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Abstract. Unstable periodic orbit (UPO) recently has be-
come a keyword in analyzing complex phenomena in geo-
physical fluid dynamics and space physics. In this paper, sets
of UPOs in low dimensional maps are theoretically or sys-
tematically found, and time averaged properties along UPOs
are studied, in relation to those of chaotic orbits.

1 Introduction

Chaotic dynamical systems often model complex phenom-
ena in geophysics, space physics and fluid dynamics. Each
chaotic system has an infinite number of unstable periodic
orbits (UPOs), and the UPOs can play important roles in
characterizing and analyzing the system. It is known that
physical invariant measure of some chaotic systems can be
captured by a weighted average of a series of many UPOs
(Auerbach et al., 1987; Grebogi et al., 1988). In fact, physi-
cal invariant measure of the Hénon map is approximated well
by a weighted average of a set of many UPOs with relatively
low periods (Lai et al., 1997). Recently UPOs are numer-
ically found in some high dimensional chaotic systems in
geophysics and fluid turbulence for the purpose of capturing
ordered structures in complex phenomena. Kazantsev stud-
ied UPOs in a barotropic ocean model and reported that only
a few UPOs are sufficient to reconstruct some distribution
functions of dynamical quantities and the attractor dimension
(Kazantsev, 1998). Sensitivity of statistical averages of the
solution to small external influences are also studied by us-
ing UPOs (Kazantsev, 2001). Rempel and Chian (2005) and
Chian et al. (2006) discussed Alfvén intermittency in space
plasma dynamics through UPOs. Kawahara and Kida (2001),
Kato and Yamada (2003), van Veen et al. (2006) and Yamada
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and Saiki (2007) extracted UPOs in fluid dynamics models
and showed that they characterize turbulence properties. It is
not easy to detect many UPOs from high dimensional chaotic
systems even numerically, because in most cases they can-
not be found by the forward time integration of the systems
(Saiki, 2007). Actually small number of UPOs with low pe-
riods can be detected, but surprisingly chaotic behaviors in
the above researches are captured well. For some Hamilto-
nian systems it is also reported that only one UPO is enough
to approximate the Lyapunov exponent of the systems (Fran-
zosi et al., 2005; Goto, 2007).

However, we do not have enough knowledge about statis-
tical properties of UPOs, and we do not know why in some
systems only a few UPOs with low periods out of an infinite
number of UPOs can capture well statistical properties and
ordered structures of complex behaviors. There are some re-
searches related to this problem. Kawasaki and Sasa (2005)
studied a simple model of chaotic dynamical systems with a
large number of degrees of freedom, and found that there is
an ensemble of UPOs with the special property that the ex-
pectation values of macroscopic quantities can be calculated
using one UPO sampled from the ensemble. Invariant sets
embedded in a chaotic attractor can generate time averages
that differ from the average generated by typical orbits on
the attractor. Motivated by two topics controlling chaos and
riddled basins of attractions, Hunt and Ott (1996a, b) studied
an optimal periodic orbit which yields the largest (optimal)
value of a time average of a given smooth performance func-
tion of the system state. They obtained an implication that the
optimal periodic orbit is typically a periodic orbit of low pe-
riod, although they do not consider the relation of averaged
statistical properties along UPOs and chaotic orbits. How-
ever, Yang et al. (2000) reported that the optimal UPO can be
a periodic orbit of high period when the system is near crisis.

For developing the knowledge of chaotic analysis by
UPOs, we study statistical properties of many UPOs and seg-
ments of chaotic orbits. This would also help us understand
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Fig. 1. The number of periodic orbits with periodsN (◦) and
2N/N (�).

the difference between the maximal entropy measure and
physical measure, which is not understood well. Although
it is usually quite difficult to detect many UPOs from chaotic
systems, there are a few exceptional chaotic systems in which
UPOs can be analytically or systematically detected. Here,
in this paper, we employ two low dimensional maps, logis-
tic map and H́enon map, and study time averaged properties
along UPOs and chaotic orbits directly. UPOs of the logistic
map with a special parameter value are analytically calcu-
lated, and those of H́enon map are numerically identified by
applying the method proposed in Biham and Wenzel (1989).
In Sect. 2, statistical properties of UPOs and chaotic orbits of
the logistic map are examined. In Sect. 3, a set of UPOs of
the H́enon map is found, and statistical properties are stud-
ied comparing with those of segments of chaotic orbits. We
summarize our results in the final section.

2 Logistic map

First we take the logistic map

xn+1 = f (xn) = 4xn(1 − xn)

on the interval[0, 1] as a simplest example of chaotic sys-
tems. Introducing a new variableθ asxn= sin2 θn, The logis-
tic map is transformed toθn+1≡±2θn(modπ), which leads to
θn≡±2n−1θ1(modπ). The N -periodic solutionsxN+1=x1
thus correspond toθN+1≡±θ1(modπ), and are realized by
the initial pointsθ±

1 =kπ/(2N
±1), where 0≤k≤2N−1 for θ+

1
and 1≤k≤2N−1

−1 for θ−

1 . Note that the total number of pe-
riodic points is 2N .

In the following in this paper, we define the periodic orbits
with periodN as those that have periodN but does not have
shorter period thanN . In this sense, the number of periodic

orbits of periodN is well estimated by 2N/N (Fig. 1), be-
cause the number of periodic orbits with period≤N/2 has an
upper bound

∑N/2
i=1 2i/i≤2N/2+1 which is negligible com-

pared to 2N for largeN . Let us calculate the orbital mean
y=MN (x1) of x along the individual periodic orbit of period
N , defined asMN (x1)=

∑N
n=1 xn/N where{x1, x2, · · · , xN }

is a periodic orbit with periodN . According to the distribu-
tion of the initial value ofx1, y=MN (x1) also has a distribu-
tion PN (y) on [0, 1].

Figure 2 (left) shows the numerically obtained density dis-
tribution PN (y) for N=22, 23, 24, 25, where we can see a
little but clear asymmetry with respect toy=1/2, and see
that the density distribution is nearly the same for these val-
ues ofN . We note that in our calculation we obtain the
periodic orbits analytically by usingθn+1≡2θn, while a nu-
merical calculation of the periodic orbits, without using the
analytical results, is not available because the product of
|df (N)/dx|(∼ 2N ) and the round-off error (10−15 in double
precision) is comparable to the minimum distance between
adjacent periodic points forN≥17. We also show in Fig. 2
(right) the density distribution function of the orbital mean
MN along a chaotic orbit, where we decompose a chaotic or-
bit into segments with lengthN , and numerically calculate
the mean ofx for each of these segments. The number of
segments with lengthN is taken to be the same as those of
periodic orbits with periodN . We see that the density distri-
butions ofy = MN almost coincide with each other.

The observation is supported by the fol-
lowing analytical discussion. Noting that
the physical invariant measure is given by
Pinv(x)dx=dx/(π

√
x(1 − x))=2dθ/π (x= sin2 θ), we

may construct two probabilistic models forPN (y). In the
first model, we boldly assume that the pointsx1, x2, · · · , xN

are chosen independently of each other in a random way
according to the invariant measurePinv(x). In the second
model, we assume that only the initial pointx1 is randomly
chosen according toPinv(x) and the subsequent points
x2, · · · , xN are determined byxn+1=f (xn). Interestingly,
both of these models give the same values of the meanmN

and the varianceσ 2
N of PN (y), asmN=1/2, σ 2

N=1/(8N).
Actually, the standard deviation ofPN (y) for the periodic
orbits, the segments of a chaotic orbit and those obtained by
the probabilistic models agree fairly well with each other
for larger N (Fig. 3). However, the first model is not
satisfactory, because it gives the vanishing third order cumu-
lant which does not agree with the numerical result where
the asymmetry ofPN (y) yields a nonzero value for the
third order cumulant. On the other hand, the second model
gives the third order cumulant equal to−3(N−1)/(32N3),
which agrees well with the numerical result (Fig. 4). This
agreement is also supported by an observation that the
physical invariant measureP(x)invdx of f (x) is also the
physical invariant measure off N (x). Therefore, hereafter,
we take the second model as a statistical model for theMN .
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Fig. 2. Density distributionPN (y) for periodic orbits (left), and for chaotic orbits (right) with lengthsN=22 (◦), 23 (�), 24 (♦), 25 (×).

Fig. 3. Standard deviation of the density distributionPN (y) for
periodic orbits (◦), segments of a chaotic orbit (�), and segments
obtained by probabilistic models (♦).

We now calculate the characteristic function9N (λ) of
PN (y) for largeN , wherey=MN (x)=

∑N
n=1 f n(x) and the

probability density function ofx is Pinv(x),

9N (λ) =

∫ 1

0
exp[iλMN (x)]Pinv(x) dx

=
2

π

∫ π/2

0
exp[iλMN (x)] dθ

Fig. 4. The third order cumulant of the density distributionPN (y)

for periodic orbits (◦), and segments of a chaotic orbit (�).

∼
2

π

1

2

2N−1∑
k=1

exp[iλMN (sin2 θ+

k )]
π

2N + 1

+

2N−1
−1∑

k=1

exp[iλMN (sin2 θ−

k )]
π

2N − 1


∼

1

2N

∑
′ exp[iλMN (sin2 θ±

k )].

Here we approximate the integral by the mean of finite sums
of two kinds of mensurations by division, and

∑
′ denotes

the summation over all the periodic points. As stated before,
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Fig. 5. The number of detected periodic orbits with periodsN (◦)
and 0.17·1.5N (�).

the number of periodic orbits with period≤N/2 is negligible
compared to that with periodN . Therefore,

∑
′ is approxi-

mated byN
∑

UPO(N) where the latter means the sum over
all the periodic orbits with periodN , and we have taken into
account the fact that a periodic orbit with periodN hasN

periodic points. We then have

9(λ) =
1

2N/N

∑
UPO(N)

exp[iλMN ]

∼ < exp[iλMN ] >UPO(N)

where< · >UPO(N) means the average over the periodic or-
bits with periodN . Thus we conclude that for largeN , the
density distribution ofMN for a chaotic orbit, agrees with
the density distribution ofMN over the periodic orbits with
periodN .

This conclusion implies that, at least with respect to the
distributionPN of the orbital meanMN asN→∞, the UPOs
give statistically equal results to that of chaotic segments in
the logistic map. In other words, if we analyze time averaged
properties of a variable of the logistic map, we should take
periodic orbits with longer periods to obtain a better con-
vergence of the result. In this respect, therefore, the logis-
tic map appears different from some high dimensional sys-
tems in geophysics and fluid dynamics, where only a few
UPOs with rather short periods are known to give remark-
ably good approximations to statistical properties of chaotic
orbits (Kazantsev, 1998, 2001; Kawahara and Kida, 2001;
Kato and Yamada, 2003; van Veen et al., 2006; Yamada and
Saiki, 2007).

3 Hénon map

Hénon map (H́enon (1976)) is a two-dimensional map onR2,
which is described by

xn+1 = a − x2
n + yn, yn+1 = bxn,

where the parametersa, b (∈ R) are constants. This is a
diffeomorphism if b 6=0, and the Jacobian determinant of
the system is−b. Hénon map is sometimes described
as(xn+1, yn+1)=(a−x2

n+byn, xn), (byn+1−ax2
n, xn) by the

Affine transformation of the above system. Hénon map is
the only one diffeomorphism onR2 described by a polyno-
mial of order 2 and the inverse of which is also written by a
polynomial. An orbit of the H́enon map is essentially deter-
mined as a sequence onR by xn+1=a−x2

n+bxn−1 and{yn}

is determined by{xn} asyn+1=bxn.
UPOs cannot be extracted by the forward time iteration

of the original system because of their instabilities. How-
ever, in the case of the H́enon map, there is a special tech-
nique for finding UPOs, which is proposed in Biham and
Wenzel (1989). In this method UPOs with periodN are
identified by the attracting fixed points of the corresponding
N -dimensional ordinary differential equation systems (ODE
systems):

dxn

dt
= σn(−bxn−1 − xn+1 + a − x2

n), (n = 0, · · · .N − 1)

where x−1=xN−1, xN=x0, and σn=±1(n=0, · · · , N−1).
2N sorts of ODE systems are obtained by choosing a set of
(σ0, · · · , σN−1). Attracting fixed points(x∗

0, · · · , x∗

N−1) are
found from these systems. It is known that each fixed point
corresponds to one UPO of the Hénon map (Biham and Wen-
zel, 1989). The method is considered to identify all the pe-
riodic orbits with periodN of the H́enon map in some pa-
rameter values by obtaining all the attracting fixed points of
2N sorts of(σ0, · · · , σN−1) (Grassberger et al., 1989; Davis
et al., 1991; Sterling and Meiss, 1998), although there is still
no mathematical proof for it.

In this paper by employing the method we obtain more
than 10 000 periodic orbits with periodsN≤25 of the H́enon
map with the parameter values set asa=1.4, b=0.3. The
number of UPOs with periodN shown in Fig. 5 grows expo-
nentially (cf. Bowen, 1970), which indicates the topological
entropy of the system to be about log(1.5). To compare statis-
tical properties of UPOs with those of chaotic orbits we con-
sider a set of segments of chaotic orbits (chaotic segments)
with lengthN . Initial pointsx1 of the chaotic segments are
chosen according to the physical invariant measure which is
numerically obtained. We focus on the time averaged value
of x (MN (x1)) of a segment{xn}n=1,···,N with time length
N , which is calculated byMN (x1)=

∑N
n=1 xn/N . The den-

sity distributionsPN (z) of z=MN (x1) are shown in Fig. 6 for
all the detected UPOs and 105 chaotic segments with length
N . We can find that the distributions ofMN (x1) with time
lengthsN of UPOs are significantly different from those of
chaotic segments with the same time lengths. The observa-
tion is confirmed in Fig. 7 which shows the averages(upper)
and standard deviations(lower) of the density distributions
PN (z) of z=MN (x1) of UPOs and chaotic segments with
time lengthsN . From Fig. 7 we can see that distributions
PN (z) of z=MN (x1) along UPOs and chaotic segments with
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Fig. 6. Density distributionPN (z) of time averaged value ofx
(z=MN (x1)) along periodic orbits with periodsN (=15 (+), 20 (×),
25 (∗)) and chaotic segments with lengthsN (=15 (�), 20 (•), 25
(◦)).

time lengthsN seem to converge to the different distribu-
tions which have different mean values asN increases. Our
results suggest that in the case of the Hénon map, time aver-
aged properties of chaotic orbits cannot be captured by using
a few UPOs.

4 Conclusions

In this paper we study statistical properties of time averaged
values of a dependent variable along unstable periodic or-
bits (UPOs) and chaotic segments of the logistic map and
the H́enon map. UPOs of these two maps with the parame-
ter values employed in this paper are found by theoretical or
systematical numerical calculations. In the case of the logis-
tic map, we can find that averaged values of a variable along
chaotic orbits and UPOs have almost the same properties.
On the other hand, in the H́enon map, the distribution of av-
eraged values of a dependent variable numerically obtained
along the UPOs does not appear to coincide with that along
the segments of a chaotic orbit. The result in the Hénon map
may seem contradictory to the findings of Lai et al. (1997),
which shows that the physical invariant measure is approxi-
mately obtained by a series of UPOs with a weight propor-
tional to the reciprocal of the largest Floquet exponent. How-
ever, the distributions we considered here are obtained by the
use of the UPOs with no weight employed, and thus are re-
lated to the measure of maximal entropy. It is still an open
problem whether these averaged values converge to a single
value, because the above results have been obtained only by
numerical calculations. However, it is impressive that nei-
ther of these typical chaotic map systems of low dimensions
shows a straightforward support for the recent UPO appli-
cations in geophysics and fluid dynamics, where averaged
values along only a few UPOs are in good agreement with
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Fig. 7. Average(upper) and standard deviation(STD)(lower) of the
density distributionPN (z) of time averaged value ofx (z=MN (x1))
along periodic orbits (�) and chaotic segments (◦) with time-
lengthsN .

averaged values along a chaotic orbit. Research in this direc-
tion is now on progress for systems of differential equations
and will be reported elsewhere.
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