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8Instituto Mexicano del Petroleo, Ḿexico
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Abstract. We documented that the mapping of the frac-
tal dimension of the backscattered Ground Penetrating
Radar traces (Fractal Dimension Mapping, FDM) accom-
plished over heterogeneous agricultural fields gives statisti-
cally sound combined information about the spatial distribu-
tion of Andosol’ dielectric permittivity, volumetric and gravi-
metric water content, bulk density, and mechanical resistance
under seven different management systems. The roughness
of the recorded traces was measured in terms of a single num-
berH , the Hurst exponent, which integrates the competitive
effects of volumetric water content, pore topology and me-
chanical resistance in space and time. We showed the suit-
ability to combine the GPR traces fractal analysis with rou-
tine geostatistics (kriging) in order to map the spatial vari-
ation of soil properties by nondestructive techniques and to
quantify precisely the differences under contrasting tillage
systems. Three experimental plots with zero tillage and 33,
66 and 100% of crop residues imprinted the highest rough-
ness to GPR wiggle traces (meanHR/S=0.15), significantly
different to Andosol under conventional tillage (HR/S=0.47).

1 Introduction

Numerous studies have documented scale invariance of soil
and other porous earth materials over a broad range of scales
(Oleschko et al., 2000; Caniego et al., 2005; Tarquis et al.,
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2006; Meng et al., 2006; Di Domenico et al., 2006; Jawson
and Niemann, 2007). Self-similarity, a most striking prop-
erty of isotropic fractals, means that each piece of a shape
is geometrically similar to the whole (Mandelbrot, 1983).
Self-affinity is a related concept referring to physical ob-
jects, time-series or recorded traces which must be scaled
differently along the principal coordinates in order to con-
serve their shape. When a remote object with fractal near-
surface properties is explored with electromagnetic waves,
the returned signals also become fractal. Microwaves, such
as those emitted by the GPR (Ground Penetrating Radar) an-
tenna, backscattered from the soil are self-affine functions
of time whose fractal dimension is close to the mass frac-
tal dimension of the high-permittivity, moisture-filled pores
in the soil. Our group’s use of the radar (Oleschko et al.,
2002, 2003) to find the soil’s fractal dimension has provoked
great attention, and was viewed by Jaggard (2002) as an ex-
tension of Richardson’s idea of measuring the jagged cost of
Britain with yardsticks of progressively smaller size (Man-
delbrot, 2002). “In radar” – wrote Jaggard – “the wave-
lengthλ plays the role of the yardstick, while the backscat-
tered intensity counts the number ofλ-sized scatterers”. The
pore topology, as well as the roughness of pore/solid inter-
faces are all imprinted in the GPR record’s wiggle traces
(Oleschko et al., 2003), this information can be decoded from
the recorded wave trains using Mandelbrot’s (2002) Fractal
Geometry Toolbox. In the present research we selected for
this “decoding” two dimension-estimators, Rescaled-Range
statistics and the wavelet technique (Benoit software, SCION
Corp., 2003). The mathematical model relating the GPR
record’s dimension to the mass fractal dimension of the
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high-dielectric-permittivity points in the soil had been de-
veloped and calibrated by our group (Oleschko et al., 2002,
2003) using a combination of laboratory experiments, com-
puter simulation, and field tests (Oleschko et al., 2003).

The present paper has three objectives:

1. To document in situ the GPR’s ability to extract the frac-
tal dimensions of the dielectric permittivity- and me-
chanical resistance soil spatial patterns;

2. To explain how this fractal dimension can be extracted
from the GPR record;

3. To show that a proposed new way to combine the GPR
traces’ fractal analysis with routine geostatistics (krig-
ing) makes possible to map the spatial variation of cer-
tain soil properties in fast and non-destructive mode.

2 Mathematical and physical background

2.1 Wave scattering on fractals

In the present research, we selected a widely accepted soil
model (Pachepsky et al., 2000; Oleschko et al., 2002): a
mass-fractal distribution of solids and pores, where the high-
permittivity clusters are associated with water-filled pores.
This model obeys the empirically observed scale invariance
of the pore space (Korvin, 1992; Oleschko et al., 2000) and
is simple enough to be treated analytically. If the solid grains
and the pores are D-dimensional mass fractals then the non-
uniform internal structure of an R-sized fractal aggregate
manifests itself in nontrivial mass (M) and density (ρ) scal-
ing (Zosimov and Lyamshev, 1995):

M ∝

(
R

a0

)D

, (1)

and

ρ ∝ ρ0

(
R

a0

)D−E

, (2)

whereD is mass fractal dimension,a0 is a characteristic
length of a single grain or pore, and E is the dimension of
the embedding Euclidian space. The number of solid grains
as well as pores of characteristic sizeR also follows a power
law:

n(R) ∝ R−D. (3)

In case of isotropy, the density correlationC
→
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〈ρ (x + ξ) ρ (x)〉 scales as:

C
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The intensity of monochromatic waves scattered on a mass
fractal (in our case on fluctuations of the refractive index) is
proportional to

S
→

(q)=

∫∫
d

→
x d

→

x′
′

C(
→
x −

→

x′
′

) exp

[
i

→
q (

→
x −

→

x′
′

)

]
, (5)

where
→
q is the wave vector. If the correlation function of

the refractive index fluctuations is proportional to that of the

material densityρ(
→
x ), it follows from Eqs. (4) and (5) (Zosi-

mov and Lyamshev, 1995) that,

S(q) ∼ |q|
−D . (6)

The observation of such power laws in scattering experi-
ments provides both a verification of the fractal nature for the
studied structure and a convenient way to measure its fractal
dimensionD. The use of Eq. (6) has become a common
procedure to determine the fractal dimension of aerogels,
colloidal aggregates, and polymers from small angle X-ray,
neutron, or optical scattering measurements (Sinha, 1989;
Schaefer et al., 1990; Jaggard and Jaggard, 1998; Huanling
et al., 2006; Melnichenko and Wignall, 2007).

2.2 Estimation of the fractal dimension

Several types of dimensions are required for the complete de-
scription of a fractal; each one has its special significance and
measures a specific set attribute (Korvin, 1992). The values
of different fractal dimensions, or even the same fractal di-
mension estimated by different techniques, do not necessar-
ily coincide. In the present study, the fractal analysis of the
selected radar traces was accomplished using two techniques
of the Benoit software (SCION Corp., 1999): the Rescaled-
Range analysis and the wavelet analysis. In our previous re-
search (Oleschko et al., 2002, 2003), both techniques proved
to be sufficiently robust for microwave roughness measure-
ments, yielding two fractal dimensions –DR/S andDW –
and two corresponding Hurst exponents –HR/S andHW .

The Rescaled-Range method divides the data set to “win-
dows” of equal lengthw. For each window length the
rangeR(w) and scatterS(w) are computed and the avarage

valueR/S(w)=
〈
R(w)
S(w)

〉
estimated. For self-affine processes

R/S(w) ∝ wH , that is the Hurst exponentH is found from
the slope of the straight line that fits logR/S(w) vs. logw.
The Hurst exponent is related to the fractal dimension of the
graph asH=2−D. WhenH is close to 0.5, the behavior of
the data is random (a total absence of persistence or mem-
ory). If 0<H<1/2, this indicates a negative persistence (an-
tipersistence), while for1/2<H<1 the persistence is positive
and increases whenH changes from1/2 to 1. Persistence is
often identified with positive, and antipersistence with neg-
ative correlations. Positive correlation means that, if a posi-
tive (or negative) value is found at some position, with a high

Nonlin. Processes Geophys., 15, 711–725, 2008 www.nonlin-processes-geophys.net/15/711/2008/



K. Oleschko et al.: Mapping of moisture in scale invariant soil 713

probability a value with similar sign would be found at the
neighboring site (Benoit, SCION Corp., 2003).

The wavelet transform method of estimatingD has
the advantage that it can be applied for nonstationary
traces. In the Benoit software the mother wavelet is a
step function, andn different wavelet transforms of the
analyzed trace are computed usingai=2i, i=0, 1, . . ., n−1
as scales. Denoting bySi the variance from zero of
the i-th wavelet transform, and calculating the numbers
G1=S1

/
S2, . . . ,Gn−1=Sn−1

/
Sn, the Hurst exponent is es-

timated fromGavg= 〈Gi〉 =
1

n−1

n−1∑
i=1

Gi using an empirical

relationH=f
(
Gavg

)
(Benoit, SCION Corp., 2003). Note

that traces withH near zero are very rough (high ampli-
tude oscillation), antipersistent, and have a fractal dimension
close to 2, while traces withH near 1 are smooth (with ho-
mogeneous amplitude distribution), persistent, of fractal di-
mension near 1.

2.3 Spatial interpolation of irregularly sampled data (krig-
ing)

In geostatistics (Robertson, 1998; Webster and Oliver, 2001)
the spatial variability of a random regionalized variable
f (x, y) is characterized by its semivariogramγ . Suppose
we observef at two pointsP(x, y) andQ(x + ξ, y + η),
thenγ is defined as

γ (ξ, η)=1
2

〈
df (x, y)−f (x + ξ, y+η)e2〉 . In case of

isotropy we haveγ (ξ, η)≡γ (1) where1=

√
ξ2+η2. For

P≡Q we haveγ (0)=0. Sometimes the semivariogram does
not go down all the way to zero when1→+0. In this case
the positive valueε2

= lim
∣∣
1→+0 γ (1) is called nugget.

If the regionalized variablef (x,y) is of zero mean value,
homogeneous and isotropic, and the pointsP and Q are
far from each other,Z(P )&Z(Q) become uncorrelated as
PQ → ∞. In this caseγ (P, Q)=1

2

〈
(f (P ) − f (Q))2〉

→〈
f 2(P )

〉
, that isγ (∞)=

〈
f 2(P )

〉
. The value of this asymp-

totic flat region of the semivariogram is called sill, the
1-value, beyond which the semivariogram becomes flat is
called range. Practically, the range is that distance within
which the measuredf -values are correlated, and beyond
which, they become uncorrelated. The numerically found
raw semivariogram is approximated by one of the follow-
ing simple mathematical models (whereσ 2 is the sill, a is
the range,1 the separation distance, called lag, andε2 is
the nugget): Spherical; Exponential; Gaussian; Pure nugget
and Power Law models. Modern texts (Korvin, 1992; Hardy
and Beier, 1994) use power law semivariogram models to de-
scribe fractal HC reservoirs. In this case

γ (1)=const·1α
+ ε2, (7)

this model has no sill, and no range. A special case of Eq. (7)
is the linear model corresponding toα=1.

The main use of semivariograms is found in kriging
(named after D. G. Krige, South African Mining Engineer),

this is a procedure to find an unbiased optimal estimate for
the unknown value of a spatial random variableX at pointP
if we know XP1, XP2, . . ., XPN

at N other points. For sim-
plicity take N = 3, suppose we knowXP1, XP2, XP3 and
we want to estimateX at a new pointP as a weighted sum
XP,est≈W1X1+W2X2+W3X3 where the coefficientsWi are
selected in such a way as to minimize the expected error-

variance:V =E
({

XP,est−XP

}2
)

= min subject to the con-

dition W1+W2+W3=1.
The weights satisfy the kriging equation

γ (1, 1) W1 + γ (1, 2) W2 + γ (1, 3) W3 −λ = γ (1, P )

γ (2, 1) W1 + γ (2, 2) W2 + γ (2, 3) W3 −λ = γ (2, P )

γ (3, 1) W1 + γ (3, 2) W + γ (3, 3) W3 −λ = γ (3, P )

W1 + W2 + W3 = 1

 (8)

whereγ (i, j)=γ
(∣∣Pi−Pj

∣∣), is the appropriate model semi-
variogram at lag1=

∣∣Pi−Pj

∣∣, λ is the Lagrange parameter.

3 Experiment description and data analysis

3.1 General considerations

To confirm experimentally the strong relation that exists be-
tween the mass fractal dimension of the pore space and the
roughness of the scattered microwaves, we chose a volcanic
soil (Andosol) with

1. well-documented self-similarity of both the solid and
pore networks (Oleschko et al., 2000);

2. high microstructure stability, water retention capacity
and infiltration rates (Oleschko and Chapa, 1989); and

3. slowly developed macrostructure, but extremely high
biological activity (especially of moles, migrated to the
plots with zero tillage) and exceptional erosion potential
worsened by the geomorphology (Fig. 1).

We assumed that the pore topology and network continuity
could be visualized on the georadargrams and are encoded
in the roughness of the recorded wiggle traces. Our work-
ing hypothesis had been that if the georadargrams of two
Andosol experimental plots with different moisture contents,
resulting from contrasting management practices, are com-
pared, the differences in the subsurface structure would affect
the amplitude distribution of the scattered microwaves, and
this could be decoded, by fractal analysis, from the recorded
traces. The differences in soil subsurface structure are im-
printed also in the roughness of GPR output frequency dis-
tribution (Fig. 2).

3.2 Site characterization

The studied site forms part of a long term experimental area
started by CENAPROS (National Research Center for Sus-
tainable Production of the National Research Institute of For-
est, Agriculture and Animal Production – INIFAP) in 1995.
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Figure1

 
 

 

 
Fig. 1. Geographic location of the experimental area. The two ex-
perimental fields occupy the highest positions of the studied area,
the seven small plots are in its lower part.

This area is located southwest to the Patzcuaro Lake, Mi-
choacan State, Ḿexico (Fig. 1), and comprises two experi-
mental fields each of 750 m2 (50 by 15 m), and seven plots of
91.6 m2 ( 4 by 22.9 m). All of them have a slope close to 9%
(Fig.1). In the last 12 years, detailed qualitative and quantita-
tive analyses of the physical, chemical and biological prop-
erties of mollic Andosol under conservation or zero tillage
(0, 33, 66 and 100% crop residues) have been accomplished,
and the dynamics of crop yield was documented on the ex-
perimental fields under zero tillage and conventional man-
agement. Detailed dynamics of the physical, chemical, and
biological properties of Andosol from the studied area under
different management systems and crop rotations were de-
scribed previously by Oleschko and Chapa (1989), and Tis-
carẽno-López et al. (1999).

Zero tillage (ZT) consists of minimum soil removal with a
“zero tillage” machine seeding directly above the last year’s
residues, which covered about 38% of soil surface.

Conventional tillage (CT) comprises deep furrowing to a
depth of 30 cm with a reversible 3-disk attachment disking to
a depth of 15 cm, machine seeding, fertilization, harvesting,
and stubble removal.

Experimental plots and fields were seeded with maize,
which is the main crop in this region. The applied fertil-
izer rates were 120 units of N ha−1 for urea and 90 units of
P2O5 ha−1 for diamonic phosphate.

3.3 Point-wise soil sampling

Ground-based point-wise measurements of four soil proper-
ties: the apparent dielectric constant (Ka), volumetric water
content (θi), gravimetric water content (Wi), and mechanical
resistance (γ ) profile, were accomplished following two dif-
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Fig. 2. An example of the GPR output average frequency spectrum
in Andosol under two contrasting tillage conditions (a andb). The
conversion of a radar output signal to a fractal elevation profile is
exemplified for pre-treated binarized trace(c) transformed into a
time series of signal amplitudes (the dotted curve on Fig. 2d).

ferent sampling strategies. In the experimental fields, sam-
pling was performed each five meters in north-south direc-
tion across a rectangular grid (50 m by 15 m), resulting in 44
sampling points for each field. In the seven small plots, all
variables were collected each 4 m following the same direc-
tion along 22 m length transects, resulting in 5 samples per
plot and 35 sampling points for the whole sampling area. The
study was accomplished during the dry period in 2001 and
repeated in 2004, when the Andosol’s moisture was close to
the steady-state condition.
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Non-destructive sampling techniques were followed for
all soil properties except gravimetric water content. For
Wi measurements, the thermo-gravimetric method was used.
This technique requires soil sampling and oven drying
(105◦C) (Smith and Mullins, 2001). The relative apparent
dielectric constant and volumetric water content were mea-
sured by TRASE Time Domain Reflectometry (TDR) equip-
ment (Soil Moisture Equip. Corp.), using a 0.15 m long two-
guide probe. TDR is sensitive to the soil’s dielectric permit-
tivity and measures the water-filled pore space. Since water
has a significantly higher dielectric constant than most solid
soil matrices, the overall dielectric constant is highly depen-
dent on the water content and a strong correlation exists be-
tween the permittivity values and volumetric water content
(Dirksen and Dasberg, 1993). TDR measures the soil’s di-
electric constant over a broad frequency band (between 100
and 1000 MHz, Topp et al., 1980; Dalton and van Genuchten,
1986).

Soil mechanical resistance was measured, by RIMIC CP
20 ultrasonic cone penetrometer. The measurements were
done at 15 mm depth increments from the soil surface to a
depth of 600 mm, close to each sampling points whereKa

andWi were measured. A complete profile consisting of 40
measurements at each sampling point was compressed to a
single Hurst exponent value by fractal procedures, character-
izing the roughness of the mechanical resistance profile.

3.4 GPR measurements

The GPR survey was performed during the dry season, sev-
eral months after crop harvesting, when the rain stopped and
the soil reached a near steady-state moisture profile. In the
survey the ZOND-12 equipment (Zond-12c, 2000) was used
in continuous reflection mode, with an antenna of 2 GHz
central-frequency. The radar system unit is carried across the
field manually by operator. The maximum operating depth
of this antenna varied in studied agricultural fields from 1.0
to 1.2 m. Once interacting with the subsurface the origi-
nally uniform pulse becomes rough, and enriched with multi-
scale information of distinct nature, including noise (Fig. 2).
The GPR traces selected for fractal roughness measurements
were extracted from the collected common offset georadar-
grams at every 2 m in the experimental fields and at every
1 m in the plots. This resulted in 88 and 11 sampling points,
respectively. Approximately half of the sampled GPR sig-
nals were from locations whereKa , Wi , andγ had also been
sampled. Reference velocities of radar waves and the depth
of their penetration were estimated using the permittivity val-
ues measured in situ by TDR.

3.5 Fractal analysis of the GPR records

We considered the amplitude sequence of the backscattered
radar pulse as GPR fractal signature and measured its rough-
ness by the Hurst exponent (H). The Hurst exponent is re-
lated to the graph’s fractal dimension byH=2−D (Mandel-
brot, 1983).

In order to convert the amplitudes of a radar signal to a
fractal elevation profile, we selected the wiggle trace from
the georadargram, pre-treated it using Paint Shop Pro (7.04),
and rotated it to horizontal position. The obtained image
(Fig. 2c) was binarized (algorithm Binar, written by Parrot,
2000) and the algorithm Curve (Parrot, 2004) translated it
into a time series of signal amplitudes (Fig. 2d). The rough-
ness of this series was measured by the Rescaled-Range
and wavelets techniques of the Benoit software, version 1.3
(SCION Corp., 2003).

3.6 Statistical and geostatistical analyses

From a geostatistical view-point the soil properties and frac-
tal parameters extracted from selected GPR traces are irreg-
ularly sampled regionalized variables. In their mapping and
interpretation the irregular topography of the experimental
fields was taken into account by using the elevation map of
this mountainous area as base-map for the construction of
the variability maps. The mapping protocol is available for
all compared experimental areas. The spatial variation of the
data was modeled and interpolated by universal kriging (GS+

geostatistics software, version 3.1.7, Robertson, 1998; and
SURFER, version 6.01). The maps of dielectric permittiv-
ity; gravimetric and volumetric water content; mechanical
resistance (for each 15 mm layers and for the whole profile),
the Rescaled-Range (DR/S) and wavelet- (DW ) fractal di-
mensions, were independently constructed. Most of the raw
semivarogram were fitted with isotropic exponential semivar-
iogram models, trying to minimize the nugget valueε2 and
maximizeR2. For some variables, only a linear model gave
acceptable fit to the experimental semivariogram.

Two types ofDR/S andDW maps were prepared for the
experimental fields and plots, one based on 44 and the other
on 88 values, respectively. Comparison of these maps with
the kriging maps of all other variables (Wi, Qi andγ ) was
accomplished first visually, and then by quantifying the dis-
tribution of the main clusters across the variability maps by
traditional box counting, and by measuring the roughness
of maps by Rescaled-Range and wavelet techniques (Benoit
1.3 software, SCION Corp., 2003). Statistical comparison
of all studied variables was accomplished by the One-Way
ANOVA software (Statgraphics 5, Plus, 2000).

www.nonlin-processes-geophys.net/15/711/2008/ Nonlin. Processes Geophys., 15, 711–725, 2008
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Figure 3 

 
Fig. 3. Semivariograms of the Andosol’s gravimetric (a ande) and volumetric (c andg) water content in the Conventional Tillage (a andc)
and Zero Tillage (eandg) fields. Clusters with different water content appear on the maps of soil variation under CT (b andd) and ZT (f and
h). All maps, constructed by universal kriging, are superimposed on the topographic map.

4 Results and discussion

4.1 Experimental fields

No statistically significant differences either in gravimetric
(Wi), or in volumetric (θi), water content were found by tra-
ditional methods in the first 15 cm of Andosol in the com-
pared fields (Fig. 3a–h). The meanWi varied from 50.6% un-
der conventional (CT) to 50.3% under zero tillage (ZT). The
distribution of water content was more homogeneous in the
conventional field. Only one cluster with higher gravimetric
water content (69.4%) was delimited between 25 and 35 m
along the sampling transect, for both studied fields, where the

wetter clusters have been associated with the notably darker
color. A similar, but not so well defined humid cluster can
be visualized on the volumetric water content map (Fig. 3d),
where some new small moist areas appeared. However, the
homogeneity ofθi under CT was still notorious in compar-
ison with ZT, where the kriged map shows a major hetero-
geneity and larger clusters identified as areas of water con-
centration in more uniform soil moisture conditions. In case
of gravimetric water content, only two big clusters with high
moisture content are distinguished, while on the volumetric
water map three smaller humid areas are visualized (Fig. 3h).

Nonlin. Processes Geophys., 15, 711–725, 2008 www.nonlin-processes-geophys.net/15/711/2008/
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Fig. 4. Spatial variability maps (a andd) and exponential semivariograms (b ande) of the Andosol’s mechanical resistance at 10–20 cm
depth. The locations of higher-density clusters correspond to the water-content highs in Fig. 2. Observe the difference in the mechanical
resistance profiles between the CT(c) and ZT(f) fields.

The mechanical resistance profiles (Fig. 4a–f) show statis-
tically significant differences between the compared sites at
two depths:

1. 10–20 cm and

2. 40–50 cm.

Higher mechanical resistance of Andosol under the CT is re-
lated to the compacted microlayer formed as the result of soil
disking at the 10–20 cm depth, while the more compacted
horizon (at 40–50 cm) coincided with the thin plough pan,
typical for this agricultural zone. Both dense microhorizons
were observed directly on the soil profile opened beside the
experimental field.

On the three variability maps obtained for the discussed
soil properties (Wi, θi andγ ) the location of humid clusters
always coincides with the areas of higher density. Still, no

statistical correlation was found between the different pairs
of the above- mentioned soil properties. However our data
are in agreement with results documented by Veronese Júnior
et al. (2006) who have concluded that the compacted zones
of the plot show higher water content values.

The Rescaled-Range-, as well as the wavelet fractal di-
mensions of the GPR signatures (Fig. 5a and b) were signif-
icantly different for Andosol under CT and ZT (Fig. 5). Wet
and dense clusters always corresponded to higher Hurst ex-
ponents (lower roughness) of the GPR traces. HigherDR/S

andDW were always more probable for the conventionally
managed Andosol. While strikingly different signatures, and
very different Hurst exponents, can be observed in waves
backscattered from soils with different water content and me-
chanical resistance (Fig. 6), no significant correlation was
found between the measured fractal dimensions and water

www.nonlin-processes-geophys.net/15/711/2008/ Nonlin. Processes Geophys., 15, 711–725, 2008
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Table 1. Exponential model parameters for the semivariograms over the experimental fields.

Variable Nugget Sill Range (m) R2

CT ZT CT ZT CT ZT CT ZT

DR/S (2 m) 0.0 0.0 1.0 0.002 10.0 5.88 0.77 0.90
DR/S (4 m) 0.0 0.0 1.2 1.05 4.0 4.0 0.51 0.70
DW (2 m) 0.0 0.63 0.99 1.74 9.68 180.3 0.51 0.94
DW (4 m) 0.0 0.0 1.08 0.77 3.0 3.0 0.55 0.70
Wi 0.0 0.0 1.24 8.018 13.32 10.5 0.96 0.74

0.0 0.0 1.1 0.98 10.0 7.14 0.52 0.62
γ (10− 20cm) 0.0 0.0 1.05 1.054 10.68 10.68 0.82 0.83

Figure 5 
 

 
 

 

 

 

Fig. 5. ANOVA statistical comparison between variations of:(a)
Rescaled-Range fractal dimension (DR/S), and(b) wavelet fractal
dimension (DW ), across the CT and ZT fields.

content, or mechanical resistance. We speculate that each
fractal dimension encodes at the same time the information
about a set of soil properties, so it is not so easy to single
out the individual role of any property by the traditional an-
alytical techniques. The higher macrofauna activity in ZT
(Oleschko and Chapa, 1989) and therefore the major pres-
ence of big cavities inside this agricultural field may also
contribute to this lack of data correlation.

Fluctuations in the values ofDR/S and DW were sig-
nificantly different for the compared management practices
(Fig. 5). For instance, in CT, the mean value ofDR/S was
1.592, decreasing from 1.674 in dry- to 1.513 in wet clus-
ters. In ZT, the sameDR/S has a mean of 1.628, ranging

from 1.779 to 1.530 in dry, respectively to humid clusters.
Note, the values of fractal dimension in dry soil with higher
moisture content, extracted from the GPR traces was always
closer to theD of white noise.

In order to have a comparable sampling rate between
point-wise measured properties and microwaves extracted
from the georadargrams, initially we mapped only 44 fractal
dimensions for each field. The clusters on the microwave-
derivedDR/S andDW maps coincided visually with those
on the water-content and mechanical resistance maps (Com-
pare Fig. 6 with Figs. 3 and 4). It should be mentioned that
when Weiherm̈uller et al. (2007) intended to map the spatial
variation of soil water content at the field scale with different
ground penetrating radar techniques, using the indirect mois-
ture estimation from the wave velocity in porous media, the
results were difficult to interpret due to the strong attenua-
tion of the GPR signal. This attenuation was related by these
authors to the silt loam texture at the test site.

Notwithstanding, when all fractal dimensions extracted
from GPR traces (altogether 88) in the present research, have
been utilized for the construction of more detailed variability
maps, the position ofWi , QI = i andγ and clusters inside
the fields did not change significantly but the areas of differ-
ent dimensions were better delineated (Fig. 7).

In order to map the measured soil properties and fractal di-
mensions, with one exception, the raw semivariograms were
fitted with isotropic exponential models (Nugget, sill, range
and goodness of fit are compiled in Table 1). The semivar-
iogram of the 88 values of the wavelet dimensionDW was
fitted by a linear model. A monotone increase of the semi-
variograms with increasing lag (except in case of theDW

values, Table 1) and their asymptotic tendency to a constant
maximum “sill” have been observed for all compared vari-
ables.
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Fig. 6. Spatial variability maps (a andd) and the best-fitting exponential semivariogram models (b ande) of the Andosol’s GPR-derived
Rescaled Range (DR/S) and wavelet (DW ) fractal dimensions, constructed from 44 sampling points for CT and ZT fields, respectively.
Some examples (c andf) of GPR traces used for fractal analysis.TheDR/S (a) andDW (c) clustering is comparable with the soil property
maps (Figs. 3 and 4).

4.2 Statistical comparison between spatial variability maps

At the next step of this study each map was analyzed as gray
scale image (.bmp). The roughness of gray tones distribution
across the spatial variability maps of studied Andosol phys-
ical and mechanical properties (Wi, θi andγ ) was measured
by Hurst exponent extracted by Rescaled-Range and wavelet
techniques and compared with the roughness ofDR/S and
Dw maps. Significant statistical correlation was found be-
tween all pairs of compared variables exceptγ10−20/DR/S

andWi/Dw by r-Pearson analysis (Table 3), agreed with no

significant differences between all pairs of compared vari-
ables shown by t-Student test. Therefore, the location of dark
clusters (with high variable values) not only coincided when
maps were compared visually but are also characterized by
statistically similar gray intensity roughness.

4.3 Experimental plots

In the seven small experimental plots the spatial variation
of the gravimetric water contentWi , dielectric permittiv-
ity (Ka), volumetric water content (θI ), and mechanical
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Figure 7 
 

 

 Fig. 7. Best-fitting exponential semivariogram models (a andc), spatial variability maps (b ande) of the Andosol’s rescaled range (DR/S)

and wavelet (DW ) dimensions in the CT and ZT fields. Altogether 88 traces were extracted, 2 m apart. TheDR/S andDW (a anfc) clustering
can be compared with the maps of soil physical properties (Figs. 3 and 4).

resistance (γ ) at 10–20 cm depth shows a clear correlation
with the applied management system (Table 2). However,
not all variables present statistically significant differences.
The comparisons by One-Way ANOVA (Statgraphics 5, Plus,
2000), proved the advantages of using the fractal dimensions
instead of the other variables. When the dielectric permittiv-
ity, volumetric water content, and mechanical resistance of
Andosol are compared by pairs for seven experimental plots,
only the soil under CT was significantly different (with re-
spect) to the rest of the management systems (at 95.0% confi-
dence limit). Unclear, and sometimes counterintuitive, trends

were documented for all other plots. On the other hand, the
information extracted from the fractal dimensions of the GPR
traces was always more precise. It was not only consistent
with all trends of soil dynamics documented in Table 2, but
also statistically significant for most of the compared man-
agement systems (Fig. 8). First of all, both fractal dimen-
sions detected differences in Andosol with and without crop
residues roughness. Significantly higher roughness (higher
D- and lower H-values) is observed in subsurface structure of
plots with zero tillage and 33, 66 and 100% of crop residues.
For instance, the GPR traces extracted from ZT-100 plot have
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Table 2. Mean values of the variables in Andosol under seven management systems.

Variable Bare ZT-0 ZT-33 ZT-66 ZT-100 MT CT

θi (%) 26.6 (12.2)∗ 27.9 (6.6) 29.2 (9.5) 30.0 (13.9) 29.7 (7.4) 27.0 (12.3) 20.4 (11.9)
Ka 13.5 (15.6) 14.3 (8.1) 15.3 (13.3) 15.8 (18.7) 15.6 (10.4) 13.8 (15.2) 10.0 (12.4)
Wi (%) 61.5 (18.7) 63.0 (0.8) 65.4 (6.4) 59.7 (11.2) 62.0 (3.4) 52.6 (0.2) 51.6 (2.8)
γ0−10cm 1.5 (20.5) 1.3 (13.2) 1.4 (17.6) 1.4 (42.6) 1.1 (58.8) 1.3 (17.2) 0.5 (38.2)
(MPa)
γ10−20cm 1.6 (26.1) 1.2 (23.5) 1.5 (18.3) 1.4 (27.0) 1.3 (59.5) 1.5 (43.1) 1.1 (47.7)
(MPa)
γ20−30cm 1.5 (32.8) 1.7 (22.1) 2.0 (17.1) 1.9 (34.4) 1.6 (62.9) 1.8 (34.9) 1.3 (57.3)
(MPa)
γ30−40cm 1.8 (26.2) 1.7 (10.6) 2.4 (13.4) 1.9 (26.4) 1.3 (65.1) 2.0 (14.4) 1.6 (38.0)
(MPa)
γ40−50cm 2.1 (15.5) 1.4 (13.1) 2.3 (26.6) 1.6 (38.9) 1.4 (35.2) 1.9 (10.9) 2.0 (17.3)
(MPa)
γ50−60cm 2.1 (13.7) 1.5 (35.1) 2.5 (21.1) 1.6 (27.0) 1.6 (31.4) 1.7 (17.6) 1.5 (40.6)
(MPa)
DR/S 1.56 (2.4) 1.58 (1.9) 1.83 (7.3) 1.84 (3.8) 1.87 (4.2) 1.78 (9.6) 1.53 (2.8)
DW 1.42 (6.5) 1.22 (4.7) 1.60 (16.9) 1.56 (17.7) 1.50 (15.8) 1.49 (17.3) 1.28 (7.2)

∗ The coefficient of variation (%) is in brackets.
ZT-0 = zero tillage without crop residues.
ZT-33, ZT-66 y ZT-100 = zero tillage with 33, 66 and 100% crop residues, respectively.
MT = minimal tillage
CT = conventional tillage.

the highest roughness in comparison with all other manage-
ment treatments, which have been expressed in lower Hurst
exponent value (0.17) in comparison with Andosol under
zero tillage and without organic cover (H=0.42). The rough-
ness of waves scattered from the bare (H=0.44) and under
conventional tillage (H=0.47) soil was similar. Therefore,
both fractal dimensionsDR/S andDW carry more useful in-
formation about the explored porous media than the other
traditional measurements. However, sometimes one of these
fractal parameters worked better from statistical view-point
than the other. The coefficient of variation was always higher
for wavelet fractal dimension, duplicating or sometimes trip-
licating the value ofDR/S coefficient of variation. The value
of DR/S (1.56), obtained for the bare plot with higher vol-
umetric water content (26.6%) and larger compaction (1.5
MPa at first 10 cm), was comparable with theDR/S of ZT-
0 and CT (1.58 and 1.53, respectively), while theDw val-
ues for the same three plots showed significant differences.
In this case, the wavelet fractal dimension has the smallest
value (and consequently the lowest roughness – largest Hurst
exponent) under zero tillage without residues cover, and un-
der conventional management (1.22 and 1.28, respectively).
This trend is in agreement over the tendencies of Ka-, θi,-
andγ -dynamics, being bothDw significantly smaller than in
the bare plot (whereDw is 1.42). Therefore, in some cases
the wavelet dimension fits better to the visual field percep-
tion of the trends, and it is a clear indicator of the Andosol

spatial variability. However, for seven of the 21 compared
pairs of plots, differences in the wavelet fractal dimensions
were not statistically significant. Curiously, three of these
seven pairs were significantly different with respect to the
Rescaled-Range fractal dimension. Considering the tenden-
cies observed in nearby plots for the dynamics of both di-
mensions, there were no significant differences in Andosol
physical properties between zero tillage with 33% organic
residues vs. zero tillage with 66% organic residues, and zero
tillage with 66% vs. zero tillage with 100% cover. Beside the
above-mentioned exceptions, the statistical analysis of the
GPR trace roughness has detected significant differences in
the soils’ scattering properties even under very similar tillage
conditions.

In the experimental plots, the fractal analysis was applied
in order to compress the forty mechanical resistance values
of each penetrometer’ profile inside the single value of frac-
tal dimension. The range of theDW semivariogram for me-
chanical resistance (r=21.3 m) was similar to the range of
theDR/S extracted from the GPR signature (r=22.8 m). The
ranges for the permittivity (r=15.8 m) and gravimetric water
content (r=12.9 m) semivariograms were much smaller. The
largest range (r=37.5 m) corresponds to the semivariogram
of volumetric water content, while the lowest (r=9 m) to that
of the wavelet fractal dimensions extracted from the GPR
traces.
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Table 3. r-Pearson analysis of spatial variability maps roughness
for gravimetric (Wi ) and volumetric (Qi ) water content, mechanical
resistance (γ(10−20cm)) vs. roughness ofDR/S andDw maps.

Tillage Wi DR/S r-Pearson P-value

CT 1.845 1.906 0.999 0.001
ZT 1.880 1.910
CT 1.468 1.568
ZT 1.139 1.311

Qi DR/S

CT 1.870 1.906 0.966 0.034
ZT 1.908 1.910
CT 1.634 1.568
ZT 1.584 1.311

γ(10−20cm) DR/S

CT 1.911 1.906 0.898 0.102
ZT 1.825 1.910
CT 1.676 1.568
ZT 1.668 1.311

Wi Dw

CT 1.845 1.899 0.932 0.068
ZT 1.88 1.866
CT 1.468 1.207
ZT 1.139 1.177

Qi Dw

CT 1.87 1.899 0.987 0.013
ZT 1.908 1.866
CT 1.634 1.207
ZT 1.584 1.177

γ(10−20cm) Dw

CT 1.911 1.899 0.965 0.035
ZT 1.825 1.866
CT 1.676 1.207
ZT 1.668 1.177

The maximum mean value for Wi (65.4%) was found in
the ZT-33 plot, while the biggest Ka (15.8) andθi (30.0%)
corresponds to the ZT-66 field. The highest mechanical
resistanceγ50−60 cm=2.5 MPa was documented for the An-
dosol under zero tillage with 33% of crop residues. This plot,
together with the Andosol under zero tillage without crop
residues (Z0-0, Ka=14.3,θi=27.9% andγ0−10 cm=1.3 MPa),
have the most homogeneous distribution of mechanical re-
sistance inside the sampled profiles at the depth from 10 to
40 cm. The lowest coefficients of variation were documented
for gravimetric (0.8%) and volumetric (6.6%) water content
of Andosol under zero tillage without crop residues experi-
mental plot. Notwithstanding, if the variations of all studied
parameters are compared, the Rescaled-Range fractal dimen-

Figure 8 
 

 

 
Fig. 8. ANOVA statistical comparison between variations of:(a)
rescaled-range fractal dimension (DR/S), and (b) wavelet fractal
dimension (DW ) across the seven experimental plots.Figure 9 
 

 

 
Fig. 9. Spatial variability map of the Rescaled Range fractal di-
mensionDR/S along the seven compared plots. For each plot the
map was constructed by universal kriging, independently of the oth-
ers. All maps were combined to make clear the fractal dimensions’
clustering in the differently managed plots. (Management codes are
explained in Table 2.)

sion would be visualized as the less variable: CV is fluctuat-
ing between 1.9 and 9.6 for all experimental plots. The vari-
ation of wavelet dimension was higher, increasing from 4.7
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Figure 10 
 

 

 
 

Fig. 10. Exponential models for the Rescaled-Range(a) and wavelet(d) fractal dimension semivariograms, constructed from all data. The
spatial variability maps for the GPR traces’DR/S (b) andDW (e) dimensions were calculated by universal kriging, using all experimental
data together. Observe the clear difference between GPR traces recorded over different plots(c).

under zero tillage to 17.7 under zero tillage with 66% of crop
residues. The mechanical resistance of Andosol at depth of
0–10, 10–20, 20–30 and 30–40 cm was the parameter with
highest coefficients of variation (58.8; 59.5; 62.9 and 65.1%,
respectively) under zero tillage with 100% of crop residues.

As mentioned above, all compared variables were sam-
pled regularly along the reference transects across the exper-
imental plots. Therefore, at the beginning we constructed the
semivariograms and the kriged maps independently for each
plot. However, in Fig. 10, we superimposed all maps in order
to enhance the detected tendencies in fractal dimension dy-
namics under the compared tillage practices. The tendency
for homogenization of the studied properties has been docu-
mented and discussed above for the field under CT and ZT.

Similar trends were observed on the maps constructed either
from the volumetric water and mechanical resistance values,
or from the fractal dimensions extracted from GPR traces.
The highest variability of Ka , θi, andγ was detected under
the zero tillage plot with 66% of crop residues (ZT-66, Ta-
ble 2). The same is seen on theDR/S map extracted from
GPR records.

Three plots under zero tillage, with 33, 66, and 100%
residues, show strong clustering in the spatial distribution of
permittivity, moisture, and mechanical resistance, coinciding
with the slope direction of the agricultural fields. Clusters
with similar morphology are observed on theDR/S andDW

maps too. Under these management conditions the highest
volumetric water content was found. The discreteθi values
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have fluctuated between 24.6 and 37.1%. High water content
(29.2%) occurs in the same area as the maximum mechani-
cal resistance (2.5 MPa), of the lower part of the zero tillage
plot with 33% of residues. Visually, this relation appears as a
cluster of high-values on theγ -map (for the 0–10 cm layer),
and on the map of Rescaled-Range fractal dimension.

For better visualization of the differences between the spa-
tial structures of studied variables, we used for mapping all
experimental data coming from the seven compared plots,
assuming that they were sampled in a statistically homoge-
neous region. As, in our case, once all experimental lots used
to belong to the same agricultural field under conventional
management, the assumption is possibly not far-fetched. At
present, no statistically significant differences can be found
between the plots in terms of their common physical and me-
chanical properties. Therefore, we used 77 data to krige and
map each studied property. The complete data set fitted well
the exponential semivariogram model, with increased values
of R2. As compared with the above-discussed analyses per-
formed separately for each plot, this study on the complete
data set detected spatial variations of the compared proper-
ties within shorter sampling intervals (Fig. 10).

The smallest values of Rescaled-Range fractal dimen-
sions, and therefore, the highest Hurst exponents and small-
est microwave roughness, were found for the bare Andosol,
for the soil under zero tillage without residues, and for the
soil under conventional tillage (1.56, 1.58 and 1.53). The
highest roughness was typical for microwaves scattered from
the Andosol under zero tillage with 100% organic cover.

Note that the tendencies in Andosol dynamics under tillage
documented for small experimental plots were similar to
those documented for the two big experimental fields and
discussed above.

5 Conclusions

We documented that the fractal dimension of EM mi-
crowaves backscattered from soil is dependent on, and
strongly correlates with, the heterogeneity of the soil’s phys-
ical properties. Our proposed approach for non-invasive soil
mapping provides a fast, cheap, and non-destructive way to
delimit the coherent clusters and structural patterns of the
soil’s spatial variability. In this research we checked the
FDM technique on different plots of volcanic soil (Andosol)
under contrasting management practices. The differences
in measured permittivity, volumetric and gravimetric water
contents and mechanical resistance were not always statisti-
cally significant between soils under different management
systems. In seven experimental plots, the comparison of
these variables by the ANOVA statistical analysis detected
differences only between the conventional tillage as com-
pared with each of the other six management systems. How-
ever, when the fractal dimensions of the recorded GPR traces
were mapped, the slight changes in soil properties were en-

hanced and the differences have become statistically signif-
icant. The fractal dimension maps show significant differ-
ences between all pairs of the compared tillage systems, ex-
cept three of them most close in design to each other. These
results show the advantages of the proposed, GPR-based,
continuous Fractal Dimension Mapping of soil variability,
and the ability of this technique to detect small changes in
the soil’s physical and mechanical properties. We hope that
the technique would open up new vistas for the multiscale
non-destructive mapping of soil variability, and for more ex-
tensive GPR use by Soil Service Agencies (Doolittle, 1987;
Dwivedi, 2001).
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