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Abstract. Classical systems stirred by random forces of pecially in describing the large scale evolutidta{lenrode
given statistics may be described via a path integral formu-2001). This is particularly true in treating solar and magneto-
lation in which their degrees of freedom are stochastic vari-spheric phenomena, as well as interplanetary plasma dynam-
ables themselves, undergoing a multiple-history probabilisticics (Choudury 1998.

evolution. This framework seems to be easily applicable to The last decade of the XX Century has seen a substan-
resistive Magneto-Hydro-Dynamics (MHD). Indeed, MHD tial change in the way of studying the space plasma phe-
equations form a dynamic system of classical variables innomena. For example, in the framework of the magneto-
which the terms representing the density, the pressure and thgpheric processes, some studies pointed out that both the
conductivity of the plasma are irregular functions of spaceglobal, large scale dynamics of some magnetospheric regions
and time when turbulence occurs. By treating those irl’egu-(p|asma sheet and central plasma sheet regions) and some
lar terms as random stirring forces, it is possible to introducejnternal processes related to magnetotail plasma transport
a Stochastic Field Theory which should represent correctlycould be better explained in terms of stochastic processes,
the impulsive phenomena caused by the spece- and tim@ow-dimensional chaos, fractal features, intermittent turbu-
irregularity of plasma turbulence. This work is motivated by |ence, complexity and criticality (see e@hang(1992); Kli-

the recent observational evidences of the crucial role playegnas et al(1996; Chang(1999; Consolini(2002); Uritsky

by stochastic fluctuations in space plasmas. et al. (2002); Zelenyi and Milovanoy2004 and references
therein). More in general, it becomes evident that MHD
turbulence admitting singularities and stochastic MHD pro-
cesses play a crucial role in several solar system plasma con-
texts, as for instance in the framework of interplanetary solar

The study of space plasmas is probably one of the richesfVind (Bruno and Carbone003.
branches of non-quantum physics in terms of specific theo- As far as stochasticity is concerned, let us remember that
retical tools to be invoked, due to the intrinsic phenomeno-recently,Lazarian et al(2004 have considered stochastic re-
logical variety of the systems studied. connectipn in a magnetizgd, p_artially ioni_zed medium. Here,
The traditional approach to space plasma phenomengtochasticity arises from field line wandering through the tur-
is based on Magneto-Hydro-Dynamics (MHD) in which Pulentfluid. Their results show an improvement in the calcu-
plasma media are considered as smooth “deterministic” conltion of the reconnection rate with respect to precedent “de-
tinua. In such a framework, the evolution of space plasmas irférministic” schemes. A more general result in this frame-
the presence of magnetic fields is described by functions ofVork has been achieved by ourselvésaterassi and Con-
space and time, which are differentiable almost everywhereSelini, 2007 by considering the diffusion region as a fractal
In this representation, several processes can be treated by ifomain (a non-space filling region). Furthermore, in a dif-
volving the evolution of simple plane waves, at least locally. ferent contexConsolini et al(2005 showed that stochastic
In spite of the inherent simplification, the MHD description fluctuations play a crucial role in a magnetospheric process,
of space plasma processes has encoutered a wide success,t@@-ta” current-disruption, occurring at the substorm onset.
Another relevant feature of space plasma is the nearly
overall emergence of a non-Gaussian statistics of the

Correspondence tdvl. Materassi small-scale magnetic field and plasma parameter fluctua-
BY (massimo.materassi@fi.isc.cnr.it) tions/increments. This feature observed in several different
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contexts, from solar wind to geotail plasma sheet, is generstatic highly dissipative transformations that could allow for
ally associated with intermittency, i.e. the inhomogeneity of (topological) sudden transitions in the MHD variables are ex-
the scaling features at the small scales. On the other handaJuded unless we do not include instability sources, i.e. we
recent 2-D MHD simulationsWu and Chang200Q Chang  do not go beyond the assumption of local equilibrium, and
et al, 2009 evidenced how the presence of spontaneous oinclude the nonlinearities.
forced fluctuations naturally generates multiscale coherent The presence of stochastic stirring forces makes the con-
plasma and/or magnetic field structures, which can be continuum obey propetanggvin Equationsyielding a collec-
sidered as stochastic bundles of non-propagating fluctuationion of different evolutions starting from a fixed set of initial
(Chang 1999. The non-Gaussian features of small scale conditions, each evolution corresponding to a particular real-
fluctuations has been related to the presence of such cohereiziition of the stochastic termbléken 1983: the description
multiscale structuresOhang et al.2004. Coherent struc-  of such systems may be given rather transparently in terms of
tures have been observed in several space plasma regiorngath integralskeynman and Hibh4.965.
in solar wind (see e.gBruno et al, 2001) as field-aligned In this paper the MHD equations are re-interpreted as
flux tubes, in the Earth’s cusp regions (see ¥adanova et  Langgvin field equations. Then, following the brilliant trace
al., 2005, in the geotail plasma sheet (see édijovanov et  of Phythian(1977), a proper Stochastic Field Theory (SFT)
al., 2002, Borovsky and Funster2003 Voros et al, 2004 is defined for them, where the field variables have a proba-
Kretzschmar and Consolir2006 as current structures, 2-D  bilistic evolution, described via path integrals. Path integrals
eddies and so on. According to our opinion, recent obserhave already been used in specific problems of the space
vations of small-scale magnetic .eld features in the magneplasma physics: it€rew and Chang1988 the probabilis-
tosheath transition region and dissipation structuRei(0 tic behaviour of the kinetic levels of the theory is directly
et al, 2007 Sundkvist et al.20070 suggest that the dynam- represented via Boltzmann’s distributions. The present pa-
ics of small scale structures can be the origin of a coherenper rather deals with the formulation of a plasma continuum,
dissipation mechanism, a sort of coarse-grained dissipatiosingle fluid SFT and its motivations.
(Tetrault 1992ab) due to non-local interactions thatresultin ~ The path integral representation is also very suitable to
thek-space. investigate multi-scale dynamical aspects, because the tech-
All the aforementioned theoretical and experimental argu-nique of Renormalization Groujs naturally applied to this
ments point to the emergence of a complex dynamics due toepresentation (see e.Ghang et al(1992 and references
the stochastic evolution of coherent structures, as well as toherein). For instance, the first direct application of such
the crucial role of spontaneous and/or forced MHD fluctua-technique, using the exact full dynamic differential renormal-
tions in irreversible and fast relaxation processes. In otheiization group for critical dynamics can be found @Hang et
words, the dynamics of many space plasmas could be simial., 1978. The use of Renormalization Group techniques to
lar to that of stochastic multiscale granular systems. MHD predict physical quantities to be compared with real space-
numerical simulations substantiate and support this scenarioraft data is already well established (see e&Cpang 1999
(Chang et al.2004) Chang et al.2004), and the results are very encouraging.
Consider then the role of singularity, as something nor- Before proceeding to the formulation of a SFT for the
mal for the physics of these systems, due for instance tavIHD it is useful to stress that the major target of this work is
impulsive and irreversible fast relaxation processes (such a® introduce a stochastic Lagrangian scheme able to describe
reconnection): one can then notice that the MHD smooththe evolution of MHD systems in the presence of stochas-
scheme encounters some problems in coping with such sirtic fluctuations, and to discuss the physical reasoning for the
gular phenomena, in which local topologisaldden changes choice of stochastic elements (stirring forces). In passing we
are observed. In some sense, these phenomena resembéamark that practical applications of the scheme here pre-
more closely a qguantum transition than a classical evolutionsented to specific physical cases go beyond the aim of this
Indeed, istantaneous “classical” configurations of turbulentwork and are delayed to forthcoming papers.
plasmas should be thought of as non-differentiable quanti- The paper is organized as follows. In Sezthe frame-
ties, at least within some interval of space- and time-scalevork given inPhythian(1977) is briefly reviewed. Sectio8
(Kallenrode 2001 Yordanova et a).2004. is the core of the results presented here: all the terms neces-
Localized occurrence of big fluctuations in the medium sary to construct the MHD stochastic field theory are written
(e.g. the resistivity in the case of reconnection) probably ini-explicitly. Section4 deals with the problem of using the sta-
tiate and determine thosejuantum-liketransitions of the tistical knowledge of the irregular plasma in building up the
MHD variables: if those fluctuations are treated as proba-SFT concretely for the resistive MHD: as a toy model, the ex-
bilistic stirring forces a range of possibilities to explain con- ample in which the stirring force statistics is directly assumed
sistently thesudden changesppears, much more than in the to be Gaussian, is presented. SecBdmally points out the
traditional equilibrium scheme. Indeed, if the local thermal main developments expected from this work, and those ques-
equilibrium is assumed<glley, 1989, only quasi-static ther-  tions left open in it.
modynamical changes are permitted, and all the non-quasi-
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2 Phythian’s formalism

Consider a classical system described by a set of field varigblesdergoing d.anggvin equatiorof motion

W) = A [yix o)+ / g1 T [ty x) Py + f (1)

where f andg are stirring forces governed by given statistics, whilandI™ are “deterministic” expressions. Square brackets
like in A’ [y; x, ) andT’! [y; 7, y, x) underline functional, possibly non-local, dependences. Summation over repeated
indices in contravariant positions is intended.

The presence of the probabilistic terfisndg makes the system evolve probabilistically along all the histafiés, t) for
T € [to, t]. In Phythian(1977) the statistical dynamics of such a system is turned irgath integral formalisnwith a “many

history representation” of its evolution. Each histaryx, 7) is weighted with theprobability density.A [1}; fo, t) that at the
time t € [0, ] the pointy (x, 7) belongs to a small neighborhood%f(x, 7). The kernelA is constructed as:

Ao = [ A i, (1)
where the auxiliary kerned is defined in the following way:

Ay, x;to,1) =

.ot 3 B . 'ZSAI 1X,T)
—i [ dr [d xl:w’(x,r))(l(x,r)—A’[w,x,r)Xl(x,r —5%}

=No(to,)C[x,T:10,)e ,

Clx.Tsto.t) = )

1J1y.
< i fgdr [ d% [f’(x,r)xz(x,f)+fd3yg1 @O O [Pt y,x)+g1 (x,7) fd3yW}>
= (e ' .
1.8

The last term%in the exponential defining\[V; x; fo, ) looks like a diver- gence in the functional space (T. Chang,
personal communication, 2005), and indeed it @uavature termthat will not aect the dynamics, at least in the case of the
MHD.

The coefficientNg (o, t) is a normalization factor, sincé [y, x; 0, t) must be a probability density properly normalized:

/ [dy] / X1 ALY x: t0. 1) = 1. 3)

The variablesy, referred to astochastic momentare as many as the physical variabjesThey are introduced in order to
render self-consistent mathematically this construction, and will exit the play at a physical level.

The operation of going fromA [/, x; to, t) to A[v; fo, t) is not trivial in general, and its feasibility will depend on the
feasibility of the calculation of [y, I']. The form of the quantity to be integrateddhis relevant, as discussed leynman
and Hibb(1965.

Theensemble average over all the possible histories fegnto ¢ of x andyr of any quantityF [y, x] is defined as

(F) = / [dy] / [dx] ALY x: f0.0) FLv 1] @)

This is the starting point to build up the SFT.
Theevolution probability from an initial field configuration to a final grith fully assigned as

V(o)) =y, ¢y @)=y, (5)

is indicated asP,«_, ) (fo, t). It can be obtained simply by fixing the initial and final conditions and putfagl in the
calculation of(F) (Polchinskj 1994:

Pyirsyn t0.0) =) ) = f [d¥] / [dx] AlY, x; 10, 1) (6)
‘/f(t):‘/f(j> w(to):w(i)
vin=y'"
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From the point of view of complexity, the formulation just reported is very interesting because it contains elements of non-
polinomiality and non-locality, as soon as the noise terms do. Let’s indeed consider the definitistoctiastic actiors so
that

A = Noexp(—iS), ©)
that includes the term
Sc[x,T]1=iInC[x,TI] (8

(see EQ.2), in which all the noise properties are encoded: due to the presengelaf, I'], the resulting theory ison-
polynomial since in general there is no argument to truncate the expansion in multi-point and multi-time correlation functions
of f andg defining this addendunChang 1999. By the way, even the multiscale nontrivial features of the noise enter the
theory here.

The properties of non-locality and non-polynomiality inherited from the noise correlation terms yield the necessity of finding
some more handleable formalism, and this suggests to work witRe¢hermalization GrouRG). Indeed, renormalization
of a theory may lead to so deep changes in its coefficients to convert polynomial theories into non-polynomial ones, local
theories into non-local ones, and viceversta(1973. However, the actual necessity and opportunity of employing a RG
framework or not, must be suggested by the physics of the system at hand: in space plasmas there is the experimental evidenc
that multi-scale dynamics appears, and many (geo)space systems may well be considered statistical systems near criticalit
(Chang 1992.

3 Application to the resistive MHD

The results of Sectiod may be applied to the resistive MHD theory equations. For a locally neutral plasma the resistive MHD
equations written in a vector component form read

&B' =BJo;Vi —B'3;VI —VId;B — €ikd; (5 "),

. . . . A L. dip ®)
QVIi =V VI —VIigvi4 LBkl - — =
o o
where
=01 (10)

is theresistivity tensar p is the mass densitpf the plasma ang is its pressure The dynamical variables are the plasma
velocity V and the magnetic fiel®.

The form of the quantitieg, p and p, and the mathematical relationships among themselves, depend on the microscopic
nature of the medium. In the traditional fluid-dynamical schematérassi2002, constitutive hypothesgsovide the infor-
mation on the microscopic nature of the medium. One assumes the (at leastHecaddynamical equilibriupso that the
constitutive hypotheses read

¢=¢(T,..),®(p,p.T)=0, (11)

beingT the temperature field. One shall then invoke sdmaat conduction equatiomequiring other constitutive hypotheses
about the specific heats of the plasma. This produces a temperature field equation closing the system.

Turbulent plasmas can instead be consideredwf-equilibrium systemgreumann 1998 1999agb; Consolini et al,
20086. ¢, p and p may bevery irregular functions ofx and¢, with high variability on distances and times much smaller than
the MHD scale.

According toTreumann(1999ab) one could use the traditional scheme, modified to take into account of the non-Gaussianity
where the conditions Eql() are obtained in the framework of the Lorentzian thermodynamics of the turbuigses, a very
promising construction.

Otherwise, irregularities ig, p and p may be explicitly considered by stating thgt p and p are stochastic fieldand
assigning theiprobability density function@PDFs). Then the randomness of the tegmg and p may be transferred to the
dynamical variabled3 and V via Phythian’s schemePpythian 1977, and the SFT may be constructed. This is the basic
assumption chosen here.
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If the following vector quantities are defined
. y R 3!
g = e, (can "), Al ==, 0l = -2 (12)
P Jo

and considered asndom stirring forcesvith known probability density functiona [E, A, @], theLangévin equations for
the resistive MHDwill be written as

&B'=BJ3;Vi —B3;VI —VI3;B + E,
WV = ViV —VIg;Vi+ AjBrelt 4 @'

The positions Eq.12) and their consequence EQ.3] are very possibly not the only way of turning the MHD into a Lawai
theory. They rather have the advantage of reproducing exactly theelzengquations on which the framework Rhythian
(1977 is based.

Now, the Eq. 13) for the resistive MHD may be turned into a SFT by identifyiigas B and V, and defining as many
stochastic momentga as the six/s:

=BV, xy =1l
The stochastic kernet [, IT, B, V; 1o, 1) will be constructed by involving a stirring force factor
C[® O,B,V;1,t) =
(14)

<€i f,’o drfd3x[Ei(x,t)Qi(x,r)Jr+®i(x,r)l'[i(x,r)+eijkAi(x,r)l'[j(x,r)Bk(x,r)]]> .
Z.A.0
all the statistical dynamics of the resistive MHD interpreted as a stochastic field theory is then encoded in the kernel
A[Q,I,B,V;to,t) = No(to,t) C[R, 11, B, V; 1o, 1)
—i [1dv [dBx(QuB I, VI+(BI;VI+VI9; B =B/ 3, VIYQ+(VId;Vi—Vig; VL) (1)
e [0 g p .

No explicit form forA [, II, B, V; 1o, t) can be given until the explicit expression®f{, I, B, V; 1, t) is found by making
the necessary integrations on the stirring force terms. Further, one obtains thek@melving only physical fields

A[B,V; 1o, t):/[dﬂ]/[dl‘[]A[Sl,l‘I,B,V;to, ) (16)

once the integration ove andIl is feasible.
The plasma physics will enter the present framework through the dynamical PDF

den = den [Cv P, P] : (17)

as far asPgyn [, p, p] keeps trace of the plasma complex dynamics, this represents a (rather general) way tocorstitle-
tive hypothesesn the medium. The logical path hence is:

(compley particle— field dynamics— Pgyn (¢, o, p] . (18)
Then, the positions Eq1R) are used to construct mathematically the passage
Paynle, o, pl — Q[E, A, O]. (19)

The form of Q[E, A, @] is clearly related to the dynamics of the microscopic degrees of freedom of the plasma. A closed
form for Q[ E, A, ®] should be obtained consistently wilny microscopic dynamical theory of the turbulent plasma, from
the very traditional equilibrium statistical mechanics to the fractional kinetics reviewaisiiavsky(2002).

The calculation of impulsive processes in which suddenly the magnetized plasma changes arbitrarily, from an initial config-
uration(B (tp) , V (tp)) = (Bj, V;) to afinal ongB (), V (¢)) = (Bs, Vi) may be done: the rate of such stochastic transitions
should be calculated from

PB;,vi)—(B;,vy) (fo, 1) = / [dB][dV]A[B,V:1.1). (20)

(B(10),V (10))=(Bi,Vi)
(B(®),V()=(Bt,Vy)
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An entire representatiai la Feynmarof such processes is to be derived from the SFT.

In order to arrive to a closed expression for some stochastic action at least in one example case, in the next Section a toy
model is defined, in whiclE, A and® are assumed to be Gaussian processes without any memory. This hypothesis is surely
over-simplifying for a space plasma, since there are experimental results stating the presence of non-Gaussian distributions
(Yordanova et a).2005, and also of memory effect€6bnsolini et al.2005. Nevertheless, the Gaussian example is of some
use in illustrating the framework.

4 The Gaussian toy model

This toy model is worth being studied, because in this case the calculation of a Lagrangian defining locally the stochastic action
can be performed analytically to the end. Moreover, the ideaZha and® are determined by the concurrence of a large
number of microscopic processes converging to a Gaussian statistics makes someéassmvsky et al.2000).

Letus assum&, A and® to be Gaussian processes fluctuating around some classical config@&gtient), Ag (x, ) and
O (x, t). The PDF of the configuration of the stirring forces at the timis assumed to depend only on the time considered:
in other words, thexo memory effect hypothesssdone. The stirring forc& (x, t) has (local) probability density function
reading:

deq a%(x,r)”
0z (B (x, 1) = | ——5—le

T

—ad (¢, D)[& (x,7)~ Eoi (x, D[ 8 (x, 1)~ Bo; (x,7)] 1)

The matrixag (x, 7) is assumed to be symmetric, non-singular and positive definite, hence it may be written as diagonal:
ij _ 5 @ij
ag = rg Y. (22)

As far as the three eigenvaluké) were taken to be different, the statistics®fshould be considered anisotropic for some
“intrinsic microscopic” reason. At this stages, a anda will be all taken as isotropic:

aiEj = agd¥, aiAj = apd¥, ag = apdy. (23)
From Eg. 1) and analogous expressions trand®, it is possible to give th€ pre-factor as

. et .
CIRIL B, Virg, 1) =¢ o rbel@MBYiD),

Lc[® 01O,B,V;1)= fd3x (—ﬁ <a§1>” Q;Q; — 369i> + (24)

. Lj ab . . .
+ [ d3 [—ﬁ <<a®l) +(a3Y) ekfaem‘bekBm) MeTT; — (O + €54 By Agy) 1'[,-:| .

The“noise” Lagrangian L¢ has a density that iecal in time and spageand this makes the theory handleable in its form.
Thephase space evolution kernglreads:

A[RII,B,V;1,1) =

ij L o
I drfd3x<—711(a§1) Qin+i(E’()—B’—B’8jV~7—V~73jB’+BJBjV’)Q,->

= No(t0, 1) e (25)
1 s | (. -0\Y, ([ -1\° kj _me (i 1 ke i vin viavia. vi
S e a3 ((aa?) " +(ant) " €M aem s BB | TLeTL+i (Ok+k B Ao—Vi=Via; Vidvio; Vi),
e
The configuration space evolution kerndl[ B, V; 1, t) will be calculated as
.t . .
A[B,V;to,t) = No(to, ) e ' S dTL[B’V’atB’B'V’T), (26)
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beingL referred to as the total stochastic Lagrangian. When this is done, and once the quantities
Bl — B! — B'3;V/ —VI3;B' + B/3; Vi = fh,

O — ki By Agy — Vi — VIa;Vi4 Vig;vi = fi, (27)

£j ab . i
(a") "+ (aa?) " ac s Biim = G
are defined may be split into a field-dependent addendum
Lfieid[B,V,0:B,3,V; 1) =

=—i [d®In ( det| (28)

Gaa H) —i [d% [aiajfBifBj + (%i)ﬁ fvl'fv‘/]

and a field-independent one

A (1) =i/d3xln (643713 |det||a ) (29)

A (1) does not give any contribution to the ensemble avet&gen Eq. @).
As the stirring forces are split into their “classical” part plus the fluctuations

E=E0+& A=A0+35,0=00+0 (30)

one can appreciate
fe=—& fy=—8xB—0 (31)

where the symbof meansequal along the motianThe quantitiesf z and fy defined in Eq. 27) are a measure dfow
much the stirring forces depart erm their “classical” valueBue to the definitions offjgA and to the role ofig, the scalar

. i 1\ . . . .
expressmna’af fBi f; and (g@)i) fvi fvj actually measure the ratio of the depart of the stirring forces from their “classical

value” to the width of their Gaussian distribution. If good reasons exist to assume these ratios to be small, perturbative
expansions may be done in the exponentiatiohfy giving the stochastic evolution operator.

Note finally that the stochastic Lagrangian formed by the addenda in Eg)sarid 9) is an imaginary quantity, that is
no surprise: indeedd must be real, so tha&®zqyo_ gy IS real too. This could be “fixed” simply giving another
definition in Eq. {), where the imaginary unit could be consistently omitted.

Itis sensible to assunteto be isotropic, anthe conductivity gradient to be negligibléth respect to the current curl, as done
in Priest(2001). Considering the explicit form fof g and fy, using Amgere’s Law and working under the incompressible
flow hypothesis, one may write the field-dependent part of the stochastic Lagrangian as:

LiealB. V. 0B, 8,Vi7) = —i [ d%In (1+ 2 |B]2) +

2
—i [daz |hB+ (V- B—(B-)V+23x@xB) +
(32)
—i [d3x—do ‘av+(v-a)v+i(a +*”—32)—L(3-a)3‘2+
1+Z%‘B|2 1 po \9P0 T 25 H0p0

+;ﬁ[(a,v+(v.a)v+i(apo+g—32) - L(B.a)B)-B]Z}.
A £0 1o H0PO
The distributiongg, oo and pg are defined as those corresponding to the expected vValgesy andOo.

In order to use the expression E&2)for Pgi gy i) pingv (fo, t) the correct functional measure must be found. In their
bookFeynman and Hibbgl965 give examples in which the functional measure is determined so to render self-consistent the
equation of motion of the “kernel” correspondingtd B, V; 1o, t). In the quantum case the kernel satisfies the &tihger
equation, while in a stochastic theory one should determine the measure so to let a Fokker-Planck equation be defined for
A[B, V;1o,t). A special discussion is needed if the stirring forces show memory effects or non-local correlations, instead:
apparently, no “Sclidinger-like” equation can be given for the kerpe(Phythian 1979.
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5 Summary and comments Bruno, R., Carbone, V., Veltri, P., et al.: Identifying intermittency
events in the solar wind, Planet. Space, Sci., 49, 1201-1210,

In the present paper the irregular space- and time-variability 2001 _ _

of resistivity, density and pressure in turbulent plasmas give?runot‘ R. aLer, CarF?O”,e' Vi T';e |S°"'|"Drhw”,‘d asza t‘:”?;/”e“ce lab-

a motivation to construct a stochastic field theory that should Ici)\;ﬁlgg,vie\ll:/”sngrg /|(ra:|§vzvgolsn- ngaSr ysics, 2(Apitp:/Awww.

.be able to desc.”b.e the OUt_Of_equmb“u.m statistical dB,mam_Chang, T. S., Nicoll, J. F. and Young J. E.: A closed-form differen-

ics of some resistive MHD systems. This should predict the

X . ) g tial renormalization-group generator for critical dynamics, Phys.
effects of sudden, intermittent fluctuations of the medium | et 67A 287-200. 1978.

yielding impulsive phenomena, without renouncing to rep- chang, T., Low-dimensional behavior and symmetry breaking of

resenting the plasma as a continuum. stochastic systems near criticality — Can these effects be observed
Everything is based on the knowledge of the local proba- in space and in the laboratory?, IEEE Trans. Plasma. Sci., 20,
bility density functionPgyn of ¢, p and p and on the con- 691-694, 1992.
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