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Abstract. Low frequency electrostatic turbulence in the io-
nospheric E-region is studied by means of numerical and ex-
perimental methods. We use the structure functions of the
electrostatic potential as a diagnostics of the fluctuations.
We demonstrate the inherently intermittent nature of the low
level turbulence in the collisional ionospheric plasma by us-
ing results for the space-time varying electrostatic potential
from two dimensional numerical simulations. An instrumen-
ted rocket can not directly detect the one-point potential va-
riation, and most measurements rely on records of potential
differences between two probes. With reference to the space
observations we demonstrate that the results obtained by po-
tential difference measurements can differ significantly from
the one-point results. It was found, in particular, that the in-
termittency signatures become much weaker, when the pro-
per rocket-probe configuration is implemented. We analyze
also signals from an actual ionospheric rocket experiment,
and find a reasonably good agreement with the appropriate
simulation results, demonstrating again that rocket data, ob-
tained as those analyzed here, are unlikely to give an ade-
quate representation of intermittent features of the low fre-
quency ionospheric plasma turbulence for the given condi-
tions.

1 Introduction

The study of the structure functions associated with the fluc-
tuating velocity is an important tool to characterize turbu-
lence of neutral incompressible flows. It is well known
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(Chandrasekhar, 1957) that the second order structure func-
tion, as a function of spatial separations, can be obtained
by simple dimensional arguments, apart from a numeri-
cal constant. For the longitudinal second order velocity
structure function in the universal Kolmogorov-Oubokhov
range of homogeneous isotropic turbulence we thus find

92(r)≡
〈
(u‖(0)−u‖(r))2

〉
=C2(rε)2/3, (1)

in terms of the energy dissipation per unit massε and a
universal Kolmogorov constantC2 which is experimentally
found to be in the range 2.1–2.5. In Eq. (1), the notation‖
indicates the velocity component parallel to the separation
vectorr. The result in Eq. (1) has found extremely solid
experimental support (Hinze, 1975). One could attempt to
model higher order structure functions by similar arguments,
finding trivially that 9n≡

〈
|u‖(0)−u‖(r)|n

〉
=Cn(rε)n/3.

Experiments demonstrate, however, that forn>3, this ana-
lytical result no longer agrees with observations, the devia-
tions becoming more and more pronounced with increasing
n. The explanation is found in the intermittent nature of tur-
bulence, implying that energy is dissipated in concentrated
“spots” or localized regions of space (Hinze, 1975; Anselmet
et al., 1984). A more specific definition is given byRollefson
(1978), stating that “a variable with zero mean will be called
intermittent if it has a probability distribution such that ex-
tremely small and extremely large excursions are much more
likely than in a normally distributed variable”.

The universal scaling law given by Eq. (1) is re-
flected also in the turbulent power spectrum of the veloc-
ity fluctuations, as expressed in the Kolmogorov-Oubokhov
spectrum, which is given asε2/3k−5/3 apart from a universal
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constant (see also Appendix A). Since power spectra are eas-
ily obtained by spectrum analyzers, many studies prefer
to use this representation for studying turbulence in fluids
(Hinze, 1975) as well as plasmas (Chen, 1965; Pécseli et al.,
1983; Krane et al., 2000).

The first observations and discussion of intermittency ef-
fects seemingly originate from studies of fluid turbulence.
The basic ideas will apply also for plasma turbulence and
many studies have been carried out, numerically as well as
experimentally. Magneto-hydrodynamic (MHD) turbulence
in the solar wind has been reported byTu and Marsch(1995)
and byBruno and Carbone(2005). MHD turbulence is in a
sense more complicated than its counterpart in incompress-
ible flows since in plasmas generally two vector quantities
are involved, the magnetic field and the plasma flow ve-
locity. A plasma can however also support a simpler form
of wave phenomena: electrostatic waves, which can be ad-
equately described by the space-time variation of a scalar
quantity, the electrostatic potential. Such waves are often
spontaneously excited in nature by plasma instabilities and
have been frequently observed also in the Earth’s ionosphere.
Intermittency effects have been studied in the ionospheric
plasma by, for instance,Tam et al.(2005), where their work
refers to∼700 km altitudes. Other relevant studies of space
plasma turbulence can be found in the work byChang and
Wu (2008). In fusion plasma studies it has been found that
intermittency effects are often related to anomalous turbulent
transport (Boedo et al., 2003; Xu et al., 2005), an observa-
tion also supported by earlier laboratory studies (Huld et al.,
1991). Intermittency effects have been recognized in several
different laboratory plasma devices also by e.g.Fredriksen
et al.(2003a,b) andKervalishvili et al.(2008). The analysis
is not necessarily based on structure functions as discussed in
the present work. Conditional sampling methods have been
used, for example.

In the present paper we analyze turbulent fluctuations in
magnetized partially ionized plasmas in the ionospheric E-
region, where collisions between charged particles and neu-
trals dominate the effects of ion-electron collisions. The fluc-
tuations are electrostatic and we study the turbulent electro-
static potentialφ(r, t) associated with the low frequency
ionospheric plasma turbulence. We analyze the space and
time evolutions of the structure functions in the form

8n(r, t) ≡
〈
(φ(0, 0)−φ(r, t))n

〉
≡
〈
1nφ(r, t)

〉
(2)

for cases to be discussed in the following (Rose et al., 1992;
Krane et al., 2000; Dyrud et al., 2006), assuming locally ho-
mogeneous and time stationary conditions.

1.1 Gaussian random processes

The second order structure function is directly related to the
correlation functions of the signal, which for Gaussian ran-
dom processes with zero mean contain all available informa-
tion (Bendat, 1958). The joint probability function for two

scalar variables with zero mean, sayφ1 andφ2, is in this case
given by

P(φ1, φ2)=
1

2πσ1σ2

√
1−ρ2(1, 2)

×

exp

(
−1/2

1−ρ2(1, 2)

[(
φ1

σ1

)2

+

(
φ2

σ2

)2

−2ρ(1, 2)
φ1φ2

σ1σ2

])
, (3)

whereσ 2
1, 2≡〈φ2

1, 2〉 andρ(1, 2)≡〈φ1φ2〉/(σ1σ2) is the corre-
lation function for the two timest1 andt2 or, if spatial varia-
tions are considered, the two positionsr1 andr2. For station-
ary and homogeneous conditionsσ1=σ2≡σ . The normalized
structure function 2(1−ρ(1, 2)) depends in this case only on
the separation of the two sampling positions (or times), and
not on their absolute values.

Introducing the difference and sum variables,1≡φ1−φ2
and6≡φ1+φ2, we can readily rewrite Eq. (3). After inte-
gration with respect to6, we obtain the probability density
for 1. For Gaussian processes we find

〈|1|
n
〉=

1
√

π
(4σ 2)n/2(1−ρ)n/2 0

(
1+n

2

)
, (4)

where 2σ 2(1−ρ(1, 2)) is the structure function. By defi-
nition we have〈|1|

2
〉=2σ 2(1−ρ), consistent with Eq. (4)

since0(3/2)=
√

π/2. It is then a simple matter to obtain
〈|1|

n
〉

〈12〉n/2 =
2n/2
√

π
0
(

1+n
2

)
, which is independent ofρ(1, 2) for

all n. It is here perfectly feasible to letn be a contin-
uous variable. For Gaussian random processes, the ratio
〈|1|

n
〉/(〈12

〉)n/2 is thus scale invariant, being independent
of the separation of the two sampling positions, here labeled
1 and 2, or corresponding sampling time separations.

In case 1−ρ has a power-law dependence on the sep-
aration coordinate, e.g.τ≡t1−t2, so that 1−ρ∼τα in
a nontrivial subrange, we then evidently find〈|1|

n
〉∼τn α/2

in that same subrange. The power-law exponent for
〈|1|

n
〉 is consequently directly proportional ton for this

case. This property can be used as a characterization of
Gaussian random processes. Upon division byn/2, we can
introduce the compensated exponentα which is a constant
for Gaussian random processes. In the appendix we dis-
cuss some relations between power-law spectra and structure
functions.

1.2 Ionospheric turbulence

Low frequency electrostatic fluctuations are frequently ob-
served in the lower parts of the Earth’s ionospheric E-region,
in the equatorial as well as in the polar ionospheres.
Several candidates for instabilities giving rise to these waves
have been proposed (Rogister and D’Angelo, 1970). For
the present analysis, we focus on the the Farley-Buneman
instability that arises in a plasma with a large ion-neutral col-
lision frequency,νi>�ci while at the same timeνe��ce,
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when a dc-electric field is imposed in the direction perpen-
dicular to the Earth’s magnetic field (Farley, 1963; Buneman,
1963). The instability can have importance also in other en-
vironments, meteor tails, for instance (Dyrud et al., 2002).

We present here a simplified version of the linear disper-
sion relation as obtained by a fluid plasma model. The real
and imaginary parts of the frequency are denotedωr andωi ,
respectively. We have (Fejer and Kelley, 1980) the approxi-
mate expressions withωi � ωr

ωr=
k Vd cosθ

1+ϕ
, (5)

ωi=
1

1+ϕ

(
ϕ

νi

(
ω2

r −k2C2
s

)
+

ωrνi

kLn�ci

)
−2βR n0, (6)

where ϕ=
νeνi

�ce�ci

(
1+

�2
cek

2
‖

ν2
e k2

)
, and Ln denotes the scale

length of a possible large scale plasma density gradient in the
direction perpendicular toB, while V d is the difference be-
tween the electron and ion drift velocities, andθ is the angle
betweenV d andk. Since quasi-neutrality is assumed, the re-
sults only apply for wavelengths much longer than the Debye
length,λD. The term−2βRn0 accounts for the damping ef-
fect of recombinations, withβR being the recombination co-
efficient andn0 the local plasma density (Fejer et al., 1984).
Equations (5) and (6) are valid in the limit of very small
growth rates, 0<ωi�ωr , and almostB-perpendicular wave
propagations,k‖�k⊥. We note that a gradient in plasma
density contributes to an instability at any drift velocity (sec-
ond term in the parenthesis of Eq.6). We will argue that for
the relevant plasma conditions analyzed in the following, we
can ignore large scale plasma density gradients perpendic-
ular to B. The relative drift velocityVd between electrons
and ions has to exceed the ion sound speedCs in order to
give unstable waves, otherwise it has a damping effect. In
this simple model, the first waves to become unstable are
those wherek⊥B. Sinceωce�νe and�ci≤νi for the rel-
evant ionospheric conditions, waves with largek‖ give large
ϕ and therefore smallωr , and will consequently remain lin-
early stable for realistic values ofVd .

The enhanced non-thermal fluctuations were first discov-
ered by radar scattering off the ionosphere, and later inves-
tigated by in-situ measurements by instrumented rockets. In
a sense, the rocket and the radar represent complementary
types of diagnostics: the radar selects a constant wavelength
determined by the wavenumber matching condition, while
the rocket data are evidently dominated by the largest ampli-
tude signal, irrespective of its characteristic wavelength.

While radar scattering can be an important diagnostic in
some respects, it can evidently not provide detailed informa-
tion on the space-time evolution of the instability and its sat-
urated turbulent state. More information can be gained by an
instrumented rocket traversing the unstable region, but even
here only a time-varying signal will be available, reflecting
the properties of the fluctuations along the rocket trajectory.

Fig. 1. Schematic diagram for the positioning of the probes on some
instrumented rockets, with length scales relevant for the present
analysis of data from the ROSE experiment (Rose et al., 1992).

In addition, we have a practical problem with rocket data:
since no absolute potential reference (“ground”-potential) is
available, potential variations have to be detected by taking
the potential difference between two probes. In principle,
potential variations could be measured with respect to the
rocket body, but experience has shown that this gives rise to
very “noisy” signals, presumably because the probes are in
general outside the Mach cone, and the rocket body inside.
The standard configuration (Bahnsen et al., 1978; Rose et al.,
1992), as addressed also in this work, consists of booms car-
rying the probes, as illustrated in Fig.1, where the poten-
tial differences can be obtained between probes on the same
boom or alternatively between probes on different booms.

It is not evident that the available probe difference signals
are sufficient for recovering features of intermittency effects
that may be present in the plasma turbulence. This ques-
tion is addressed in the present study. We compare here data
from numerical simulations with those obtained from the in-
situ rocket observations. In the numerical simulations, all
information is available, in principle, and we can here un-
ambiguously identify intermittency effects as represented by
the structure functions. The input data for the simulations
are chosen to be representative of the extreme values of the
ionospheric parameters at the time of launch. The simula-
tion data are analyzed by two methods: a simple analysis of
one-point structure functions followed by an analysis where
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we “mimic” the signal as it would be obtained by a poten-
tial difference measurement carried out by an instrumented
rocket. For the ionospheric rocket only the latter option is
available. Our analysis includes structure functions up to 8th
order, being aware that the accuracy of the estimate decreases
for increasing order.

Our analysis refers, as stated, to one particular plasma in-
stability. The Farley-Buneman instability is driven by a cur-
rent (i.e. the E0×B-electron flow through unmagnetized or
weakly magnetized ions), and is thus likely to have proper-
ties in common with other current driven instabilities. We
therefore anticipate that our results are qualitatively relevant
for other plasma instabilities.

2 Numerical simulations

The numerical simulations were conducted in two spatial di-
mensions in the plane perpendicular to the imposed mag-
netic field, using a Particle-in-Cell (PIC) code (Birdsall and
Langdon, 1991) for the ion component and a fluid model
for the electrons (Oppenheim et al., 1995; Oppenheim and
Otani, 1996; Dyrud et al., 2006). In the present analysis, the
electron inertia is ignored. Details of the simulation code
are presented byOppenheim et al.(2003). We have per-
formed also smaller box simulations with the same param-
eters used in the simulations shown here, but with finite elec-
tron inertia, and found no substantial difference in the re-
sulting evolution or spectral characteristics of the present pa-
rameters. The plasma parameters used in the present study
are summarized in Table1. For E0 we use the largest
value that is relevant for the rocket experiment discussed in
Sect.4. For our conditions, the recombination coefficient
is βR≈3×10−7 cm−3 s−1. Recombination effects are not in-
cluded in the simulations, since they give only small correc-
tions for the present strongly driven case (Fejer et al., 1984).
We deal with low-β plasmas, and the magnetic field is as-
sumed constant. We use a value for the electron temperature
which is consistent with the present observations. Evidence
can be found for anomalous electron temperature enhance-
ments for increasing dc electric field in the ionospheric E-
region (St.-Maurice et al., 1999; Noël et al., 2005), where
theeffectiveelectric field needs to be considered in case we
have neutral winds. Unfortunately, we have no means for ob-
taining information concerning neutral winds for the ROSE-
experiment. ForE0≈40 mV/m, i.e. for the up-leg conditions
of the rocket experiment discussed in Sect.4, the increase
in Te is expected to be minute, but for the somewhat larger
down-leg fields,E0≈60–70 mV/m, nontrivial enhancements
of Te are anticipated, but not observed for the present con-
ditions. The wave propagation velocities, for instance, as
found by Iranpour et al.(1997), Krane et al.(2000) and
Dyrud et al.(2006) are best explained by an electron temper-
ature of approximately 400 K. Also other reports (Pfaff et al.,
1992) noted the lack of electron temperature enhancements

Table 1. Input data for the numerical simulations.

B 5.086×10−5 magnetic field, Tesla
E0z 0.00 dc-electric field in V/m, x comp.
E0x −0.070 dc-electric field in V/m, z comp.
−e −1.6022×10−19 electron charge, Coulomb
me 9.11×10−31 electron mass, kg
νen 28118.4 electron-neutral coll. frequency, Hz
Te 324.9 electron temperature, K
nn 5.05×1018 neutral number density, m−3

Tn 216.6 neutral temperature, K
Mi 5.0×10−26 effective ion mass, kg
qi 1.6022×10−19 ion charge, Coulomb
ni 5.159×1010 number density of ion-species, m−3

νin 2109.31 ion-neutral coll. frequency, Hz
Ti 216.6 ion temperature, K

for conditions similar to ours. A previous study (Dyrud et al.,
2006) attempted to explain the low electron temperatures by
thermal conduction to the colder regions below the enhanced
wave activity, but used too low numerical values for the elec-
tron energy loss per collision, by taking this energy loss to
be at most an order of magnitude larger than for inelastic
collisions. By far, the dominant cooling rate is due to in-
elastic collisions in the E-region. It may be that the analysis
of Dyrud et al.(2006) applies for conditions in laboratory
experiments, where the dominant collisional electron energy
loss will usually be for elastic collisions with neutral inert
gases. The collisional energy losses for elastic collisions are
generally much smaller than for the inelastic collisions.

In the related rocket experiments over Greenland (Bahnsen
et al., 1978; Pécseli et al., 1989) the electron temperature was
determined. The propagation speed for the fluctuations that
was found there agreed well with the sound speed obtained
by an average ion mass and the experimentally obtained elec-
tron temperature (Pécseli et al., 1989).

An illustrative result from the simulations is shown in
Fig. 2 for three times in physical units,t=5, 10, and 22 ms.
The axes are in physical units as well. We note the evolu-
tion of small scale structures in the linear initial phase of
the instability. Eventually, in the nonlinear phase, larger
scale structures develop and a saturated turbulent stage of
the instability is reached. Typically, the saturated potential
fluctuations have a characteristic wavelength of∼2 m, and a
peak value of∼0.3 V. A typical root-mean-square value of
the potential fluctuations is∼0.08 V, corresponding to ac-
electric fields∼3×10−2 E0, for the given conditions. The
fluctuations in density are relatively modest, typically below
20%, even though we can observe larger spikes (Dyrud et al.,
2006).

A sample of the time-series is shown in Fig.3. We select
25 such series, taken at separations corresponding to 3 m in
the ionosphere, as the basis for the structure function analy-
sis. These separations are sufficiently large to let us assume
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Fig. 2. Summary plots illustrating the electrostatic potential for three times as obtained from the numerical simulations. The magnetic field
is perpendicular to the plane of the paper, and the E0×B-drift is in the vertical direction, with E0=70 mV/m in the positive x-direction.
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Fig. 3. Example of time series from the simulations. The ini-
tial red part contains the non-stationary initial growth phase and
is omitted from the analysis. We verified that our results are ro-
bust with respect to small variations in the lengths of the omitted
time-sequences.

that the time-evolutions of the small scale structures are sta-
tistically independent. Each of these samples contains ap-
proximately 500 time steps. We omit the initial∼200 time
samples when analyzing the data, since they contain an ini-
tial non-stationary exponential growth phase. The ampli-
tude probability density for the signals used in the analysis
are given in Fig.4. For this figure we used all data from
the available points and all the time-series, except the initial
omitted part. Figure4 is thus an estimate of the one point
amplitude probability density. The non-vanishing average in
Fig. 4 is an indicator of the uncertainty due to the finite num-
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Fig. 4. Amplitude probability density for the fluctuations. The
lowest order moments are〈φ〉= − 7 × 10−3 V, σφ ≡ 〈(φ −

〈φ〉)2〉
1/2

= 8× 10−2 V, S ≡ 〈(φ − 〈φ〉)3〉/σ3
φ = −3.29× 10−1,

and K ≡ 〈(φ − 〈φ〉)4〉/σ4
φ=3.18.

ber of sample points: ideally we should have〈φ〉=0 by con-
struction. The data are slightly leptocurtic (i.e. the kurtosis
K>3), with a non-vanishing skewnessS<0. The single point
statistics of the data are thus not Gaussian, but on the other
hand it is not evident from Fig.4 alone that the higher order
structure functions should exhibit significantly non-Gaussian
features. Note also that in cases where the one-point ampli-
tude probability density is close to a Gaussian, we can still
find that the two-point statistical distribution can deviate sig-
nificantly from a bi-variate Gaussian.
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Fig. 5. Structure functions as functions of time separations (“time
lags”), in units of numerical time samples. The electrostatic poten-
tial is sampled in one fixed spatial position. The order parameter
n=1. . .8 increases from bottom to top.

3 Data analysis

We study the structure functions associated with temporal
and spatial variations of the signal. To study the time varia-
tions, we consider a set of 25 time-series for the fluctuating
potentialφ obtained in a 5×5 grid with 3 m separation. This
grid should not be confused with the simulation grid, which
is much finer. To study the fixed-time spatial variations, we
consider 25 samples with full spatial resolution, taken at dif-
ferent times in the saturated stage.

3.1 One-point statistics for temporal variations

We obtain first the temporal structure functions
〈|φ(t1)−φ(t2)|

n
〉 for n=1,. . ., 8, with t1 and t2 being

two times in the same record. The averaging is performed
over the individual time samples and then over the 25 sets of
the data. Results are shown in Fig.5 in a double logarithmic
presentation. The structure functions are normalized to the
first time sample. Note that forn≥7 we have a non-trivial
uncertainty in the estimate of the corresponding structure
function. We perform a power-law fittαn to these structure
functions in the interval 3–10, showing in Fig.6 the exponent
αn for different values ofn. By varying the length of the time
interval used for obtaining the structure functions we find
that the values ofαn up ton=6 are robust, while they become
increasingly uncertain for largern. For n>8, we do not
consider the estimates forαn to be reliable. The power-law
index αn of the structure functions shown in Fig.6 have a
pronounced deviation from the linear relationship withn

0 2 4 6 8
0

0.5

1

1.5

n

α
n

Fig. 6. Exponents in the fittαn of the fixed-point temporal structure
functions for different values ofn, see also Fig.5. The power-law
variation is fitted in the interval 3–10 time lags.

expected for Gaussian random signals. This deviation is
conspicuous already forn=4. In Appendix B we give a more
detailed discussion of the uncertainty of the estimators of the
structure functions due to finite record lengths.

3.2 Two-point potential difference statistics, temporal vari-
ations

We note that the structure functions obtained by the forego-
ing analysis can not be directly compared to rocket observa-
tions as obtained by many instrumented rockets, for reasons
outlined in the introduction. In order to make the analysis
more directly relevant for comparisons with rocket data, we
consider the potential difference between two positions sep-
arated by 3 m, which is representative for many rocket ge-
ometries, in particular also for those to be discussed later in
this paper (Rose et al., 1992). This difference can be taken
in basically two directions in the available two dimensional
geometry. The corresponding values of the exponent are de-
noted byα⊥ andα‖, respectively, where the subscripts⊥ and
‖ refer to the E0×B-direction. Figure7 shows the variation
of α⊥ andα‖ with n. We find these results to be significantly
different from those summarized in Fig.6. Thus, with rele-
vant separations, the two-point difference signal has statisti-
cal properties significantly different from those found when
analyzing the one point signal.

The results summarized in Fig.7 corresponds to a rocket at
rest in the ionosphere. To make the analysis more realistic we
should in principle analyze the simulated signal correspond-
ing to a spinning and coning rocket moving along a pre-
scribed trajectory. A complete analysis taking into account
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Fig. 7. Variation with n of the two exponentsα⊥ andα‖, for the
temporally varying potential difference structure functions, taken at
two spatial positions separated by 3 m, in thex (asterixes) andz
(circles) directions, respectively.

possible values of all the parameters entering the problem
will make the analysis extremely lengthy. We argue in the
following that the modifications are unlikely to be significant
for the comparison with the available rocket data, to be dis-
cussed later.

3.3 Structure functions for spatial separations at fixed times

The analysis of Sect.3.1 and3.2 refers to temporal separa-
tions when calculating the structure functions. Similar re-
sults can be obtained by aspatialsampling of the potential at
a fixed time, and then varying the separation.

We now obtain the structure functions of the potential dif-
ference between two spatial positions separated alongx and
along z, respectively. Based on a set of 5 samples at dif-
ferent times distributed over the available time-interval for
the fluctuating potentialφ in the entire available plane, we
obtain the structure functions〈|φ(x1, z)−φ(x2, z)|n〉 and
〈|φ(x, z1)−φ(x, z2)|

n
〉 for n=1, . . ., 8. The averaging is

performed over the spatial samples and then over the 5 sets of
data, taken at different times. Results are shown in Fig.8 in a
double logarithmic presentation. The exponents correspond-
ing to the spatial structure functions are shown in Fig.9 for
differentn.

The relation between the spatio-temporal variation of the
ionospheric signal and the time varying signal obtained
from the rocket have already been discussed byPécseli
et al. (1989). Basically, we find a Doppler shift due to
the rocket motion and a frequency and amplitude modula-
tion due to the rocket spin. If the rocket spin frequency
is small as compared to relevant wave-frequencies (which
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Fig. 8. Fixed-time structure functions as a function of spatial sep-
arations, in units of numerical spatial samples. On top we have
spatial separations in the z-direction (perpendicular toE0×B) and
in the bottom for the x-direction (parallel toE0×B). The order
parametern=1, . . ., 8 increases from bottom to top. Note that for
n≥7 we have also here a non-trivial uncertainty in the estimate of
the corresponding structure function.

is often the case), we may ignore the latter effects. Con-
cerning a rapidly moving rocket, with velocityU , we may
argue that the Taylor hypothesis (or the “frozen turbulence
approximation”) can be applied (Shkarofsky, 1969). Physi-
cally, the Taylor hypothesis assumes the transit time of the
turbulent eddies to be much less than the characteristic evo-
lution time, implying that the observed frequencies can be
approximated by the Doppler shifts. Under relatively mild
assumptions (Shkarofsky, 1969) we can then approximate
∂φ/∂t≈−U ·∇φ. For the second order potential structure
functions, for time stationary and spatially homogeneous
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Fig. 9. Variation with n of the two exponentsαx andαz, for the
potential structure functions for spatial separations taken at a fixed
time, see also Fig.8. The power-law variation is fitted in the interval
3–15 spatial lags, except forn=8 where it is 3–12. The circles refer
to the difference in the z-direction, asterixes to differences in the
x-direction.

conditions, we find the following relation

∂2

∂t2

〈
12φ(t)

〉
≈(U ·∇)2

〈
1φ(r)2

〉
, (7)

with 1φ(t)≡φ(t1)−φ(t2) and 1φ(r)≡φ(r1)−φ(r2), with
t≡t1−t2 and r≡r1−r2. Alternatively, we can assume the
observer to be fixed and the wave field to be propagat-
ing with a large velocityU , and the Taylor hypothesis can
again be applied. The plots in Fig.2 indicate that all fre-
quency components propagate uni-directionally, at least to
a good approximation. The propagation velocity is ap-
proximately the sound speed. In either case, the spatial
and temporal correlation functions, and consequently also
the corresponding structure functions, will be related as
〈12φ(r=0, t)〉≈〈12φ(r=U t, t=0)〉. If we assume that both
〈12φ(t)〉 and〈12φ(r)〉 have a power-law variation in a sig-
nificant interval, we can argue by Eq. (7) that the characteris-
tic exponentsαt andαz for the two cases are directly related,
αt≈αz, taking the z-coordinate to be alongU . By comparing
Figs.6 and9 we find a reasonable agreement up ton=3 for
the results argued on basis of the Taylor hypothesis. How-
ever, the latter is not applicable on the structure functions for
spatial separations perpendicular toU .

3.4 Discussion of the analysis of the simulation data

We find that the first few values ofαn are close to be directly
proportional ton, while for n>3 we find a pronounced de-
viation from a linear variation. It thus seems that we have
found a clear indication for intermittency effects in the tur-
bulence. Forn=1, 2 the values ofα-exponents in Fig.6 and9

are close, indicating that the frozen turbulence approximation
has a certain region of applicability, but also note that the dif-
ferences increase rapidly withn as soon asn≥3, indicating
that the higher order structure functions are very sensitive to
deviations from the assumption of frozen turbulence. It is
also interesting that forn=1 andn=2 we find no difference
between theα-values in Fig.9, which could be taken as a
sign of spatial isotropy, i.e. lack of distinction between the x
and z-directions for the smallest scales. This fact is consis-
tent with an intermittency model based on secondary insta-
bilities associated with gradients of larger scale structures,
which are in turn again influenced by even larger scale struc-
tures. When we approach the smallest scales being resolved,
we have an approximate local isotropy of the spatial poten-
tial variations. Similar observations have been made for elec-
trostatic drift wave turbulence (Okabayashi and Arunasalam,
1977; Pécseli, 1982), where similar arguments apply (Hal-
latschek and Diamond, 2003).

4 Analysis of rocket data

We analyze data from the ROSE4 rocket (Rose et al., 1992).
The ionospheric conditions and details of the instrumenta-
tion relevant for the present dataset were discussed in a spe-
cial issue of Journal of Atmospheric and Terrestrial Physics
(54, 655–818, 1992). Here we present only a short sum-
mary: dc-electric field values of typically 40 and 70 mV/m
were measured by the rocket instruments on up-leg and
down-leg passages of the E-region, respectively. The cor-
responding E0×B/B2 velocities are approximately 800 and
1400 m/s. These values are of a sufficient magnitude to ex-
cite the Farley-Buneman instability. The threshold value for
the electric field is approximately 20 mV m−1.

The extremely low frequency (ELF) signals analyzed here
were obtained by means of gold-plated spherical probes of
5 cm diameter, mounted on two pairs of booms, one near the
top of the payload (labeled 1 and 2) and the other 185 cm
lower (labeled 3 and 4), oriented at an angle of 90◦ with re-
spect to the first pair, as illustrated in Fig.1 (Rinnert, 1992).
The length of each boom was 180 cm. We analyzed the fol-
lowing fluctuating signals

U6(t)=φ1(t)−φ2(t), U5(t)=φ4(t)−φ3(t),

U4(t)=φ1(t)−φ4(t), U3(t)=φ2(t)−φ3(t),

U2(t)=φ1(t)−φ3(t), U1(t)=φ2(t)−φ4(t),

whereφj (t) for j=1, 2, 3, 4 is the potential on thej -th probe
with respect to a suitably defined common ground. There
is an evident redundancy in the available signals, which can
be used to check the performance of individual probes. For
wavelengths much larger than the probe separations, it is ev-
ident that the potential difference signals can be used to es-
timate the fluctuating electric fields, while the interpretation
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Fig. 10. Structure functions〈1nφ(t)〉 for varying ordern=1,. . ., 8
for the time interval 112.0–116.1 s, on the up-leg part of the flight.

becomes more complicated when the spectra contain wave-
lengths comparable to or smaller than the probe separation.
In general, the difference signal can be interpreted in terms
of a filtering operation of the spatial potential variation.

The space-time varying electric field fluctuations of the
electrojet were originally sampled with a 4 kHz sampling fre-
quency. By averaging sampling points two-by-two, we here
increased the sampling interval to 0.5 ms, giving a Nyquist
frequency of 1000 Hz. The electric circuits give an effective
frequency limitation being noticeable for frequencies larger
than 600 Hz. The signals were digitized with 12 bit resolu-
tion. Amplitudes of the potential differences were typically
in the range 15–30 mV. The amplitudes of the relative den-
sity fluctuations,̃n/n0, were in the range 1–3%. The ampli-
tude probability density of the detected potential difference
fluctuations is non-Gaussian (Larsen et al., 2002), but it is
important to emphasize that this conclusion refers to the fil-
tered signal. The probability amplitude of the non-filtered
signal is, on the other hand, significantly affected by the
rocket spin. We have analyzed all probe-combinations, but
show here only results forU6, the differences between e.g.
U6 andU2 being small, these two difference signals referring
to probe-sets perpendicular to the rocket axis. For the small
time separations relevant for the present analysis we do not
find significant differences between signals such asU6 and
U5 either, but note that the correlation times for these signals
are somewhat different (Iranpour et al., 1997; Krane et al.,
2000).

In Fig. 10 we show the structure functions〈1nφ(t)〉 for
n=1,. . ., 8, as a function of temporal separations. These data
are obtained from the up-leg part of the flight, where the
fluctuation amplitude level is somewhat smaller than for the
down-leg part. We note an overall similarity with the results

Fig. 11. Variation of the exponent with the order of the structure
function, shown together with the corresponding variation of the
compensated exponent for varying orders of the structure function,
corresponding to Fig.10. The time interval is 112.0–116.1 s, during
the up-leg part of the flight. The dashed line on the figure forαn

for varyingn is determined by the spectral index of the frequency
power spectrum as discussed in the appendix.

obtained from numerical simulations (see Fig.5). Also in the
present case we can fit a power-lawtαn and show in Fig.11
the variation ofαn with n. The points lie on a curve which
is close to a straight line, so we also show the compensated
variationαn/n. In this representation, the deviations from
the Gaussian results become more noticeable.

In order to test the significance of the result, we also
carry out a similar analysis for randomized (or “surrogate”)
data (Schreiber and Schmitz, 2000; Wernik, 1996; Pécseli
and Trulsen, 1993), with results shown in Fig.12, includ-
ing also here the variation of the compensated exponents.
The surrogate data were obtained from the original data by
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Fig. 12. Results for the synthetic data, corresponding to Fig.11,
showing the variation of the exponent with the order of the struc-
ture function together with the corresponding variation of the com-
pensated exponent for varying order of the structure function, cor-
responding to Fig.11. The green shaded areas represent a statistical
scatter obtained by varying the seed of the random number genera-
tors for the surrogate data.

randomizing the phase information by a standard random
number generator. The power-spectrum of the resulting
dataset is then the same as the one obtained for the origi-
nal data, but the relative phases of the various Fourier com-
ponents are unrelated to the previous ones. Coherent struc-
tures that may be present in a signal will be characterized
by distinct phase relations of their Fourier components. The
randomization of the phases will consequently destroy such
possible coherent structures. These surrogate data have ap-
proximately Gaussian properties and the compensated

Fig. 13. Structure functions for the time interval 250.0–254.1 s on
the down-leg part of the flight.

exponentsαn/n should be approximately constant. The
properties of the surrogate data depend also on the seed of
the random number generators. In order to demonstrate the
effects of this dependence, we generated many sets of syn-
thetic data, and show the range of variability of the resulting
values ofαn by a green-shaded area in Fig.12. The thin red
line gives the average curve. The results in Fig.11 fall out-
side the shaded region for largen, but only marginally so.

We extended the analysis to include also a sequence from
the down-leg part of the flight in a time-interval 250.0–
254.1 s, where the overall fluctuation level is somewhat in-
creased as compared to the up-leg part (Krane et al., 2000;
Dyrud et al., 2006). In Fig. 13 we show the structure func-
tions for varying order as functions of temporal separations
for this down-leg time interval. The analysis of the expo-
nents have been carried out also for these data, as shown in
Fig. 14. In particular, Fig.15 displays the analysis of surro-
gate data, as in Fig.12. Also here, we show the statistical
scatter by a green shading. The values ofαn found in the
original dataset fall somewhat outside the shaded region, in
particular for largen. The slight narrowing of the green areas
in Figs.15 and12 are an artifact due to the finite number of
realizations of the random number generator seeds. For the
surrogate data, the statistical spread in the estimate onαn/n

increases nonlinearly withn.
The statistical significance of the results in Fig.13is better

for the down-leg part of the flight as compared to the results
shown in Fig.10. This observation is consistent with the
increase in the fluctuation level, which is expected to enhance
the phase couplings in the turbulent spectrum.
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Fig. 14. Variation of the exponent with the order of the structure
function, shown together with the corresponding variation of the
compensated exponent for varying order of the structure function,
corresponding to Fig.13. The time interval is 250.0–254.1 s on the
down-leg part of the flight.

4.1 Discussion of the analysis of the rocket data

Comparing the results from analyzing the data from the nu-
merical simulations with the corresponding analysis from
the rocket data we find somewhat similar results. The part
of the analysis of the simulation data where a compari-
son is appropriate (i.e. what concerns the potential differ-
ences) the structure functions have a subrange characterized
by a clear power law variation. The exponent varies sys-
tematically with the ordern of the structure function, but
the compensated exponent is not a constant. The electro-
jet turbulence is intermittent in the sense that it has mea-
surable differences from the results expected for Gaussian
random processes. This conclusion is supported by the
analysis of the surrogate data, emphasizing the statistical

Fig. 15. Results for the synthetic data, showing the variation of the
exponent with the order of the structure function together with the
corresponding variation of the compensated exponent for varying
order of the structure function. The results correspond to Fig.14.
The green shaded areas represent also here the statistical scatter ob-
tained by varying the seed of the random number generators for the
surrogate data.

significance of the results. It is however clear that the inter-
mittency effects found in the numerical simulations are more
evident than in the ionospheric data.

We emphasize one of the basic differences between
the data from the numerical simulations and those orig-
inating from the ROSE4-rocket: Apart from an initial
growth phase, the simulation data represent approximately
time-stationary and spatially homogeneous (but anisotropic)
plasma turbulence. The rocket data, on the other hand, rep-
resent long time-records obtained by instruments travers-
ing changing plasma conditions, with nontrivial differences
in the driving dc-electric field in the upleg and downleg
conditions.
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The approximate local isotropy of the smallest scales dis-
cussed in Sect.3.4 makes the rocket spin immaterial for the
present analysis.

5 Conclusions

We have demonstrated the presence of a power-law subrange
for the structure functions associated with the electrostatic
potential in turbulent plasma fluctuations for conditions ap-
propriate for the ionospheric E-region. We found clear in-
dications for intermittent fluctuations in the sense that the
power-law index for the structure functions of ordern devi-
ates from a simple n-proportionality. These features are sum-
marized in Figs.6, 7 and9. In order to explain the physical
reason for the intermittency, we give particular attention to
secondary instabilities developing on the gradients of larger
scale structures (Sudan, 1983). We note that such secondary
instabilities can be found also for other instabilities (Hal-
latschek and Diamond, 2003). These secondary instabilities
are, by nature, of a “bursty” appearance, requiring the pres-
ence of local large scale gradients, associated with a long
wavelength component. The presence of secondary instabil-
ities could be anticipated already by inspections of Eq. (6),
where the local gradients can be considered as being associ-
ated with large scale waves. As evident from the analysis, our
diagnostic is based on structure functions of the electrostatic
potential. Other related works (Tam et al., 2005) are based on
wavelet transforms. They studied the degree of intermittency
on different scales and found electric field fluctuations to be
more intermittent on smaller scales.

We can make a simple series expansion of the struc-
ture function by takingφ(r, t) ≈ φ(0, t) + ∇φ(r, t)|r=0 ·

r, and find, to the same approximation〈12φ(r)〉 ≈

〈(∇φ(r)|r=0 · r)2
〉, i.e. a variation with the square of

the separation coordinate. Similarly, we can argue
〈12φ(t)〉≈〈(∂φ(t)/∂t |t=0)

2
〉t2, see also the discussion in

Appendix B. The origin of time (as well as of position) vari-
ables is arbitrary because of the stationarity and homogene-
ity of the turbulence. We observe neither anyt2 nor anr2

dependence of the structure function, implying that the range
of validity of the previous approximation is very limited, and
most likely constrained by collisions. This collisional time-
scale is not resolved by the simulation, nor by the sampling
period of the rocket instruments. The relevant smallest length
scales are not resolved by the simulations.

We found several interesting features of the ionospheric
plasma turbulence. First of all, intermittency, as evidenced
by a lack of proportionality between the exponentsαn and
the ordern of the structure function, is much more evident for
ionospheric turbulence as compared to turbulence in neutral
incompressible flows (Anselmet et al., 1984). Forn≥4 there
is a significant difference between the fixed-position tempo-
ral intermittency (see Fig.6) and the one associated with the
fixed time spatial-difference variable (see Fig.9). On the

other hand, we note some overall similarity between the vari-
ation with the order parametern of the structure functions ob-
tained for the time varying potential difference between two
fixed positions (see Fig.7), and the structure function taken
at a fixed time with varying spatial separation (see Fig.9),
both cases referring to numerical simulations.

We find that the low frequency electrostatic turbulence in
the ionospheric E-region is likely to be strongly intermittent
for dc-electric field values that are common (i.e. in excess
of 50 mV/m), but on the other hand we also find that stan-
dard rocket probe set-ups, as illustrated in Fig.1, are not
well suited for recovering such features. Evidence for in-
termittency can be found, but only by detailed investigations
of the data, where the use of surrogate data can be an impor-
tant tool for assessing the statistical significance of the results
(Wernik, 1996).

The power-law exponentsαn with n=1 found in the simu-
lations are somewhat smaller than those for the rocket data,
even when we consider the down-leg part which is most
unstable, and the difference becomes more conspicuous for
n≥2. The simulations show slightly stronger intermittency
effects than the rocket data even when potential difference
signals are considered. Part of the explanation deals with the
sampling rate of the rocket data, which is too small to re-
solve the smallest time-scales. Similarly, the grid-resolution
and the finite time-step in the numerical simulations prohibit
the finest details of the space-time variations of the physi-
cal instability to be resolved completely. Considering these
shortcomings, we might argue that the magnitudes of the ex-
ponentsαn for the simulations and the rocket observations
for n=1 and 2 agree quite well.

The parameters chosen for the simulations are represen-
tative for the most unstable conditions on the down-leg part
of the rocket flight. If we average over the entire up-leg and
down-leg parts, we find average electric fields smaller than
the 70 mV/m used here. In spite of the strong fluctuation
levels, we find that the detection method based on potential
differences between two probes with a large separation gives
signals that are close to exhibiting characteristics of Gaus-
sian signals. We recover the strongly intermittent features
only by making a one point analysis of the data. Rockets
equipped as for the Rose campaign (Rose et al., 1992) are
very useful for detecting the bulk features of plasma condi-
tions and fluctuations, but inadequate as soon as finer details,
such as intermittency effects, of the E-region turbulence are
studied. Some rockets, the TOPAZ II and TOPAZ III rock-
ets for instance, has a somewhat different set-up (Vago et al.,
1992) and it may be worthwhile to investigate the signals
from these probes for studying intermittency effects.

Indirectly, our results thus emphasize the importance of
detailed numerical simulations and laboratory experiments
for the understanding of these instabilities. We note for in-
stance that for waves propagating exactly perpendicular to
the magnetic field (at zero aspect angle) we have one thresh-
old E0/B-velocity and at larger aspect angles we have a

Nonlin. Processes Geophys., 15, 847–862, 2008 www.nonlin-processes-geophys.net/15/847/2008/



L. Dyrud et al.: Structure functions and intermittency in plasma turbulence 859

slower one (Pécseli et al., 1989). The transition is due to
the change in electron dynamics, which is adiabatic for small
aspect angles and isothermal for larger angles (Pécseli et al.,
1989). The zero aspect angle is likely to be a part of the
earlier evolution of the amplitude. The full evolution of the
structures may be three dimensional and such that once the
amplitude has increased enough for the growth rate to slow
down through the nonlinear effects (St.-Maurice and Hamza,
2001), then shears and rotations can introduce a fast evolv-
ing aspect angle that destroys the structures while heating the
electrons (J.-P. St.-Maurice, private communications, 2008).
The largest amplitudes may be met when the phase speed
has slowed down to be the threshold speed, i.e. isothermal
ion-acoustic speeds at large aspect angles. Also the altitude
dependence of the collision frequency can introduce an im-
portant aspect angle effect on the properties of the non-linear
wave structures as they approach saturation. We find it un-
likely that these details can be recognized by an instrumen-
tation as the one shown in Fig.1, and foresee that numeri-
cal simulations can have an important role in this discussion.
The bulk of the rocket observations outlined here (although
not in all detail, as discussed byDyrud et al., 2006) can be
accounted for by a two-dimensional numerical simulation as
the one discussed in the present work.

We emphasize that the structure functions as obtained in
the present study refer to relatively small spatial and short
temporal scales. We might add a large amplitude, low fre-
quency, long wavelength component which will make any
signal significantly non-Gaussian, but such a wave will have
negligible consequences on the present structure functions,
by adding a slowly varying bias to our data.

Appendix A

The correlation functionρ is related to the power spec-
trum S of the fluctuations by the Wiener-Khinchin theo-
rem (Bendat, 1958). Considering the case with temporal
variables we haveρ=ρ(τ) whereτ=t1−t2. The frequency
power spectrum is then obtained by the cosine transform of
ρ(τ). Assuming that we have a range{τa :τb} of τ -values
whereρ≈1−Aτα we have

S(ω) =
∫ τa

0 ρ(τ) cos(ωτ)dτ+
∫

∞

τb
ρ(τ) cos(ωτ)dτ

+
∫ τb

τa
(1−Aτα) cos(ωτ)dτ

=
∫ τa

0 ρ(τ) cos(ωτ)dτ+
∫

∞

τb
ρ(τ) cos(ωτ)dτ

+
sin(ωτb)− sin(ωτa)

ω
−

A

ωα+1

∫ τbω

τaω
γ α cos(γ )dγ,

(A1)

with γ≡ωτ .
For ω-intervals where the three integrals in Eq. (A1)

are slowly varying withω, we have a power spectrum
S(ω)∼1/ωα+1 in that interval, relating the exponent in the
power-spectrum to the exponent in the structure function.

If τa is small, we can approximateρ≈1−
1
2ρ′′τ2 and

find, for instance, the first integral in Eq. (A1) to
be (ω2

+ρ′′(1−τ2
a ω2/2)) sin(τaω)/ω3

−ρ′′τa cos(τaω)/ω2,
which varies slowly withω whenω>1/τa . For the particular,
idealized, case whereρ has a “cusp” at the origin, we have
ρ≈1−Aτα for smallτ∈{0:τb}, and can simplify Eq. (A1) as

S(ω) =
∫

∞

τb
ρ(τ) cos(ωτ)dτ+

∫ τb

0 (1−Aτα) cos(ωτ)dτ

=
∫

∞

τb
ρ(τ) cos(ωτ)dτ+

sin(ωτb)
ω

−
A

ωα+1

∫ τbω

0 γ α cos(γ )dγ,

(A2)

where the second term is small whenα>1. The integrals
in the last terms of Eqs. (A1) and (A2) have analytical, but
lengthy, expressions. For instance, the integral in the last
term in Eq. (A2) is found to be slowly varying withω<1/τb.
The applicability of the approximations Eq. (A1) as well as
Eq. (A2) are restricted by the requirement thatS(ω)≥0. By
the dashed lines in Figs.11 and14 we give the slope of line
nα determined by fittingω−α−1 to the power-law spectrum
for largeω.

For spatial separations, we have similar expressions in
terms of wavenumbers (Hinze, 1975). If we, as an illustra-
tion, consider again the universal range of the second order
structure function in fully developed incompressible turbu-
lence, we have an∼(εr)2/3 variation in terms of the sepa-
ration r and the specific energy dissipation rateε, while the
wave-number power spectrum varies as∼ε2/3k−5/3, consis-
tent also with the foregoing estimates.

A spectral representation can be convenient from an ex-
perimental point of view and several studies of plasma tur-
bulence analyzed turbulent spectra. Results from laboratory
experiments that were particularly relevant for the E-region
fluctuations (Mikkelsen and Ṕecseli, 1980; Pécseli et al.,
1983) have been compared to spectra obtained from rocket
experiments (Krane et al., 2000).

Appendix B

The present appendix deals with the consequences of finite
time sequences for the estimates of the structure functions.
The analysis is limited by considering only a time-varying
signal. We consider this as an insignificant restriction.

Taking one record, we can obtain an estimate for the
n-th order structure functionEn=

1
T
∫ T

0 1nφ(t1, t1+τ)dt1,

where1φ(ta, tb)≡|φ(ta)−φ(tb)|, noting the implied simpli-
fying assumption that the integration intervalT is indepen-
dent ofτ . The estimateEn=En(T , τ ) is statistically vary-
ing over the ensemble of realizations (Bendat, 1958; Pécseli,
2000). It has an average value

〈En〉=
1

T

∫ T

0
〈1nφ(t1, t1+τ)〉dt1, (B1)

whereτ<T .
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We now assume that the process is time stationary. We
then have〈1nφ(t1, t1+τ)〉=〈1nφ(0, τ )〉≡9n(τ ) indepen-
dent oft1, giving 〈En〉=9n(τ ), since the integral in Eq. (B1)
becomes trivial. This result for〈En〉 will be used in the fol-
lowing.

The estimate En has a statistical variance

σn≡

√〈
(En−〈En〉)

2〉, which we can determine by

σ 2
n =

〈(
1
T
∫ T

0 1nφ(t1, t1+τ)dt1−9n(τ )
)2
〉

=〈QT (τ )〉−92
n(τ )

(B2)

where

〈QT (τ )〉 =

1

T 2

∫ T

0

∫ T

0

〈
1nφ(t1, t1+τ)1nφ(t2, t2+τ)

〉
dt1dt2 ≡

1

T 2

∫ T

0

∫ T

0
ℵn(τ, t1, t2)dt1dt2. (B3)

We again make use of the time stationarity of the pro-
cess, which impliesℵn(τ, t1, t2)=ℵn(τ, 0, t2−t1)≡ℵn(τ, ν),

with ν≡t2−t1. We also haveℵn(τ, ν)=ℵn(−τ, ν) and
ℵn(τ, ν)=ℵn(τ, −ν). We can now write

〈QT (τ )〉 =
1
T 2

∫ T
0

∫ T
0 ℵn(τ, 0, t2−t1)dt1dt2

=
1
T 2

∫ T
0

∫ t2
t2−T ℵn(τ, ν)dνdt2.

(B4)

Reversing the order of integration (Bendat, 1958) we readily
find

〈QT (τ )〉 =
1
T 2

∫ 0
−T

∫ T +ν

0 ℵn(τ, ν)dνdt2

+
1
T 2

∫ T
0

∫ T
t2

ℵn(τ, ν)dνdt2.
(B5)

We now note that∫ 0
−T

∫ T +ν

0 ℵn(τ, ν)dνdt2=
∫ T

0

∫ T −ν

0 ℵn(τ, ν)dνdt2,

and consequently have〈QT (τ )〉= 2
T 2

∫ T
0 (T −ν)ℵn(τ, ν)dν,

which gives

σ 2
n=

2

T 2

∫ T

0
(T −ν)

(
ℵn(τ, ν)−92

n(τ )
)

dν. (B6)

We used 2
T 2

∫ T
0 (T −ν) dν=1.

The expression in Eq. (B6) assumes knowledge of
ℵn(τ, ν), which is not necessarily available. We can
consider some special limiting cases. First we as-
sume that τ is small, so we can make the ap-
proximation1φ(ta, tb)≡|φ(ta)−φ(tb)|≈|φ′

a| |ta−tb|, where
φ′

a≡dφ/dt |t=ta . In the limit of smallτ we have9n(τ ) ≈

〈|φ′
|
n
〉τn, where we here can omit the subscript onφ′ be-

cause of the assumed time-stationarity of the process. Simi-
larly, we haveℵn(τ, ν)≈〈|φ′

1|
n
|φ′

2|
n
〉τ2n for smallτ . Conse-

quently, we have for this limiting case

σ 2
n=

2τ2n

T 2

∫ T

0
(T −ν)

(
〈|φ′

1|
n
|φ′

2|
n
〉−〈|φ′

|
n
〉
2
)

dν, (B7)
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Fig. B1. Variation of the normalized varianceσn/
(
τn

〈|φ′
|
2n

〉
1/2
)

with T /τc. We used an exponential model for the correlation func-
tion for |φ′

|.

where〈|φ′

1φ
′

2|
n
〉 implicitly depends onν≡t2−t1. For large

ν whereφ1 and φ2 can be assumed to be statistically in-
dependent, we have〈|φ′

1|
n
|φ′

2|
n
〉≈〈|φ′

1|
n
〉〈|φ′

2|
n
〉=〈|φ′

|
n
〉
2,

so the integrand vanishes in this limit. Atν≈0 we have
〈|φ′

1|
n
|φ′

2|
n
〉≈〈|φ′

|
2n

〉≥〈|φ′
|
n
〉
2 by the Schwartz-Cauchy in-

equality.
The result Eq. (B7) demonstrates that the root-mean-

square errorσn increases with time separation asτn for con-
stantT . This observation can be used for fixedτ and varying
n, or vice versa.

In order to illustrate the variation withT , we postulate
a simplified model of the correlation function for|φ′

|
n in

the formρn(ν)≈〈|φ′
|
2n

〉exp(−|ν|/τc)+〈|φ′
|
n
〉
2, with τc be-

ing a correlation time, and use this model in Eq. (B7). The
proposed correlation function will be accurate for the case
where the potential derivative|φ′

| is a random Gaussian
Markov process with non-zero mean (Bendat, 1958; Pécseli,
2000). In Fig. B1 we show the variation of the normalized
varianceσn

/
τn

〈|φ′
|
2n

〉
1/2 with varying normalized record

length,T /τc. It is interesting that the result shown in Fig.B1
is independent ofn for this model. We find that the signal
to noise ratio is significantly improved whenT is increased
from zero, but an increase from 10T /τc to 20T /τc gives
a comparatively much smaller improvement. As far as the
rocket data are concerned, we have approximately 10 s of
data for upleg and a similar time interval for the downleg con-
ditions, to be compared with typically 30–50 ms correlation
times (Krane et al., 2000; Dyrud et al., 2006), which is much
shorter than the available record length. For the numerical
simulations, we have shorter time durations in comparison,
but have here 25 records available for averaging.
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The present analysis assumes smallτ . For arbitraryτ we
have to model the entire variation ofℵn(τ, ν). This will not
be discussed here. A discussion of the uncertainty of the
estimate of structure functions for the spatial variations of
the potential at a given fixed time can be carried out as shown
before and need not be discussed here.

The error estimates discussed in this appendix assumes
that we have one time record available. In the numerical
simulations discussed in Sect.2 we had 25 such records
of equal lengths. The estimateEn can be generalized as
En=

1
N

∑N
m=1

1
T
∫ T

0 1nφm(t1, t1+τ)dt1, with m being the
label of the record. In our case we haveN=25. If we can
assume the N records to be statistically independent (in prac-
tice by assuming that they are obtained at positions separated
by more than a correlation distance), it is relatively straight-
forward to generalize the foregoing analysis. We find that the
errorσn scales as∼1/

√
N .

The present appendix assumes continuous functions,
where we in our foregoing analysis had sampled space-time
varying functions. It is however evident even from the
present appendix that the number of samples alone can not
determine the accuracy of an estimate. If we have a very
dense sampling within a time sequence shorter than the cor-
relation time, our estimate will be inaccurate under all cir-
cumstances. It is important to distinguish the number of
samples of1φ(ta, tb)≡|φ(ta)−φ(tb)| obtained from differ-
ent and statistically independent realizations, and the number
of time samples in one record.

Acknowledgements.This work was in part supported by the
Norwegian National Science Foundation. The work by L. Dyrud
and M. Oppenheim was partially supported by US National
Science Foundation Grant ATM-0442075. The Rocket and Scatter
Experiment (ROSE) was performed in the framework of the
German national sounding rocket program with international
participation. It was primarily funded by the Bundesministerium
für Forschung und Technologie (BMFT) and was managed by
the Deutsche Gesellschaft für Luft- und Raumfahrt (DLR). One
of the authors (HLP) thanks Jean-Pierre St.-Maurice for valuable
communications.

Edited by: A. C. L. Chian
Reviewed by: two anonymous referees

References

Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A.:
High-order velocity structure functions in turbulent shear flows,
J. Fluid Mech., 140, 63–89, 1984.

Bahnsen, A., Ungstrup, E., Fälthammer, C.-G., Fahleson, U., Ole-
sen, J. K., Primdahl, F., Spangslev, F., and Pedersen, A.: Elec-
trostatic waves observed in an unstable polar cap ionosphere, J.
Geophys. Res., 83, 5191–5197, 1978.

Bendat, J. S.: Principles and Applications of Random Noise Theory,
John-Wiley & Sons, New York, 431 pp., 1958.

Birdsall, C. and Langdon, A.: Plasma Physics via Computer Simu-
lation, Adam Hilger, Bristol, 479 pp., 1991.

Boedo, J. A., Rudakov, D. L., Moyer, R. A., McKee, G. R., Colchin,
R. J., Schaffer, M. J., Stangeby, P. G.and West, W. P., Allen, S. L.,
Evans, T. E., Fonck, R. J., Hollmann, E. M., Krasheninnikov, S.,
Leonard, A. W., Nevins, W., Mahdavi, M. A., Porter, G. D., Ty-
nan, G. R., Whyte, D. G., and Xu, X.: Transport by intermittency
in the boundary of the DIII-D tokamak, Phys. Plasmas, 10, 1670–
1677, 2003.

Bruno, R. and Carbone, V.: The solar wind as a turbulence lab-
oratory, Living Reviews in Solar Physics, 2, available at:http:
//www.livingreviews.org/lrsp-2005-4, 2005.

Buneman, O.: Excitation of field aligned sound waves by electron
streams, Phys. Rev. Lett., 10, 285–287, 1963.

Chandrasekhar, S.: The theory of turbulence, Journal Madras Uni-
versity, B 27, 251–275, 1957.

Chang, T. and Wu, C.-C.: Rank-ordered multifractal spec-
trum for intermittent fluctuations, Phys. Rev. E, 77, 045 401,
doi:10.1103/PhysRevE.77.045401, 2008.

Chen, F. F.: Spectrum of low-β plasma turbulence, Phys. Rev. Lett.,
15, 381–383, 1965.

Dyrud, L., Krane, B., Oppenheim, M., Pécseli, H. L., Schlegel,
K., Trulsen, J., and Wernik, A. W.: Low-frequency electrostatic
waves in the ionospheric E-region: a comparison of rocket ob-
servations and numerical simulations, Ann. Geophys., 24, 2959–
2979, 2006

Dyrud, L. P., Oppenheim, M. M., Close, S., and Hunt, S.: Interpre-
tation of non-specular radar meteor trails, Geophys. Res. Lett.,
29, 2012, doi:10.1029/2002GL015953, 2002.

Farley, D. T.: Two-stream plasma instability as a source of irregu-
larities in the ionosphere, Phys. Rev. Lett., 10, 279–282, 1963.

Fejer, B. G. and Kelley, M. C.: Ionospheric irregularities,Rev. Geo-
phys., 18, 401–454, 1980.

Fejer, B. G., Providakes, J., and Farley, D. T.: Theory of plasma
waves in the auroralE region,J. Geophys. Res., 89, 7487–7494,
1984.
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Kintner, P. M., Ḧaggstr̈om, I., Hedberg, A., Opgenoorth, H.,
Holmgren, G., McNamara, A., Wallis, D., Whalen, B., Yau,
A., Watanabe, S., Creutzenberg, F., Williams, P., Nielsen, E.,
Schlegel, K., and Robinson, T. R.: The E region rocket/radar
instability study (ERRIS): scientific objectives and campaign
overview, J. Atmos. Terr. Phys., 54, 779–808, 1992.

Rinnert, K.: Plasma waves observed in the Auroral E region ROSE
campaign, J. Atmos. Terr. Phys., 54, 683–692, 1992.

Rogister, A. and D’Angelo, N.: Type II irregularities in the equato-
rial electrojet, J. Geophys. Res., 75, 3879–3887, 1970.

Rollefson, J. P.: On Kolmogorov’s theory of turbulence and inter-
mittency, Can. J. Phys., 56, 1426–1441, 1978.

Rose, G., Schlegel, K., Rinnert, K., Kohl, H., Nielsen, E., Dehmel,
G., Friker, A., Lubken, F. J., L̈uhr, H., Neske, E., and Steinweg,
A.: The ROSE project – scientific objectives and discussion of
1st results, J. Atmos. Terr. Phys., 54, 657–667, 1992.

Schreiber, T. and Schmitz, A.: Surrogate time series, Physica D,
142, 346–382, 2000.

Shkarofsky, I. P.: Turbulence in Fluids and Plasmas, “Analytic
forms for decaying turbulence functions”, Polytechnic Press,
Brooklyn, NY, USA, chap. 21, 1969.

St.-Maurice, J.-P. and Hamza, A. M.: A new nonlinear approach
to the theory of E region irregularities, J. Geophys. Res., 106,
1751–1759, 2001.

St.-Maurice, J.-P., Cussenot, C., and Kofman, W.: On the useful-
ness of E region electron temperatures and lower F region ion
temperatures for the extraction of thermospheric parameters: a
case study, Ann. Geophys., 17, 1182–1198, 1999

Sudan, R. N.: Unified theory of type-I and type-II irregularities in
the Equatorial electrojet, J. Geophys. Res., 88, 4853–4860, 1983.

Tam, S. W. Y., Chang, T., Kintner, P. M., and Klatt, E.: Intermit-
tency analyses on the SIERRA measurements of the electric field
fluctuations in the auroral zone, Geophys. Res. Lett., 32, L05109,
doi:10.1029/2004GL021445, 2005.

Tu, C. Y. and Marsch, E.: MHD structures, waves and turbulence
in the Solar-wind-observations and theories, Space Sci. Rev., 73,
1–210, 1995.

Vago, J. L., Kintner, P. M., Chesney, S. W., Arnoldy, R. L., Lynch,
K. A., Moore, T. E., and Pollock, C. J.: Transverse ion accel-
eration by localized lower hybrid waves in the topside auroral
ionosphere, J. Geophys. Res., 97, 16 935–16 957, 1992.

Wernik, A. W.: Methods of data analysis for resolving nonlinear
phenomena, in: Modern Ionospheric Physics, edited by Kohl,
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