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Abstract. The need to assess the three-dimensional fractaR-D capacity dimension has been used up to now to estimate
dimension of fractal aggregates from the fractal dimension ofthe 3-D capacity dimension as follows. Given a 3-D frac-
two-dimensional projections is very frequent in geophysics,tal set (aggregate§z € R3 and its 2-D projectiors, C R?
soil, and atmospheric sciences. However, a generally valicbtained by application of the linear transformation (projec-
approach to relate the two- and three-dimensional fractal dition) P : R® — R? the capacity dimensiong of S, and
mensions is missing, thus questioning the accuracy of theSz are assumed to relate &g(S2)=min{2, dp(S3)} (Vicsek
method used until now in practical applications. A math- 1992 Meakin 1998.

ematical approach developed for application to suspended The inverse form

aggregates made of cohesive sediment is investigated and

applied here more generally to Diffusion-Limited Aggre- , ¢ _ {do(Sz) for do(S2)<2, )
gates (DLA) and Cluster-Cluster Aggregates (CCA), show- undeterminedt [2,3] for do(S2)=2.

ing higher accuracy in determining the three-dimensional

fractal dimension compared to the method currently used. is commonly used to estimat&(S3) from do(S2). How-
ever, there are three major limitations using ED: ((i) it
assumes thas, and S3 are indefinitely extended sets; (ii)

] for dp(S2)=2 the 3-D capacity dimensioty(S3) is unde-

1 Introduction termined; (iii) for projectionsP : R*—R™ with n>m, the

F | | les i eneralized dimensionality, (Grassberger and Procaccia
ractal aggregates occur very commonly at many scales i 983 is dimension-preserving only for<ly<2, whereas

geophysical observations such as, for instance, in cosmologyor the capacity dimensiod, which equalsd, for =0

. . . 1 q ™
(€., ga'aXY distribution and_patterns at Iargg scalesle- the transformatior is not dimension-preservingd(nt and
man 'and Pietronerdl992 Thieberger and Spiege2000), Kaloshin 1997 Thieberger and Spiege2000).
_phyS|cs of the_ atmosphere (e.g., clouds, aer_osol_s, contam- rpege aspects rather suggest that, for compact (finite and
inant du;ts,FnedIande,r_ 1977 ShaV_V 200_3' soil sciences closed) sets like the ones obtained by empirical observation,
(e.q., so_|I water retention propert!eBerner et ql. 199@_, do(S3)#do(S2) also wheniy(S) <2. This analysis questions
and sedimentology (_e.g., flocculation of cqheswe sed|mentthe applicability of Eq. 7) to geophysical observations. Er-
Kran.enburgélgizt Wln'terwe.rp 1?99 Maggi, 2(,)07)'_ De- __rorsintroduced using Eql) were shown irMaggi and Win-
termining the t ree-dimensiona (.3'D) capacity d'me_n_s'onterwerp(ZOOLD when applied to kaolinite aggregates formed
of geophy3|cal_ fractal aggregates is part|_cularly b_enef|C|aI O water suspensions. In the same instance, an empirical rela-
scale geometrical properties (e.qg., effective density, POroSityy - that used the perimeter-based fractal dimengiomvas
strength, mass density distribution, etc.) with acharacteristicproposed to computeo(Sz) from projectionssy, thus cir-
length scalel(/lgakip, 199.1). However, direct. assessment of. cumventing the use of the 2-D capacity dimensig(s,) in
the 3-D capacity dimension is rare in practice due to teChnI'favor of alternative information not belonging to the general-

cal limitations of observational instruments. More likely, 2-D ized dimensionalityl, . This approach yielded the following
projections can be assessed from optical measurements. Tte@l aggi and Winterwqérpzoo 4
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Fig. 1. Representation of the 3-D capacity dimensifyiS3) as a
function of the perimeter-based fractal dimensity(S2), Eq. @),
for different resolution€=L /e, whereL is the length scale of the
aggregate andis the box size of the-covering.

a(l) T/Z
dp(S2) — b(£) '

whered,=2log[ P]/log[A] is the perimeter-based fractal di-
mension Meakin 1998, with P and A the dimensionless
perimeter and area &b, respectively, and (£) andb(£) de-
fined as

do(S3)= [ @)

2[k(£)]1? — 9z(¢)

b()= a(0)=9[z(0) — b(O)],

[k()]2—9
with
_log[4e — 4] B B
z(ﬁ)—logT, k()=z(0)[z(£) — 1] + 1,

known for any given resolutiof=L /¢, with L the size ofS»
andsSs, ande the box size of the-covering ofS, (Maggi and
Winterwerp 2004). Equation @) is not resolution-limited as
far as the disequality4¢ — 4) < ¢((AHVA4do($3)=3)/2 js sat-
isfied (Maggi and Winterwerp2004. A representation of
Eqg. @) is given in Fig.1 for various values of, showing
that the accuracy in estimatilg(S3) fromdp (S2) increases
whendp(S2) can range over the full intervél, 2], that is,
for increasing.

The aim of this work is threefold. First, we derive the con-

dition that any relationship betweel(S2) anddo(S3) must
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2 Method
2.1 Relationship betweefy(S2) anddp(S3)

A general relationship betweely(S2) anddp(S3) can be de-
rived as follows. For a compact fractal aggregstec R3

of length scalel, the volume,V, scales a®/=L%(3) with

0 < do(S3) < 3 the 3-D capacity dimension 6§ (Meakin
1991). In analogy, the projected are4, scales agi=[%(52)
with 0 < dp(S2) < 2 the 2-D capacity dimension of the pro-
jected sefS; of S3. Under the assumption thatis the length
scale for bothS, andS3, the volumeV must be
V<A L. (©)

Substituting the scalings fdr and A into Eq. @) we obtain
L%(S3) < [do(S2+1 \which implies
do(S3) < do(S2) + 1. (4)

This inequality sets the condition that must be respected
whatever the function relatindp(S2) and dop(S3). Condi-
tion (4) can be generalized for projectiofs : R” — R™

of compact fractal sets in any embedding dimensioss:

as

do(Sp) < do(Sm) + (n —m). ®)

Note thatdo(S,)=do(S,,) + (n — m) represents the relation-
ship betweenip(S,) anddy(S,,) of an aggregate ifR" and
its cross-section ilR™ (Vicsek 1992.

2.2 Validation of Eq. {) to relatedp(S2) anddo(S3)

Upon substitution of Eqg.1) into condition @) for do(S2)<2
we obtain

do(S3)=do(S2) < do(S2) + 1,

which always satisfies the disequality. In analogy, substitut-
ing Eq. @) for dp(S2)=2 into condition &) we obtain

do(S3) € [2, 3] < do(S2) + 1=3,
which always satisfies the disequality.

2.3 Validation of Eq. 2) to relatedp (S2) anddp(S3)

satisfy for compact fractal sets. Second, we show that bo”kssuming that disequalitgp —4) < (IH+VAdo(53)-3) /2 ig gJ-

Egs. @) and @) satisfy such a condition. Third, we show that

Eq. @) produces better results than Egj),(and that its va-
lidity extends to DLA (diffusion-limited) and CCA (cluster-

ways satisfied (see Sect. 1), and for the case of infinite resolu-
tion £— oo (Fig. 1), the functions:(co) andb(oco) in EQ. (2)
becomen=9/8 andb=7/8 (Maggi and Winterwerp2004).

cluster) aggregates, typologies which occur commonly in 3By introducing Eq. ) into condition @) we obtain

variety of situations in geophysics.
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E@;ﬁj@} <do(S2) +1,

9/8
— — +7/8<dp(S2),
[doSo) +app T /8= dr(52)

do(S3)= [

(6)
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Set B Set C
_ log[8] __ _ log[8] __
do = 1015[4][8}_ 1.5 do = 10[%4} —15
dp =218 =2 dp = 21258 = 1.67

Fig. 2. Examples of sets with identical capacity dimensifrand
different perimeter segmentation. Computation of the perimeter-
based fractal dimensiodp has been done neglecting the inner
voids, according tdlaggi and Winterwerg2004).

that can be analyzed analytically for the two extreme cases
of massive and linelike projections. For fully massive projec- 30~ .
tions (i.e.,do(S2)=2 anddp (S2)=1, Maggi and Winterwerp N20]

2004, Eq. 6) becomes

9/8
2+ 1)2
which satisfies the disequality. Analogously, for linelike pro-
jections (i.e.do(S2)=1 anddp (S2)=2), and Eq. §) becomes

9/8 37
——— 4+ 7/8==—= < 2,
1112 +7/ 32 = (b) CCA

Which'satisfies the'ditc,equality'.. ) . Fig. 3. Examples of DLA and CCA aggregates. Their 2-D projec-
While Eq. @) satisfies condition4) for massive and line-  tions are shown beside the 3-D views.

like projections, it is not known whether this holds also for

projected irregular sets witthy(S2) anddp(S2) in the range

(1,2). Tothis end, we test Ec)(to computelo(S3) of aggre-  developed DLA and CCA aggregates usually have differ-
gates of different nature and geometrical properties, and went capacity dimensions iR3, that isdg(DLA)~ 2.5 and
compare the results with those obtained using Ejwith do(CCA)~ 1.8, respectively {icsek 1992. However, pro-
the aim to assess which approach enables better reconstruectionsP of those aggregates may have similar capacity di-
tions ofdp(S3) from Sz. mensionsio(Sz) in R2, thus preventing to discerning aggre-
gate type and 3-D capacity dimension from the capacity of
S>. A conceptual example is given in Fig,. where two sets

B and(C of different outlook (ramified the former and ring-
shaped the latter) have identical capacity dimengigiut
different perimeter-based fractal dimensifnin R2.

For this test, we have constructed 10 DLA aggregates
Geophysical fractal aggregates produced by various kineand 10 CCA aggregates of 1000 seeds according to the al-
matic processes generally show different geometrical orgagorithms described ifVicsek (1992 and Meakin (1998
nization. For instance, DLA aggregates, which are formed(Fig. 3). Next, 2-D projections in the three principal di-
by attachment of individual particles that move in space byrections have been computed. From these we have calcu-
diffusion, are featured by radial development of stellar-like lated the averagép (S2) anddo(S2), terms used in Eqs.1)
branchings. Instead, CCA aggregates, which are formed bgnd @) to computedo(S3). When Eq. 2) has been used,
clusters of particles that recursively attach to each other an@n additional computation has been carried out to make sure
move in space by diffusion, display clustered masses conthat the disequality4¢—4) <¢(1+v4do(53-3)/2 \yas satisfied
nected by bridges, forming (sometimes closed) rings. Fully(data not shown). The values d§(S3) so computed have

100

+7/8=1<1,

3 Results

3.1 Application to diffusion-limited and cluster-cluster ag-
gregates
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Fig. 4. Comparison between the effective 3-D capacity dimensionFig. 5. (left) regular solid with porous (fractal) structure and mas-

do(S3) obtained by construction and the one calculated fromBq. ( Sive (non-fractal) projection and, (right), Euclidean solid with frac-

and Eq. @) for (a) DLA aggregates antb) CCA aggregates. tal surface and massive projection with highly segmented contour.
Light gray means porous structure, while dark gray means Eu-
clidean structure.

been compared to the ones obtained by construction (effec-
tive do(S3) in Fig. 4).

The results in Fig4 show that application of Eq2] al-
ways gives better estimations €j(S3) from the projections A simple method to compute the three-dimensional capac-

compared to Eq.1). The loss of information induced by ity dimension from two-dimensional projections of compact
P on the sets affects their capacity, but preserves the ini‘r)z:lctal sets is tested on DLA and CC,pAa: regates andpcom-
formation at the boundary of the projections. Because the g9reg '

perimeter-based fractal dimensiadhp (S»2) is representative pared to the approach more commonly used in geophysws.
. .. The method presented here makes use of the perimeter-based
of the boundary segmentation rather than the set capacit

Eq. () allows better prediction afp(S3). These results show )f;?i(gr?ls (1Lr2$r;3|oln ?g?hdeogg r;%ti tOb;%tﬁsgﬁtgi??ﬁgal::;'r'_
that the geometrical organization of the boundary of the sets pply pacity g

S5 can be considere®@-invariant, and that this aspect can alized dimensionality. The numerical simulations presented

be fruitfully exploited to estimatéy(S3) of real geophysical here Sh.OW th"’.‘t this methqd pr_oduce_s bgtter predictions of the
f three-dimensional capacity dimension in the two aggregate
ractal aggregates.

typologies (DLA and CCA) analyzed here compared to the
3.2 Exceptions current state-of-the-art method.

4  Summary

TWO par“cular cases eX'St for Wh|Ch EQ) QS blased regu_ ACknOWledgementsThe author is pal’ticulal’ly grateful to William
lar solids with porous structure (sponge-like) and EuclideanRiley for his comments on the contents and presentation of this
solids with fractal surface (rock-like). work.
| Forbthe f%rmehr_ (ﬁplongle),f gon5|der as hypothezls asregul—Edited by: U. Feudel
ar. cube with a '9 eve_ of fine porosity so thai( _3)< Reviewed by: two anonymous referees
(Fig. 5a). The projected imag&, appears fully massive and
its contour does not present segmentation. Consequently,
dp(S2)=1for¢ — oo, and from Eq. ) we obtaindy(S3)=3,
which contradicts the hypothesis. References
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