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Abstract. The long-term evolution of shoreface-connected
sand ridges is investigated with a nonlinear spectral model
which governs the dynamics of waves, currents, sediment
transport and the bed level on the inner shelf. Wave vari-
ables are calculated with a shoaling-refraction model instead
of using a parameterisation. The spectral model describes
the time evolution of amplitudes of known eigenmodes of
the linearised system. Bottom pattern formation occurs if
the transverse bottom slope of the inner shelf,β, exceeds
a critical valueβc. For fixed model parameters the sensi-
tivity of the properties of modelled sand ridges to changes
in the number(N−1) of resolved subharmonics (of the ini-
tially fastest growing mode) is investigated. For anyN the
model shows the growth and subsequent saturation of the
height of the sand ridges. The saturation time scale is sev-
eral thousands of years, which suggests that observed sand
ridges have not reached their saturated stage yet. The migra-
tion speed of the ridges and the average longshore spacing
between successive crests in the saturated state differ from
those in the initial state. Analysis of the potential energy bal-
ance of the ridges reveals that bed slope-induced sediment
transport is crucial for the saturation process. In the tran-
sient stage the shoreface-connected ridges occur in patches.
The overall characteristics of the bedforms (saturation time,
final maximum height, average longshore spacing, migra-
tion speed) hardly vary withN . However, individual time
series of modal amplitudes and bottom patterns strongly de-
pend onN , thereby implying that the detailed evolution of
sand ridges can only be predicted over a limited time inter-
val. Additional experiments show that the critical bed slope
βc increases with larger offshore angles of wave incidence,
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larger offshore wave heights and longer wave periods, and
that the corresponding maximum height of the ridges de-
creases whilst the saturation time increases.

1 Introduction

Field data collected at various storm-dominated inner shelves
of coastal seas (depths of 5−20 m) reveal the presence of
patches of large-scale shoreface-connected sand ridges (Du-
ane et al., 1972; Swift and Field, 1981; Dyer and Huntley,
1999; Harrison et al., 2003, and references herein), hereafter
abbreviated as sfcr. Typically, a patch consists of 4−8 sfcr,
where the latter have heights of several meters and are spaced
several kilometers apart. The ridges make an angle of 20-
50◦ with the storm-driven current along the coast, such that
their seaward ends are shifted upstream with respect to their
attachments to the shoreface. Furthermore, the ridges have
asymmetrical profiles, with gentle slopes on the landward
(upstream) sides and steep slopes on the seaward (down-
stream) sides. The estimated evolution time of sfcr is several
thousands of years and they migrate several meters per year
in the downstream direction. As these ridges seem to affect
the stability of the beach (Van de Meene and Van Rijn, 2000),
gaining more understanding about their behaviour is relevant
for coastal zone management purposes.

Early studies focused on the initial growth of sfcr.Trow-
bridge(1995) demonstrated that these ridges can grow due
to feedbacks between the waves (which stir sediment from
the bottom), the storm-driven current (which transports the
sediment) and the sandy bottom.Calvete et al.(2001a) ex-
tended this model by including Coriolis terms, bottom shear-
stresses, sediment transport due to bottom slopes, suspended
load sediment transport and spatial variations in stirring of
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Fig. 1. Schematic representation of a typical time-averaged bottom
topography of the continental shelf, representing the inner and outer
shelf. Forcing of the water motion is due to (obliquely) incident
waves and a storm-driven current. Symbols are explained in the
text.

sediment by the waves. Improvements with respect to the
Trowbridge model were i) the occurrence of a preferred
mode, ii) the results are hardly sensitive to the cross-shore
profile of the storm-driven current and iii) the predicted spac-
ing between successive ridges, as well as their growth rate
and migration speed are in fair agreement with field data if
all these effects are accounted for.

Calvete and De Swart(2003) investigated the long-term
dynamics of sfcr by expanding the flow and bottom pertur-
bations in a truncated series of eigenmodes. The result is a
set of equations describing the time evolution of the ampli-
tudes. They showed that after the initial growth stage ridge
profiles become asymmetric and reach a finite height. They
also found that adding subharmonic modes (eigenmodes with
wavelengths being larger than that of the most preferred
mode) causes the spacing between successive ridges in the
saturated state to be larger than that during the initial stage.

The models cited above have two important drawbacks.
First, stirring of sediment by waves is described by a severe
parameterisation. Second, they do not provide an explanation
for the patchiness of observed sfcr. Therefore, in this paper
a new nonlinear model will be presented, in which processes
like shoaling and refraction are explicitly accounted for. This
was also done in recent studies byLane and Restrepo(2007)
andVis-Star et al.(2007), but they only examined the initial
formation of sfcr. Here, an analysis will be presented of the
long-term behaviour of sfcr in dependence of offshore wave
characteristics and the transverse bottom slope of the inner
shelf. Specific emphasis is put on the role of subharmonics
in generating patches of sfcr. This is because adding subhar-
monics implies a higher resolution in the spectral domain,

thereby potentially allowing for the occurrence of group (or
modulation) behaviour. The physical processes controlling
the migration and saturation behaviour will be identified by
analysing the energy balance of the bedforms. Our method
extends the one used byGarnier et al.(2006) in the sense
that also the instantaneous global longshore migration speed
is investigated.

The model is presented in Sect.2, after which the method
of analysis is discussed in Sect.3. In Sect.4 the results are
presented, followed by a discussion in Sect.5 and the con-
clusions in Sect.6.

2 Model

We adopt the model formulation ofVis-Star et al.(2007).
The coupled dynamics of waves, storm-driven currents and
the sandy bed is considered on an idealised inner shelf (see
Fig. 1). The latter is bounded on the landward sidex=0
by the transition to the shoreface (depthH0) and at the sea-
ward side (x=Ls) by the outer shelf (depthHs). The mean
transverse bottom slope isβ= (Hs−H0) /Ls . The water mo-
tion is forced by imposed wave conditions at the outer shelf
(offshore angle of wave incidence2s , offshore root-mean-
square wave heightHrms,s and wave periodT ) and a wind
stress that forces a net current. Sand is only transported dur-
ing severe weather conditions (which occur±5% of the time)
and is the result of the joint action of waves (stirring sand
from the bottom) and a longshore storm-driven flow (caus-
ing net sand transport). Hence, the model is representative
for storms. After application of the rigid-lid approximation
(sea surface elevation� mean depth) and the quasi-steady
approach (hydrodynamics adjusts instantaneously to a new
bed level), the wave equations are

ω 2
= gκtanh(κD), (1)

∂κy

∂x
−
∂κx

∂y
= 0, (2)

∇ · (cgE) = F −D, E =
1

8
ρgH 2

rms, (3)

uw =
ωHrms

2 sinh(κD)
. (4)

Here,ω, g, κ andD are the wave frequency, acceleration
due to gravity, wavenumber (length of wave vectorκ) and
water depth, respectively. The wave vector has components
κx=−κ cosθ andκy=κ sinθ in the x- andy-direction, re-
spectively, withθ the angle of wave incidence with respect
to the shore normal. The horizontal nabla operator∇ has
components∂/∂x and∂/∂y in thex- andy-direction, respec-
tively. The wave energy densityE is governed by the energy
balance Eq. (3), wherecg is the group velocity vector of the
waves (magnitudecg) with componentscgx=−cg cosθ and
cgy=cg sinθ . The source of energy isF andD denotes the
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energy dissipation by bottom friction. In the definition for
the wave energy densityρ is the water density andHrms is
the root-mean-square wave height. Finally, the root-mean-
square amplitude of the near-bed wave orbital motionuw
(hereafter called wave orbital velocity) depends on the other
variables and is input in the modules for the current and the
sediment transport.

The currents are described by the quasi-steady depth-
averaged shallow water equations

(v · ∇)v + f ez × v = −g∇zs +
τ s − τ b

ρD
, (5)

∇ · (Dv) = 0, (6)

τ s = τsyey, τ b = ρruwv. (7)

Here,v denotes the depth- and wave-averaged flow velocity
with componentsu andv in thex- andy-direction, respec-
tively, andz=zs is the level of the mean sea surface. Further-
more,f is the Coriolis parameter,ez is the unity vector in
thez-direction,τ s is the wind stress vector,τ b the mean bed
shear-stress vector andey is a unit vector in the longshore
direction. Note thatτ b depends linearly on the current (fric-
tion coefficientr), as waves are strong compared to currents
during stormy weather.

The bed evolution equation and the formulations for the
sediment transport read

(1 − p)
∂zb

∂t
+ ∇ · qb + ∇ · qs = 0, (8)

qb =
3

2
νbu

2
w (v − λbuw∇zb) = qb,a + qb,d , (9)

qs = Cv − λsu
5
w∇zb = qs,a + qs,d , (10)

∇ · (Cv) = αu3
w − γ

C
D
. (11)

In Eqs. (8)–(11) t is time,p is the porosity of the bed,z = zb
is the bed level, andqb andqs denote the wave-averaged sed-
iment transport as bedload and suspended load, respectively.
The latter two are divided into advective partsq .,a and diffu-
sive partsq .,d (related to bed slopes). In the expressions for
bedload and suspended load transportνb, α andγ are known
coefficients,C is the depth-integrated volumetric concentra-
tion of sediment andλb andλs are the bed slope parameters
for bedload and suspended load, respectively.

Note that the expressions forqb,a andqs,a in Eqs. (9)–
(10) do not contain any net advective transport due to waves.
This is a consequence of the assumption that, although wave
orbital motion is strong compared to currents, the wave pro-
files are symmetric. Moreover, it is assumed thatuw is much
larger than the critical velocityuc for erosion of sediment,
so the influence ofuc on sediment transport is not explicitly
modelled.

As boundary conditions offshore wave properties (root-
mean-square wave height, period and angle of wave inci-
dence) are imposed. Furthermore, the cross-shore flow com-
ponentu vanishes atx=0 and far offshore, the bed levelzb
is kept fixed at these two positions and the sediment concen-
tration vanishes far from the coast.

3 Method of analysis

3.1 Basic state and linear stability analysis

From here on primary wave variables are denoted
by X=(κ, θ, E) and other dependent variables by
9=(u, v, zs, C, zb). The system of equations of mo-
tion of Sect.2 allows for a basic state that is steady and
longshore uniform. It is characterised by a shelf topography
z=−H(x), an incoming wave field with wavenumberK(x),
angle of wave incidence2(x) and wave energyE(x), a
storm-driven currentv=(U(x), V (x)), a free surface eleva-
tion ξ(x) and a depth-integrated volumetric concentration
of sedimentC(x). Hence, X=Xb(x)=(K,2,E) and
9=9b(x)=(U, V, ξ, C,−H). BothXb and9b are defined
in Vis-Star et al.(2007); in particularU(x)=0 andV (x)
results from a balance between the longshore wind stress
and bottom stress. The basic state describes shoaling and
refracting waves and a storm-driven flow along the coast.

The stability properties of the basic state are considered
by studying the dynamics of small perturbations evolving on
this basic state. Hence,

9 = 9b +9 ′ , (12)

and9 ′(x, y, t)=(u′, v′, η′, c′, h′) denote the perturbed vari-
ables, which are assumed to have small values with respect
to their basic state values. In principle, also perturbations in
the wave variables have to be considered:X=Xb+X ′. Sim-
ilar as in previous studies, we assumeX ′

=0. Physically, this
means that wave-topography interactions, i.e., wave refrac-
tion and shoaling and dissipation of wave energy due to the
presence of bedforms are neglected. We will return to this
aspect in Sect.5.

Substitution of Eq. (12) into the equations of motion of
Sect.2 and linearizing the results yields the system

S
∂9 ′

∂t
= L9 ′ . (13)

The 5×5 matrixS contains the temporal information of the
perturbations and has one non-zero element:S(5,5)=1−p.
The linear matrix operatorL contains all the linear terms;
its elements are given in Appendix A. This system admits
solutions

9 ′
= <e

{
ψ̃(x) exp(iky + σ t)

}
, (14)

wherek is a longshore wavenumber,σ the complex growth
rate andψ̃(x) denote the cross-shore dependence of the so-
lutions. Substitution of Eq. (14) into system Eq. (13) results
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in an eigenvalue problem, whereσ are the eigenvalues and
ψ̃(x) the eigenfunctions. This problem can be solved by
standard methods. The eigenmode that has the largest growth
rateσr≡<e(σ ) is called the initially most preferred mode; it
has a wavenumberk=kp, with a corresponding wavelength
`p=2π/kp, and a migration speedVm=−=m(σ )/kp.

3.1.1 Nonlinear analysis

In order to investigate the long-term evolution of sfcr the full
set of nonlinear equations

S
∂9 ′

∂t
= L9 ′

+N (9 ′) (15)

for the perturbations has to be considered. Here,S andL
are as in the linearised system Eq. (13), whilstN (9 ′) is the
nonlinear vector operator, which includes all nonlinear terms
in the equations of motion for the perturbations. The ex-
pression for the nonlinear vector operatorN is also given in
Appendix A.

Following Calvete and De Swart(2003) the perturbations
are written as

9 ′(x, y, t) = 90(x, t)+ ψ(x, y, t), (16)

where the unknown contributions90 have a longshore uni-
form structure and the contributionsψ are expanded into a
truncated series of (known) eigenmodes of the linear system:

ψ = <e

 J∑
j=1

Nj∑
nj=1

ψ̌jnj (t)ψ̃jnj (x) exp(ikjy)

 . (17)

For each alongshore wavenumberkj , nj refers to the cross-
shore modenumber,̌ψjnj (t) are the unknown modal ampli-

tudes andψ̃jnj (x) the known cross-shore structures of the
eigenfunctions of the linear problem. Furthermore,J and
Nj are the largest longshore and cross-shore mode number,
respectively. Expansions Eqs. (16) and (17) are substituted
in the nonlinear equations of motion. After averaging over
the alongshore direction, equations are obtained for the long-
shore uniform flow modes and bottom mode, which are sub-
sequently subtracted from the original equations. The results
are projected onto the adjoint linear eigenmodes. This pro-
cedure yields a set of nonlinear algebraic equations for the
flow amplitudesǔjnj , v̌jnj , η̌jnj and čjnj and a set of non-
linear differential equations for the amplitudes of the bottom
modesȟjnj . A third-order time integration scheme is used
to solve the resulting system of equations (seeKarniadakis
et al., 1991).

Here, the choice is to include the most preferred mode
with wavenumberkp (largest initial growth rate) in the non-
linear expansion, as we are interested whether it is still the
dominant mode in the bottom pattern on the long term. Fur-
thermore, several superharmonics and generally some sub-
harmonics are used, such that a total numberJ of different

longshore wavenumberskj is included. Thus, if only su-
perharmonics are included, the system is solved on a domain
with longshore lengthLy=2π/kp. By including (N−1) sub-
harmonic modes the domain becomes longer:Ly=2πN/kp.
In both cases periodic boundary conditions in the longshore
direction are applied. Modes that fit into the domain have
wavenumberskj=2πj/Ly=

j
N
kp (j=1,2,3, . . .). An indi-

vidual mode is denoted by (j/N, nj ).

3.1.2 Energy balance of the bedforms

In order to investigate the saturation behaviour of bedforms
Garnier et al.(2006) developed a method to study the global
properties of the bedforms on the whole domain. It boils
down to deriving a potential energy balance of bottom per-
turbations by multiplying the linearised version of the bed
evolution Eq. (8) with the bed elevationh′ and integrating
over the whole domain. It reads

(1 − p)
∂

∂t

1

2
|h|2 = P +1, (18)

where

|h| = (h′ 2)
1
2 , (19)

P =
(
qb,a + qs,a

)
· ∇h′, (20)

1 = −
(
νbλbu3

w + λsu5
w

)
|∇h′|2. (21)

Note that1
2|h|2 measures the potential energy density of the

bedforms and the overbar indicates the average over the do-
main. Equation (21) results from application of Green’s the-
orem and the definitions forqb,d andqs,d . TermP , which
describes the production of potential energy due to the advec-
tive bedload and suspended load transport, is positive if the
advective sediment transport and bed slopes are positively
correlated. Term1 describes the loss of potential energy
due to bedslope-induced sediment transport.

An instantaneous global growth rate of the sfcrσ̃r is de-
fined as

σ̃r ≡
1

|h|2

∂

∂t

(
1

2
|h|2

)
. (22)

The definition is such that if the bed pattern is represented by

a single waveh′
=<e

{
h̃(x)eiky+σ t

}
, then σ̃r→σr , i.e., the

initial growth rate. A new variable that is considered in this
study is the instantaneous global longshore migration speed,
defined as

Ṽm = −
1(
∂h′

∂y

)2

∂h′

∂y

∂h′

∂t
. (23)

Again, for a single wavẽVm→Vm, i.e., the initial migration
speed.
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4 Results

4.1 Parameter setting

Runs were performed with parameter values that are rep-
resentative for the micro-tidal inner shelf of Long Island,
located at latitude∼40◦ N. Here, a patch of 8 sfcr is ob-
served (Duane et al., 1972). The depth varies fromH0=14 m
to Hs=20 m over an inner shelf width ofLs=5.5 km
(β=1.1×10−3). However, the default experiment is per-
formed for an inner shelf slope which is approximately 25%
of its observed value. The motivation for the latter choice
is that the behaviour of the system for larger values ofβ

is not principally different, but a much higher number of
eigenmodes is required to obtain accurate solutions. This
aspect will be further discussed in Sect.5. The alongshore
wind stressτsy=−0.4 N m−2, the offshore root-mean-square
wave heightHrms,s=1.5 m, the wave periodT=11 s and
the offshore angle of wave incidence2s=−20◦ (waves ap-
proach from the northeast). Values of the other parame-
ters are: r=2.0×10−3, νb=5.6×10−5 s2 m−1, λb=0.65,
λs=7.5×10−4 s4 m−3, α/γ=9.5×10−5 s3 m−3 andp=0.4.
A motivation for these choices can be found inVis-Star et al.
(2007). Results of the simulations are shown for continuous
storm conditions.

In the default caseN=10. In the time integration a time
step of about 1 full-storm year was used. Both adding more
modes and decreasing the time step did not change the solu-
tions.

4.2 Linear stability analysis and eigenmodes

Figure 2 shows the initial growth rateσr as a function of
the longshore wavenumberk for the default parameter set-
ting. The largest growth rate is attained fork=kp∼0.6 km−1.
Thus, the initially most preferred mode has a longshore
wavelengthλp∼10 km, ane-folding time scaleTg∼1100 yr
and a migration speedVm∼−26 m yr−1. If N=10 this
mode is labeled (10/10,1). Its bottom pattern, as well as that
of the (5/10,1) subharmonic mode, the (20/10,1) superhar-
monic mode and the (10/10,2) secondary cross-shore mode
is shown in Fig.3. Further details about the results of the
linear stability analysis are shown in Supplementary Note 1
(seehttp://www.nonlin-processes-geophys.net/15/943/2008/
npg-15-943-2008-supplement.zip).

4.3 Patch behaviour and sensitivity to number of subhar-
monics

The temporal evolution of the maximum height of the bed-
forms is shown in Fig.4 for different N . At t=0 all re-
solved bottom modes have small amplitudes (in the order of
0.1 mm) and random phases. At first, scale selection takes
place: all resolved modes initially have the same amplitude
and it takes time before the fastest growing mode dominates
over the other modes. Next, a stage occurs in which the

(10/10,1)

(20/10,1)

(10/10,2)

(5/10,1)

Fig. 2. Linear growth rates for cross-shore modenj as a function of
the longshore wavenumber. The most preferred mode is indicated
by (10/10,1). The solid dots indicate modes that are included in
the nonlinear analysis forN=1. The open dots represent additional
modes included ifN=2.

height of the bedforms grows exponentially, followed by sat-
uration towards a constant finite value. The saturation time
scale is defined as the time at which the maximum height is
98% of its value in the saturated state. IfN=1 (no subhar-
monics) saturation of the bedform height takes place after a
period of∼9000 yr at a value of 0.57 m. If subharmonics are
included the final height is larger (∼0.66 m) and the satura-
tion time is slightly longer. However, both the increase in the
finite bedform height and saturation time are almost indepen-
dent of the choice of numberN . It turns out that the satura-
tion time also hardly depends on the initial amplitude of the
resolved modes. This is because for larger initial amplitudes
the stage of scale selection becomes longer, whilst the stage
of exponential growth becomes almost equally shorter.

The time evolution of the amplitude of the individual
modes resolved yields information about their mutual inter-
actions. Figure5 shows forN=10 the time evolution of the
five largest bottom modes att/Tm∼8, t/Tm∼15, t/Tm∼50
andt/Tm∼100. For the present bottom slope (β=2.7×10−4)
the morphodynamic time scaleTm∼1000 yr.

During the first stage, up to aboutt/Tm∼8, the initially
most preferred (10/10,1) mode has the largest amplitude and
the growth is predominantly exponential. In the course of
time nonlinear processes become important and subharmonic
modes, i.e., the (9/10,1) and (8/10,1) mode, become more
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mode (5/10,1) mode (10/10,1) mode (20/10,1)

a) b) c)

V V V V

mode (10/10,2)

d)

Fig. 3. Bottom pattern (light: crests, dark: troughs) for(a) subharmonic mode (5/10,1), (b) preferred mode (10/10,1), (c) superharmonic
mode (20/10,1) and(d) mode (10/10,2). The arrow indicates the direction of the basic state longshore velocity.

Fig. 4. Maximum height of the bedforms versust/Tm for model
runs in which (N−1) subharmonic modes are included. For the
present bottom slopeTm∼1000 yr, whereas for the realistic slope
Tm∼100 yr.

dominant than the initially most preferred mode. Note that,
although the bedform height is saturated fort/Tm&8, the am-
plitudes of the individual modes are not and thus the length
scale and shape of the bedforms are still changing. Slightly
after t/Tm=15, the (9/10,1) mode rapidly decreases in am-
plitude, whereas the (8/10,1) mode increases in amplitude
and becomes dominant. Just beforet/Tm∼50 the initially
most preferred mode disappears from the graph and is no
longer one of the five largest bottom modes. It takes a very
long time before the amplitudes of the individual modes are
more or less saturated. The wavelength of the saturated bed-
forms is dominated by the (8/10,1) mode and is approxi-
mately 10

8 ×10=12.5 km. Furthermore, a difference in the
height of individual bars and depths of individual troughs
can be observed. The lengthening of patterns is consistent
with Calvete and De Swart(2003) andGarnier et al.(2006),
although the shift in length scale is smaller than in these stud-
ies.

Figure 6 shows the temporal evolution of the instanta-
neous global growth rate and migration speed forN=10.
The shaded areas mark specific time periods during which a
sudden change in growth rate and migration speed is visible.
These changes are linked to a re-ordering of modes and will
be discussed in Sect.5. Both the instantaneous global growth
rate and migration speed seem to stabilise on the long term,
where the latter is smaller than during the linear evolution.
The decrease in migration speed with increasing height is
typical for anormal dispersive waves. Indeed, for the present
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a) b)

c) d)

(9/10,1)

(8/10,1)

(10/10,1)

(11/10,1)

(17/10,1)

(8/10,1)

(16/10,1)

(16/10,2)

(24/10,2)

(24/10,1)

(10/10,1)

(9/10,1)

(8/10,1)

(11/10,1)

(19/10,1)

(8/10,1)

(16/10,1)

(7/10,1)
(16/10,2)

(9/10,1)

Fig. 5. Time evolution of the amplitude of the five bottom modes which have the largest amplitude at(a) t/Tm∼8, (b) t/Tm∼15, (c)
t/Tm∼50 and(d) t/Tm∼100. For the present bottom slopeTm∼1000 yr, whereas for the realistic slopeTm∼100 yr. Modes are indicated by
a specific colour and denoted as (j/N ,nj ), wherej is the longshore modenumber, (N−1) the amount of subharmonic modes included andnj
the cross-shore modenumber, respectively. Line style (solid, dotted, dashed, dot-dashed, dot-dot-dashed) indicates the order of dominance of
modes at the final time step. Here,N=10.

˜

˜

a)
b)

Fig. 6. Time evolution of instantaneous global(a) growth rateσ̃r and(b) migration speed̃Vm. Shaded areas indicate time periods during
which jumps occur in the curves forσ̃r andṼm. Here,N=10 andβ=2.7×10−4.
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Fig. 7. Bottom pattern (light: crests, dark: troughs) att/Tm∼8 forN=8 (top),N=10 (middle) andN=16 (bottom). For the present bottom
slopeTm∼1000 yr, whereas for the realistic slopeTm∼100 yr. The shoreface is at the top and left is downstream. Here, the longshore extent
of the domain is∼N `p.
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Fig. 8. Bottom pattern (light: crests, dark: troughs) at different timest/Tm; N=10. For the present bottom slopeTm∼1000 yr, whereas for
the realistic slopeTm∼100 yr. The shoreface is at the top and left is downstream. Here, the longshore extent of the domain is∼N `p.

system it turns out that the group velocity of its linear eigen-
modes is larger than the phase velocity.

The time evolution of the amplitude of the five fastest
growing modes depends strongly on the amount of subhar-
monics included in the calculations. In case ofN=8,N=12
orN=16, a period oft/Tm∼60 is not sufficient to reach sat-
uration of the amplitudes of individual modes, whereas for
N=10 modal amplitudes are saturated after that period. This
sensitivity toN is remarkable, as Fig.4 indicates that the
saturation time scale for the bedform height shows only a
very weak dependence onN . If N=8, modal amplitudes be-
come constant aftert∼100Tm. At that time the (7/8,1) mode
is dominates over all others, which indicates a wavelength
of the final bedforms of approximately87×10=11.4 km. If
N=12 saturation of amplitudes occurs only aftert/Tm∼200
and at that time the (10/12,1) mode is dominant, indicat-
ing a wavelength of the sfcr of approximately 12.0 km.
If N=16, mode saturation is found aftert/Tm∼300, the
(13/16,1) mode is dominant and hence the wavelength of
the final bedforms is∼12.3 km. These results indicate that

the wavelength of sfcr in the saturated state is in the range of
11.5−12.5 km, which denotes a mild lengthening compared
to results obtained with the linear analysis.

A new and interesting phenomenon captured by the non-
linear model for runs including subharmonic modes is the
patchiness of sfcr during their stage towards saturation. Sim-
ilar patterns are also observed in the field. Stretches of the
inner shelf where several ridges are present are alternated
with stretches where no ridges occur. This was never ob-
tained with the previous models. Figure7 illustrates this
patch behaviour. It shows the bottom patterns att/Tm∼8
along a coastal stretch for runs including a different number
of subharmonic modes. The patchiness is visible in all cases
shown. However, the precise coastal stretches where patches
of sfcr occur are definitely different and depend strongly on
the choice forN . AsN is a numerical parameter, the model
results suggest that the detailed evolution of the sfcr is only
predictable for a finite amount of time. Figure7 also illus-
trates that the height and orientation of individual sfcr vary
within a patch of sfcr. Patchiness also strongly depends on
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Fig. 9. Contour plot of equal(a) finite maximum height (m) of the bedforms and(b) inverse of time needed for saturation (10−3 yr−1) in
theHrms,s − β plane. Obtained with nonlinear model (solid lines) or extrapolated (dotted lines).

time. Figure8 shows the bottom patterns at different times
for the case thatN=10. Patch behaviour of ridges is only
observed during the evolution of the system towards the sat-
urated state. Clearly, at timet/Tm=20 the entire domain is
covered by sfcr.

Whether sfcr occur in patches or not is strongly related
to the interactions between different modes in the nonlin-
ear analysis. Modulation behaviour will occur when (1) the
spectrum of growing modes is sufficiently narrow, and (2)
the dominant modes that control the evolution of the sys-
tem have comparable wavelengths and amplitudes. In the ex-
periments performed with subharmonic modes the first con-
dition is met, whilst the second condition is only obeyed
during the transient stage of the evolution. For example,
Fig. 5 shows that att/Tm∼8 the (10/10,1) mode and (9/10,1)
mode have comparable amplitudes. However, at a later stage
(e.g. t/Tm∼20), the amplitudes of modes with successive
modenumbers are not that close. In fact, obtained patterns
are a superposition of the dominant mode and its superhar-
monics and these imply ridge activity everywhere on the in-
ner shelf.

4.4 Sensitivity results to wave characteristics

A series of runs were performed with the model without sub-
harmonics (N=1) for different values of the transverse slope
β (by changing the depth of the outer shelfHs) and off-
shore wave parameters2s , Hrms,s and T . Wave parame-
ters were varied one after another and other parameters kept
their default values. All runs revealed that a critical trans-
verse bottom slopeβc has to be exceeded before sfcr start to
develop, whereβc depends on the model parameter values.
Onceβ>βc the time evolution of the maximum height of
the bedforms is generally characterised by growth, reduction

in growth and saturation. Numerical stable solutions could
be obtained up to approximately 60% of the observed value
of the slope of the inner shelf in case of no subharmonics.
For larger values ofβ solutions become singular at some
point during the evolution. Instability behaviour is related
to a rapid growth of the smallest length scale included in the
nonlinear analysis.

Contour plots of the finite maximum bedform height and
inverse of saturation time in the2s−β plane were already
presented and discussed inVis-Star et al.(2008). It turns
out that if waves approach the coast more obliquely, thenβc
increases, the final height of the ridges decreases and the sat-
uration time increases.

Figure9 shows the finite maximum bedform height and in-
verse of saturation time in the (Hrms,s−β) parameter space.
An increase inβc from 1.0×10−4 to 4.3×10−4 is obtained
for an increase in the offshore root-mean-square wave height
from 1.2 m to 2.0 m. Onceβ>βc, sfcr grow faster and be-
come higher for smaller offshore wave heights. The depen-
dence of the final height and the saturation time on the off-
shore wave height is quite strong.

Contour plots of the finite maximum bedform height and
inverse of saturation time in theT−β plane (not shown) re-
veal that the critical transverse bed slopeβc increases from
1.0×10−4 to 2.7×10−4 for an increase in wave period from
8 s to 14 s. For larger bed slopes sfcr evolve and it appears
that the shorter the wave period, the higher bedforms become
and the faster they evolve. Sensitivity of results to changes
in the wave period are rather small.
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b)

c) d)

a)

Fig. 10. (a)Time evolution of the bedforms.(b) Time evolution of production and dissipation terms due to suspended load and bedload
sediment transport and their sum. Shaded areas indicate time periods during which jumps occur in all the curves. The alternative closed en
open circles below the time axis are positioned att/Tm∼5, t/Tm∼10,t/Tm∼22,t/Tm∼43 andt/Tm∼65 (aftert/Tm∼65 no change occurs).
These times are also indicated in panels c and d. For the present bottom slopeTm∼1000 yr, whereas for the realistic slopeTm∼100 yr.
(c) Square root of the production and dissipation terms as a function of|h|. (d) The sum (P+1) as a function of|h|. Here,N=10 and
β=2.7×10−4.

5 Discussion

5.1 Analysis of saturation behaviour

All runs discussed in the previous section show that, starting
from an initial state without bedforms, sfcr develop as free in-
stabilities of the coupled water-bottom system. Their initial
growth is exponentially and can be described and understood
using linear stability analysis (cf.Calvete et al., 2001a). On
the long term saturation behaviour occurs and the ridges at-
tain a finite, almost constant height. To further understand
the behaviour of the bedforms their potential energy balance
is analysed. Results are shown in Fig.10. In panel b of
this figure time series are shown of the gain and loss of po-
tential energy due to bedload and suspended load transport,
respectively. The time periods during which jumps occur are
marked. These jumps represent significant changes in com-
petitive behaviour of individual bottom modes included in

the analysis, as is clear from Fig.5. In Fig. 10c the jumps
are also visible in the curves around|h|=0.15 m. Note that
the time that the system needs to pass through the part of the
curve for relative small bar amplitude is short compared to
the time needed to approach the end of the curve. The alter-
native open and closed circles below the time axis in Fig.10b
represent five specific time values which are also plotted in
Fig. 10c, d. Around saturation time the increase in|h| is
rather gradual. From Fig.10d it seems that a balance be-
tween production and dissipation is not reached. This, how-
ever, is due to numerical accuracy, as the absolute error in
the computation of both the production and dissipation term
is about 3×10−7 m2 yr−1.

Performing the potential energy analysis for runs includ-
ing different amount of subharmonic modes (results not
shown) all show the same behaviour. The gross character-
istics of the sfcr, e.g. instantaneous global growth rate, in-
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stantaneous global migration speed, alongshore spacing and
finite amplitude, are a robust model result, independent of the
amount of subharmonic modes included. However, changes
in the competition between individual modes are quite un-
predictable and also strongly dependent on the amount of
subharmonic modes. As the bottom evolution is strongly de-
pendent on parameterN the evolution of the sfcr can only be
predicted for a finite amount of time. In this context it is rel-
evant to remark thatHuntley et al.(2008) demonstrated that
the predictability of bottom bedforms is also strongly influ-
enced by the presence of defects in the initial pattern.

The lengthening of patterns in the course of time is con-
sistent with that found in other nonlinear morphodynamic
models, e.g., that ofCoco et al.(2004) for beach cusps, that
of Murray and Thieler(2004) for sorted bedforms, thay of
Ashton and Murray(2006) for shoreline sand waves and the
model ofGarnier et al.(2006) for nearshore sand bars. The
shift in length scale is similar as inCoco et al.(2004), but in
the other studies the lengthening is larger.

5.2 Model limitations

In reality storms only occur during a certain time fraction
(about 5%) and numbers would be a factor 20 smaller. On
the other hand, taking a realistic value ofβ would cause these
numbers to be larger by approximately the same factor.

In case of using a measured value of the transverse bed
slope solutions become unbounded before the saturated state
is reached. The results presented in this paper were obtained
with a version of the model in which interactions between
waves and growing bedforms were ignored. Nonlinear ex-
periments including wave-topography interactions revealed
spurious modes in the linear analysis which have to be fil-
tered. When incorporated in the nonlinear model sfcr con-
tinue to grow on the long term and numerical instabilities
arise before the saturated state is reached. An explanation
for the latter is that stirring of sediment by waves increases
with increasing ridge height. This tendency will be coun-
teracted by e.g. wave breaking, a process which is not yet
implemented in the model.

The spectral method itself is also subject to limitations.
The nonlinear analysis uses the solutions of the linear sys-
tem as expansion modes. However, the latter are dependent
on the specific parameter values used. Simulations in which
strong, mild and weak storms alternate, as will be the case
in reality, are feasible, but require different eigenmodes for
the different realizations. This implies that several transfor-
mations between the spectral domain and the physical space
have to be performed, which will cause a considerable loss
of accuracy.

Note that the present model assumes a constant mean
sea level, whereas in several studies (cf.Swift and Field,
1981; McBride and Moslow, 1991) it is argued that sea level
changes during the Holocene play an important role in the
evolution of sfcr. To assess the sensitivity of model results to
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+ ∆
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Fig. 11. Sketch of evolution of the shelf geometry under sea level
rise1s . In the case ofBruun(1954): A=B. In case ofMasetti et al.
(2008): A=B+C. Other variables are defined in the text.

different sea level stands runs were performed using differ-
ent cross-shore bottom profiles. The latter were constructed
by generalizing the “Bruun rule” (Bruun, 1954, 1962), fol-
lowing concepts discussed inMasetti et al.(2008). Start-
ing from a given profile, a sea level rise1s will cause the
new depth of the outer shelf to becomeHs+1s (Fig. 11).
Second, the depth at the transition from shoreface to inner
shelf remains unchanged (valueH0), but its location shifts
landward (distance1Ls). Third, the depth profile between
coastline and the inner shelf maintains its equilibrium shape
and it is shifted upward and landward. The distance1Ls
is calculated by imposing that the total volume of sand per
unit width between coast and outer shelf remains unchanged.
This results in a new transverse bottom slopeβ of the inner
shelf (larger for positive1s). Experiments for different val-
ues of1s were performed, starting from the default situation
with subharmonics (N=10). It was found that the overall be-
haviour of the model does not change if1s is varied. The
main quantitative changes are that the height of the ridges in-
creases (from 0.65 m to 2.2 m if1s=+1 m) and the saturation
time scale decreases. This is mainly caused by the increase
of β.

The reconstruction method we applied is highly idealised,
but nevertheless yields a first idea of how sfcr might re-
spond to changes in mean sea level. The numerical model of
Masetti et al.(2008) is more advanced: it calculates the ex-
plicit time dependence of bottom profiles under the influence
of sea level rise and also accounts for the underlying stratig-
raphy. Furthermore, the “Bruun rule” often yields results that
do not comply with observations, because it ignores three-
dimensional and site-specific aspects (Cooper and Pilkey,
2004). Ultimately, profile reconstructions should be tested
against data. Such information however is not available for
Long Island shelf.

5.3 Comparison with field observations

Field data on both the morphological evolution and the hy-
drodynamics are scarce. Comparison between model results
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and field data is therefore limited. Generally, observations
show patches of 4−8 sfcr (see literature cited in the intro-
duction). In the present study we were able to reproduce
the patchiness of sfcr, which was never done before. The
number of sfcr per patch are consistent with the field data.
The spatial patterns of the finite-amplitude sfcr exhibit typi-
cal asymmetric profiles with steep slopes at the downstream
sides. Extrapolating default model results to the realistic in-
ner shelf bottom slope yields bedforms with a finite height of
∼4 m and a saturation time scale of∼700 yr. These values
have the correct order of magnitude if compared with field
data (e.g.Duane et al., 1972).

6 Conclusions

The long-term evolution of shoreface-connected sand ridges
(sfcr) has been investigated and the dependence of model re-
sults with respect to offshore wave properties and the inner
shelf bed slope has been explored. For any forcing condi-
tions (wind, waves) a critical transverse bed slope has to be
exceeded before sfcr start to grow. Once this critical bed
slope is exceeded, sfcr initially form as free morphodynamic
instabilities and, after a stage of scale selection, their height
increases exponentially in time. On the long term the sfcr
attain a finite height which becomes constant and their spa-
tial pattern becomes asymmetrical (mild stoss sides, steep
lee sides). An analysis of the potential energy balance of the
sfcr has been performed which shows that bed slope-induced
sediment transport is crucial for the saturation process.

If subharmonic modes are included, sfcr also show satura-
tion and the finite height increases with about 15% compared
to simulations without subharmonics. The initially most pre-
ferred mode is no longer dominant in the saturated state. Due
to nonlinear interactions subharmonic modes dominate and
cause a 20% increase in the distance between successive sfcr
in time. Furthermore, the saturation time of the amplitudes
of individual modes is much longer than the time scale on
which the ridge height saturates. Considering the age of the
sfcr, time scales of order 10Tm are realistic, which suggests
that observed sfcr have not reached their final stage of devel-
opment yet. In the transient stage the sfcr occur in patches
and the number of ridges per patch is in the observed range of
4−8. Results indicate that the detailed evolution of the sfcr
is only predictable over a finite time interval, whereas the
overall characteristics (e.g. instantaneous global growth rate,
instantaneous global migration speed, finite bedform height
and alongshore spacing) are also predictable for long time
scales. Model results are consistent with field observations.

Appendix A

Expressions for operatorsS, L,N

The symbolic form of the system of nonlinear partial differ-
ential equations describing the evolution of the flow, mass,
sediment concentration and bottom is given in Eq. (15),
whilst Eq. (13) contains its linearised version.

Here, the elements of 5×5 matrix S (containing all the
temporal information of the perturbations) are all zero, ex-
cept forS(5,5)=1−p. The linear operatorL involves spatial
derivatives and has the matrix form

L=



V ∂
∂y

+
rUw
H

−f g ∂
∂x

0 0

dV
dx

+f V ∂
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0 0
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dx
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The elementsL51 andL55 of operatorL are
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2
νbU

2
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Finally, the vectorN governs all nonlinear contributions. Its
elements are

N1 = u′
∂u′

∂x
+ v′

∂u′

∂y
+
rUwu

′

H − h′
−
rUwu

′

H
,

N2 = u′
∂v′

∂x
+ v′

∂v′

∂y
+
rUw(V + v′)

H − h′
−
rUwV

H − h′
−
rUwv

′

H
,

N3 = −u′
∂h′

∂x
− h′

∂u′

∂x
− v′

∂h′

∂y
− h′

∂v′

∂y
,

N4 = c′
∂u′

∂x
+ u′

∂c′

∂x
+ c′

∂v′

∂y
+ v′

∂c′

∂y
+
γ c′h′

H 2
,

N5 = −[∇ · q ′
− L(∇ · q ′)],

with q ′
=q ′

b+q ′
s andL(∇·q ′) the linearised part of∇·q ′.
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