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Abstract. This paper shows how nonlinear models origi-
nally developed in the finance field can be used to predict
rain attenuation level and volatility in Earth-to-Satellite links
operating at the Extremely High Frequencies band (EHF, 20–
50 GHz). A common approach to solving this problem is to
consider that the prediction error corresponds only to scin-
tillations, whose variance is assumed to be constant. Never-
theless, this assumption does not seem to be realistic because
of the heteroscedasticity of error time series: the variance of
the prediction error is found to be time-varying and has to
be modeled. Since rain attenuation time series behave sim-
ilarly to certain stocks or foreign exchange rates, a switch-
ing ARIMA/GARCH model was implemented. The origi-
nality of this model is that not only the attenuation level, but
also the error conditional distribution are predicted. It allows
an accurate upper-bound of the future attenuation to be esti-
mated in real time that minimizes the cost of Fade Mitigation
Techniques (FMT) and therefore enables the communication
system to reach a high percentage of availability. The per-
formance of the switching ARIMA/GARCH model was esti-
mated using a measurement database of the Olympus satellite
20/30 GHz beacons and this model is shown to outperform
significantly other existing models.

The model also includes frequency scaling from the down-
link frequency to the uplink frequency. The attenuation ef-
fects (gases, clouds and rain) are first separated with a neural
network and then scaled using specific scaling factors. As to
the resulting uplink prediction error, the error contribution of
the frequency scaling step is shown to be larger than that of
the downlink prediction, indicating that further study should
focus on improving the accuracy of the scaling factor.
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(louis.demontera@cetp.ipsl.fr)

1 Introduction

An ever growing demand for increased capacity of com-
munication channels has led the SATCOM industry to de-
velop new satellite systems operating at frequencies above
20 GHz (Extremely High Frequencies band – EHF), where
large bandwidths are available. In this context, a French
military satellite, Syracuse 3, was launched in 2005 with
20 GHz downlink and 44 GHz uplink channels (Marsault et
al., 2006). At these frequencies, and especially at 44 GHz,
the attenuation can reach significant levels during rain events
and it is no longer cost-effective to use a fixed power mar-
gin. Since rain events are sparse phenomena in space and
time, some specifics adaptive fade countermeasures, known
as Fade Mitigation Techniques (FMT), were developed. The
EHF propagation channel variations therefore have to be
modelled, in order to trigger fade mitigation only when
needed. This study was originally intended at studying the
use of the 44 GHz channel, but because the Syracuse 3 mea-
surements are not available yet, the propagation channel
model presented in this paper was developed with data col-
lected during the previous Olympus 20/30 GHz propagation
experiment (Sect. 2).

Whatever the FMT used, the prediction of attenuation a
few seconds ahead (typically 10 s) is needed due to the con-
trol loop reaction time. Nevertheless, direct models that esti-
mate the attenuation from ground based meteorological data
are not accurate enough since attenuation depends on the rain
rate and also on the Drop Size Distribution (DSD) along the
path that are not known. Such models can only be used to
provide an estimation of yearly attenuation statistics (Dis-
sanayake et al., 1997). Recently, weather radars (Núñez et
al., 2006) and complex numerical weather models (Hodges
and Watson, 2006) have been used to improve the accuracy
of the attenuation retrieval and forecasting but the results
are still approximate and these models are not appropriate
for short-term prediction which is required in fixed satellite
links.
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This problem, as well as the need for synthetic attenuation
time series for simulation purposes, had led to the develop-
ment of statistical models that describe the attenuation pro-
cess only through its past values. Since the uplink is more
affected by attenuation than the downlink (because it gener-
ally operates at a higher frequency), the downlink attenuation
is predicted and then scaled to the uplink frequency in order
to estimate the future propagation conditions of the uplink.
Various prediction models have been proposed, such as a lin-
ear regression (Dossi, 1990), a first order stochastic equa-
tion (Manning, 1990, 1991), Markov chains (Castanet et al.,
2003; Fiebig, 2002), an adaptive linear filter (Grémont et al.,
1999), a neural networks (Chambers and Otung, 2005) or a
model based on the fade slope (Van de Kamp, 2002). A com-
parison was performed with Olympus 20 GHz data (Sect. 5)
and, in spite of the complexity involved in these models, none
of them was found to provide a prediction method signifi-
cantly better than persistence (i.e. considering that the pro-
cess remains constant over the forecast interval). Indeed, the
analysis of the attenuation time series shows that during rain
events it behaves approximately like a random walk and that
the autocorrelation of its increments is small over 10-s time
lags (see fourth row in Fig. 2, Sect. 3). Besides, rain has been
described as a Self Organized Critically (SOC) relaxation
phenomenon and can be compared to avalanches or earth-
quakes (Peters et al., 2002), which explains the difficulty in
predicting it.

Nevertheless, differentiating the attenuation time series
shows volatility clustering and leads to a distribution with
a large Kurtosis, and therefore behaves similarly to certain
stocks and currency exchange rates. Thus the use of mod-
els originally developed for financial applications might be
appropriate. Rain and financial assets forecasting are actu-
ally related fields of research because both phenomena have
statistical properties corresponding to turbulent and fractal
processes: intermittency, non-stationarity, non-linearity and
scale invariance (concerning rain, see: Schertzer and Love-
joy, 1997; Bendjoudi et al., 1997; Lavergnat and Golé, 1998;
concerning finance, see: Ghashghaie et al., 1996). Although
rain and clouds can be described as multiplicative cascades,
this behavior is not expected to be exactly reproduced by the
attenuation, because the latter is more complex than rain: it
comprises various components (gases, clouds and rain) that
are difficult to separate and not necessarily occur at the same
time. The process is noisy because of scintillations, rain at-
tenuation depends on the DSD, and finally, the measurement
is a quantity integrated along the propagation path, so that
volatility also depends on the variations of the path-segment
over which it is raining. Since no clear scale invariance or
multifractal behavior was observed in the available data, it
was chosen to use a simpler and more adaptive approach
that would however be capable of modeling some basic fea-
tures of multiplicative cascades, such as non-Gaussian dis-
tributions and volatility clustering. A new modeling of at-
tenuation based on a switching ARIMA/GARCH process is

proposed (Sect. 3) with its corresponding multi-step predic-
tion algorithm (Sect. 4). This type of statistical model has
already been proven to model successfully other geophysi-
cal processes related to turbulence and fractals, such as wind
speed (Ewing et al., 2005), river flow (Wang et al., 2005) as
well as internet traffic (Zhou et al., 2006). Combined with a
frequency scaling model adapted to the EHF band (Sect. 6),
this model is shown to predict an accurate upper bound of the
uplink attenuation using past values of the downlink attenua-
tion, thus reducing the cost of the FMT for high levels of link
availability.

The problem of frequency scaling is not trivial, because
above 20 GHz, attenuation effects of atmospheric gases and
clouds cannot be neglected. The physical components of at-
tenuation therefore have to be separated. This step is per-
formed with a neural network (Mallet et al., 2006) and the
attenuation components are then scaled with specific scal-
ing factors that are estimated from ground meteorological
data (ITU-R, 2003; Liebe, 1989; Gibbins, 1986). An assess-
ment of the contributions to the overall uplink prediction er-
ror shows that the error due to the frequency scaling is larger
than the one due to the downlink prediction (Sect. 7). This
result indicates that further study should focus on improving
the accuracy of the scaling factor.

2 Measurements

A database was created using attenuations measured on the
Olympus satellite 20 GHz and 30 GHz beacons at Gometz-la-
Ville, France, during 15 months (May 1992 to August 1993)
at an elevation angle of 30◦ (Golé et al., 1994; OPEX, 1994).
A technical incident on the satellite led to the failure of the
Olympus 30 GHz beacon on 10 October 1992, and as a con-
sequence, attenuation measurements at this frequency only
lasted five months. The data were recorded at a sampling
frequency of 100 Hz and averaged over 1 s time intervals, be-
cause at frequencies higher than a frequency of the order of
1 Hz the process only corresponds to an incoherent scintil-
lation noise. Sky brightness temperatures measured with a
ground radiometer were used to estimate the attenuation ref-
erence level during clear sky periods. The power received
from the satellite was shifted to this reference level in order to
retrieve the total attenuation of the atmosphere that includes
the effects of gases, clouds and rain. Since the stochastic
model presented in this paper has been developed for real
time applications, the data sampled at 1 Hz are unfiltered.

As much as 67 attenuation events were selected, for a to-
tal of 550 h, including at least 57 h of rainfall (the criterion
being that the 20 GHz attenuation level exceeds a threshold
of 1.5 dB, cf. Sect. 3). Figure 1 shows an example of at-
tenuation time series caused by rain events on the 20 GHz
beacon. The Olympus propagation experiment also includes
measurements of ground meteorological data (temperature,
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pressure and humidity) that are useful to accurately split at-
tenuation into its physical components (Sect. 6).

3 The switching ARIMA-GARCH model

Examining the down-link attenuation time series and its au-
tocorrelation suggests that it can be described as a switch-
ing ARIMA process (Auto Regressive Integrated Moving
Average) with GARCH errors (Generalized Auto Regres-
sive Conditionally Heteroscedastic) (Engle, 1982; Bollerslev,
1986). This chapter describes the identification process and
the method for estimating its parameters.

The first difficulty in modeling the attenuation process
comes from the intermittency of rain. Typically, the rain rate
measured at a given location and averaged over 1mn time in-
tervals is different from zero only 3% of the time. Since rain
attenuation may reach high levels and since rain is very inter-
mittent, the volatility of the total attenuation over 10 s time
intervals is expected to be larger when rain occurs. On the
contrary, when there is no rain, the attenuation is only due
to atmospheric gases and clouds and its variations over 10 s
time intervals are expected to be smoother. Thus, if these
two different situations are not treated separately, the param-
eters of the model will be characteristic of the dry periods,
which represent 97% of the time! Since rain attenuation is
often much stronger than the other attenuation effects, this
problem can be solve by separating the two different mete-
orological situations by means of a threshold. A neural net-
work trained to provide the normalized contribution of each
attenuation effect to the total attenuation (Mallet et al., 2006)
is presented in Sect. 6. Its outputs show that, at 20 GHz and a
30◦ elevation angle, rain becomes the major contributor to at-
tenuation above 1.5 dB (see Fig. 8, Sect. 6). The thresholdT

is therefore set at 1.5 dB. Here and below, the periods during
which the attenuation is less than 1.5 dB are called “smooth”
and correspond to clear sky, clouds or light rain. The periods
during which the attenuation is greater than 1.5 dB are called
“volatile” and correspond to significant rain events. This cri-
terion is more appropriate than estimating the current volatil-
ity over 10 s time intervals, because it separates the rain pe-
riods from the other meteorological situations more clearly
and because it is easier to handle in a real time forecasting
application.

The thresholding yields two statistically coherent time se-
ries, one containing the “volatile” periods and the other the
“smooth” periods (first row in Fig. 2). It was found that their
autocorrelations remain closed to 1 over long time intervals
(second row in Fig. 2), which indicates that both processes
behave like random walks (Box and Jenkins, 1976). The
time series are therefore non-stationary and a pre-processing
is required. The classical method to achieve stationarity con-
sists in performing successive differentiations. One differ-
entiation is found to be enough, because the resulting time
series are roughly stationary (third row in Fig. 2): they have
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Fig. 1. 20 GHz attenuation time series caused by rain events occur-
ring on 30 June 1992.

zero mean values regardless of the time. The possibility of
using a fractionally integrated process has also been consid-
ered. However, the autocorrelation of attenuation time series
decreases linearly with the time interval, which confirms the
choice of an order of differentiation equal to 1 (the autocorre-
lation of fractionally integrated processes decreases ash2d−1

whereh is the time interval andd the order of differentia-
tion).

Nevertheless, the differentiated time series also present pe-
riods with large variations, indicating that their variances are
not constant. This phenomenon, called volatility clustering
or heteroscedasticity in finance, shows that the differenti-
ated time series still present a second-order non-stationarity.
Therefore, the Wold decomposition theorem (Wei, 2005,
p. 271) that requires the assumption of second-order station-
arity cannot be applied theoretically. However, the differen-
tiated time series are not far from stationarity, so that they
can be modeled as classical ARMA processes (Auto Regres-
sive Moving Average) in a first step and the problem of het-
eroscedasticity can be addressed in a second step. The iden-
tification of the ARMA model’s orders, performed by the so-
called “corner” method that provides the minimum orders re-
quired to model the autocorrelation (see Wei, 2005, p. 133),
yielded the following equations:

1At = At − At−1 (1)
1At=φ′

11At−1+φ′

21At−2+ε′
t+θ ′

1ε
′

t−1+θ ′

2ε
′

t−2
if At ≥ T

1At = φ′′

11At−1 + ε′′
t + θ ′′

1 ε′′

t−1 + θ ′′

2 ε′′

t−2
if At < T

(2)

with:
1Ât = φ′

11At−1 + φ′

21At−2 + θ ′

1ε
′

t−1 + θ ′

2ε
′

t−2
if At ≥ T

1Ât = φ′′

11At−1 + θ ′′

1 ε′′

t−1 + θ ′′

2 ε′′

t−2
if At < T

(3)
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Fig. 2. Attenuation time series and differentiated times series with corresponding autocorrelations (from top to bottom: attenuation time se-
ries, attenuation time series autocorrelation, differentiated time series, differentiated time series autocorrelation; from left to right: “volatile”
periods (At≥T ), “smooth” periods (At<T )).

{
ε′
t = 1At − 1Ât if At ≥ T

ε′′
t = 1At − 1Ât if At < T

(4)

WhereAt is the attenuation,1At , the differentiated attenu-
ation,1Ât , the predicted differentiated attenuation one sec-
ond forward, andε′

t andε′′
t , the errors of the ARMA predic-

tors. The timet is in seconds and the subscriptst−n meansn
seconds beforet . The parameters of the ARMA models (φ′

1,
φ′

2, θ ′

1, θ ′

2 andφ′′

1, θ ′′

1, θ ′′

2) are estimated with a least squares
algorithm (Ljung, 1999). The model that combines the dif-
ferentiation and the ARMA process is called ARIMA(p,i,q)

(Auto Regressive Integrated Moving Average), wherep is
the order of the auto-regressive part of the model,i the num-
ber of differentiation, andq the order of the moving aver-
age part of the model. The attenuation time series is thus
modeled by an ARIMA(2,1,2) during rain periods (At≥T )

and by an ARIMA(2,1,1) during clear sky or cloud periods
(At<T ). This result is in agreement with Portsmouth Uni-
versity’s model (Gŕemont et al., 1999) in which an adap-

tive ARMA(3,3) is presented (equivalent to ARMA(2,1,2) in
terms of orders).

The ARIMA models would be valid if their errors were
white noises. Although their errors do not seem to be auto-
correlated processes, they are not white noises because their
conditional variances are not constant (first row in Fig. 3, the
error time series exhibit periods with large variations). As
mentioned previously, the linear ARIMA can only model the
information contained in the autocorrelation of the differenti-
ated time series which is very low (fourth row in Fig. 2) and is
not capable of modeling heteroscedasticity. Because of this
problem, the confidence intervals of the ARIMA predictions,
assumed to be constant, will not be accurate. Moreover, the
least squares algorithm used to estimate the ARIMA param-
eters is biased when the error variance is not constant. A
solution consists in modeling heteroscedasticity as a nonlin-
ear relationship between consecutive errors. Heteroscedas-
ticity, which leads to a large Kurtosis in the error distributions
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Fig. 3. Statistical properties of the prediction errors (from top to bottom: error time series, error distributions compared with Gaussians,
square error autocorrelations; from left to right: “volatile” periods (At≥T ), “smooth” periods (At<T )).

(second row in Fig. 3), is a feature often observed in finan-
cial time series and various nonlinear models have been de-
veloped to describe this type of process. It is difficult to
identify a nonlinear model because of the number of pos-
sible relations. This paper focuses on the quadratic nonlin-
earity, which is the simplest possibility. This approach corre-
sponds to modeling the volatility by GARCH models, which
are designed to capture the information contained in the au-
tocorrelation of the squares of the errors (third row in Fig. 3),
also called the realized variances. Since the GARCH model
is equivalent to an ARMA model of the squared errors, the
identification of the orders of the GARCH models is also per-
formed with the “corner” method. The following equations
were obtained:{

ε′
t = η′

t .σ
′
t

ε′′
t = η′′

t .σ ′′
t

(5)

{
σ ′2

t = ω′
+ α′.ε′2

t−1 + β ′.σ ′2
t−1

σ ′′2
t = ω′′

+ α′′.ε′′2
t−1 + β ′′.σ ′2

t−1
(6)

Whereσ ′
t andσ ′′

t are the conditional standard deviations of
the errors of the ARMA predictors,η′

t andη′′
t , the normal-

ized errors and (ω′, ω′′, α′, β ′, α′′, β ′′), the parameters of the
GARCH models. The main assumption of GARCH mod-
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Fig. 4. Example of error time series (blue curve) with the con-
ditional standard deviation estimated according to GARCH (red
curve).

els is that the error is a Gaussian white noise with a vari-
ance equal to 1 (corresponding toη′

t andη′′
t ) modulated by

a time-varying standard deviation (corresponding toσ ′
t and
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Fig. 5. Statistical properties of the normalized prediction errors estimated according to GARCH (from top to bottom: error time series, error
distributions compared with Gaussians, error autocorrelations, square error autocorrelations; from left to right: “volatile” periods (At≥T ),
“smooth” periods (At<T )).

σ ′′
t ). Figure 4 shows an example of conditional standard de-

viation time series estimated from GARCH compared with
the error time series. The standard deviationsσ ′

t andσ ′′
t are

said to be conditional because they are time-varying and de-
pend on the past values of time series. They do not corre-
spond to the absolute standard deviation estimated with the
central limit theorem. Thus, once the errors are normalized
by the conditional standard deviation, the resulting processes
η′

t andη′′
t are assumed to be identically-distributed Gaussian

variables, which allows estimating the GARCH parameters
through maximum likelihood. The assumption of a Gaussian
conditional distribution is difficult to justify theoretically, be-
cause it is the distribution of a single event. In order to in-
vestigate other possibilities, the model was fitted assuming
Student’st conditional distributions with various degrees of
freedom. Since the forecasting performance of the model
was not improved, the Gaussian assumption was kept.

In the case of rain attenuation, since the errors depend on
the ARIMA parameters which are biased by heteroscedastic-
ity, the GARCH parameters must be estimated jointly with
the ARIMA parameters. Finally, the solution consists in
initializing the ARIMA parameters by means of the least

squares algorithm, with standard values for the GARCH
parameters (α=0.05 andβ=0.85), and refining both the
ARIMA and GARCH parameters through maximum likeli-
hood (Hamilton, 1994). One half of the database was used as
a learning database and the following parameters were found:

φ′

1 = 1.1924
φ′

2 = −0.2309
θ ′

1 = −1.5938
θ ′

2 = 0.6281

and

φ′′

1 = 0.1659
θ ′′

1 = −0.8046
θ ′′

2 = −0.1064
(7)

ω′
= 5.15e−5

α′
= 0.0674

β ′
= 0.9306

and

ω′′
= 1.2e−5

α′′
= 0.0331

β ′′
= 0.9649

(8)

The analysis of the normalized errors shows that their condi-
tional variances are constant (first row in Fig. 5) and equal to
one. Moreover, their distributions are found to be Gaussian
(second row in Fig. 5). Since it was also found that neither
the normalized errors nor the squared normalized errors are
autocorrelated processes (third and fourth row in Fig. 5), the
latter are indeed second order Gaussian white noises. As a
consequence, the switching ARIMA-GARCH model is val-
idated, because its residuals do not contain any information.
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The fact that the squared normalized errors are not autocorre-
lated processes confirms the appropriateness of the GARCH
model for representing nonlinear dependency relationships
due to the squared errors. The analysis of the residuals de-
rived from the test database leads to the same conclusions,
which shows that the parameters are not specific to the learn-
ing database.

As to the parameter values,φ′

1 is close to 1, which means
that during “volatile” periods, the slope has a tendency to per-
sist. On the contrary, during smooth periods,φ′

2 is close to 0,
which means that the slope at a given time point has a small
influence on future slopes. This confirms the choice of using
two different models to describe the attenuation process. The
negative signs ofθ ′

1 andθ ′′

1 indicate that the model uses its
past errors in an opposite direction in order to counter its de-
viations. As to the GARCH parameters, it may be noted that
(α′

+β ′)≈1 and (α′′
+β ′′)≈1, which means that the model

is close to an IGARCH (Integrated GARCH). The negligi-
ble values ofω′ andω′′ can be explained based on the theo-
retical expression of the unconditional variance of GARCH
processesω/(1−α−β). In the case of IGARCH processes,
since (1−α−β)≈0, this variance is infinite. However, due
to the on-off intermittency of rain and clouds, in our case,
the volatility process is integrated over numerous, but lim-
ited periods of time. Since the integration is not continuous,
the unconditional variance does not diverge, and thereforeω′

andω′′ tend towards 0.
Whenever the attenuation crosses the thresholdT , the

model has to switch and a transition period may occur due to
the recursiveness of the models. This effect can be avoided
by running both ARIMA-GARCHs regardless of the rain or
clear sky periods, thresholdT only being used for switching
between the two model outputs. Concerning the transition
itself, since the proportions of rain attenuation and of cloud
attenuation vary linearly near 1.5 dB (see Fig. 8, Sect. 6), it
was chosen to weight the outputs of the models between 1
and 2 dB. The output of the model specialized in “volatile”
periods is weighted by a weight of 0 when the attenuation is
1 dB and with a weight of 1 when the attenuation is at 2 dB,
the weight varying linearly with the attenuation. The weight
of the “smooth” model output varies in the opposite direc-
tion.

The next step is to develop ak-step forward algorithm
based on the switching ARIMA/GARCH model that is able
to accurately predict in real time the future attenuation level
and the distribution of its error.

4 Multi-step prediction

The attenuation process being integrated one time, a first step
in thek-step forward algorithm is to write the attenuation at
time t+k using the differentiated time series:

At+k = At +

k∑
i=1

1At+i (9)

Therefore, the predicted attenuation is:

Ât+k = At +

k∑
i=1

1Ât+i (10)

The prediction of the differentiated terms can be achieved
by iteratingi times the ARMA predictors (Eq. 3, Sect. 3).
These iterations require the one second forward errors of the
ARMA predictors which are not known after timet in real
time. The future errors are therefore replaced by theirs ex-
pected values which is zero. Nevertheless, the first two it-
erations involve deterministic past errors (ε′

t , ε′

t−1, ε′′
t , ε′′

t−1)

that are known at the time of forecasting. After these first
two iterations, the recurrence equation (Eq. 3) is thus simpli-
fied. In order to simplify the equations, only the case where
At≥T will be discussed in the following. For convenience,
the dependency on thresholdT is omitted and the variables
without primes are used:

1Ât+1 = φ11At + φ21At−1 + θ1εt + θ2εt−1

1Ât+2 = φ11Ât+1 + φ21At + θ2εt

1Ât+i = φ11Ât+i−1 + φ21Ât+i−2 for i > 2
(11)

Thek-step forward prediction of the attenuation can thus be
calculated.

As to the prediction of the variance of the prediction er-
ror, Eq. (2) must be iteratedi times to obtain the differenti-
ated terms of Eq. (9), but this time without considering that
the future errors are zero because, contrary to their expected
values, their expected variances are not zero. Since Eq. (2)
is linear, it is possible to separate the iteration of the un-
known errors terms from the iteration performed previously
with Eq. (11). Thus, the overall result of the iteration is the
sum of the previously calculated term1Ât+i with a linear
combination of the future errors.

1At+i = 1Ât+i +

i∑
j=1

λi,jεt+j (12)

This computation of the coefficients (λi,1, . . ., λi,j ) is per-
formed by iteratingi times Eq. (2) with suppressing all the
deterministic past terms (εt , εt−1, 1At , 1At−1) in the first
two iterations, since only the future unknown errors are con-
sidered. This problem is equivalent to finding the explicit
form of theith term of a sequenceUi defined by the follow-
ing recurrence equation:

U1 = εt+1
U2 = φ1U1 + εt+2 + θ1εt+1
Ui = φ1Ui−1 + φ2Ui−2 + εt+i + θ1εt+i−1 + θ2εt+i−2
for i > 2

(13)

Due to the complexity of this recurrence equation, the coef-
ficients (λi,1, . . . , λi,j ) have no simple analytic expression

www.nonlin-processes-geophys.net/15/631/2008/ Nonlin. Processes Geophys., 15, 631–643, 2008



638 L. de Montera et al.: Prediction of rain attenuation

and have to be computed numerically. Then, by substituting
Eq. (12) in Eq. (9):

At+k = At +

k∑
i=1

1Ât+k +

k∑
i=1

(

i∑
j=1

λi,jεt+j ) (14)

And then replacing the first two terms with Eq. (10):

At+k = Ât+k +

k∑
i=1

(

i∑
j=1

λi,jεt+j ) (15)

Thek-step forward prediction error is thus obtained:

et+k = At+k − Ât+k

=

k∑
i=1

(
i∑

j=1

λi,jεt+j

)

=

k∑
j=1

(
k∑

i=j

λi,j

)
εt+j (16)

And its conditional variance is:

Vc(et+k) = Vc(

k∑
j=1

µjεt+j ) where µj =

k∑
i=j

λi,j (17)

Vc(.) denotes the conditional variance operator. Since the er-
rors are not autocorrelated (cf. Sect. 3), the conditional vari-
ance operator can be distributed:

Vc(et+k) =

k∑
j=1

µ2
jVc(εt+j ) (18)

Sinceσ t+j is by definition the conditional standard deviation
of εt+j , Eq. (18) is equivalent to:

Vc(et+k) =

k∑
j=1

µ2
jσ

2
t+j (19)

The one second forward conditional standard deviations
σ t+j of the future errors can be predicted using the GARCH
recurrence relations (Eq. 6, Sect. 3). Since the errors are cen-
tered, the expected value ofε2

t+j is σ 2
t+j and Eq. (6) can be

simplified to:{
σ 2

t+1 = αε2
t + βσ 2

t

σ̂ 2
t+j = ω + (α + β)σ̂ 2

t+j−1 ≈ σ̂ 2
t+j−1 for j > 1

(20)

By iterating Eq. (20) and then substituting it in Eq. (19), the
predicted variance of the prediction error is finally obtained:

V̂c(et+k) ≈

k∑
j=1

µ2
jσ

2
t+1 (21)

5 Comparison and results

A comparison has been performed with five other prediction
models over a 10-s forecast interval. The simplest model,
called persistence, relies on the assumption that the attenu-
ation level remains constant over the forecast interval. The
Portsmouth University model (Grémont et al., 1999) is an
adaptive ARMA(3,3) whose parameters are updated in real
time by a Recursive Least Squares (RLS) algorithm (Ljung,
1999). The ADALINE model (Chambers and Otung, 2005)
is a single neuron with a linear activation function. The
learning parameter was empirically set at 10−4. The NASA
model is based on a non-linear Markov filtering (Manning,
1990, 1991). The main assumption of this model is that
the normalized logarithm of the attenuation follows a first-
order stochastic equation. The noise variance parameter was
set at 0.1 dB. The ONERA model, also known as the “Two-
Sample” model (Van de Kamp, 2002; Bolea-Alamañac et al.,
2003), is based on a statistical study of the fade slope. This
model is presented with a 0.1 Hz cutoff frequency filtering
to remove scintillations. However, this preprocessing is not
suitable in real time because the causal filter’s phase shift-
ing effect lowers the model’s performance. For this reason,
filtering is used to determine the parameters but not in the
real time comparison. The parameters used are reported in
Van de Kamp (2002).

Since some models have been specifically developed for
rain periods, the results of the comparison can be influenced
by the percentage of clear sky or cloud periods in the OLYM-
PUS 20 GHz database. Therefore, the performances of the
various models were computed only over “volatile” periods
(20 GHz attenuation greater than 1.5 dB). One half of the
database was used as a learning database and the other half
was used for the comparison. Figure 6 shows the Root Mean
Square Errors (RMSE) of the prediction models according to
the attenuation level. In spite of their complexity, all models
provide results that are quite similar to persistence and it is
not possible to decide which one is the best.

The RMSE is the criterion conventionally used to com-
pare the different methods because the prediction error was
assumed to be due to scintillations with a constant variance.
In this case, the error margin is fixed and has no influence on
the comparison. However, this assumption does not seem re-
alistic for various reasons. Firstly, the scintillations variance
is unlikely to remain constant over more than a few minutes
because it has a strong dependence with meteorological pa-
rameters (Gŕemont et al., 1999; Baxter et al., 2003). Sec-
ondly, the variance of the fade slope distribution is shown
to increase with the attenuation level (Van de Kamp, 2002).
Thirdly, the high frequencies components of attenuation con-
tain not only scintillations, but also fast variations of rain at-
tenuation whose variance is not expected to be constant (Gar-
cia et al., 2002; Baxter and Upton, 2005). This analysis is
confirmed by the fact that the errors time series are found to
be heteroscedastic.
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Fig. 6. RMSE of the prediction models according to the attenuation
level computed from the 20 GHz Olympus data.

In the framework of satellite telecommunications, the aim
of this study is to provide a system which preserves link
availability. Since a link outage occurs when the atmospheric
attenuation exceeds the predicted attenuation, the RMSE cri-
terion is not entirely suitable because it does not take into ac-
count the error margin which must be added to the prediction
in order to obtain an upper bound of future attenuation. The
predicted upper bound of the attenuation at timet+k, noted
Āt+k, which is the prediction plus the adaptive error margin,
has to be taken into account in the comparison criterion:

Āt+k(P ) = Ât+k + M̄t+k(P ) (22)

WhereÂt+k is the predicted attenuation and̄Mt+k(P ) the
adaptive error margin. The latter depends on the required link
availability P , which is conventionally defined as the per-
centage of time during which the measured attenuation level
does not exceed the predicted upper bound. Although the
prediction error variance has already been estimated accord-
ing to Eq. (21) (Sect. 4), the calculation of the error margin
is not straightforward because the whole conditional cumu-
lative distribution of the prediction error is needed. Equa-
tion (16) (Sect. 4) shows that thek-step forward predic-
tion error is a linear combination of non-correlated centered
Gaussian variables (εt+1,...,εt+k). Its distribution is there-
fore also a centered Gaussian variable. Thus, the error mar-
gin needed to reach a given availabilityP can be computed
using the Gauss error functionerf(.):

M̄t+k(P ) = erf −1
(

2P

100
− 1

)√
2V̂c(et+k) (23)

Since the error margin cannot be neglected in the assessment
of the model performance, a new comparison criterion must
be used. The mean costC is defined, in dB, as the mean
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Fig. 7. Cost/availability performance of the prediction models com-
puted from the 20 GHz Olympus data.

overestimation of the attenuation level by its predicted upper
bound and depends on the required availability:

C(P )=
1

N

∫
H
(
Āt+k(P )−At+k

)
.
(
Āt+k(P )−At+k

)
.dt (24)

WhereN , in seconds, is the duration of the attenuation time
series andH(.) the Heaviside step function. The mean cost
C allows the accuracy of the predicted upper bound to be
compared with the link availability that is reached.

As far as the existing prediction models are concerned, it
is assumed that the error margin is constant, except for the
Portsmouth University and ONERA models in which an er-
ror margin model is provided. The ONERA model, based on
a statistical study, proposes a hyperbolic secant distribution
for the prediction error whose parameters depend on the at-
tenuation level. The Portsmouth University model assumes
that the prediction error is due to scintillations whose vari-
ance is constant over a one-minute time interval and is there-
fore computed over the 60 last samples. The cost/availability
relationships presented in Fig. 7 show that, compared to the
other models, the switching ARIMA-GARCH model reduces
the mean cost of the FMT system by nearly 30% for a re-
quired availability of 99% during rain events.

6 Frequency scaling

Frequency scaling is necessary because typically the predic-
tion is performed based on the down-link attenuation and
must be scaled to the up-link frequency. In the case of the
OLYMPUS-Gometz-la-Ville link, the attenuation measure-
ments of the 20 GHz and 30 GHz satellite beacons are used to
simulate such a system. At these frequencies, the effect of the
atmospheric gases (oxygen and water vapor) and clouds can-
not be neglected as they can cause up to 1.5 dB and 4 dB of
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Fig. 8. Normalized contribution of gases, clouds and rain to attenu-
ation estimated by the neural network for Olympus-Gometz-la-Ville
link (figure published in Barthes et al., 2006).

attenuation, respectively, during strong rain events (Barthes
et al., 2006). Since each component of attenuation has a spe-
cific frequency scaling factor, a separation of the physical
effects must be carried out. A neural network has been de-
veloped at CETP for this purpose (Mallet et al., 2006). The
input data are the 20 GHz attenuation and ground meteoro-
logical data (pressure, temperature and humidity), which im-
prove the performance of the neural network. The outputs
provide an estimation of the contributions of each compo-
nent to the overall measured attenuation. They are called the
normalized weights (denotedWgas, Wclouds andWrain) and
are defined by the following equations:Arain = Wrain × Atotal

Aclouds= Wclouds× Atotal
Agas= Wgas× Atotal

(25)

Atmospheric profiles of meteorological data from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) were used to create the learning database. Gas
attenuation was computed from Liebe’s model (Liebe et
al., 1993), the cloud attenuation from the Rayleigh diffu-
sion model (Liebe et al., 1993) and the rain attenuation
from Mie’s scattering model (Mie, 1908). In the case of
the Olympus-Gometz-la-Ville link (20 GHz, 30◦ elevation
angle) the separation of the effects yields the normalized
weights presented in Fig. 8 (published in Barthes et al.,
2006).

Once the separation of the various attenuation effects has
been carried out, frequency scaling can be performed. The
scaling factor is defined as:

K =
A(F2)

A(F1)
(26)

In this study,F1=20 GHz andF2=30 GHz. The uplink at-
tenuation can be written as follows using the specific scaling
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Fig. 9. Distribution of the frequency scaling factor error compared
with a centered Gaussian distribution having the same variance.

factors of each componentKgas, KcloudsandKrain:

A(F2) = Kgas.Agas(F1) + Kclouds.Aclouds(F1)

+Krain.Arain(F1) (27)

Then, introducing the component weights provided by the
neural network (Eq. 25) leads to the following expression for
the scaling factor (defined by Eq. 26):

K = Wgas.Kgas+ Wclouds.Kclouds+ Wrain.Krain (28)

The calculation of the specific scaling factors is simplified
by the fact that the unknown effective length of the link is
eliminated in the ratio of the attenuations. The scaling factor
of the gas component is therefore a function of the specific
attenuations of gases (denotedγ ):

Kgas=
γO2(F2) + γH2O(F2)

γO2(F1) + γH2O(F1)
(29)

The specific attenuations of gases are estimated from the
ITU-R model (Gibbins, 1986), which uses ground meteo-
rological data and models of standard atmospheric profiles.
The cloud specific attenuation is also given by the ITU-R
model (Liebe, 1989). The ratio eliminates the unknown
cloud water content, and the scaling factor of the cloud at-
tenuation only depends on the ratio of the frequencies with a
second order dependency on temperature. The scaling factor
of the rain component is given in ITU-R (2003):

Krain =

(
φ (F2)

φ (F1)

)ϕ(F1,F2,A(F1))

(30)

φ (F ) =

(
F 2

1 + 10−4F 2

)
(31)
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ϕ = 1 − 112.10−5
(

φ (F2)

φ(F1)

)0.5

(φ(F1)A(F1))
0.55 (32)

An estimation of the scaling factor, noted̂Kt , can be calcu-
lated with the method that combines separation of the effects
and specific scaling of each component. The error, notedδt ,
is the difference between the estimation of the scaling factor
and its measured value:

Kt = K̂t + δt (33)

Figure 9 presents the distribution of the scaling factor error
computed with the Olympus 20/30 GHz database. The er-
ror is found to be a centered Gaussian random variable with
a standard deviation equal to 0.15. It is interesting to notice
that the estimation error of the scaling factor does not depend
on the level of the attenuation. Therefore, the estimation er-
ror of the uplink attenuation that is due to the frequency scal-
ing remains constant in percentage. Since the scaling factor
is typically 2 during rain events at these frequencies, the un-
certainty of the uplink attenuation is around 7%, regardless
of the attenuation level.

7 Uplink attenuation upper bound

The switching ARIMA/GARCH multi-step algorithm pro-
vides an accurate prediction of the downlink attenuation and
of the distribution of the prediction error. Nevertheless, fre-
quency scaling increases the prediction error resulting from
the estimation of the frequency scaling factor. In the follow-
ing, et+k(F1) will denote the error of the downlink attenua-
tion prediction andet+k(F2) will denote the prediction error
of the uplink attenuation prediction after frequency scaling.
Considering that the frequency scaling factor remains con-
stant over the forecast interval, by definition, the uplink at-
tenuation is (Eq. 26, Sect. 6):

At+k(F2) = Kt .At+k(F1) (34)

And can be written as:

At+k(F2) =

(
K̂t + δt

)
.
(
Ât+k(F1) + et+k(F1)

)
(35)

whereδt is the error made on the estimation of the scaling
factor. Since the cross error term is negligible, Eq. (35) can
be simplified as:

At+k(F2) = K̂t .Ât+k(F1) + Ât+k(F1).δt + K̂t .et+k(F1)(36)

Let Ât+k(F2) be the up-link attenuation prediction. The at-
tenuation at timet+k can also be written as:

At+k(F2) = Ât+k(F2) + et+k(F2) (37)

The identification of the deterministic and stochastic terms
of Eqs. (36) and (37) leads to the following expressions:

Ât+k(F2) = K̂t .Ât+k(F1) (38)

et+k(F2) = Ât+k(F1).δt + K̂t .et+k(F1) (39)

Here, et+k(F1) is a centered Gaussian variable because it
is a sum of independent centered Gaussian variables (cf.
Sect. 5). Moreover, Fig. 9 (Sect. 6) shows thatδt is also a
centered Gaussian variable. The linear combination of both
errors,et+k(F2), is therefore also a centered Gaussian vari-
able. Since there is no mutual dependency between these
two errors because the scaling factor error is not related to
the prediction error, their variances can be added:

Vc(et+k(F2))=Ât+k(F1)
2.V (δt )+K̂2

t+k.Vc(et+k(F1)) (40)

Here,Vc(et+k(F1)) is given by the multi-step algorithm in
Eq. (21) (Sect. 4) and the value ofV(δt ) in the case of the
Olympus 20/30 GHz database was reported in Sect. 6. The
uplink error margin needed to reach a given availabilityP is
then computed using the Gauss error functionerf(.):

M̄t+k(F2) = erf −1
(

2P

100
− 1

)√
2Vc(et+k(F2)) (41)

Finally, the predicted uplink upper bound can be derived
from Eqs. (38) and (41):

Āt+k(F2) = Ât+k(F2) + M̄t+k(F2) (42)

Figure 10 shows the performance of the switching
ARIMA/GARCH model when frequency scaling is involved.
The results are computed from the 20/30 GHz Olympus bea-
con data in terms of cost/availability (only “volatile” periods
are considered). It is not possible to compare these results
with other existing models that combine the prediction of
the downlink attenuation and a frequency scaling method,
as no such models were found in the literature. However,
Fig. 10 indicates that the predicted upper bound overesti-
mates the measured 30 GHz attenuation by less than 2 dB on
average for an availability reaching 99% of the time during
rain events, which is quite interesting for FMT system de-
signers.

In order to know which part of the prediction system is the
major contributor to the uplink prediction error, the contri-
butions of the downlink prediction error and the frequency
scaling error (respectively, the first term and second term of
Eq. 40) have been estimated. Since these errors are not corre-
lated, their RMSEs can be computed separately. The results
(Fig. 11) show that under 6 dB attenuation at 30 GHz, both
contributions are similar. Nevertheless, above this value, the
contribution of the frequency scaling error is increasingly
larger than the one of the downlink prediction error. Thus,
at this stage, the estimation of the scaling factor seems to be
more critical than the improvement of the prediction model.
This result is based on 20/30 GHz Olympus data (30◦ ele-
vation angle) and has to be confirmed with the 20/44 GHz
Syracuse 3 measurements (17◦ elevation angle).
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Fig. 10. Cost/availability performance of the switching
ARIMA/GARCH model including frequency scaling computed
from the 20/30 GHz Olympus data.

8 Conclusion

When modeling not only the level of the process, but also
its volatility, it has been shown that the switching ARIMA-
GARCH model outperformed other existing models. Using
this model, the cost of the FMT can be reduced and high
levels of link availability can be reached. This result can be
explained by the fact that the prediction error contains not
only scintillations with a constant variance, but also a fast
fluctuating rain attenuation component that cannot be mod-
eled by linear prediction methods. More generally, the non-
linear ARIMA/GARCH model, originally developed for fi-
nance applications, is also of interest for geophysical time
series where fractal or turbulent underlying processes are in-
volved, specifically those for which the distribution of dif-
ferentiated time series has a large Kurtosis and which have
a significant autocorrelation of its realized variance. In or-
der to increase the performance of the model, it would be
interesting to implement long-memory models that depend
more strongly on scale invariance and multiplicative pro-
cesses, such as FIGARCH or FIEGARCH models (Fraction-
ally Integrated GARCH and Fractionally Integrated Expo-
nential GARCH, see, respectively, Baillie et al., 1996, and
Bollerslev and Mikkelsen, 1996). However, it is difficult to
estimate the parameters of these long-memory models be-
cause of on-off intermittency.

A frequency scaling method has been added to the switch-
ing ARIMA/GARCH model in order to predict the uplink
channel propagation conditions from the downlink, which
usually operates at a lower frequency. The error made on the
estimation of the frequency scaling factor only increases the
prediction error reasonably, but its contribution is found to
be larger than the one of the downlink prediction error, thus
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Fig. 11. Contributions of the frequency scaling error and of the
downlink prediction error to the uplink attenuation prediction error.

indicating that further studies should focus on improving the
accuracy of the frequency scaling factor.

New measurements from the Syracuse 3 20/44 GHz prop-
agation experiment should be soon available and will allow
validating the presented model and checking its performance
with different datasets, different frequencies and a different
elevation angle (17◦).
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