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Abstract. In meteorological and oceanological studies the
classical approach for finding the numerical solution of the
regional model consists in formulating and solving a Cauchy-
Dirichlet problem. The boundary conditions are obtained by
linear interpolation of coarse-grid data provided by a global
model. Errors in boundary conditions due to interpolation
may cause large deviations from the correct regional solu-
tion. The methods developed to reduce these errors deal with
continuous dynamic assimilation of known global data avail-
able inside the regional domain. One of the approaches of
this assimilation procedure performs a nudging of large-scale
components of regional model solution to large-scale global
data components by introducing relaxation forcing terms into
the regional model equations. As a result, the obtained solu-
tion is not a valid numerical solution to the original regional
model. Another approach is the use a four-dimensional vari-
ational data assimilation procedure which is free from the
above-mentioned shortcoming. In this work we formulate
the joint problem of finding the regional model solution and
data assimilation as a PDE-constrained optimization prob-
lem. Three simple model examples (ODE Burgers equa-
tion, Rossby-Oboukhov equation, Korteweg-de Vries equa-
tion) are considered in this paper. Numerical experiments
indicate that the optimization approach can significantly im-
prove the precision of the regional solution.

1 Introduction

Studying and modelling different physical processes fre-
quently require to solve Cauchy-Dirichlet problems. In
geophysical investigations, for solving the Cauchy-Dirichlet
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problem, numerical methods are usually employed. The dis-
crete form of equations and initial and boundary values at
the points of the grid are traditionally used in these meth-
ods. The problem is generally solved by means of a proper
numerical scheme. However, both initial and boundary val-
ues, which are obtained from measurements or other model
outputs, contain errors, which can reach 30% from the true
values.

For some problems, the solution can be very sensitive to
these errors. On the other hand, some values of the sought
solution at some points of the inner region, along with ini-
tial and boundary data, are often available. Of course, these
additional data also have errors. The question arises: is it
possible to improve the accuracy of the model solution of
the Cauchy-Dirichlet problem by using these additional data?
For some well-known equations of mathematical physics and
dynamic meteorology we will show here that the use of ad-
ditional information on the solution values within the inte-
gration region can noticeably improve the accuracy of the
solution.

Improving solution accuracy of the Cauchy-Dirichlet
problem is extremely important in meteorology because this
is the problem that arises in regional weather forecast. A
distinction between two types of atmospheric forecast mod-
els needs to be done. Global models deal with forecast for
the whole earth, and regional models produce a forecast for
a limited area. One of the basic differences between these
model types is the grid resolution. Global models use a low
resolution space grid and regional models operate on a more
dense mesh. The reason for the existence of these two model
types is, basically, computational. Even nowadays it is not
possible in acceptable time period to integrate global models
with the detailed physics and with the space resolution of re-
gional models. It is worth noticing that global and regional
models include different physical processes. Global models
describe large-scale slow-time varying processes, with time
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period of more than 3 h and space scale larger than 60 km.
Regional models can simulate the evolution of mesometeo-
rological fast processes (small cyclones, storms, tornados),
with time period of less than 3 h and spatial extent between 2
and 60 km.

These models are described mathematically by systems of
nonlinear partial differential equations. To solve the system
corresponding to a global model we need only the initial con-
dition and bottom and upper boundary conditions, since the
domain is the whole sphere. To get the solution of a sys-
tem corresponding to a regional model we also need lateral
boundary conditions. The lateral boundary conditions for a
regional model are obtained from the global model using in-
terpolation. These conditions do not provide information on
the structures of the scales smaller than the size of the mesh
of the global model. In fact, global models do not distinguish
a local meteorological phenomenon of characteristic length
scale smaller than 30 km, because the space step is greater
than this value. On the other hand, the parts of space and time
spectrums of a regional model solution which correspond to
large-scale structures and long-period processes are in worse
accordance with observations than those of a global model.
This is related to the fact that a regional model does not have
the information about the phenomena that occur outside its
domain.

For example, the weakly regular, low frequency oscilla-
tions of the sea surface temperature of tropical Pacific in
central part and near the Peru coast, known as El Niño and
La Niña events, have a large influence on the climate of the
tropical and subtropical regions. The circulation regimes
in these regions noticeably differ during these events. Re-
gional models, driven, for example, by the Reanalysis data,
do not reproduce with confidence this distinction between the
El Niño and La Nĩna regimes (Seth et al., 2007; Gershunov
et al., 2000). The reason of this inconsistency is, probably,
poor space and time data resolution on the regional model
boundaries. Mathematically, this means that the solution of
this boundary value problem is strongly sensitive to errors on
the boundaries (Denis, Laprise and Caya, 2003; Diaconescu,
Laprise and Sushama, 2007).

The spectral nudging technique is one of methods pro-
posed to use additional data from the inner domain in or-
der to reduce boundary error influence and to improve the
solution of an initial-boundary value problem (Waldron et
al., 1996; Storch et al., 2000; Kanamaru and Kanamitsu,
2005). This method supposes incorporation of the largest
internal modes of some meteorological variables from ob-
servations or from a driving model into the regional model
solution. However, the use of the spectral nudging tech-
nique requires inserting additional forcing terms into the
evolution equations of a regional model. Hence, the original
model is corrupted and its new solution may not be close to
the correct regional solution.

Another method which is aims to avoid strong sensitivity
of regional model solution with respect to the boundary con-
dition errors is based on four-dimensional variational (4D-
Var) data assimilation procedures (Le Dimet and Talagrand,
1986; Rabier, 2005; Lorenc and Payne, 2007). In the papers
of Leredde et al.(1998), Zou and Kuo(1996), Lu and Brown-
ing (2000) andGriffin and Thomson(1996) optimization ap-
proach is applyed to restore boundary conditions using data
within spatial model domain. 4D-Var performs an adjust-
ment of the model trajectory with all available data (obser-
vations or global model data) taken explicitly at the precise
time and thus the obtained model solution is maximally pos-
sibly consistent with available observations.

In this work we apply the optimization theory to the 4D-
Var data assimilation procedure. Firstly, in Sect. 2 we give
the formulation of the Cauchy-Dirichlet problem for a re-
gional model and the general formulation of an optimization
problem, and we show how the latter (with the accessibility
of some additional conditions) can be applied for finding the
solution of the former. In Sect. 3, for some simple equations,
we show how the optimization approach can be used to ob-
tain a solution of the initial boundary value problem. The
equations considered here include the ordinary differential
equation of Burgers, the one-dimensional linearized Rossby-
Oboukhov partial differential equation, and the partial differ-
ential equation of Korteweg – de Vries. We also compared
the sensitivity of the solutions, obtained by the traditional
and the new approach with respect to the errors in the bound-
ary conditions. In Sect. 4 we discuss the obtained results.
Appendix A provides more detailed description of the opti-
mization procedure.

2 Numerical solution of regional problems

2.1 Classical approach

We formulate here the Cauchy-Dirichlet problem as it is
stated for regional weather forecast. To find a unique so-
lution for the regional model equations we need the lateral
boundary condition for the entire time interval on which the
solution is required. Usually, these data are obtained from
the solution of an outer (global) model. We do not know the
exact solution of the outer model (otherwise, our problem
would have been already solved), but we can find its approx-
imate solution in the discrete form:

1t {9}=Fd ,

9(x, 0)=Yglobal(x),

9(x, t) |x∈B =9b(x, t).

(1)

Here1t is the evolution operator of the discrete model,9

is the vector of the prognostic functions,Fd are discrete
external forces,Yglobal is the initial condition,B are upper,
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Fig. 1. Solution ofy′′=0 using classical approach.

lower (and maybe lateral) boundaries of the global model,
and9b is the boundary condition. Let9sol be the solution of
(1). It is supposed that this solution is sufficiently close to the
solution of hypothetical ideal model which exactly describes
the real atmospheric processes.

The regional model is located in a closed area with bound-
ary S and its discrete representation can be written in the
same manner as for the global model:

δt {G}=Frd ,

G(x, 0)=Ylocal(x),

G(x, t) |x∈S =Gs(x, t),

(2)

whereδt is the evolution operator of the discrete regional
model,G is the vector of the prognostic functions andFrd
are discrete external forces,Ylocal is the initial condition, and
Gs is the boundary condition.

The traditional approach to seek the solution of (2) con-
sists in the interpolation of required data from9sol on the
regional grid for forming the boundary and initial condi-
tions, and then applying any numerical method to solve the
model equations. However, as we have mentioned above, the
boundary conditions contain errors which can strongly cor-
rupt the solution.

The use of the information obtained from the solution of
the global model equations9sol on the values inside the re-
gional model domain for all available time moments can help
to overcome this difficulty.
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Fig. 2. Solution ofy′′=0 using optimization approach.

2.2 Optimization approach

As mentioned in the previous section, in the classical ap-
proach we obtain the boundary conditions for the regional
model by means of interpolation of the coarse grid solution
provided by the global model. Essentially, interior points
also provided by the global model are discarded. The op-
timization approach consists of taking not only close-to-the
boundary points on the global grid, but also global solu-
tion values at interior points. A trivial example will clar-
ify this procedure and show its plausibility. Assume that
(x1, y1), . . ., (xm, ym) are “global model” observations and
that we want to fit the “local model” defined byy′′=0. The
“classical approach” would consist in taking, as solution, the
line that joins (x1, y1) with (xm, ym). The optimization ap-
proach consists in finding the regression line that considers
all the points. If the data were free of errors, both results
would be identical, but, in the presence of errors, the differ-
ence may be dramatic. In Figs.1 and2 we show an example
where the data (xi, yi+ei), i=1, . . ., m, corresponding to the
exact solutiony=2x+1, were randomly perturbed, whereei
represents a±30% ofyi . It is easy to see that only the op-
timization approach provides a reasonably accurate solution.
We claim that the same situation occurs in more complicate
mathematical environments.

The required solution of the regional model must satisfy
the regional-model differential equations and the observed
initial conditions. Therefore, the regional model solution
must satisfy the constraints

δt {G}−Frd=0

G(x, 0)−Ylocal(x)=0. (3)
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Among the set of functions that satisfy these constraints
we seek the one that minimizes the distance to the observed
points9sol produced by the global model. Therefore, we
have the optimization problem:

Minimize d(G, 9sol)

subject to (s.t.)δt {G}−Frd=0,

G(x, 0)−Ylocal(x)=0.

(4)

Hered(:, :) is the objective function, which represents the
distance betweenG and9sol. In other words, we want to
minimize the distance between the regional and the global
model solutions under constraints that say that the regional
model equations and the initial condition are satisfied. Note
here that, when we talk about the solutionG, we bear in mind
the vectorG=G(x, t) in a grid space of (x, t) – coordinates,
wheret corresponds to discrete time points of the regional
model integration andx to discrete mesh points in the re-
gional model area.

For a long integration time, the dimension of the mini-
mization problem can become too large, making it imposible
to be solved. Then, instead of solving it as a unique prob-
lem, we split it in several minimization problems as follows.
The time is divided in periods and, for each period, the re-
lated minimization problem has an appropriate dimension.
The model is solved by means of the minimization problem
in each period. For the first problem, the initial condition is
taken from the “observations”. For the second problem, the
initial condition is the solution of the previous problem (first
problem) in the lastest time level. And so on the minimiza-
tion problems are solved until the last period.

The use of optimization algorithms for analysis and assim-
ilation in meteorology has been considered by many authors.
Modern optimization approach methods were discussed in
the survey ofRabier(2005). One of the first and fundamen-
tal papers which placed the basis of application of optimiza-
tion theory to meteorology and presented some algorithms
for the realization of this method is the paper ofLe Dimet
and Talagrand(1986). This paper also includes detailed ref-
erences on the previous works. The general idea of opti-
mization approach is, always, to find the solution of a given
model which is closest to a set of “observations”. In our
case, the “observations” must be interpreted as the solution
of the global model. In (Le Dimet and Talagrand, 1986) the
authors discuss, among other methods, the use of the Aug-
mented Lagrangian methodology for solving the associated
minimization problem. By means of Augmented Lagrangian
methods the original problem is solved as a sequence of un-
constrained optimization problems where the objective func-
tion includes information on the constraints. This approach
is very adequate in general optimization for large scale prob-
lems in which the Jacobian information is badly structured,

so that sparse matrix techniques for solving linear systems
are hard to employ. The main disadvantage of the Aug-
mented Lagrangian method is that the final convergence
speed uses to be poor, although acceleration techniques
have been recently introduced (?Birgin and Mart́ınez, 2008).
However, acceleration techniques are based on the direct
consideration of the optimality (Euler-Lagrange) conditions
of the system, and may be used in the cases in which sparsity
can be handled. In many optimization problems the Euler-
Lagrange nonlinear system is suitably structured and can be
solved by means of Newtonian or quase-Newton techniques
(Mart́ınez, 2000). As a matter of fact, our first attack to the
problems reported in this paper was by means of the Aug-
mented Lagrangian, using the modern software Algencan
(Andreani et al., 2007, 2008) In spite of being successful in
obtaining solutions, we found that computer time was unac-
ceptable and, so, we switched to the Newtonian technique.

In the paper ofLe Dimet and Talagrand(1986) a differ-
ent optimization approach is suggested that, in terms of our
problem, may be formulated as “Find the initial and bound-
ary conditions that make the solution of the PDE model to
be closest to the observations”. In this way, the objective
function of the problem has only the initial and boundary
conditions as independent variables, being therefore the di-
mension of the domain much smaller. However, the objec-
tive function computation involves the solution of the PDE
system in this case and the derivatives with respect to the
independent variables are generally necessary for its mini-
mization. Fortunately, the technique based on the Adjoint
System (Errico, 1997; Fisher et al., 2006) (which involves
solving the linearized form of the model after computing the
state variables) may be used to compute the gradient. This
technique is very well known in Control problems and is
generally effective. Moreover, it has inspired the so called
Reverse Mode for Automatic differentiation of general func-
tions currently used in Automatic Differentiation (AD) pack-
ages (Griewank, 1989; Birgin and Evtushenko, 1998). In
their survey Le Dimet and Talagrand mention on the pos-
sible inaccuracy introduced by the disagreement between the
continuous and the discretized form of the model, and that
this inaccuracy can be removed using the Adjoint technique
directly on the discretized model, as AD packages do. In
our context, the disadvantage of this technique relies on the
necessity of completely solving the model, for given bound-
ary and initial conditions, which requires astablePDE tech-
nique. Stability of the PDE techniques, on the other hand,
is linked to the size of the time step, which needs to be,
many times, unacceptably small. On the other hand, as we
will see, small time steps are not required when one uses
the Euler-Lagrange system, independently of the numerical
scheme used to solve the PDE.

Nonlin. Processes Geophys., 15, 815–829, 2008 www.nonlin-processes-geophys.net/15/815/2008/



F. I. Pisnitchenko et al.: Continuous dynamic assimilation of the inner region data 819

3 Examples of application of the optimization method
to the problems of small dimension

3.1 Burgers’ equation

We will exhibit an application of the optimization method to
problems of small dimension. As a first example we consider
the supersensitive boundary value problem for the Burgers’
equation (Bohé, 1996), used for describing wave processes
in acoustics and hydrodynamics:

εx′′
= −xx′,

x(0) = −1, x(T )=1, (5)

wherex is velocity andε is the viscosity coefficient.
To get the analytical solution of this problem it is enough

to integrate the left and right sides of the Eq. (5) overt :

εx′
= −

x2
+c

2
.

Then, after rewriting the foregoing formula as

ε
dx

x2 + c
= −

dt

2

and integrating the left side overx and the right one overt ,
we can write the Burgers’ equation solution as

x(t) =



√
−c

(
1+ exp

(t+C2)
√

−c

ε

)
1 − exp

(t+C2)
√

−c

ε

, forc ≤ 0,

√
c tan

(
(t + C2)

√
c

2ε

)
, for c > 0.

The graph of the analytical solution for Eq. (5) with the
boundary conditionx(0)= − 1, x(1)=1 andε=0.05 is pre-
sented in Fig.3 (black line).

Let us choose several points from the analytical solution
and slightly perturb them (till 5% from its real value). This
procedure models the boundary and inner domain data con-
taining errors. Using these perturbed data for the boundary
pointsx(0), x(1) we solve the boundary problem (5) apply-
ing the shooting method. For the step1t=0.01 the numerical
solution is presented in Fig.3 by red line.

As one can see, small perturbations of the boundary condi-
tion result in large errors in the solution. Now, let us solve the
problem using optimization formulation (4) with additional
information about the perturbed solution on the points in-
side the domain, considering the same discretization as when
solving (5) by the traditional shooting method, with the same
1t=0.01.
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Fig. 3. Analitical solution (black line), usingx(0)=−1, x(1)=1 as
boundary condition, and numerical solution (red line), using 5%
perturbed boundary condition (circles), of Burgers’ equation.

Figure4 shows the solutions of the optimization problem
for the three cases when we used 3, 4 and 5 points of the
perturbed solution, respectively. One can see that all these
solutions correspond better to the analytical one, than the so-
lution obtained by the traditional approach. In the case of
using the three additional inner points, the optimization solu-
tion and the analytical solution almost coincide. This exam-
ple shows that there are dynamical systems in which small
perturbations (≤5%) in the boundary conditions can lead to
great errors in the final solution. However, if some additional
information exists, that information can be used to improve
significantly the solution, applying optimization.

3.2 Rossby-Oboukhov one-dimensional equation

The two-dimensonal non-linear Rossby-Oboukhov equation
describes the evolution of potential vorticity in barotropic at-
mosphere (Oboukhov, 1949). In this example we consider
the one-dimensional linear equation obtained during the lin-
earization procedure of the Rossby-Oboukhov equation.

∂

∂t

(
∂2

∂x2
−

1

l20

)
ψ+β

∂ψ

∂x
+U

∂3ψ

∂x3
=0. (6)

Here ψ is the stream function,f0=10−4 s−1 is mean
value of Coriolis parameter,β=df/dy=1.6·10−11 s−1 m−1

is mean value of meridional gradient of Coriolis parameter,
l0=c0/f0=3·106 m is the Oboukhov scale,c0 is the sound
velocity, andU is the zonal wind, which varies between 0
and 30 m/s.
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Fig. 4. Numerical solution of Burgers’ equation using optimization
formulation (red line) for three cases: 3 data points (upper panel);
4 data points (middle); and 5 data points (lower panel). Black line
corresponds to analytical solution.

The periodic boundary condition is:

ψ(0, t)=ψ(L, t), (7)

where L is the size of integration area (we shall use
L=3·107 m). The solution of Eq. (6) can be written as

ψ(x, t)=

N∑
n=1

An sin[kn(x−cnt)+φn], (8)

where

cn=U−
β+U/l20

k2
n+1/l20

, (9)

kn=
2πn

L
,

andAn andφn are defined by the initial condition (Rossby,
1939).

For finding the numerical solution it is convenient to
rewrite the equation in nondimensional form. We choose the
following scales:S=6 ·106 m, T=S/V =6·105 s, V =10 m/s.
The dependent and independent nondimensional variables
are defined as follows:

x̃=
x

S
, t̃=

t

T
, ψ̃=

T

S2
ψ. (10)

Equation (6) may be written in nondimensional form as

∂

∂t̃

(
∂2

∂x̃2
−

1

b2

)
ψ̃+β0

∂ψ̃

∂x̃
+U0

∂3ψ̃

∂x̃3
=0, (11)

where1
b
=
S
l0

=2,β0=
βS2

V
=57.6 andU0=

U
V

∈[0, 3].
For finite-difference discretization we use the uncondition-

ally stable scheme with truncation errorO(1x2, 1t2) given
by

1

1t

(
ψ̃k+1
i+1 −2ψ̃k+1

i +ψ̃k+1
i−1

1x2
−
ψ̃ki+1−2ψ̃ki +ψ̃

k
i−1

1x2
−

1

b2

(
ψ̃k+1
i −ψ̃ki

))
+
β0

2

(
ψ̃k+1
i+1 −ψ̃k+1

i−1

21x
+
ψ̃ki+1−ψ̃

k
i−1

21x

)
+

U0

2

(
ψ̃k+1
i+2 −2ψ̃k+1

i+1 +2ψ̃k+1
i−1 −ψ̃k+1

i−2

21x3
+

ψ̃ki+2−2ψ̃ki+1+2ψ̃ki−1−ψ̃
k
i−2

21x3

)
=0

At first, we generate a specific analytical solution (8) con-
taining 85 modes. Figure5 shows this solution fort=0.

Note that in the figures we use dimensional values, but
in the numerical computations all variables are nondimen-
sional.
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Fig. 5. Analytical solution of Rossby-Oboukhov equation on peri-
odic domain [0,L] at t=0 h with 85 modes.

1.8 1.9 2 2.1 2.2 2.3 2.4

x 10
7

−4

−3

−2

−1

0

1

2

3

4
x 10

9

x (m)

ψ
 (

m
2 /s

)

 

 

analytical solution
numerical solution

Fig. 6. Analytical (black line) and numerical (red line) Cauchy-
Dirichlet problem solution of Rossby-Oboukhov equation, with ex-
act boundary condition, att=96 h. 1x=10 km,1t=200 s. CPU
time=0.8 s.

As a local model we consider the Eq. (11), with initial and
boundary conditions, defined over[a, b] [0, L] (closed in-
terval smaller than the entire domain). For initial and bound-
ary conditions we will use our specific form (see Fig.5)
of global model solution (8). In order to be closer to real
problems of atmospheric modelling we take the analytical
solution in the points of the coarse grid with space step
1x=200 km and time step1t=2 h, and perturb its values ran-
domly in such a way that a perturbation can reach till 30% of
its exact value.

Primarily we find the solution of the Cauchy-Dirichlet
problem for our local model. As local domain we take
the interval [1.8·107, 2.4·107

] m (6000 km of length) in-
side the global model interval [0, L]. For the first
reference experiment the initial and boundary conditions
were taken from the exact analytical solution (8). Requiring
that the numerical solution with the exact initial and bound-
ary condition have to nearly coincide with the analytical solu
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Fig. 7. Numerical Cauchy-Dirichlet problem solution of Rossby-
Oboukhov equation (red line) with boundary condition obtained
from 30% perturbed global model values (circles) att=48 h (upper
panel), and att=96 h (lower panel).1x=10 km,1t=200 s. CPU
time=0.8 s. Black line corresponds to the reference analytical refer-
ence solution.

tion,we choose as the maximal possible values of the space
and time steps,1x=10 km and1t=200 s, respectively. To
obtain the numerical solution for 96 h, showed in Fig.6, it is
demanded 0.8 s of CPU time.

In the next experiments, Fig.7, the perturbed analytical
solution on the coarse grid was used for formation of the
boundary conditions.

One can see that for the Cauchy-Dirichlet problem the nu-
merical solution rather quickly diverges from the analytical
solution due to the errors of the linear interpolation proce-
dure in the border points. After 96 h, the perturbed boundary
solution has very faint resemblance with the analytical one.

In the second series of experiments we applied the opti-
mization method to the local model. For this calculation we
used all available global data (perturbed analytical solution
on coarse grid) in the inner local domain. Figure8 shows the
results of calculations. It is important to note that, as in previ-
ous experiments, we chose the steps in the space1x=100 km
and in the time1t=3600 s to be as large as possible.
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Fig. 8. Numerical solution of Rossby-Oboukhov equation by op-
timization problem (red line) using 30% perturbed global model
values (circles) att=48 h (upper panel), and at 96 h (lower panel).
1x=100 km,1t=3600 s. CPU time=0.5 s. Black line corresponds
to the reference analytical solution.

In the optimization approach one can use larger steps than
in the Cauchy-Dirichlet problem, because we do not deal
with a time-evolution problem, and there is no accumulation
of numerical errors at each time step. In Fig.8, one can see
that, for space and time steps many times larger than those
that were used in the Cauchy-Dirichlet problem (1x=10 km
and1t=200 s), we have far better agreement with the ana-
lytical solution. The decrease of time and/or space step in
the optimization approach does not appreciably improve the
solution. Only the smallest details are slightly better repro-
duced.

Since the local mesh in the optimization approach is rather
coarse, the average CPU time needed for solving the problem
is smaller than for Cauchy-Dirichlet problem (0.5 s) in spite
of greater computational complexity. Also we have to pay
attention on a very weak sensitivity to the global data pertur-
bations. The impact of earch individual perturbation on the
optimization solution is very small. For example, increasing
errors in randomly perturbed global data up to 60% does not
strongly affect the solution as one can see in Fig.9.
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Fig. 9. Numerical solution of Rossby-Oboukhov equation by opti-
mization problem (red line) with 60% perturbed global model val-
ues (circles) att=96 h. 1x=100 km,1t=3600 s. CPU time=0.5 s.
Black line corresponds to the reference analytical solution.

With the above experiments we had the intention to show
that even small errors in boundary conditions of the regional
model can violently distort ideal solution (i.e., the one that
is obtained when there are no errors in boundary condi-
tions) However, applying optimization methods, and using
the global data (from observation or from “global” model)
available inside the regional domain (even containing the
same kind of errors as the boundary conditions), gives us a
way to avoid strong sensitivity of solution to boundary errors,
allowing thus to obtain good results.

In our experiments the regional model has not the abil-
ity to add small scale spectrum to the global model solution,
because we use the same evolution model operator for both
models. So, to simulate more realistic behavior let us modify
the testing regional model.

First we generate more realistic global data omiting small
scales. Using as the initial condition only the first 25 modes
(the whole solution includes 85 modes) taken from analitical
solution, showed on Fig.5, we run the model with space and
time steps equal to 100 km and 1800 s, respectively, on the
entire periodic domain of 96 h. After that we extract from
the obtained solution the global data, on the mesh with size
200 km and 2 h.

Note that the first harmonics in Rossby-Obukhov equation
solution (8) have the negative velocity, that is, the largest
scale Rossby waves are westward moving and carry signal
from the right boundary to the left one. All small scales are
traveling eastward (from the left to the right in our figures).
Therefore, the boundary condition for the modified regional
model is derived from global data, but additionaly, at the left
boundary, the small scales from analytical solution that are
not present on global solution are introduced (at the points of
the global mesh). The resulted model attempts to reproduce
the small scales in the system, but there is the error on the
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Fig. 10. Numerical Cauchy-Dirichlet problem solution of Rossby-
Oboukhov equation (red line) with small scales introduced in the
left side of boundary conditions (circles) att=48 h (upper panel)
and 96 h (lower panel).1x=10 km,1t=200 s. CPU time=0.8 s.
Black line corresponds to the reference analytical solution.

boundary due to interpolation. Using new regional model
and global data without small scales we performed other ex-
periments using traditional and optimization approaches, the
results of which are showed in Figs.10and11, respectively.

These experiments clearly show that the use of additional
global data inside the local domain, even perturbed ones, can
significantly improve the solution of the model.

3.3 Korteweg-de Vries equation

The Korteweg-de Vries (KdV) equation is a nonlinear, dis-
persive partial differential equation and represents a mathe-
matical model of waves on shallow water surfaces:

ut+6uux+uxxx=0. (12)
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Fig. 11. Numerical solution of Rossby-Oboukhov equation by
optimization problem (red line), using as global data (circles) the
global model solution with 25 modes and additional small scales in
the left boundary, att=48 h (upper painel) and at 96 h (lower painel).
1x=80 km,1t=2600 s. CPU time=1.25 s. Black line corresponds
to the reference analytical solution.

Equation (12) has the exact solution (Korteweg and de
Vries, 1895; Grimshaw, 2004)

u(x, t)=b+a cn2(γ (x−V t)|m), (13)

where cn(x|m) is the Jacobi elliptic function,m∈(0, 1)
is the module of elliptic function, a=2mγ 2 and
V=6b+4(2m−1)γ 2. For the case whenm→1 we will
have cn(x|m)→sech(x) and the solution (13) will have the
form

u(x, t)=b+a sech2(γ (x−V t)), (14)

with V=6b+2a, and a=2γ 2 which describes a one-
dimensional soliton.
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Fig. 12. Analytical solution of KdV equation as the cnoidal wave
(13) on the domain [−5, 15] at t=0 with γ=2, b=a and module
m=0.995.

For finite-difference discretization we use the following
implicit numerical scheme (Furihata, 1999), which possesses
the properties of total energy and mass conservation:
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Since the numerical scheme is non-linear for numerical
evaluation of Cauchy-Dirichlet problem we use Newton’s
method for computinguj+1 at each time step.

Following the steps of previous example, we choose as a
reference model the analytical solution with cofficientsb=a,
γ=2 and module of elliptic functionm=0.995. Figure12rep-
resents the solution on the domain [−5, 15] at timet=0.

As a local model we consider the Eq. (12) defined over the
closed interval [0, 10]. In order to get a good accordance be-
tween a numerical solution of the Cauchy-Dirichlet problem
(with exact initial and boundary conditions) and the analyti-
cal solution on the time interval 0≤t≤1, showed in Fig.13,
we take as the maximum possible values of space and the
time steps1x=0.02 and1t=0.0002, respectively. The CPU
time required to find the solution is 15 s.

As a global model solution we take the analytical solu-
tion, introduced above as the reference model, with space
step1x=0.5 and time step1t=0.005 and perturb its values
up to 10% from the exact ones. Using these perturbed global
model solution to form the boundary condition we solve the
Cauchy-Dirichlet problem.

In Fig. 14 one can see that the Cauchy-Dirichlet problem
with small errors in the boundary conditions can produce un-
acceptable numerical solutions.
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Fig. 13. Numerical Cauchy-Dirichlet problem solution of KdV
equation with exact boundary condition (red line) att=1.1x=0.02,
1t=0.0002. CPU time=15 s. Black line corresponds to the refer-
ence analytical solution.
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Fig. 14. Numerical Cauchy-Dirichlet problem solution of KdV
equation (red line) with 10% perturbed boundary condition (circles)
at time t=0.5 (upper panel), andt=1.0 (lower panel).1x=0.02,
1t=0.0002. CPU time=23 s. Black line corresponds to the refer-
ence analytical solution.
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Now, we apply the optimization method to the local model
using all the avaliable points of the global model solution.
Figure 15 shows the solution of the optimization problem.
As in the previous experiment we choose the space (1x=0.2)
and the time (1t=0.002) steps as large as possible.

It can be clearly seen the advantage of the optimization
approach in this case. The difference between numerical and
exact solution is very small in comparison with the Cauchy-
Dirichlet problem calculations.

4 Conclusions and discussions

The results of the numerical experiments presented here in-
dicate that the optimization approach can significantly im-
prove the precision of the numerical solution of the regional
model when the boundary values have errors but informa-
tion in a number of inner points is available. Even in the
cases in which the solution of the Cauchy-Dirichlet problem
is very sensitive to the errors in the boundary condition, the
use of optimization approach gives the possibility to compute
solutions that are close to the analytical solution. We also
made experiments with two-dimensonal nonlinear Rossby-
Oboukhov equations. The preliminary results demonstrate
as well that the use of the optimization approach significantly
improve the numerical solution.

Applying 4D-Var data assimilation to limited-area prob-
lem has some common features with the optimization ap-
proach used here. In a series of works devoted to optimal
control of initial and lateral boundary conditions it is empha-
sized the strong sensitivity of obtained solution to the lateral
baundary data (Griffin and Thomson, 1996; Lu and Brown-
ing, 2000; Zou and Kuo, 1996; Leredde et al., 1998). As it
was shown in the above mentioned papers, the consistency
of lateral boundary conditions with another “observation”
data permit to obtain more realistic regional model fields. In
our approach this consistency between “regional model” and
“global model” is assured automatically by optimization so-
lution procedure for the whole solution period.

In connection with applying a deterministic 4D-Var
scheme to find the most likely model evolution fitting ob-
servations, (Lorenc and Payne, 2007) pointed out that it does
not work in the limit of high resolution. On the other hand,
Statistical 4D-Var (Lorenc, 2003) is a suitable alternative.
The reason is that deterministic 4D-Var aims to find the most
probable solution, which corresponds to the mode of the
probability distribution function whereas statistical 4D-Var
seeks an efficient approximation to the probability density
function expectation. Let us interpret the observations of
Lorenc and Payne in optimization terms and see how they
apply to our case. For simplicity, the independent variables
are denoted byx so that our problem is to minimizef (x) (the
error) subject tox∈� (the model). The mode solution corre-
sponds to the global minimizer off . The choice of the global
minimizer as the best solution may be challenged if the basin
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Fig. 15.Numerical solution of KdV equation by optimization prob-
lem (red line) with 10% perturbed global data (circles) at timet=0.5
(upper panel), and att=1.0 (lower panel).1x=0.2,1t=0.002. CPU
time=21 s. Black line corresponds to the reference analytical solu-
tion.

of attraction of it is very narrow, so that relatively small per-
turbations ofx may produce large error increasing. Clearly, a
merely local solution with a larger attraction basin would be
much better as a model approximation, since their perturba-
tions would preserve a reasonably moderate error. Such a lo-
cal solution roughly corresponds to the maximization of ex-
pectancy introduced by Lorenc and endorsed in (Lorenc and
Payne, 2007). The obvious way to approximate the optimal
expectancy relies on modifying the optimization problem so
that the desired estimation would be a global minimizer of
the new problem. Filtering techniques are the proper tool for
this purpose. Essentially, the new modified problem will be
to minimizeF(f (x)) instead of minimizingf (x), where the
operatorF represents a (convolution) filter. This procedure
tends to stabilize the optimization problem, so that jumps be-
tween unstable global minimizers and perhaps stable suitable
local minimizers do not occur. Moreover, a high-frequency
variation of x is less prone to disappear, because we seek
the approximation of smoothed version ofx to the global
(smoother) model, instead of an approximation ofx itself.
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Fig. A1. Numerical evolutionary (Cauchy-Dirichlet problem) so-
lution of KdV equation using center-space and center-time scheme
(red line) after 40 steps with1x=0.1 and1t=5 ∗ 10−4. Black line
corresponds to the reference analytical solution.

Appendix A

Formulation of optimization problem

We can express our problem as the following non-linear op-
timization problem with equality constraints

Minimize 1
2‖u−V ‖

2
P

s.t. h(u)=0,
(A1)

where V represents the global data on the re-
gional mesh, P is the diagonal penality matrix and
h(u)=[h1(u) h2(u) . . . hm(u)]

T is a vector of the discretiza-
tions of regional equations at each point of space-time mesh
of the regional model.

A usual optimization technique to solve this kind of prob-
lem is to apply Newton’s iteration method to the system of
nonlinear equations arising from first-order necessary con-
ditions, known as Karush-Kuhn-Tucker (KKT) conditions
(Nocedal and Wright, 1999). For instance, the KKT con-
ditions for the problem (A1) are

P(u−V )+h′(u)T λ = 0
h(u) = 0,

(A2)

where

h′(u)=


∇h1(u)

T

∇h2(u)
T

...

∇hm(u)
T


is the Jacobian matrix of the constraint function andλ
represent the vector of Lagrange multipliers. Each step of
the Newton iteration associated with system (A2) is defined

as follows:

J (uk, λk)

(
1uk
1λk

)
=−

(
P(uk − V )+h′(uk)

T λk
h(uk)

)
(
uk+1
λk+1

)
=

(
uk
λk

)
+

(
1uk
1λk

) (A3)

whereJ represents the Jacobian matrix of the system (A2)

J (u, λ)=

P+
∑
i λi∇

2hi(u) h
′(u)T

h′(u) 0

 , (A4)

and∇
2hi(u), i=1, . . . , m, are Hessian matrices of the con-

straints.
The Jacobian matrix (A4) is a saddle point matrix and

there are many methods that can be applied for the associated
linear system (Benzi, Golub and Liesen, 2005). However,
note that the Jacobian of the constraintsh′(u) is described by
a sparse matrix with block-diagonal structure. On the other
hand, the first partP+

∑
i λi∇

2hi(u) of the Jacobian matrix
(A4) of the system (A2) includes the calculation of the Hes-
sians of the constraints, which is computationally expensive
because calculations have to be made for every Newton iter-
ation. The resulting matrix is generally dense. To accelerate
the calculations and reduce the computer memory require-
ments we use the following Jacobian approximation:

Bk=

(
P h′(uk)

T

h′(uk) 0

)
. (A5)

The use of the approximationBk for J (uk, λk) strongly
simplifies the procedure of finding the solution of the linear
system (A3).

Appendix B

Mesh size on optimization approach

To describe the same space and time scales, the optimiza-
tion approach can use larger space and time steps than
the traditional evolutionary approach. The key to explain
this phenomenon is that the optimization algorithm is non-
evolutionary in time, hence it is not necessary to satisfy the
stability condition. Moreover, there is no accumulation of
discretization error. Therefore, for any period of integration,
space and time steps depend only on the scales of the process
of interest.

The stability condition of numerical schemes is given by
a relationship between space and time steps that guarantees
the stability during the evolution. Frequently, this relation is
very strong. For example, using a simple center-space and
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Fig. B1. Numerical evolutionary (Cauchy-Dirichlet problem) so-
lution of KdV equation using center-space and center-time scheme
(red line) at timet=0.5 with1x=0.1 and1t=4.5 ∗ 10−4. Black
line corresponds to the reference analytical solution.
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Fig. B2. Numerical evolutionary (Cauchy-Dirichlet problem) so-
lution of KdV equation using center-space and center-time scheme
(red line) at timet=0.5 with1x=0.04 and1t=2∗10−5. Black line
corresponds to the reference analytical solution.

center-time scheme for discretization of the KdV equation
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i −uk−1

i

21t
+6uki

uki+1−u
k
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21x
+

uki+2−2uki+1+2uki−1−u
k
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21x3
=0

and taking the space step1x=0.1, we obtain the stable solu-
tion, by traditional approach, only for time steps1t≤4.5 ∗

10−4. FigureA1 shows the instability of scheme for time
step1t=5 ∗ 10−4 after 40 steps.
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Fig. B3. Numerical optimization solution of KdV equation using
center-space and center-time scheme (red line) at timet=0.5 with
1x=0.04 and1t=2.5 ∗ 10−3. Black line corresponds to the refer-
ence analytical solution, circles marks global data.
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Fig. B4. Numerical optimization solution of KdV equation using
center-space and center-time scheme (red line) at timet=0.5 with
1x=0.1 and1t=2.5∗10−3. Black line corresponds to the reference
analytical solution, circles marks global data.

In addition to this, for long time evolutions the accumula-
tion of discretization error tends to be more significant. As
we can see in Fig.B1, for time period 0.5 space step1x=0.1
and time step1t≤4.5 ∗ 10−4 produce a bad result. So it is
necessary to refine the mesh when the period of integration
becomes longer. In the case oft=0.5 a resonable result is
achieved for1x=0.04 and1t=2 ∗ 10−5 (see Fig.B2).

Keeping the same space step and taking the global data as
the exact solution on the mesh with space-time size equals to
0.5×0.01, the optimization approach converges to the solu-
tion with the time step1t=2.5 ∗ 10−3 (Fig. B3). Note here
that the number of global points on the space×time domain
with resolution [0, 10]×[0, 0.5] in the optimization problem
is equal to 1000, whereas the number of boundary condition
points in the traditional approach with1t=2 ∗ 10−5 is 105.
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As we can see, for the optimization approach there is no
the same concept of stability as for the forward problem. Be-
sides allowing a larger time step, the optimization approach
also allows the use of a larger space step, since there is no
accumulation of discretization error, as we mentioned above.
FigureB4 shows the optimization solution for1x=0.1 and
1t=2.5 ∗ 10−3
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