to bottom) at several instants of time.···t/τ=17,
−·−t/τ=18.5, −−−t/τ=19.5, −t/τ=20.5.

Hence, the wall force is given by :

Fw=

∫ η

−h

P(z)dz. (12)

Our results are in very good agreement with those of
Cooker et al.(1997) as shown in Fig.19. For a/h<0.3 the
maximum force occurs at maximum runup, the pressure in
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Fig. 15. Runup for soliton amplitudea/h=0.7.
Free surface elevation and horizontal and vertical accelerations
(from top to bottom) at several instants of time.···t/τ=12,
−·−t/τ=15,−−−t/τ=15.5, −t/τ=16.35.

the fluid is like in hydrostatic case. Fora/h>0.4 the verti-
cal acceleration of the free surface is significant during the
runup. As discussed byCooker et al.(1997) the maximum
force is obtained before maximum runup because the upsurg-
ing wave forms a narrow jet. For largea/h values, a sec-
ond maximum force occurs because there is another increase
in the fluid pressure. For their casea/h=0.7 Cooker et al.
(1997) were not sure whether there is also a second peak past
(t−t0)/τ=0. Our computations confirm that there is indeed
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Fig. 16. Rundown for soliton amplitudea/h=0.7.
Free surface elevation and horizontal and vertical accelerations
(from top to bottom) at several instants of time.····t/τ=16.35,
−·−t/τ=16.55,−−−t/τ=16.75,−t/τ=16.95.

a second peak for the casea/h=0.7. We have extended the
calculation of the wall force toa/h=0.8 and obtained a simi-
lar behaviour. We plot in Fig.20the maximum instantaneous
force(Fw)m as function ofa/h. Our results are in agreement
with those ofCooker et al.(1997).
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Fig. 17. Evolution of the maximum of vertical acceleration as a
function ofa/h.

19.5 20 20.5
0.6

0.8

1

1.2

1.4

1.6

x
h

η
h

 

 

Fig. 18. Residual falling jet for initial amplitudea/h=0.69 with
and without surface tension: jet with surface tension (solid line), jet
without surface tension (dashed line).

3.2 Head-on collision of two unequal amplitude solitary
waves

In this section we consider the collision of two solitary waves
with different amplitudesar/h and al/h. Indicesr and l

denote waves propagating from left to right and from right to
left, respectively.

Figures21 and22 show free surface profiles at several in-
stant of time for two numerical experiments corresponding to
(ar/h, al/h)=(0.40, 0.10) and (ar/h, al/h)=(0.70, 0.80),
respectively. During the maximum of runup the wave
presents an asymmetric profile. This asymmetry increases
with the wave amplitude of the two solitons. For large val-
ues of the amplitude, an oblique residual jet develops during
the rundown as shown in Fig.22. Similarly to the symmetric
case the solitons suffer from phase shift. A comparison be-
tween the analytical results obtained bySu and Mirie(1980)
and presents results is given in Table1. In the table are given
for several value on the two initial solitary waves the max-

−5 0 5
0.5

1

1.5

2

2.5

T
τ

Fw

ρgh2

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.5

Fig. 19. Instantaneous wall force as function of time relative to
t0 (T =t−t0) for selected values ofa/h.◦ Cooker et al.(1997); —
present results.
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Fig. 20.Maximum instantaneous force plotted as function ofa/h.◦
Cooker et al.(1997); — present results.

imum runup,R/h, phase shifts due to the collision of the
two solitons,1xr/h and1xl/h computed numerically and
the corresponding analytical results derived bySu and Mirie
(1980), RSM/h, 1xrSM/h and1xlSM/h:

RSM

h
=

ar

h
+

al

h
+

1

2

aral

h2
+

3

8

aral

h2

(ar

h
+

al

h

)
, (13)

1xrSM

h
=

(
1

3

al

h

) 1
2
(

1 +
1

8

al

h
+

3

4

ar

h

)
, (14)

1xlSM

h
= −

(
1

3

ar

h

) 1
2
(

1 +
1

8

ar

h
+

3

4

al

h

)
. (15)

For the runup, we found an excellent agreement between our
numerical results and those obtained from Su and Mirie’s an-
alytical expression whereas for phase shifts the deviation is
larger.
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Table 1. Comparison between present andSu and Mirie(1980) results for the maximum runup and phase shifts for several values of the
amplitudes of the two solitary waves.

ar/h al/h R/h RSM/h 1xr/h 1xrSM/h 1xl/h |1xlSM |/h

0.40 0.10 0.5239 0.5275 0.4401 0.4108 0.2152 0.2396
0.40 0.30 0.7867 0.7915 0.5000 0.4656 0.4353 0.4230
0.50 0.25 0.8422 0.8477 0.5627 0.5103 0.3894 0.4059
0.60 0.20 0.8903 0.8960 0.6100 0.5478 0.3469 0.3808
0.80 0.70 2.6013 2.0950 – 0.8391 – 0.8151
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Fig. 21. Free surface elevation corresponding to counter propa-
gating solitary waves with amplitudesar/h=0.40 andal/h=0.10
at several instants of time. (Top)−·−t/τ=17, −−−t/τ=21,
−t/τ=24. (Bottom)−·−t/τ=26,−−−t/τ=28,−t/τ=30.

4 Conclusions

The present paper has extended the previous results of
the literature on the maximum runup, wall residence time
and phase shift, to very high values of the amplitude of
two identical counter propagating solitons. We used the
classical Boundary Integral Equation Method considering
when necessary surface tension effects. We observe the
same results with and without surface tension. Moreover, the
particle acceleration at the free surface has been computed.
A new phenomenon has been discovered corresponding to
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Fig. 22. Free surface elevation corresponding to counter propagat-
ing solitary waves with amplitudesar/h=0.70 andal/h = 0.80
at several instants of time. (Top)−·−t/τ=11, −−−t/τ=15,
−t/τ=16.65. (Bottom)−−−t/τ=16.95,−t/τ=17.95.

the occurrence of a thin residual jet when the normalized
amplitude of the solitons is larger than 0.60. We believe that
the jet observed experimentally byMaxworthy(1976) is the
same phenomenon. The mechanism of generation of this jet
is still an open problem. We also computed the instantaneous
force on the symmetric axis of the collision. The asymmetric
case corresponding to two counter propagating solitary
waves of different amplitudes has been investigated, too.
Numerical computations of the maximum runup and phase
shifts have been compared with analytical results provided
by Su and Mirie(1980). Like the symmetric case, a thin
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residual jet occurs for high values of the amplitude. Note
that the residual jet is now oblique. Additional stability
analysis and experiments are needed to confirm the present
findings.

Edited by: I. Didenkulova
Reviewed by: two anonymous referees
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