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Abstract. The need to assess the three-dimensional fractal
dimension of fractal aggregates from the fractal dimension of
two-dimensional projections is very frequent in geophysics,
soil, and atmospheric sciences. However, a generally valid
approach to relate the two- and three-dimensional fractal di-
mensions is missing, thus questioning the accuracy of the
method used until now in practical applications. A math-
ematical approach developed for application to suspended
aggregates made of cohesive sediment is investigated and
applied here more generally to Diffusion-Limited Aggre-
gates (DLA) and Cluster-Cluster Aggregates (CCA), show-
ing higher accuracy in determining the three-dimensional
fractal dimension compared to the method currently used.

1 Introduction

Fractal aggregates occur very commonly at many scales in
geophysical observations such as, for instance, in cosmology
(e.g., galaxy distribution and patterns at large scales,Cole-
man and Pietronero, 1992; Thieberger and Spiegel, 2000),
physics of the atmosphere (e.g., clouds, aerosols, contam-
inant dusts,Friedlander, 1977; Shaw, 2003), soil sciences
(e.g., soil water retention properties,Perrier et al., 1996),
and sedimentology (e.g., flocculation of cohesive sediment,
Kranenburg, 1994; Winterwerp, 1999; Maggi, 2007). De-
termining the three-dimensional (3-D) capacity dimension
of geophysical fractal aggregates is particularly beneficial to
scale geometrical properties (e.g., effective density, porosity,
strength, mass density distribution, etc.) with a characteristic
length scale (Meakin, 1991). However, direct assessment of
the 3-D capacity dimension is rare in practice due to techni-
cal limitations of observational instruments. More likely, 2-D
projections can be assessed from optical measurements. The
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2-D capacity dimension has been used up to now to estimate
the 3-D capacity dimension as follows. Given a 3-D frac-
tal set (aggregate)S3 ⊆ R3 and its 2-D projectionS2 ⊆ R2

obtained by application of the linear transformation (projec-
tion) P : R3

→ R2 the capacity dimensionsd0 of S2 and
S3 are assumed to relate asd0(S2)= min{2, d0(S3)} (Vicsek,
1992; Meakin, 1998).

The inverse form

d0(S3)=

{
d0(S2) for d0(S2)<2,

undetermined∈ [2, 3] for d0(S2)=2.
(1)

is commonly used to estimated0(S3) from d0(S2). How-
ever, there are three major limitations using Eq. (1): (i) it
assumes thatS2 and S3 are indefinitely extended sets; (ii)
for d0(S2)=2 the 3-D capacity dimensiond0(S3) is unde-
termined; (iii) for projectionsP : Rn

→Rm with n>m, the
generalized dimensionalitydq (Grassberger and Procaccia,
1983) is dimension-preserving only for 1<q≤2, whereas
for the capacity dimensiond0, which equalsdq for q=0,
the transformationP is not dimension-preserving (Hunt and
Kaloshin, 1997; Thieberger and Spiegel, 2000).

These aspects rather suggest that, for compact (finite and
closed) sets like the ones obtained by empirical observation,
d0(S3)6=d0(S2) also whend0(S2)<2. This analysis questions
the applicability of Eq. (1) to geophysical observations. Er-
rors introduced using Eq. (1) were shown inMaggi and Win-
terwerp(2004) when applied to kaolinite aggregates formed
in water suspensions. In the same instance, an empirical rela-
tion that used the perimeter-based fractal dimensiondP was
proposed to computed0(S3) from projectionsS2, thus cir-
cumventing the use of the 2-D capacity dimensiond0(S2) in
favor of alternative information not belonging to the general-
ized dimensionalitydq . This approach yielded the following
(Maggi and Winterwerp, 2004)

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.

http://creativecommons.org/licenses/by/3.0/


696 F. Maggi: Projection of compact fractal sets

1 1.2 1.4 1.6 1.8 2
1

1.5

2

2.5

3

d 0(S
3)

d
P
(S

2
)

l = 16
l = 256
l = 1024
l = oo

Fig. 1. Representation of the 3-D capacity dimensiond0(S3) as a
function of the perimeter-based fractal dimensiondp(S2), Eq. (2),
for different resolutions̀=L/ε, whereL is the length scale of the
aggregate andε is the box size of theε-covering.

d0(S3)=

[
a(`)

dP (S2) − b(`)

]1/2

, (2)

wheredp=2 log[P ]/ log[A] is the perimeter-based fractal di-
mension (Meakin, 1998), with P andA the dimensionless
perimeter and area ofS2, respectively, anda(`) andb(`) de-
fined as

b(`)=
2[k(`)]2 − 9z(`)

[k(`)]2 − 9
, a(`)=9[z(`) − b(`)],

with

z(`)=
log[4` − 4]

log[`]
, k(`)=z(`)[z(`) − 1] + 1,

known for any given resolutioǹ=L/ε, with L the size ofS2
andS3, andε the box size of theε-covering ofS2 (Maggi and
Winterwerp, 2004). Equation (2) is not resolution-limited as
far as the disequality(4` − 4) ≤ `(1+

√
4d0(S3)−3)/2 is sat-

isfied (Maggi and Winterwerp, 2004). A representation of
Eq. (2) is given in Fig.1 for various values of̀ , showing
that the accuracy in estimatingd0(S3) from dP (S2) increases
whendP (S2) can range over the full interval[1, 2], that is,
for increasing̀ .

The aim of this work is threefold. First, we derive the con-
dition that any relationship betweend0(S2) andd0(S3) must
satisfy for compact fractal sets. Second, we show that both
Eqs. (1) and (2) satisfy such a condition. Third, we show that
Eq. (2) produces better results than Eq. (1), and that its va-
lidity extends to DLA (diffusion-limited) and CCA (cluster-
cluster) aggregates, typologies which occur commonly in a
variety of situations in geophysics.

2 Method

2.1 Relationship betweend0(S2) andd0(S3)

A general relationship betweend0(S2) andd0(S3) can be de-
rived as follows. For a compact fractal aggregateS3 ⊂ R3

of length scaleL, the volume,V , scales asV =Ld0(S3) with
0 ≤ d0(S3) ≤ 3 the 3-D capacity dimension ofS3 (Meakin,
1991). In analogy, the projected area,A, scales asA=Ld0(S2)

with 0 ≤ d0(S2) ≤ 2 the 2-D capacity dimension of the pro-
jected setS2 of S3. Under the assumption thatL is the length
scale for bothS2 andS3, the volumeV must be

V ≤ A · L. (3)

Substituting the scalings forV andA into Eq. (3) we obtain
Ld0(S3) ≤ Ld0(S2)+1, which implies

d0(S3) ≤ d0(S2) + 1. (4)

This inequality sets the condition that must be respected
whatever the function relatingd0(S2) and d0(S3). Condi-
tion (4) can be generalized for projectionsP : Rn

→ Rm

of compact fractal sets in any embedding dimensionsn>m

as

d0(Sn) ≤ d0(Sm) + (n − m). (5)

Note thatd0(Sn)=d0(Sm) + (n − m) represents the relation-
ship betweend0(Sn) andd0(Sm) of an aggregate inRn and
its cross-section inRm (Vicsek, 1992).

2.2 Validation of Eq. (1) to related0(S2) andd0(S3)

Upon substitution of Eq. (1) into condition (4) for d0(S2)<2
we obtain

d0(S3)=d0(S2) ≤ d0(S2) + 1,

which always satisfies the disequality. In analogy, substitut-
ing Eq. (1) for d0(S2)=2 into condition (4) we obtain

d0(S3) ∈ [2, 3] ≤ d0(S2) + 1=3,

which always satisfies the disequality.

2.3 Validation of Eq. (2) to relatedP (S2) andd0(S3)

Assuming that disequality(4`−4) ≤ `(1+
√

4d0(S3)−3)/2 is al-
ways satisfied (see Sect. 1), and for the case of infinite resolu-
tion `→∞ (Fig. 1), the functionsa(∞) andb(∞) in Eq. (2)
becomea=9/8 andb=7/8 (Maggi and Winterwerp, 2004).
By introducing Eq. (2) into condition (4) we obtain

d0(S3)=

[
9/8

dP (S2) − 7/8

]1/2

≤ d0(S2) + 1,

9/8

[d0(S2) + 1]2
+ 7/8 ≤ dP (S2), (6)
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Fig. 2. Examples of sets with identical capacity dimensiond0 and
different perimeter segmentation. Computation of the perimeter-
based fractal dimensiondP has been done neglecting the inner
voids, according toMaggi and Winterwerp(2004).

that can be analyzed analytically for the two extreme cases
of massive and linelike projections. For fully massive projec-
tions (i.e.,d0(S2)=2 anddP (S2)=1, Maggi and Winterwerp,
2004), Eq. (6) becomes

9/8

(2 + 1)2
+ 7/8=1 ≤ 1,

which satisfies the disequality. Analogously, for linelike pro-
jections (i.e.,d0(S2)=1 anddP (S2)=2), and Eq. (6) becomes

9/8

(1 + 1)2
+ 7/8=

37

32
≤ 2,

which satisfies the disequality.
While Eq. (2) satisfies condition (4) for massive and line-

like projections, it is not known whether this holds also for
projected irregular sets withd0(S2) anddP (S2) in the range
(1,2). To this end, we test Eq. (2) to computed0(S3) of aggre-
gates of different nature and geometrical properties, and we
compare the results with those obtained using Eq. (1) with
the aim to assess which approach enables better reconstruc-
tions ofd0(S3) from S2.

3 Results

3.1 Application to diffusion-limited and cluster-cluster ag-
gregates

Geophysical fractal aggregates produced by various kine-
matic processes generally show different geometrical orga-
nization. For instance, DLA aggregates, which are formed
by attachment of individual particles that move in space by
diffusion, are featured by radial development of stellar-like
branchings. Instead, CCA aggregates, which are formed by
clusters of particles that recursively attach to each other and
move in space by diffusion, display clustered masses con-
nected by bridges, forming (sometimes closed) rings. Fully

S3

S2,x

S2,y

S2,z

(a) DLA

S3

S2,x

S2,y

S2,z

(b) CCA

Fig. 3. Examples of DLA and CCA aggregates. Their 2-D projec-
tions are shown beside the 3-D views.

developed DLA and CCA aggregates usually have differ-
ent capacity dimensions inR3, that isd0(DLA)≈ 2.5 and
d0(CCA)≈ 1.8, respectively (Vicsek, 1992). However, pro-
jectionsP of those aggregates may have similar capacity di-
mensionsd0(S2) in R2, thus preventing to discerning aggre-
gate type and 3-D capacity dimension from the capacity of
S2. A conceptual example is given in Fig.2, where two sets
B andC of different outlook (ramified the former and ring-
shaped the latter) have identical capacity dimensiond0 but
different perimeter-based fractal dimensiondP in R2.

For this test, we have constructed 10 DLA aggregates
and 10 CCA aggregates of 1000 seeds according to the al-
gorithms described inVicsek (1992) and Meakin (1998)
(Fig. 3). Next, 2-D projections in the three principal di-
rections have been computed. From these we have calcu-
lated the averagedP (S2) andd0(S2), terms used in Eqs. (1)
and (2) to computed0(S3). When Eq. (2) has been used,
an additional computation has been carried out to make sure
that the disequality(4`−4)≤`(1+

√
4d0(S3)−3)/2 was satisfied

(data not shown). The values ofd0(S3) so computed have
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Fig. 4. Comparison between the effective 3-D capacity dimension
d0(S3) obtained by construction and the one calculated from Eq. (1)
and Eq. (2) for (a) DLA aggregates and(b) CCA aggregates.

been compared to the ones obtained by construction (effec-
tive d0(S3) in Fig. 4).

The results in Fig.4 show that application of Eq. (2) al-
ways gives better estimations ofd0(S3) from the projections
compared to Eq. (1). The loss of information induced by
P on the sets affects their capacity, but preserves the in-
formation at the boundary of the projections. Because the
perimeter-based fractal dimensiondP (S2) is representative
of the boundary segmentation rather than the set capacity,
Eq. (2) allows better prediction ofd0(S3). These results show
that the geometrical organization of the boundary of the sets
S3 can be consideredP-invariant, and that this aspect can
be fruitfully exploited to estimated0(S3) of real geophysical
fractal aggregates.

3.2 Exceptions

Two particular cases exist for which Eq. (2) is biased: regu-
lar solids with porous structure (sponge-like) and Euclidean
solids with fractal surface (rock-like).

For the former (sponge), consider as hypothesis a regu-
lar cube with a high level of fine porosity so thatd0(S3)<3
(Fig. 5a). The projected imageS2 appears fully massive and
its contour does not present segmentation. Consequently,
dP (S2)=1 for` → ∞, and from Eq. (2) we obtaind0(S3)=3,
which contradicts the hypothesis.

For the latter (rock), consider as hypothesis a fully mas-
sive solid with capacity dimensiond0(S3)=3 and with a frac-
tal (rough and irregular) surface (Fig.5b). Its projected im-
ageS2 is fully massive but the contour shows a high level of
perimeter segmentation. As a consequence,dP (S2)>1 and
from Eq. (2) we obtaind0(S3)<3, which again contradicts
the hypothesis.

Fig. 5. (left) regular solid with porous (fractal) structure and mas-
sive (non-fractal) projection and, (right), Euclidean solid with frac-
tal surface and massive projection with highly segmented contour.
Light gray means porous structure, while dark gray means Eu-
clidean structure.

4 Summary

A simple method to compute the three-dimensional capac-
ity dimension from two-dimensional projections of compact
fractal sets is tested on DLA and CCA aggregates, and com-
pared to the approach more commonly used in geophysics.
The method presented here makes use of the perimeter-based
fractal dimension and does not obey the mathematical limi-
tations that apply to the capacity dimension and the gener-
alized dimensionality. The numerical simulations presented
here show that this method produces better predictions of the
three-dimensional capacity dimension in the two aggregate
typologies (DLA and CCA) analyzed here compared to the
current state-of-the-art method.
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