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Abstract. This paper compares the performance of the Lo-
cal Ensemble Transform Kalman Filter (LETKF) with the
Physical-Space Statistical Analysis System (PSAS) under a
perfect model scenario. PSAS is a 3D-Var assimilation sys-
tem used operationally in the Goddard Earth Observing Sys-
tem Data Assimilation System (GEOS-4 DAS). The compar-
ison is carried out using simulated winds and geopotential
height observations and the finite volume Global Circulation
Model with 72 grid points zonally, 46 grid points meridion-
ally and 55 vertical levels. With forty ensemble members,
the LETKF obtains analyses and forecasts with significantly
lower RMS errors than those from PSAS, especially over the
Southern Hemisphere and oceans. This observed advantage
of the LETKF over PSAS is due to the ability of the 40-
member ensemble LETKF to capture flow-dependent errors
and thus create a good estimate of the evolving background
uncertainty. An initial decrease of the forecast errors in the
Northern Hemisphere observed in the PSAS but not in the
LETKF suggests that the LETKF analysis is more balanced.

1 Introduction

Three-dimensional variational data assimilation (3D-Var)
was adopted for the first time in operational data assimilation
at the National Centers for Environmental Prediction (NCEP)
with the Spectral Statistical Interpolation (SSI) scheme in
1991 (Parrish and Derber, 1992), and has been proven to be
considerably more accurate than the scheme it replaced (Op-
timal Interpolation, OI). Physical-Space Statistical Analysis
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System (PSAS), a 3D-Var scheme developed at NASA1, dif-
fers from other 3D-Var schemes, such as the NCEP SSI and
the 3D-Var scheme of European Centre for Medium-Range
Weather Forecasts (ECMWF) (Courtier et al., 1998), mainly
in that it is formulated directly in physical space, rather than
in spectral space (Cohn et al., 1998). It was the operational
data assimilation system in the Goddard Earth Observing
System Data Assimilation System (GEOS-4 DAS) (Bloom
et al., 2005).

In PSAS, like in any other 3D-Var scheme, a constant sta-
tistical estimate of the background error covariance is used to
represent the background uncertainty. The use of a constant
background error covariance makes it difficult to adjust the
background (6-h forecast) toward to the true state when there
are larger than average background errors that are not well
represented by the background error covariance. By contrast,
ensemble Kalman filter (EnKF) schemes (Evensen, 1994;
Anderson, 2001; Houtekamer and Mitchell, 2001; Bishop et

1At the time of this writing, PSAS supports the following
operations at NASA: MODIS land team; Aura/MLS; Aura/TES;
Aura/HIRDLS; (http://gmao.gsfc.nasa.gov/operations/candp/).
GEOS-Chem group at Harvard University (e.g.,http:
//coco.atmos.washington.edu/cgi-bin/ion-p?page=geosnrt.ion);
FlashFLUX project team at NASA Langley Research Cen-
ter (e.g., http://ams.confex.com/ams/pdfpapers/113479.pdf);
Power project at NASA Langley Research Center (e.g.,
http://ieeexplore.ieee.org/iel5/4087812/4087813/04087926.pdf);
SRB project at NASA Langley Research Center (e.g.,
http://eosweb.larc.nasa.gov/PRODOCS/srb/tablesrb.html). It
is also the operational data assimilation system at CPTEC Brazil
(e.g., http://mtc-m15.sid.inpe.br/col/cptec.inpe.br/walmeida/2004/
08.13.16.19/doc/HerdiesData%20assimilation.pdf), and the NWP
center in Rome, Italy (e.g.,http://www.wmo.ch/pages/prog/www/
DPFS/ProgressReports/2005/Italy.pdf).
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al., 2001; Whitaker and Hamill, 2002; Tippett et al., 2003;
Ott et al., 2004; Hunt et al., 2007, Kalnay et al., 2007) esti-
mate a flow dependent background error covariance from a
time-dependent forecast ensemble. The time changing back-
ground error covariance should represent the “errors of the
day” if enough ensemble members are used and the model
bias is small. Recently, EnKF schemes have been shown to
be able to assimilate real observations effectively. For exam-
ple, Houtekamer et al. (2005) found the performance of an
EnKF scheme to be comparable to the operational 3D-Var
scheme when assimilating real observations into the CMC
GEM grid model. With more recent changes, the perfor-
mance became comparable to that of the operational 4D-Var
(Houtekamer, personal communication, 2006). Whitaker et
al. (2004) obtained a better mid-troposphere reanalysis from
surface pressure observations with Ensemble Square Root
Filter (EnSRF) (Whitaker and Hamill, 2002) than with the
NCEP SSI on the GFS model at T62L28 resolution. With
the same model, assimilating all operational observations
except radiances, EnKF outperformed the operational SSI
(Whitaker et al., 2007 and Szunyogh et al., 2008). These
results show promising potential for the ensemble Kalman
filter.

Unlike other ensemble Kalman filter schemes that assim-
ilate observations serially (Anderson, 2001; Whitaker and
Hamill, 2002; Houtekamer and Mitchell, 2001), the Local
Ensemble Transform Kalman Filter (LETKF; Hunt et al.,
2007) updates the local state variables of each grid point in-
dependently by assimilating all observations that may affect
the state at that grid point. The observations are typically
selected within a small local volume centered at that grid
point. The localization approach of the LETKF, which is
based on the localization approach of the Local Ensemble
Kalman Filter (LEKF; Ott et al., 2004), makes this assimi-
lation scheme highly parallel (Szunyogh et al., 2005, 2007).
Though adapted from the LEKF, the computational cost of
the LETKF is significantly lower because it solves the analy-
sis equations in the subspace spanned by the ensemble mem-
bers without using singular value decomposition. This com-
putational efficiency, simplicity of implementation (e.g., it
does not require the adjoint of the observational operator and
the adjoint of the model dynamics) and its accuracy make
the LETKF a particularly appealing ensemble Kalman filter
scheme.

While assimilation studies based on real observations pro-
vide more realistic quantitative estimates of the accuracy of
the proposed new schemes (e.g. Houtekamer et al., 2005;
Whitaker et al., 2007; Szunyogh et al., 2008), studies based
on simulated observations represent an important step toward
better understanding the potential advantages and limitations
of newly proposed schemes (e.g., Szunyogh et al, 2005). In
the present study, we compare a once operational 3D-Var sys-
tem (PSAS) with an EnKF (LETKF) by assimilating simu-
lated rawinsondes on the NASA GEOS4 finite volume Gen-
eral Circulation Model (fvGCM, Lin, 2004). We examine

and explain the differences in the performance of these two
schemes and address the question of the ensemble size re-
quired to obtain an accurate background error covariance in
the LETKF.

The paper is organized as follows: The LETKF and PSAS
assimilation schemes are briefly described in Sect. 2. The
fvGCM is described in Sect. 3. The experimental setup is ex-
plained in Sect. 4. Results comparing PSAS and the LETKF
are shown in Sect. 5. Section 6 is a brief discussion of the ori-
gin of the differences in the performance of the LETKF and
PSAS. Section 7 illustrates the number of ensemble mem-
bers required to obtain an accurate estimate of the error co-
variance in the LETKF scheme. Section 8 is a summary and
discussion.

2 Assimilation schemes

2.1 Physical-Space Statistical Analysis System (PSAS)

PSAS (Cohn et al., 1998) solves the standard analysis equa-
tions (Eqs. 1 and 2) to minimize the analysis error variance

xa
=xb

+K [yo
−h(xb)] (1)

K=PbHT (HPbHT
+R)−1 (2)

Here,h(•) is a nonlinear observation operator transforming
the model state variables into observation space,H is its lin-
earized (Jacobian) operator andHT is the transpose (adjoint)
of the Jacobian.

Unlike other 3D-Var schemes, PSAS performs most of
its computations in the space of observations (Cohn et al.,
1998). More specifically, PSAS applies a conjugate gradient
(CG) algorithm to obtain an intermediate variablew from the
following equation:

(HPbHT
+R)w=yo

−h(xb) (3)

w is then substituted into Eqs. (1) and (2) to obtain the up-
dated analysis state

xa
=xb

+PbHT w (4)

Together, Eqs. (3) and (4) are referred to as the PSAS equa-
tions. In the specification of the error covariance, only the
matricesHPbHT

+R and PbHT are calculated and stored.
These matrices depend on the observation types.

The most computationally expensive part in PSAS is to
solve Eq. (3), which depends on the number of observations.
Therefore, the computational cost of PSAS depends primar-
ily on the number of observations, not on the number of de-
grees of freedom in the model. It is more efficient to use
PSAS than the other 3D-Var systems to assimilate rawin-
sondes, since there are fewer rawinsonde observations than
the number of degrees of freedom in the dynamical model.
Because of this efficiency, as well as the availability of the
PSAS code for installation on our computer system (a 25
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dual processor PC cluster with 2.8 GHz dual Xeon speed), we
chose PSAS as the standard 3D-Var assimilation scheme with
which to compare the LETKF. Also, the version of PSAS
available for this study was developed to assimilate geopo-
tential height observations, so we also assimilate geopoten-
tial height observations in the comparison of PSAS with the
LETKF.

2.2 The Local Ensemble Transform Kalman Filter

A detailed description of the LETKF is given in Hunt et
al. (2007). In the following sub-sections, we briefly summa-
rize the algorithm and its application on the fvGCM. For this
application, we first determine the ensemble forecasts and
the ensemble forecasts at observation locations (Sect. 2.2.1),
then do localization around each grid point (Sect. 2.2.2).
Each central grid point is updated in parallel using local in-
formation (Sect. 2.2.3), and finally the analysis ensemble at
every grid point are combined to obtain a global analysis for
each ensemble member (Sect. 2.2.4).

2.2.1 Global ensemble forecasts

First, an ensemble ofk forecasts, theith of which is de-
noted byx

b(i)
g , are created by integrating the fvGCM from

each analysis ensemble member valid at the previous anal-
ysis time. Then, each of the forecasts is transformed into
observation space by applying the observation operator. The
output is denoted asyb(i)

g =h(x
b(i)
g ), where the sub-indexg

represents global vectors.

2.2.2 Localization and parallelization

A distinguishing characteristic of the LETKF is its localiza-
tion scheme. Most ensemble Kalman filter techniques in-
troduce covariance localization (Houtekamer and Mitchell,
2001; Hamill et al., 2001) to avoid the spurious long-distance
correlations introduced by sampling with a limited number of
ensemble members. The version of the LETKF used in this
paper addresses this problem by cutting off a local region
around each grid point (Ott et. al., 2004; Hunt et al., 2007).
Only the information within the local box is used to update
the center point2. There is substantial overlap between ad-
jacent local regions corresponding to the neighboring grid
points (Szunyogh et al., 2005). The great overlap between
adjacent local boxes implies the overlap of the observation
data set assimilated at the adjacent grid points, which ensures
spatial continuity of the analysis (Ott et al., 2004).

2Alternatively, the localization can be based on the choice of the
observations used at each grid point (Hunt et al., 2007). This ap-
proach has some advantages over the box localization adopted here,
especially near the poles and for satellite observations that may de-
pend on the model state in a less local way than the conventional
observations.

Because the state is updated independently at each grid
point, the wall-clock time needed to finish a LETKF analysis
can be dramatically reduced by parallel computation. For
our application, the parallel implementation is realized by
separating the whole globe into a number of latitude strips
based on the number of available processors. The analysis
of each latitude strip is computed independently on different
processors. The final analysis results do not depend on the
available processors, because the assimilated observations at
each local box are independent of the number of processors,
and only depend on the localization scale.

Due to localization, all the vectors presented in the next
subsection are reduced from global to local size. In this way,
rather than having to assimilate observations serially (one af-
ter the other) as in several other ensemble Kalman filter tech-
niques (Tippett et al., 2003), the LETKF assimilates all rele-
vant observations simultaneously (Ott et al., 2004; Szunyogh
et al., 2005). Simultaneous assimilation, which allows for
observation error correlations in space, is particularly impor-
tant when the observation coverage is dense and correlated,
such as for satellite observations. It can also assimilate obser-
vations at the appropriate time when the 4-D-LETKF exten-
sion is used, which allows for observation error correlations
in time as well (Hunt et al., 2004; Hunt et al., 2007; Kalnay
et al., 2007).

2.2.3 Local analysis

Within each latitude strip, the analysis of each grid point
is performed sequentially. As described by Szunyogh et
al. (2005), at each grid point, the local background vector
xb(i), the corresponding local background vector in obser-
vation spaceyb(i), and the local observation vectoryo only
include the information within the local box. Different lo-
calizations may be chosen for different observations, such
as different localization for satellite radiances (Fertig et al.,
2007). Within the local box, the background state is defined
as the ensemble mean of the local forecast vectors:

xb
=k−1

i=k∑
i=1

xb(i) (5)

Unlike the LEKF (Ott et. al., 2004; Szunyogh et al., 2005),
the LETKF does not calculate the background error covari-
ance explicitly. It calculates the background ensemble per-
turbationsXb instead. Itsith column is given byxb(i)

−xb.
Following Hunt et al. (2007), the ensemble perturbations in
this local box are given by

Xa
=Xb(Pa)

1
2 , (6)

It is the transformation of the background ensemble pertur-
bations byPa1/2, wherePa , the analysis error covariance in
the ensemble space, is given by

Pa
=

[
(k−1)I+YbT R−1Yb

]−1
. (7)
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Table 1. Observation error standard deviations as a function of ver-
tical level for simulated zonal wind (U), meridional wind (V) and
geopotential height (H) observations (adapted from PSAS).

Unit (hPa) U (m/s) V (m/s) H (m)

1000 2.0 2.0 5.4
850 2.2 2.2 5.6
700 2.3 2.3 6.2
500 2.7 2.7 8.6
400 3.2 3.2 10.8
300 3.4 3.4 12.8
250 3.4 3.4 13.5
200 3.3 3.3 14.5
150 2.7 2.7 16.3
100 2.7 2.7 19.3

Yb is the matrix of ensemble background perturbations in
observation space with theith column given byyb(i)

−yb,

whereyb
=k−1

i=k∑
i=1

yb(i). BecauseYb is formulated using

the nonlinear observation operator, unlike 3D-Var or 4D-Var
methods, the LETKF does not require either the JacobianH
of the observation operator or its adjointHT . The ensemble
mean state of LETKF is updated by the equation:

xa
=xb

+XbP̃aYbT R−1(yo
−yb) (8)

The analysis ensemble is given by adding the analysis mean
to the analysis perturbations:xa(i)

=Xa(i)
+xa .

2.2.4 Global analysis ensemble

The local analysis described above returns the analysis en-
semble for the center grid point of the local box. The analy-
sis for each grid point in the latitude strip is then connected
to return a single file for each strip including all ensemble
members. The global analysis for each ensemble member is
then extracted from these files. The global analysis ensemble
is then used to initiate the ensemble forecasts discussed in
Sect. 2.2.1.

3 NASA fvGCM

The dynamical core of the NASA GEOS 4 is the fvGCM
developed by Lin (2004) with highly accurate numerical dis-
cretization. The fvGCM solves the governing equations by
employing a Lagrangian vertical coordinate. Unlike many
models that forecast surface pressure, the NASA fvGCM
forecasts the pressure thickness (δp) between vertical model
levels and updates surface pressure (Ps) as a diagnostic vari-
able. The fvGCM also forecasts zonal wind (u), meridional
wind (v), scaled potential temperature (θ), and specific hu-
midity (q).

The version of the fvGCM employed in our experiments
has a horizontal resolution of 5◦ longitude and 4◦ latitude
(72 zonal and 46 meridional grid points). The model has 55
vertical levels and includes a very high top at 0.01 hPa. We
note that the horizontal resolution is coarser than that used
operationally, but this allows performing a large number of
experiments under our limited computational resources.

4 Simulated observations and experimental design

The assimilation experiments described in this study were
conducted in the perfect model scenario. A nature run, rep-
resenting the true state of the atmosphere, was created by
running the NASA fvGCM for three months from the op-
erational analysis of 16 December 2002. Simulated raw-
insonde observations were obtained by converting the true
model state to rawinsonde variable types, interpolating this
converted true state to the real rawinsonde locations, and then
adding zero-mean non-correlated Gaussian distributed noise
with standard deviations same as the operationally assumed
rawinsonde errors (Table 1). The observations are at the real
rawinsonde observation locations shown in the left panel of
Fig. 2 for 00:00 UTC, including zonal wind, meridional wind
and geopotential height. A similar number of observations
are available at 12:00 UTC, but far fewer are available at
06:00 UTC and 18:00 UTC (not shown).

The initial analysis cycle started at 18:00 UTC on 16 De-
cember 2002 for PSAS. The initial condition used for this
PSAS run was the true state from the nature run at 00:00 UTC
on 15 January 2003. The LETKF analysis cycle was started
on 18:00 UTC on 01 January 2003 and used the PSAS anal-
ysis as the initial mean state of the ensemble. The initial
ensemble members were obtained by adding normally dis-
tributed noise to the mean analysis state. The standard devi-
ation of the analysis ensemble perturbations was the same as
the standard deviation of the observational noise for observed
variables and 0.25 K for scaled potential temperature.

The PSAS obtains analysis increments of the observed
variables, and then converts these increments to update
the model state variables (see Eqs. 3 and 4). The LETKF,
on the other hand, directly obtains analyses for the model
variables. In this study, the LETKF directly updates zonal
and meridional wind, scaled potential temperature, and
surface pressure. Surface pressure is not a prognostic
variable, but it is used to update the related prognostic
variable, pressure thickness. For simplicity and efficiency
in this study, pressure thickness is updated proportionally to
the surface pressure increment for each ensemble member.
Specifically, the analysis increment of the pressure thickness
at levelk for theith ensemble member is given by

1δp
a(i)
k

δp
b(i)
k

=
1Ps

a(i)
k

Ps
b(i)
k

, (9)
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Fig. 1. Left panel: real rawinsonde observation locations (black
dots) at 00:00 UTC. Right panel: relative distribution of observa-
tional coverage at different pressure levels.

where1 indicates the analysis increment of the correspond-
ing variable. Furthermore, neither the LETKF nor the PSAS
updates specific humidity in this study to avoid the complexi-
ties of assimilating humidity observations (Dee and DaSilva,
2003). We have a separate study examining the impact of
assimilating humidity with the LETKF (Liu, 2007).

Sampling errors and the effects of nonlinearities in the
evolution of the estimation errors can lead to an underesti-
mation of the background error covariance and to filter di-
vergence (e.g., Whitaker and Hamill, 2002). To compensate
for this problem, a multiplicative variance inflation scheme
(Anderson and Anderson, 1999) is employed in the LETKF.
In practice, we achieve this as in Hunt et al. (2007) by modi-
fying Eq. (7):

P̃a
=

[
(k−1)

1+ρ
I+YbT R−1Yb

]−1

, (10)

whereρ is a positive number, and(1+ρ) is the inflation fac-
tor. The main difference between the approach of Anderson
and Anderson (1999) and that of Hunt et al. (2007) is that
while the former scheme inflates the ensemble background
perturbations, Eq. (10) inflates the analysis perturbations.
These two approaches would be equivalent if the evolution
of the ensemble perturbations is strictly linear. The inflation
factor, ρ, is tuned to change with vertical levels, latitudes,
and time (see Tables 2 and 3). At the lower levels the inflation
factor was kept constant throughout the assimilation cycle
(8% over the entire globe). For the levels above 100 hPa, the
inflation factor was larger during spin-up time. We found ex-
perimentally that such large inflation above 100 hPa (Table 2)
is useful for the first few analysis steps before the analysis er-
ror settles at a stationary level. Once the system settles, the
inflation is decreased from 8% at 100 hPa to about 5% over
the polar region (Table 3). To avoid changing inflation factor
abruptly either in vertical or meridional direction, we linearly
change these inflation factors. In the local boxes where there
is no observation, we do not inflate the background, though
later studies have found that the analysis improves slightly

Table 2. Inflation factors as a function of vertical levels and latitude
bands for spin-up.

Unit: hPa 90◦ S–14◦ S 10◦ S–6◦ N 10◦ N–26◦ N 30◦ N–90◦ N

976.7–118.2 1.08 1.08 1.08 1.08
100.5 1.09 1.09 1.09 1.09
85.4 1.10 1.10 1.10 1.10
72.6 1.20 1.20 1.20 1.20
61.5 1.25 1.30 1.30 1.30
52.0 1.35 1.40 1.40 1.40
43.9 1.35 1.50 1.50 1.50
37.0 1.35 1.50 1.60 1.60
31.1 1.35 1.50 1.70 1.70
26.0 1.35 1.50 1.70 1.80
21.8 1.35 1.50 1.70 1.90
18.1–0.015 1.35 1.50 1.70 2.00

by also inflating the background in these regions (Szunyogh
et al., 2007).

The dimensions of the local box were varied spatially to
account for inhomogeneous observation coverage and the
change of physical distance between grid points with lati-
tudes. The width of the box was increased in the Southern
Hemisphere (SH), where observations are sparse. To account
for the convergence of the meridians toward the poles, the
number of grid points in zonal direction included in the local
box was also increased with latitude in both Hemispheres.
For example, the horizontal local patch was 7 grid points by
7 grid points in the mid-latitudes in the Northern Hemisphere
(NH), while it was increased to 15 grid points by 7 grid points
near the poles. The vertical dimension of the local boxes
contained 3 vertical levels, except at the top and the bottom
model levels where they contained 1 level. In the newer con-
figuration of the LETKF (Hunt et al., 2007), the localization
scale only depends on the actual physical distance, requiring
less tuning.

We tuned the variance of background error covariance
used by PSAS to account for the fact that it was originally
tuned using real observations and found that the results were
not very sensitive to this amplitude. Since we did not tune
the correlation structure, the PSAS results presented below
may not be optimal. So the advantage of the LETKF over
PSAS may not be as large as the results shown here.

5 Relative performance of the LETKF and the PSAS

We evaluate the performance of both PSAS and the LETKF
by computing the Root Mean Square (RMS) errors for both
the analyses and the forecasts. The relative accuracy of these
two schemes is examined by comparing the magnitude of the
analysis RMS errors, which includes the 500 hPa RMS error
time series averaged over the globe, the global and time av-
erage RMS errors over all vertical levels, and the zonal mean
RMS error. We also calculate the percentage improvement of
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Table 3. Inflation factors as a function of vertical levels and latitude bands for stable state.

Unit: hPa 90◦ S–62◦ S 90◦ S–14◦ S 10◦ S–6◦ N 10◦ N–50◦ N 54◦ N–66◦ N 70◦ N–90◦ N

976.7–18.2 1.08 1.08 1.08 1.08 1.08 1.08
100.5 1.09 1.09 1.09 1.09 1.09 1.09
85.4 1.10 1.10 1.10 1.10 1.10 1.10
72.6 1.09 1.15 1.20 1.20 1.20 1.10
61.5 1.08 1.20 1.30 1.30 1.30 1.10
52.0 1.07 1.20 1.30 1.40 1.30 1.10
43.9 1.06 1.20 1.30 1.50 1.30 1.10
37.0 1.05 1.20 1.30 1.60 1.30 1.10
31.1 1.05 1.20 1.30 1.60 1.30 1.10
26.0 1.05 1.20 1.30 1.60 1.30 1.10
21.8 1.05 1.20 1.30 1.60 1.30 1.10
18.1–0.015 1.05 1.20 1.30 1.60 1.30 1.10

Fig. 2. 500 hPa global average analysis RMS error (y-axis) as function of time (x-axis) for zonal wind (left panel) and temperature (right
panel). Dashed line: PSAS; solid line with open circles: the LETKF.

LETKF over PSAS (RMS error difference between LETKF
and PSAS normalized by the PSAS RMS error). Negative
values indicate that LETKF is better than PSAS. For the fore-
casts, we compare the 5-day forecast RMS error from these
two schemes in different areas, as well as the representation
and the impact of gravity waves on the forecast.

5.1 Time series of analysis RMS error

The RMS error time series start from 00:00 UTC, 2 Jan-
uary 2003, when PSAS analysis has already settled, and the
LETKF analysis cycle begins. As shown in Fig. 2, after a few
days the LETKF analysis (solid line with open circles) has

smaller errors than the PSAS analysis (dashed line) for both
zonal wind (left panel) and temperature (right panel). After
the initial transient period, the differences between the RMS
errors of these two schemes are large and significant. Beyond
the transient period, the RMS error of the LETKF analysis is
not only smaller, but also shows less variability than that of
PSAS. The difference is especially apparent on 12 February,
when PSAS has a large spike in the RMS error. At this time,
the RMS error of the LETKF (solid line with open circles in
Fig. 2) only has slight fluctuations. We will further explore
the reasons for this difference in error fluctuations in Sect. 6.

The RMS error over the NH (22◦ N–90◦ N) (Fig. 3) is
much smaller and shows less variability than the global RMS
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Fig. 3. Same as Fig. 2, except for the analysis RMS error averaged over the Northern Hemisphere (22◦ N–90◦ N).

error for both schemes. Because the density of rawinsonde
network is highest in the NH (Fig. 1), the background quickly
adjusts to the observations there. Therefore, most of the fluc-
tuations of the errors appear in the regions with low obser-
vation density, like the extratropical SH (22◦ S–90◦ S) and
oceans.

5.2 Vertical and latitudinal structure of the analysis error

Figures 2 and 3 show that the LETKF analysis RMS errors at
500 hPa are smaller than those of PSAS. We further compare
the RMS errors at all vertical levels below 100 hPa, shown
in Fig. 4. It shows that the LETKF analysis RMS errors are
smaller at all model levels for both zonal wind (left panel)
and temperature (right panel). The RMS error is significantly
smaller than the observational error (Table 1) for both PSAS
(dashed line in Fig. 4) and the LETKF (solid line with open
circles in Fig. 4). The percentage improvement relative to
PSAS is about 40% for zonal wind and 30% for temperature
(not shown). The improvement is larger at the lower levels
than at the higher levels. For the levels above 100 hPa (not
shown), the RMS errors of both the LETKF and PSAS in-
crease sharply, with the LETKF increases faster. At around
80 hPa, the accuracy of PSAS surpasses the LETKF. We need
to further investigate the reason for the better performance of
PSAS above 100 hPa.

Figure 5 compares zonally and temporally averaged anal-
ysis RMS errors from PSAS and LETKF. In the NH, where
both schemes provide more accurate analysis, the LETKF
has smaller errors than PSAS (bottom left panel in Fig. 5).

The zonal wind analysis RMS error of the LETKF is only
between 0.25 m/s and 0.5 m/s at high latitudes (top left panel
in Fig. 5), which is about 15% to 25% of the observation
error. In most of the tropics and SH, where the RMS er-
rors are larger, the difference between the RMS error of the
LETKF and PSAS is also larger (bottom left panel in Fig. 5),
especially over SH. Although the RMS error over the trop-
ics is large for both schemes, the error reduction of LETKF
compared with PSAS is between−30% and−40% in this re-
gion (bottom right panel in Fig. 5). The percentage improve-
ment is between−40% and−50% through the whole ver-
tical column over the mid-latitudes in the SH (bottom right
panel in Fig. 5). However, the percentage improvement be-
comes smaller beyond 70◦ S toward the South Pole, where
the LETKF analysis becomes slightly worse than PSAS. The
assimilation near the poles was a challenge for the present lo-
cal box formulation of LETKF (see footnote in Sect. 2.2.2).

5.3 Comparison of forecast errors

Since in the perfect model scenario forecast errors originate
only from the errors in initial condition, and the analysis state
of the LETKF has smaller errors than PSAS, better forecasts
from the LETKF are expected. Also note that if the initial
conditions are in balance, growing errors present in the initial
conditions will grow exponentially (essentially like bred vec-
tors generated by the analysis cycle, Toth and Kalnay, 1997).
If the initial conditions are not in balance, however, the initial
errors will not necessarily grow, and may even decay during
the geostrophic adjustment period. Only after the unbalanced
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Fig. 4. Time mean (averaged over February) of the analysis RMS error averaged over the globe as function of vertical levels for zonal wind
(top left panel) and temperature (top right panel). Dashed line: PSAS; solid line with open circles: the LETKF.

errors disperse, and the growing modes start dominating the
error, do we expect to observe exponential growth. There-
fore, the error growth observed in different areas provides an
indication of the type of errors and the relative balance of the
analysis.

As expected, the forecast RMS errors from the LETKF
analysis are smaller than that from PSAS analysis (dashed
line) during a 5-day forecast period over all the regions
(Fig. 6). However, different regions show different charac-
teristics of error growth. In the NH (top left panel in Fig. 6),
PSAS errors initially decay, and start growing after about a
day, indicating that the PSAS analyses are not well balanced.
With the same set of observations, the LETKF starts with
smaller errors, but they grow faster. In the SH (top right panel
in Fig. 6), the errors of PSAS start growing immediately af-
ter the analysis, suggesting that the PSAS analysis is more
balanced in the SH than in the NH. This is not surprising,
since the number of observations in the SH is much smaller
than in the NH, and it is the assimilation of observations that
cause the PSAS analysis to lose its balance (The assimilation
of observations takes place within the subspace spanned by
the PSAS background error covariance). The forecast RMS
errors of LETKF grow at a smaller rate than PSAS after an
initial slight decrease during the first 6 h. The initial error
decrease is presumably associated with the convective im-
balance in the SH summer (Harlim et al., 2005). In the trop-
ics (22◦ S–22◦ N, bottom left panel in Fig. 6), the forecast
RMS errors of PSAS are almost constant for a couple of
days, and then increase linearly. For the LETKF the fore-

cast RMS errors start smaller than PSAS and grow linearly
with time at about the same rate as PSAS. This characteris-
tic linear growth of errors in the tropics was also observed
in Kuhl et al. (2007) in simulations with the NCEP Global
Forecasting System (GFS). Unlike extratropical error growth
dominated by slow baroclinic waves, tropical errors are dom-
inated by convection, which saturate almost immediately at
small scales and slowly propagate to larger scales even in a
perfect model scenario (Kalnay, 2003; Harlim et al., 2005).

5.4 Accuracy in representing gravity waves

Maintaining atmospheric balance is particularly important
during data assimilation. Imbalance in the atmospheric anal-
ysis will result in the excitation of spurious gravity waves,
which eventually will ruin the accuracy of the data assimila-
tion system. Gravity waves are generally not observed with
significant amplitudes, except for the diurnal and semidiur-
nal tides. So the goal during data assimilation is to retain the
gravity waves present in reality, but to avoid exciting spuri-
ous gravity waves.

Though geostrophic balance is imposed in the construc-
tion of the background error covariance, some of the other
constraints are still needed in some statistical optimization
problem. It is common to apply a balancing algorithm such
as nonlinear normal mode initialization (e.g., Daley, 1991),
digital filter (Lynch and Huang, 1992) or the Incremental
Analysis Update (Bloom et al, 1996) to 3D-Var in order
to eliminate high frequency waves before the next forecast
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Fig. 5. The contours in the two figures in top panel indicate the time average (over February) of the true zonal wind field, and the shades
indicate the zonal average of the time mean zonal wind analysis RMS error of the LETKF (top left panel) and PSAS (top right panel). Bottom
left panel is the analysis RMS error difference between the LETKF and PSAS, and the bottom right panel is the relative improvement of the
LETKF over PSAS. The thicker line in both figures in the bottom panel is zero line.

begins. In the current implementation of both the PSAS and
the LETKF, there is no such extra constraint. The ensem-
ble analyses in the LETKF minimize the introduction of spu-
rious gravity waves by computing the analyses as a linear
combination of the ensemble forecasts, which are generally
well balanced. Fast gravity waves remain in the analysis
field only if they are in the background. Although the use
of local boxes in the LETKF could lead to imbalances, the
large overlap between different local boxes (as discussed in
Sect. 2) in the LETKF is apparently able to minimize the
excitement of gravity waves by assimilating similar informa-
tion in neighboring regions. We compare the relative ability

of both schemes in representing real gravity waves by plot-
ting the error difference (upper right panel in Fig. 7) between
the analyzed horizontal divergence and the truth (upper left
panel in Fig. 7) for a period at the location (32◦ N, 93◦ W on
700 hPa) where a large amplitude gravity wave is observed
in the true dynamical field. The error of the divergence field
from the LETKF (open circles in the right panel in Fig. 7)
is smaller than that of PSAS (closed circles in Fig. 7). In
agreement with the results of Szunyogh et al. (2005), we do
not observe spurious high frequency gravity waves. PSAS
(closed circles) also gives a fairly good analysis of the true
gravity waves, but the amplitude of the errors is considerably
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Fig. 6. 500 hPa zonal wind forecast RMS error (m/s), averaged over February, as a function of the leading time in different regions. Top
left panel: Northern Hemisphere (22◦ N–90◦ N); Top right panel: Southern Hemisphere (22◦ S–90◦ S); Bottom left panel: Tropics (22◦ S–
22◦ N); Bottom right panel: the globe. Dashed line: PSAS; solid line with open circles: the LETKF.

larger than that of LETKF. The gravity wave that appears
in the truth has both diurnal and semi-diurnal components,
especially around 14 February. This structure is more appar-
ent in the 2-day forecasts starting on 12:00 UTC 14 February
plotted every hour (bottom panel in Fig. 7). The forecasted
surface pressure shows the diurnal and semidiurnal modes in
the truth (crosses), PSAS (full circles), and LETKF (open cir-
cles) forecasts. Although both forecasts capture the diurnal
and semidiurnal tides, we observe that the initial conditions
from the LETKF lead to a more balanced and accurate fore-
cast. We have to note that the observation coverage in the

current experimental setup is rather sparse and the assimila-
tion of observations may introduce imbalance, so whether
3D-Var system and the LETKF can still maintain balance
without any other constraints in case of more dense obser-
vation coverage needs further investigation in a future study.
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Fig. 7. Upper left panel: the “true” analyzed divergence field every 6 h at 32◦ N, 93◦ W on 700 hPa (where there is a rawinsonde observation).
Upper right panel: the divergence error for the LETKF (open circles) and PSAS (closed circles). The bottom panel: 2-day surface pressure
forecast from 12:00 Z, 14 February at 32◦ N, 93◦ W (crosses show the true pressure, open circles are the LETKF forecast, and full circles are
the PSAS forecast). The output interval is every hour.

6 The relationship between analysis increments and
background error

The analysis increments (the difference between analysis
state and background state) reflect the correction made to the
background with the observed information. They are deter-
mined by the background error covariance, observation error,
and observation innovation (the difference between observa-
tion and the background mean state in the observation space),
as shown in Eq. (1) for PSAS and Eq. (8) for LETKF. The
background error is the difference between background state
and the truth, so that the optimal analysis increments should
be equal and opposite sign of the background errors. We
analyze reasons for the difference in the performance of the
LETKF and PSAS by examining the relationship between

analysis increment and background error on 12:00 UTC 12
February for both PSAS and the LETKF. This time is when
the largest RMS error difference between LETKF and PSAS
occurs (Fig. 2). The largest difference between these two
schemes is observed over the ocean in the Southern Hemi-
sphere (SH), especially between 30◦ S and 80◦ S, 120◦ E and
160◦ W where there is a deep trough associated with major
weather development. Figure 8 shows the analysis incre-
ments (contours) and the background errors (colors) in the
region described above. Both schemes extract useful infor-
mation from the sparse observations, as indicated by the fact
that the analysis increments generally have opposite sign to
the background errors. However, in the LETKF (left panel in
Fig. 8), the analysis increments line up with the background
error generally better than that in PSAS, even in the areas
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Fig. 8. 500 hPa temperature analysis increments (contours) and background error (shaded) for the LETKF (left panel) and PSAS (right panel)
at 12:00 Z, 12 February. The dots represent the rawinsonde observation locations.

without observations. Since the LETKF and PSAS assimi-
late the same observation and use the same observation error
statistics, this different characteristic of analysis increments
is mainly due to different background error statistics. The
background error covariance estimated from the ensemble is
able to extrapolate observation information to data sparse re-
gions by accurately reflecting the shape of the errors of the
day, so the analysis increments have the similar shape with
the background error. Because PSAS has a constant isotropic
background error covariance, it cannot estimate abrupt error
changes in the shape and amplitude of background error. As
a result, the structure of the PSAS temperature increments
is significantly different from that of the background error
(right panel in Fig. 8). In PSAS, the large analysis incre-
ments are observed around the observation locations, not in
regions with large background error.

7 Estimation of the sufficiency of the number of ensem-
ble members used in the LETKF

One measure of the sufficiency of the number of ensemble
members is the consistency between the background uncer-
tainty estimated from the background ensemble forecasts and
the true background error. Ideally, with perfect model exper-
iments and with enough ensemble members, the estimated
background uncertainty should be same with the actual back-
ground error. When there are too few ensemble members,
the background uncertainties estimated from the ensemble
would be far from the actual background error.

Ensemble spread is used to represent the background un-
certainty estimated from ensemble forecasts, which is the di-
agonal value of the background error covariance. We exam-
ine the ability of 40 ensemble members to adequately repre-

sent the true uncertainty by comparing the ensemble spread
to the actual ensemble mean error. Both quantities are aver-
aged over the second month of the assimilation cycle. The
time average of the ensemble spread is calculated as follows:

S=

[
1

T

t=T∑
t=1

1

k−1

i=k∑
i=1

(xb
i −xb)2

] 1
2

, (11)

HereS represents the time-averaged ensemble spread of any
dynamical variable at any grid point, wherexb

i
is the ith back-

ground ensemble member andxb is the background mean
state at that grid point. The error of the ensemble mean is
measured by the distance between the background ensemble
mean and the true state:

V =

[
1

T

i=T∑
i=1

(xb
−xt )2

] 1
2

, (12)

wherext is the true state at that grid point. If the data assim-
ilation is optimal, and there are enough ensemble members
to estimate the background error covariance, the background
ensemble spread should be same as the error of the ensemble
mean.

Figure 9 shows that the 40-member ensemble accurately
estimates the shape of the background error. The cen-
ters of ensemble spread (contour) and ensemble mean error
(shaded) are approximately at the same locations, and both
fields have similar shapes. We examine the relative ampli-
tude of the ensemble spread and ensemble mean error by
calculating their ratio (which ideally should be equal to one).
Overall, the 40-member ensemble accurately estimates the
magnitudes of background uncertainty. The ratio of ensem-
ble spread to ensemble-mean error is close to one in data
dense regions, such as over land (Fig. 10). This suggests
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Fig. 9. Time average ensemble spread of zonal wind (averaged over
February, contour; Unit: m/s) and the ensemble mean error (shades;
Unit: m/s) at 500 hPa.

that larger inflation factors are required in the data dense re-
gion to keep a reasonable ensemble spread. In data sparse
regions such as the tropics, the ratio of ensemble spread to
variance is about 1.5–2 (Fig. 10), which suggests that the
ensemble spread overestimates the background uncertainty,
causing the analysis to give more weight to the observations
than it should. Further tuning the inflation factor based on
the observation coverage may improve the assimilation accu-
racy, since inflation should be different over data dense and
data sparse regions.

Our results suggest that 40 ensemble members are enough
to adequately capture the background uncertainty under the
perfect model scenario with the limited observing system
used and model resolution. We recognize that the resolution
of the model used for this study is much coarser than that
of operational models. Accordingly, more than 40 ensemble
members may be required to estimate the background error
covariance for operational models. However, the number of
ensemble members required is not unlimited. Miyoshi and
Yamane (2007) show that 80 ensemble members are enough
to get good performance with T159/L48 (corresponding to
a grid of 480×240×48) AGCM and much denser observa-
tions.

8 Summary and discussion

In this study we compare the performance of the LETKF
with the NASA PSAS analysis system (GEOS-4 data assim-
ilation system) by assimilating simulated rawinsonde obser-
vations on a finite volume GCM with horizontal resolution
of 4◦ by 5◦ and 55 vertical levels. With 40 ensemble mem-
bers, the LETKF analyses show significantly less RMS er-
ror than the PSAS analyses. The largest improvement of the

Fig. 10. The ratio of time average ensemble spread and ensemble
mean error of zonal wind at 500 hPa.

LETKF over PSAS is found in regions with sparse observa-
tions, particularly in the Southern Hemisphere. This result is
consistent with Whitaker et al. (2004, 2007) and Szunyogh
et al. (2007) finding that ensemble Kalman filters have the
most advantage over a 3D-Var in data sparse regions. The
5-day forecasts maintain this advantage. The forecast errors
starting from the PSAS analysis in the NH slightly decrease
in the first few hours before they start growing with time,
indicating the presence of analysis imbalance that disperses
as gravity waves during the initial geostrophic adjustment.
By contrast, the initially smaller analysis error in the LETKF
analysis grows exponentially, indicating better balance in the
initial conditions.

We believe that the large improvement of the LETKF over
the PSAS is due to the fact that the background error covari-
ance used in the LETKF varies realistically with space and
time, but the constant background error covariance used in
the PSAS cannot reflect abrupt error changes in the back-
ground. As a result, the analysis increments structure are
more similar (with opposite sign) to the background errors
in the LETKF, whereas in PSAS the analysis corrections are
more isotropic, and tend to be centered at observation loca-
tions. The accuracy of the background error covariance esti-
mation is crucial to the performance of the LETKF scheme,
and is related to the number of ensemble members. The
agreement between ensemble spread and ensemble mean er-
ror suggests that forty ensemble members used in the LETKF
are sufficient to capture most of the uncertainty in the global
fvGCM forecast. Nevertheless, more ensemble members
may be required in a higher resolution model.

Though the LETKF requires much more computational
resources compared to PSAS, given enough processors, the
actual wall-clock time can be comparable due to the highly
parallel characteristics of the LETKF. The parallel computa-
tion characteristic comes from the localization of the LETKF
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scheme. In this version of the LETKF, the localization is
based on the number of grid points in each local box around
the center point. Only those observations within a local box
are used to update the center grid point. Alternatively, the lo-
calization can be based on choosing the observations within
a distance to update the center grid point, rather than using a
local box (Hunt et al., 2007).

Although in this study we compared the LETKF with the
3D-Var analysis scheme used in the NASA GEOS-4 opera-
tional system, some caveats about the results should be men-
tioned. Our experiments are based on a perfect model sce-
nario, in which we have avoided additional challenges asso-
ciated with the presence of unknown observation and model
errors. Also, the observational network only includes rawin-
sondes, which is much sparser than the operational observa-
tion network. Previous research shows that EnKF has more
advantage in data sparse region (Whitaker et al., 2004) so that
the advantages of the LETKF should be smaller for currently
available operational observations than our results indicate.
In addition, the error statistics of PSAS has not been well
tuned, and the model resolution used is lower than that cur-
rently used in operations. Therefore our very encouraging
results could be interpreted as an upper bound for the poten-
tial operational advantage of EnKF over 3D-Var. GEOS-4
has been replaced by the GEOS-5 system, which in the fu-
ture should be also compared with the LETKF.
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