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Abstract. Probability distributions of multivariate random
variables are generally more complex compared to their uni-
variate counterparts which is due to a possible nonlinear de-
pendence between the random variables. One approach to
this problem is the use of copulas, which have become pop-
ular over recent years, especially in fields like econometrics,
finance, risk management, or insurance.

Since this newly emerging field includes various practices,
a controversial discussion, and vast field of literature, it is
difficult to get an overview. The aim of this paper is there-
fore to provide an brief overview of copulas for application
in meteorology and climate research. We examine the advan-
tages and disadvantages compared to alternative approaches
like e.g. mixture models, summarize the current problem of
goodness-of-fit (GOF) tests for copulas, and discuss the con-
nection with multivariate extremes. An application to station
data shows the simplicity and the capabilities as well as the
limitations of this approach. Observations of daily precip-
itation and temperature are fitted to a bivariate model and
demonstrate, that copulas are valuable complement to the
commonly used methods.

1 Introduction

In climate research there is a natural interest in estimating
multivariate probability density functions. The motivation is
obvious. The climate system can be defined as the coupled
system of atmosphere, ocean, cryosphere, biosphere, and
lithosphere. This system as well as each subsystem has to be
regarded as stochastic, even if the data to be analysed orig-
inate from a deterministic numerical model. This is based
on the fact that the climate system is a high-dimensional and
nonlinear system. Detailed considerations on the stochastic
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nature can be found in e.g.Lorenz(1964); Eckmann and Ru-
elle (1985). The variables involved are therefore treated as
random variables and described in terms of probability dis-
tributions or probability density functions.

Taking a closer look at the state of the art, it can be seen
that estimating multivariate probability density functions is
mostly limited to the multivariate normal distribution or mix-
tures of it. The reason is, that there are numerous kinds of
univariate probability distributions, but only in a few cases
there is a native multivariate analogue. Textbooks in statis-
tics, especially concerning those with application to climate
research (Storch and Zwiers, 1999; Wilks, 2005), often intro-
duce the multivariate normal distribution, but do not provide
alternatives. Finding native multivariate distribution, analo-
gously to the univariate distributions, is a non-trivial prob-
lem.

It needs not to be discussed, that meteorological or clima-
tological data often turn out to be non-Gaussian, e.g. precip-
itation, wind speed, cloud cover, or relative humidity, which
belong to bounded or skewed distributions. So, the essen-
tial question is how to deal with random variables, that do
not belong to a multivariate normal distribution, for example
the joint distribution of several precipitation measurements.
How can we describe a random vector that has e.g. normally
as well as gamma distributed marginals? Figures 1 and 2
show examples as discussed below.

The following section gives a brief overview on how the
problem has been addressed so far. Section3 introduces the
copula concept, while Sect.4 considers details on different
kinds of copulas, their estimation, and goodness-of-fit tests.
Since multivariate extreme value theory and copulas are re-
lated, Sect.6 focuses on this problem separately. Section7
shows examples of how to apply the copula approach to typi-
cal meteorological parameters. Section8 briefly summarizes
strengths and weaknesses of the copula approach with re-
spect to alternatives.
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Fig. 1. Example of a bivariate probability density function for a
random vector with normally and Gamma distributed vector com-
ponents. The dependence among the components is and given by a
normal copula with correlation−0.85.

2 Background and related work

Before answering the question how multivariate non-normal
probability density functions can be estimated, we should
briefly summarize why this is a non-trivial problem. Assume
a multivariate random variable with different marginal dis-
tributions. While the parametric description of the marginal
distributions is mostly not a problem because of the various
kinds of univariate distributions, the dependencies between
non-normally distributed components cause some trouble. It
is difficult to find a general definition of the correlation be-
tween the different random vector components (Cario and
Nelson, 1997), so that there is no natural or unique way to
extend the marginal distributions to a true multivariate distri-
bution. So, how has this problem been addressed so far?

A well known way to circumvent this problem is the use of
mixture models, e.g. multivariate Gaussian mixture models
(Marin et al., 2005; McLachlan and Peel, 2000). While they
are more flexible with respect to the covariance structure than
the approaches presented below, they have two problems. On
the one hand, they become quite complex in higher dimen-
sions. On the other hand, they do not account for the original
marginal distribution of the random vector components. This
is an important aspect, which becomes even more relevant in
context of extreme value theory.

Other parametric descriptions of the relationship among
the variables are also either complex, e.g. Bézier distribu-
tion (Wagner and Wilson, 1994), which leads to a high num-
ber of parameters, especially in higher dimensions, or are
restricted in modeling marginals and covariance structure,
e.g. the Johnson distribution (Johnson, 1949). Within this
context, multivariate extensions of the lognormal or gamma
distribution are not an option, either, since all components

would have to follow the same kind of marginal distribution.
Nevertheless, the Johnson distribution (Johnson, 1949), later
summarized by (Wilson, 1997), was an early solution to de-
scribe multivariate non-normal populations and is also the
precursor of the approach presented in the following.

In the field of decision and risk analysis, the classical ap-
proach to modeling uncertainty is to write the joint distribu-
tion of the random variables as the product of marginal and
conditional distributions (Clemen and Reilly, 1999). A prac-
tical problem of this approach is that the complexity of the
estimation process grows exponentially with the number of
random variables. Therefore, the use of so called copulas
(e.g.Nelsen, 2006) became more and more popular over the
last decade. Aiming at assessing risk, copulas are widely
used in finance studies and related fields (e.g.Breymann
et al., 2003; Haas, 1999), and more recently in hydrology
(Renard and Lang, 2007; Genest et al., 2007; Bardossy and
Li , 2008).

Although this is not done without critics (see Sect.8), it
seems to be a feasible method to estimating multivariate non-
normally distributed random variables for many real world
problems. It is shown below, that together with the marginal
distributions the copula concept is simply a mathematical re-
formulation of a multivariate probability distribution or den-
sity function, which is possible for (almost) every kind of
multivariate distribution. The concept is straight forward and
equivalent, but despite its simplicity and its success in other
fields, it is less known in climate research and meteorology.
Only a few applications are known (e.g.Michele and Sal-
vadori, 2003; Vannitsem, 2007; Vrac et al., 2005).

3 Multivariate random variables and copulas

We assume am-dimensional random vectorX with marginal
cumulative distribution functionsFX1, . . . , FXm with domain
R, i.e. nondecreasing andFX1(−∞)=0 and FX1(∞)=1.
Sklar’s theorem (1959) then says that the joint distribution
FX of this random vector can be written as a function of its
marginal distributions,

FX(x) = CX

(
FX1(x1), . . . , FXm(xm)

)
(1)

whereCX: [0, 1] ×· · ·× [0, 1] → [0, 1] is a joint distribution
function of the transformed random variablesUj=FXj

(Xj )

for j=1, . . . , m. Due to this transformation theUj always
have uniform marginal distributions. Moreover, if marginal
distributions are continuous, the copula function is unique
(Nelsen, 2006). For simplicity, we assume continuous and
differentiable distribution functionsFX1, . . . , FXm , although
this approach can be easily extended to a mixture of discrete
and continuous random variables. In this case,CX is unique
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and can also be expressed by

CX(u1, . . . , um) =

u1∫
0

· · ·

um∫
0

cX(u′

1, . . . , u
′
m)du′

1 . . . u′
m (2)

with uj=FXj
(xj ). The functionCX is called a copula and

cX the corresponding copula density. Sometimes the copula
density is called dependence function, because it encodes the
dependencies between the random variables.

The important consequence of Sklar’s theorem is that ev-
ery joint probability density can be written as the product of
the marginal probability densities and the copula density.

fX(x) = fX1(x1) · · · fXm(xm) · cX (u1, . . . , um) (3)

Hence it is equal to one for independent random variables,
which is consistent with basic probability rules. Bivariate ex-
amples are given in Figs. 1 and 2. Nevertheless, the remain-
ing question is how to formulate and estimate the copula den-
sity for dependent random variables. At this point it could
still be of arbitrary complexity, leaving the general prob-
lems of multivariate random variables, as discussed above,
untouched. In fact, there is no general or canonical way to
formulate the copula and to assess the correlations among
the random variables.

4 Copula families

The definition of the parametric form of the copula func-
tion or copula density allows to group them into families.
Two important classes as used in Sect.7 are the elliptical
and the Archimedian copulas family as given below. Details
about other copula families and their selection can be found
in Nelsen(2006); Embrechts et al.(2001); Chen and Fan
(2005); Genest and Favre(2007); Frees and Valdez(1998);
Nelsen(2002). Currently there seems to be no general pro-
cedure for copula selection agreed upon. A Bayesian method
to select the most probable copula family among a given set
is described inHuard et al.(2006).

4.1 Elliptical copulas

Elliptical copulas are the copulas of elliptical distributions.
For example, the copula of a multivariate normal distribution
forms a special case of elliptical copulas. Their main char-
acteristics are that they extend to arbitrary dimensions, but
they are comparably rich in parameters: am-dim elliptical
copula has at leastm(m−1)/2 parameters. Furthermore they
are restricted to radial symmetry, what appears to be a strong
limitation with respect to tail dependence, i.e. applications
like precipitation modeling (see below). Typical examples of
elliptical copulas are the normal or Gaussian copula and the
Student-t copula.

Fig. 2. Example of a bivariate probability density function for a
random vector with two Beta distributed vector components with
beta parameters (0.5, 0.5) and (2.0, 2.0) respectively. The depen-
dence among the components is and given by a normal copula with
correlation−0.85.

4.1.1 Normal copulas

Normal or Gaussian copulas form a special case of the cop-
ula approach, but can also be derived by a simple back and
forth transformation of the random variables to the multivari-
ate standard normal distribution. LetX again be a random
vector with componentsX1, . . . , Xm and known marginal
cumulative distribution functionsFX1, . . . , FXm . By using
Uj=FXj

(Xj ) ∼ U(0, 1) each random vector component can
be transformed to a standard normally distributed random
variable

Zj = F−1
N (0,1)

(
FXj

(Xj )
)

∼ N (0, 1), (4)

wherej=1, . . . , m. Analogously to the classical multivari-
ate normal case we assume thatZ=(Z1, . . . , Zm)T follows a
multivariate standard normal distributionN (0, 6), with the
corresponding probability density functionfN (0,6) and co-
variance matrix6.

The probability density function of the original random
vector, which is the copula function in the terminology
above, is then given by

CX (u1, . . . , um) = FN (0,6)

(
F−1
N (0,1)

(u1), . . . , F
−1
N (0,1)

(um)
)

.

With the definition of the copula density (Eq.2) the normal
copula density therefore reads

cX (u1, . . . , um) =
∂

∂u1
· · ·

∂

∂um

· CX (u1, . . . , um)

=

fN (0,6)

(
F−1
N (0,1)

(u1), . . . , F
−1
N (0,1)

(um)
)

∏m
j=1

(
fN (0,1)

(
F−1
N (0,1)

(um)
)) .
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Fig. 3. Probability density functions of different t-copulas withρ=0.85 andν=∞, 5, 2.5 respectively (from left to right). For better
comparability, the marginal distributions are chosen to be standard normal.

Figure 1 shows an example of a probability density function
of a two-dimensional random vector with a normally and a
Gamma distributed component, Fig. 2 an example for Beta
distributed components in order to show the capability of de-
scribing bounded distributions.

The normal copula is applicable to many real world prob-
lems and the estimation procedures are quality controllable
as they are well known. However, it has its limitations, since
– analogously to the multivariate normal distribution – it as-
sumes linear relationships among the transformed random
variables with fixed and comparably small dependence for
large deviations. Further information is given in e.g.Em-
brechts et al.(2001); Pitt et al. (2006); Renard and Lang
(2007); Clemen and Reilly(1999).

4.1.2 Student’s t-copulas

The t-copula is defined analogously to the Gaussian copula
by using a multivariate extension of the t-distribution,

CX (u1, . . . , um) = Ft (ν,6)

(
F−1

t (ν)(u1), . . . , F
−1
t (ν)(um)

)
,

whereFt (ν) is an univariate t-distribution withν degrees of
freedom and positive-definite dispersion or scatter matrix6

leading to a number of 1+m(m−1)/2 parameters. For the
following applications we refer to the definition byDemarta
and McNeil (2005), but note that there are multiple defini-
tions of a multivariate t-distribution and hence of t-copulas
(e.g.Shaw and Lee, 2007). Figure 3 shows three bivariate
examples for a correlation coefficient ofρ=0.85. The de-
grees of freedom are chosen to beν=∞, in which case the
t-copula equals a multivariate normal distribution,ν=5, and
ν=2.5, respectively. For better comparison with the multi-
variate normal distribution the examples are given for stan-
dard normal marginals. The reason for this kind of visualiza-
tion is that the copula function itself is only meaningful w.r.t.
the given marginal distributions as pointed out byMikosch
(2006a).

The t-copula allows for some flexibility in covariance
structure and tail dependence. Tail dependence can be un-
derstood as the conditional probability of observing an ex-
treme in one component given the other being in an extreme
state. The corresponding coefficient of tail dependence as
introduced below provides an asymptotic measure and is a
copula property which is invariant under strictly increasing
transformations (e.g.Frahm et al., 2005; Coles et al., 1999;
Heffernan, 2000). After Embrechts et al.(2001) the upper
tail dependence of a bivariate t-copula is given by

λup = lim
u↗1

P
(
X1 > F−1

X1
(u) | X2 > F−1

X2
(u)
)

= 2 lim
u↗1

P(U1 > u | U2 = u)

= 2Ft (ν+1)

(
−

√
(ν + 1)

1 − ρ

1 + ρ

)

with ρ=612/(611622) where the second equality follows
from the fact that the bivariate t-copula is an exchangeable
copula, i.e.CX(u1, u2)=CX(u2, u1). Because of the radial
symmetry, the lower tail dependence equals the upper tail
dependence. As to be expected, it is increasing inρ and de-
creasing inν. For the examples in Fig. 3 followsλup=0,
0.51, and 0.63, respectively. So, the motivation to introduce
this framework becomes even clearer: As a special case, the
Gaussian copula withρ<1 has in fact zero tail dependence.
Therefore, other copulas might be more appropriate for var-
ious applications like asymmetric distributions and/or espe-
cially large deviations.

Nevertheless, it should be noted thatλup/down as given
above is not the ultimate measurement of the tail behavior,
since it only describes the asymptotic behavior foru↗1, but
not the rate of convergence. For example the Gaussian cop-
ula has a slow convergence compared to the Frank copula
as shown below (cf. Figs. 3 and 4). Furthermore, the rate
of convergence is dependent on the marginal transformation,
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Fig. 4. Probability density functions as given in Fig. 3 but for the Archimendean family: ClaytonθC=2, FrankθF=5.736, and GumbelθG=2
(from let to right).

while λup/down is not. So it is possible to construct distribu-
tions with high correlations for large deviations based on a
copula with zero tail dependence. More details on t-copulas
can be found in e.g.Kotz et al.(2000).

4.2 Archimedian copulas

The copula family introduced above are derived from ellipti-
cal distributions using Sklar’s theorem. The main drawbacks
are therefore that they are restricted to have radial symme-
try and do not necessarily exist in closed form expressions.
As shown below, practical applications often require differ-
ent upper and lower tail behavior. A class of copulas that
allows for a wider variety of dependence structures is given
by the Archimedean copulas,

CX(u1, . . . , um) = φ−1 (φ(u1) + · · · + φ(um))

with the definitions from above and the functionφ which is
called the generator of the copula (Embrechts et al., 2001;
Nelsen, 2006; Nelsen et al., 2002). While this multidimen-
sional definition formally follows the criteria of a copula
under certain properties ofφ, higher dimensions are not
practical since the margins are exchangeable. Therefore
Archimedean copulas are mostly used in the bivariate case.
Details about proper multivariate extensions can be found in
Embrechts et al.(2001).

The flexibility of Archimedean copulas is given by the
generator functionsφ. Commonly used examples are the
Clayton, the Frank, and the Gumbel copula,

φC(u) = u−θC − 1 (Clayton, 1978)

φF(u) = log(
eθFu

− 1

eθF − 1
) (Frank, 1979)

φG(u) = (− logu)θG (Gumbel, 1960)

As shown in Fig. 4 they allow for different tail behavior. The
Clayton copula has lower tail dependence, the Frank copula

no tail dependence, and the Gumbel copula only upper tail
dependence and is therefore used in Sect.7. However, since
they are not derived from distribution functions as done for
the elliptical copulas, the interpretation of their parameters in
terms of statistical properties is not straight forward. Never-
theless, the Archimedean copula family plays an important
role in fields like risk analysis (Embrechts et al., 2001) and
seems to be well applicable to many real world problems in
geosciences.

5 Estimation and GOF tests

Estimating multivariate distributions using copulas leads to
various methods and vast field of literature, where it is hard to
keep an overview. Most of the publications focus on the esti-
mation of the copula function. Therefore we commence with
an important consideration as given byMikosch (2006a):
The copula concept allows to estimate the marginal distri-
butions and the copula separately, but it is often overlooked
that the aim is to fit the whole multivariate distribution. This
includes copula and marginals. We introduce three main con-
cepts:

1. An intuitive approach to fit a multivariate distribution is
the classical maximum likelihood (ML) estimation of
the full multivariate distribution. With a given para-
metric description of the copula and the marginal dis-
tributions, the ML estimate is given by maximizing the
log-likelihood function, as follows easily from Eq. (3).
Depending on the marginal distribution class and cop-
ula family the optimization is only feasible numeri-
cally. The main problem is that the numerical complex-
ity of the optimization problem is comparably high: e.g.
O(2 m+m2) for an m-dimensional random vector with
two-parameter marginal distributions and an elliptical
copula, which is especially relevant since one cannot
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use efficient, predefined estimators for marginal distri-
butions and copula parameters. For this reason it is less
used in practice. Nevertheless, it should be noted that
the ML estimation of the full distribution is the recom-
mended approach when not dealing with high dimen-
sional random vectors. It is the only way to provide con-
sistent estimates of all parameters and it allows for most
control over the fitting process including goodness-of-
fit (GOF) tests.

2. The most commonly used approach is a two-stage es-
timation process (e.g.Shih and Louis, 1995), which is
also called inference functions for margins (IFM). In the
first step, the parameters of the margins are estimated as
in the univariate case and plugged into the joint prob-
ability density, Eq. (3). In the second step, the corre-
sponding likelihood is maximized in order to determine
the copula parameters. Since each estimation task has
a comparably low number of parameters, it is compu-
tationally more efficient than the classical MLE. Fur-
thermore it allows to use predefined estimators for ex-
isting classes of marginal distributions and copula fam-
ilies (e.g.Fredricks and Nelsen, 2007). Although the
IFM is a convenient approach, a major drawback is of-
ten overlooked (Mikosch, 2006a): It does not take into
account, that the copula is determined by the parametric
models for the margins, and is therefore dependent on
their estimation. Hence it is unclear if the IFM provides
an efficient estimator in a statistical sense. Nevertheless,
it can been shown that the IFM estimator is consistent
and asymptotically normal under regularity conditions
(Palaro and Hotta, 2006, and references therein).

3. A known alternative is the canonical maximum likeli-
hood (CML) method. It avoids the problem of finding
and estimating appropriate parametric models for the
margins by using the empirical CDF of each margin in-
stead. This allows for consistent estimates of the cop-
ula parameters and their standard errors, but it clearly
overrates the theoretical value of the copula itself. It
should be noted, that the copula alone does not pro-
vide any information about the multivariate distribution
without knowing the marginal distributions. Details can
be found inMikosch(2006a) and discussion.

Goodness-of-fit (GOF) tests for copulas relate to the gen-
eral difficulty of testing multivariate probability densities or
distribution functions. While the univariate tests are well-
known, there is less of a common methodology in the multi-
variate case. Especially copula specific tests are just emerg-
ing (Genest et al., 2006).

A simple approach to multivariate GOF tests are multidi-
mensionalχ2-tests as given inFermanian(2005), but they
come along with the typical problems of binned approaches.
They are sensitive to the selection of bins and there is no
optimal choice for the bin width. Furthermore, they are of-

ten not feasible for higher dimensional problems since chi-
square tests require a sufficient sample size in order for the
chi-square approximation to be valid. We therefore focus on
alternatives to binned tests.

More efficient GOF tests for copulas are based on di-
mension reduction approaches using the probability inte-
gral transform (PIT), i.e. projecting the multivariate prob-
lem to a univariate problem. The PIT transforms an
arbitrary multivariate random vectorX with components
X1, . . . , Xm and known marginal cumulative distribution
functions FX1, . . . , FXm to a set of independent, uniform
variables. The PIT ofX is defined as

T1(X1) = FX1(X1)

T2(X2) = FX2|X1(X2|X1)

...

Tm(Xm) = FXm|X1,...,Xm−1(Xm|X1, . . . , Xm−1).

Under the null hypothesisH0 thatX comes from the speci-
fied multivariate model, the random variablesZ∗

j = Tj (Xj )

are then uniformly and independently distributed onU(0, 1).
According to Eq. (1) they can be derived via

Z∗

j = CXj |X1,...,Xj−1(uj |u1, . . . , uj−1)

=
∂j−1Cj (u1, . . . , uj )

∂u1 · · · ∂uj−1
/
∂j−1Cj−1(u1, . . . , uj−1)

∂u1 · · · ∂uj−1

with Cj (u1, . . . , uj )=CX(u1, . . . , uj , 1, . . . , 1).
In the approach proposed by (Breymann et al., 2003) the

PIT is performed by defining a univariate random vector

Y ∗
=

m∑
j=1

F−1
N (0,1)

(Z∗

j ).

UnderH0 it follows aχ2-distribution withm degrees of free-
dom, so thatW ∗

=Fχ2
m
(Y ∗) should be a univariate random

variable fromU(0, 1). In this way, the problem has been re-
duced to a univariate problem, which can be evaluated by
classical univariate test statistics (Aslan and Zech, 2002).
E.g.Breymann et al.(2003) use the Anderson-Darling statis-
tic to carry out the test. While this approach is straight for-
ward and computationally efficient, it has its disadvantages
(Berg and Bakken, 2006). Firstly, the PIT depends on the
permutation of the random vector components which is a mi-
nor problem as long as the permutation is chosen randomly.
Secondly, the dimension reduction throughY ∗ causes an in-
consistency, so that the test statistic is not strictly increasing
for every deviation fromH0.

In order to deal with the problem (Berg and Bakken, 2005)
propose alternatives to the aforementioned approach. They
also provide a detailed comparison of different goodness-
of-fit tests based on the PIT as well as the full multivari-
ate approaches byPanchenko(2005). Finally, it should be
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noted that there is currently no universal method for cop-
ula goodness-of-fit tests. For further reading we refer to e.g.
Genest et al.(2006); Fermanian(2005).

6 Multivariate extremes

6.1 Extreme value theorie

Extreme value theory is based on a limit law that was first
described byFisher and Tippett(1928) and proven byGne-
denko(1943). It has since then seen great progress (Coles,
2001; Beirlant et al., 2004; Embrechts et al., 2003; Resnick,
1987). In geoscience, extreme value theory has found a
wide range of application particularly in hydrology (Gum-
bel, 1958; Katz, 2002) and more recently also in meteorol-
ogy and climate (Frei and Scḧar, 2001; Katz, 2002; Kharin
and Zwiers, 2005; Zwiers and Kharin, 1998).

Let us define a maximumM(n) of a finite sequence of
lengthn of identically and independently distributed (i.i.d.)
random variablesYi asM(n)

=max(Y1, . . . , Yn). The Fisher-
Tippett theorem says that there exists a sequence of con-
stantsa(n)>0 andb(n) such that under very general condi-

tions the distribution function ofM
(n)

−b(n)

a(n) converges to one
of the three types (Gumbel, Weibull, or Fréchet) of extreme
value distributions.

lim
n→∞

P

(
M(n)

− b(n)

a(n)
≤ x

)
= G(x)

The three types are merged to the generalized extreme value
(GEV) distribution. This theorem leads to the limiting distri-
bution for sample maxima (and minima). The GEV distribu-
tion reads

G(x) =

{
exp(−(1 + ξ

x−µ
σ

)−1/ξ , 1 + ξ
x−µ

σ
> 0, ξ 6= 0

exp(− exp(− y−µ
σ

)), ξ = 0
,

and represents the limiting distribution for sample maxima
(and minima). The GEV is defined by three parameters, the
locationµ, the scaleσ and the shapeξ parameter. The sign
of the shape parameter determines the type of extreme value
distribution, withξ=0 defines the Gumbel,ξ>0 the Fŕechet,
and ξ<0 the Weibull type. If the maxima of a processY

follow a GEV, then it is said to be in the domain of attraction
of an extreme value distribution. This is the general condition
under which EVT applies.

6.2 Extreme value copulas

Unlike in univariate extreme value theory, the class of pos-
sible limiting distribution functions of extreme values can-
not be captured by a finite-dimensional parametric family
of functions. The study of multivariate extremes splits into
the description of the marginal distribution and the depen-
dence structure. In order to characterize the limit behavior of

multivariate extremes, it has been shown, that weak conver-
gence of the multivariate distribution is equivalent to weak
convergence of the marginals as well as the copula function,
provided that the marginals are continuous (Beirlant et al.,
2004). This is the reason why the copula approach is very
popular in modeling multivariate extremes (e.g.Renard and
Lang, 2007). In contrast to the copula concept, in multivari-
ate extreme value theory a particularly useful choice is to
work with standard Fŕechet margins.

Multivariate extreme value theory defines limiting distri-
bution functions for the maximum of a sequence of multi-
variate random variatesY i of dimensionm. The multivari-
ate sample maximum is defined by marginal ordering, where
the maximum of a sequence of multivariate variates is the
component-wise maximum

M(n)
=
(
max(Y11, . . . , Ym1), . . . , max(Y1n, . . . , Ymn)

)T
with sequence sizen and dimensionm. Under certain con-
ditions the distribution of the vector of normalized maxima
follows a non-degenerate multivariate extreme value distri-
bution GX(x) The marginal distributionsGXj

(xj ) in turn
follow a univariate generalized extreme value distribution. In
extreme value theory it is convenient to standardize the mar-
gins to standard Fréchet. IfXj follows GXj

with parameters
µ, σ , andξ ,

Zj = −
1

log
(
GXj

(Xj )
) =

(
1 + ξ

(
Xj − µ

σ

))1/ξ

(5)

follows a standard Fréchet distribution with
P(Zj≤z)= exp(−1/z). Then, the multivariate extreme
value distribution is of the form

GX(x)=G∗

Z(z)

= exp
(
−V ∗(z1, . . . , zm)

)
= exp

(
−V ∗

(
1

− log
(
GX1(x1)

) , . . . , 1

− log
(
GXm(xm)

))),

whereV ∗ is denoted as dependence function. In the bivariate
case, the dependence function can be expressed as

V (z1, z2) = 2
∫ 1

0
max

(
ω

z1
,

1 − ω

z2

)
dH(ω). (6)

The spectral measureH(ω) is a distribution function on the
interval [0, 1] with

∫ 1
0 ωdH(ω)=1/2. Hence, in the bivariate

case the dependence function is determined by a one dimen-
sional spectral measureH . However, the spectral measure
has no finite-parameter form, it is not necessarily differen-
tiable, and many families of parametric functions satisfy the
condition (e.g. logistic family). An important property is that
V is homogeneous of order−1,

V (s z) =
1

s
V (z) for 0 < s < ∞, (7)
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768 C. Scḧolzel and P. Friederichs: Multivariate non-normally distributed random variables in climate research

PDF  [1]

P
D

F 
 [1

]

0 1 2 3 4 5

0
1

2
3

4
5

Precipitation (Berlin)  [mm/day]

P
re

ci
pi

ta
tio

n 
(P

ot
sd

am
)  

[m
m

/d
ay

]
0

1
2

3
4

5

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 1 2 3 4 5

−3
−2

−1
0

1
2

3

−3 −2 −1 0 1 2 3

0.0 0.1 0.2 0.3 0.4 0.5
0

1
2

3
4

5

Fig. 5. Bivariate distribution of average daily precipitation at station
Berlin and Potsdam (see text). The bottom left plot shows the esti-
mated probability density functionand the top right plot the copula
density analogously to Figs. 3 and 4. The parameter estimates (and
standard errors) of the gamma distributions and the Gumbel copula
are arêαBerlin=0.96(0.033), β̂Berlin=0.56(0.024), α̂Potsdam=1.00
(0.036), β̂Potsdam=0.61 (0.034), andθ̂G=3.06 (0.096).

which follows from Eq. (6) and equally holds for the mul-
tivariate case. This condition assures thatGX(x) is max-
stable, asGn

X(x)=GX(n−1x), which guarantees, that the
maximum of a sample ofx drawn fromGX again follows
a multivariate generalized extreme value distribution.

An alternative description of a multivariate extreme value
distribution is through its copula. The copula of a multivari-
ate extreme value distributionGX with marginalsGXj

(xj ) is
given by

GX(x) = CX

(
GX1(x1), . . . ,GXm(xm)

)
Because the copula is defined on uniform margins, it can be
written in form of the dependence functionV ∗ as

CX(u) = exp

(
−V ∗

(
−

1

log(u1)
, . . . ,

1

log(um)

))
with u ∈ [0, 1]

m. A necessary conditionCX must satisfy to
be a copula of a multivariate extreme value distribution is the
homogeneity condition

Cs
X(u) = CX(us

1, . . . , u
s
m). (8)

This stability relation follows from Eq. (7). Conversely, any
copula that satisfies Eq. (8) is a copula of a multivariate ex-
treme value distribution. As for the multivariate generalized
extreme value distribution, condition (8) ensures that the ex-
treme value copula is max-stable.

Pickands(1981) proposed a procedure for constructing an
extreme value copula. In the bivariate case, the Pickands
dependence functionA determines an extreme value copula
(Nelsen, 2006) with

CX(u1, u2) = exp

(
log(u1u2) · A

(
log(u2)

log(u1u2)

))
A is a mapping of the interval[0, 1]→[1/2, 1] and
must satisfy certain conditions: (a)A(0)=A(1)=1, (b)
max(t, 1−t)≤A(t)≤1, and (c)A is convex.

Since this section gives a short conceptional overview of
multivariate extreme value theory, in order to relate it to the
copula approach for extreme value distributions, the reader
is referred toColes(2001); Coles and Pauli(2002); Beirlant
et al.(2004) and references therein for further reading.

Much work in multivariate extreme value theory has cen-
tered around describing the dependence of extreme observa-
tionsde Haan and Resnick(1993); Coles and Tawn(1996);
Coles et al.(1999); Schlather and Tawn(2003); Heffernan
and Tawn(2004); Mendes et al.(2006). Recent studies inves-
tigate the spatial dependencies of precipitation extremesVan-
nitsem(2007); Vrac and Naveau(2007); Vrac et al.(2007);
Cooley et al.(2007), where the idea is to combine geostatis-
tics with multivariate extreme value theory.

7 Applications

In order to show the application of the copula framework,
three typical situations of bivariate random variables are con-
sidered: (1) the same meteorological parameter at different
locations, (2) different meteorological parameters at the same
location, and (3) bivariate extremes, as far as they can be ex-
pressed in the copula framework.

For the first two cases, we selected daily observations dur-
ing the winter months (DJF) taken from the Global Historical
Climatology Network (GHCN) that passed the internal qual-
ity control. They are split into five-day chunks, the typical
life time of synoptical disturbances, with two-days gaps in
order to reduce the autocorrelation, which is then between
0.07 and 0.15. Since we do not explicitly account for tem-
poral dependence within these examples, we would cause an
under estimation of the standard errors otherwise.

In the first application a bivariate random vector is
composed of five-day averages of precipitation measure-
ments at two stations in Germany which are at small
distance from each other: WMO station 10 389 Berlin
(52.45 N,13.30 E) at 55 m MSL and WMO station 10 379
Potsdam (52.38 N,13.07 E) at 81 m MSL. Common obser-
vations are available between 1893 and 2005 leading to a
sample size of 1218 elements. Only non-zero precipitation
amounts at both stations are considered, which leads to a
slightly different marginal distribution in the second exam-
ple. Furthermore, rain gauges measure in 0.2 mm steps lead-
ing to an artificial discretization, especially in lower precip-
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itation amounts. To overcome this problem a random noise
drawn fromU(−0.1, 0.1) has been added, which is to small
to affect the parameter estimates, but removes the round off-
effect. Figure 5 shows the corresponding fit of a multivariate
distribution with Gamma distributed marginals and a Gumbel
copula. The parameter estimates are based on the full maxi-
mum likelihood method (Sect.5), which allows independent
error estimates for the margins and the copula parameter. A
goodness of fit test using the PIT and the Anderson-Darling
test gives a p-value of 0.35.

The transformed random vector components, in the exam-
ple chosen, are strongly correlated with only upper tail de-
pendence. Figure 5 (top right) indicates why e.g. an elliptical
copula would not be sufficient to describe the dependence.
The asymmetric tail behavior also excludes regular correla-
tion coefficients as a proper measurement of dependence. It
has two reasons. The copula strongly depends on the selec-
tion of the marginal distribution and in this case, the trans-
formations of the margins are highly nonlinear, especially
for small precipitation values (Xj→0⇒Zj→−∞). Further-
more, large precipitation amounts are indeed well correlated
on the respective averaging period. This illustrates that the
copula does not provide a practical measurement of tail be-
havior of the original random variables, but upper/lower tail
dependence of the transformed variables has to be considered
when fitting a copula model. For example, fitting the same
data to Gaussian copula would diminish the GOF test to a
p-value of 0.014

It should also be mentioned, that a bivariate Gamma dis-
tribution could be used as alternative. Nevertheless, since
there are several definitions of bivariate Gamma distributions
(Izawa, Moran, Smith-Adelfang-Tubbs, . . . ) and some of
them are even identical to the copula concept, e.g. the Farlie-
Gumbel-Morgenstern model we refer to a review of bivariate
gamma distributions (Yue et al., 2001).

In the second application a bivariate random vector is com-
posed of five-days averages of precipitation and five-days
minima of temperature at the station Berlin. The marginal
distributions are described by a Gamma distribution for pre-
cipitation and Gumbel distribution for the temperature min-
imum. The aim is to test if a simple statistical model based
on the copula approach is capable of describing the phe-
nomenon that cold periods are accompanied by small pre-
cipitation amounts. In opposition to the application above
the dependence between the transformed random variables is
small. Furthermore, it appears to be symmetric with small or
no tail dependence, which indicates to use a Gaussian copula
(Fig. 6). Estimation and Goodness-of-fit test are performed
as above and lead to a p-value of 0.38. Nevertheless, it is
well known that selecting the Gamma distribution as a para-
metric description for precipitation amounts is problematic
when focusing on extreme precipitation events (e.g.Vrac and
Naveau, 2007).
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Fig. 6. Bivariate distribution of average daily precipitation and
minimum temperature at station Berlin (see text and Fig. 5).
The parameter estimates (and standard errors) of the gamma
distribution, the Gumbel distribution, and the normal copula
are α̂Precip=0.93 (0.030), β̂Precip=0.57 (0.024), µ̂Tmin=−0.18

(0.088), β̂Tmin=3.18 (0.065), andρ̂12=0.29 (0.023).

For the third application daily wind maxima at two close-
by locations are considered: WMO station 10 382 Berlin-
Tegel (52.28 N, 13.24 E) at 36 m MSL and WMO station
10 384 Berlin-Tempelhof (52.34 N, 13.18 E) at 49 m MSL,
both taken from the station network of the German weather
service DWD. Only fall and winter month (ONDJFM) be-
tween 2003 and 2007 are taken into account, leading to ap-
prox. 1460 observations. The wind measurements are stored
in steps of 1 m/s, so analogously to the examples above, a
random noise drawn fromU(−0.5, 0.5) has been added in
order to avoid an artificial discretisations. Since we are given
block maxima, the marginal distributions are described by a
generalized extreme value distribution (GEV) with location
parametersµ, scaleσ , and shapeξ . Their dependence is de-
scribed by a Gumbel copula which is also an extreme value
copula, since it satisfies Eq. (8). Figure 7 shows the corre-
sponding fit of the full multivariate distribution. As to be ex-
pected for daily wind maxima the estimates of the shape pa-
rameter are close to zero, so they belong to the Gumbel class
indicating that they are neither heavy-tailed nor bounded.
The covariance structure is well captured as illustrated in
the upper right panel of Fig. 7. As before, a goodness of
fit test using the PIT and the Anderson-Darling test gives a
p-value of 0.84. Nonetheless, the problem is often infeasible
for a higher number of dimensions or other parameters due

www.nonlin-processes-geophys.net/15/761/2008/ Nonlin. Processes Geophys., 15, 761–772, 2008
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Fig. 7. Bivariate distribution of daily wind maxima at station Berlin-
Tegel and Berlin-Tempelhof (see text and Fig. 5). The parameter es-
timates (and standard errors) of the GEV distribution, and the Gum-
bel copula areµ̂Teg=8.24 (0.12), σ̂Teg=3.05 (0.09), ξ̂Teg=0.021

(0.026), µ̂Tem=8.41 (0.088), σ̂Tem=2.98 (0.09), ξ̂Tem=0.059
(0.027), andθ̂G=4.09 (0.12).

to a low number of observations compared to high-resolution
wind measurements. For related and more detailed applica-
tions concerning multivariate extremes see e.g.de Haan and
de Ronde(1998); Michele and Salvadori(2003); Coles and
Walshaw(1994); Palutikof et al.(1999).

The examples above demonstrate the applicability of the
copula approach to meteorological parameters and one can
think of numerous further applications. A few of them are
given e.g. in the in the field of paleoclimatology (Neumann
et al., 2007; Scḧolzel, 2006; Kühl et al., 2007). Furthermore,
the copula concept allows to introduce covariates so that it
might gain interest in the the vast field of downscaling.

8 Conclusions

The theme of this paper is how recent developments in the
statistics of multivariate random variables can be applied to
improve meteorological or climatological applications. The
copula approach can be seen as a simple and straight for-
ward method to find parametric descriptions of multivariate
non-normally distributed random variables. Although it is a
fast growing field in statistics, it is still less known in climate
research, where often non-normally distributed random vari-

ables like precipitation, wind speed, cloud cover, humidity,
etc. are in involved.

The strength of this approach is to catch various covari-
ance structures while keeping proper parametric descriptions
of the margins. Compared to mixture models, which could be
claimed to be an alternative, the copula concept comes along
with two major advantages. Mixture models allow only ap-
proximative descriptions of the univariate marginal distribu-
tion functions and even simple covariance structures might
end up in a large number of mixture components in order to
provide sufficiently good fits – especially under the aspect of
tail dependence. Since concept behind mixture modeling as-
sumes different populations it is rather an enhancement than
an alternative. In fact, mixture models and copulas can be
combined as shown inDiday and Vrac(2005); Vrac et al.
(2005); Hu (2006). Speaking of alternatives, one might also
think of a classical way to avoid the problem by transforming
the margins and using a standard multivariate normal distri-
bution, but it should be pointed out that this is only a specific
case of the larger framework presented here and the exam-
ples show that linear correlation coefficients are not a proper
measurement of dependence outside the world of elliptical
distributions.

The limitations of the copula approach are given in an
extensive and interesting discussion, initiated byMikosch
(2006a). The discussion as well as the rejoinder (Mikosch,
2006b) are recommended for further reading as they point
out typical problems and misunderstandings:

There is no general procedure for selecting the copula
class. As for any kind of statistical model, a satisfying an-
swer does not yet exist, even in the univariate case, but the
copula concept allows to use the same strategies as in any
other modeling approach, i.e., physical background informa-
tion, cross-validation, etc. (Genest and Favre, 2007). In any
case, if available, one should use a multivariate distribution
which is suited to the problem. Furthermore the theoretical
value of the copula must not be exaggerated. The copula of a
distribution is determined by the marginal distribution which
also dictates the rate of convergence in the tail dependence,
as perfectly seen in Sect.7. Direct interpretations of the cop-
ula function alone do not provide insight into the stochastical
nature of the observed process. There is no dependence sep-
arately from the marginal distributions.

Finally, it is clear that the copula approach does not solve
the problem of dimensionality. Although copulas allow for
various kinds of dependence structure, the problem of finding
parametric distributions for high dimensional random vectors
remains complex. Any kind of high dimensional multivariate
distribution is either limited in covariance structure or comes
along with a high number parameters.

As a conclusion, the copula framework provides a vast
field for future applications. Due to the need for multivariate
methods, statistical literature on copula modeling has been
growing over the last few years – and its connection to the
modeling of multivariate extremes increases its popularity.
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After numerous successful applications in risk management,
financial research and more recently in hydrology, it is very
likely that copulas will have growing impact in the field of
meteorology and climate research.
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