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Abstract. We present results of statistical analysis of the
transfer of fluctuations in solar wind turbulence. We investi-
gate the dynamics of the slow solar wind using an approach
based on the Markov processes theory and experimental data
measured by ACE spacecraft. In particular, we test whether
the Chapman-Kolmogorov equation is approximately sat-
isfied for the turbulent cascade. We consider the follow-
ing cases of transfer of fluctuations: magnetic-to-magnetic,
velocity-to-velocity, velocity-to-magnetic, and magnetic-to-
velocity. In all these cases, the obtained results confirm local
character of the transfer of fluctuations.

1 Introduction

In the plasma flow expanding from the Sun into the inter-
planetary space we can distinguish several forms, in partic-
ular the slow (<450 km/s) and fast (>600 km/s) solar wind
(see, e.g.,Schwenn(1990, 2006) and references therein).
The fast wind is more homogeneous and incompressible in
comparison with the slow wind, but both types of the solar
wind are quite variable in space and time. In fact, irregular
dynamics of the solar wind plasma exhibits many similar-
ities to fully developed hydrodynamic turbulence. Numer-
ous in situ measurements of temporal variability of parame-
ters of the plasma have shown that their spectral distributions
usually have power-law character (Matthaeus and Goldstein,
1982; Goldstein et al., 1995; Tu and Marsch, 1995; Gold-
stein and Roberts, 1999). Investigations of the fluctuations
have also revealed that the shape of their probability distri-
butions changes from Gaussian at large scales to strongly
non-Gaussian (heavy-tailed) at small scales, which is com-
monly attributed to intermittency phenomenon (Marsch and
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Tu, 1994; Sorriso-Valvo et al., 1999, 2001; Burlaga, 2001),
which is related to multifractality (Burlaga, 1991; Marsch
et al., 1996; Macek and Szczepaniak, 2008). In fact, the
solar wind provides a unique laboratory for studying high-
Reynolds-number magnetohydrodynamic turbulence (see,
e.g.,Goldstein et al.(1995); Bruno and Carbone(2005) for
review).

Recently, a great deal of attention has been devoted to
investigations of the fluctuations in hydrodynamic turbu-
lence from the point of view of the theory of Markov pro-
cesses (see, e.g.,Pedrizzetti and Novikov, 1994; Friedrich
and Peinke, 1997a,b; Davoudi and Tabar, 1999; Renner et al.,
2001). In particular, results of the verification of the validity
of the Chapman-Kolmogorov equation as well as the esti-
mation of the Kramers-Moyal coefficients from experimen-
tal data suggest that the Markov processes approach may be
appropriate to the description and modeling of the turbulent
cascade (Friedrich and Peinke, 1997a,b; Renner et al., 2001).
The estimation of the Kramers-Moyal coefficients allows to
determine the form of the Fokker-Planck equation govern-
ing the evolution of the probability distribution with scale for
the fluctuations. A model based on the Fokker-Planck equa-
tion has been recently proposed for solar wind turbulence,
but only for fluctuations of quantities that exhibit self-similar
scaling (Hnat et al., 2003).

In this paper we use the approach based on the Markov
processes theory to examine the character of the transfer
of fluctuations between different scales in solar wind turbu-
lence. In particular, we analyze whether this transfer is local
or nonlocal. The notion of locality used in this paper does
not refer to locality in physical space. Here we use the words
“local” and “nonlocal” in terms of the scales involved in in-
teractions leading to the turbulent cascade. If the interaction
involves scales (eddies) of similar size it is local, otherwise
it is nonlocal. The question of locality of the energy transfer
is of some interest, e.g., in the studies of dynamo mechanism
to generate magnetic fields in astrophysical objects, where
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nonlocal processes of the generation of large-scale fields by
small-scale helicities in helical MHD turbulence are studied
in details (see, e.g., Sect. 6.2.1 ofBiskamp, 2003). This
question is also important for modeling MHD flows and nu-
merical simulations. For example, this is essential in large-
eddy simulations, where low-pass filtering with respect to a
cutoff wave number requires some assumptions concerning
the transfer of energy around the cutoff wavenumber. Local
and nonlocal transfer mechanisms can be distinguished in
theoretical studies of turbulence by shell models or numer-
ical simulations (see, e.g.,Alexakis et al., 2005; Debliquy
et al., 2005; Mininni et al., 2005; Verma et al., 2005), but it
is difficult to study the property of turbulence directly using
experimental data. Here we argue that a method of statisti-
cal analysis based on the Markov processes theory provides
a tool that allows to distinguish between local and nonlocal
transfer mechanisms in an experimental situation.

This paper is organized as follows. In Sect.2 we describe
data set used for analysis. Then we present the Markov
processes approach (Sect.3) and its physical interpretation
(Sect.4). In Sect.5 we present results of our analysis, which
are then discussed and summarized in Sect.6.

2 Data set

We analyze the measurements of the magnitudes of the pro-
ton bulk velocity and magnetic field obtained by the ACE
spacecraft from 1999 to 2006. In this paper we focus on
the slow solar wind, and the data set contains measurements
from interleaved streams of the slow and fast solar wind.
Therefore, from all the data available we have chosen subin-
tervals of the length of two days or more, where the aver-
age bulk velocity of the solar wind is never above 450 km/s.
Since the magnetic field data are provided at time resolution
of 16 s, they are linearly interpolated to the grid of time reso-
lution of 64 s, which is used for the velocity data. We use the
linear interpolation instead of decimating the magnetic field
data because in the case of ACE spacecraft some slight shifts
of time grid occur sometimes. The linear interpolation allows
us to shift safely the time grid for the magnetic field data to
the time grid for the velocity data. The data set analyzed here
consists of about 106 measurements obtained in the ecliptic
plane in the proximity of L1 libration point at radial distance
from the Sun of 0.99 AU.

Further we consider fluctuations of the magnetic field de-
fined asb(t)=B(t+τ)−B(t), whereB(t) is the magnitude
of the magnetic field measured by the MAG instrument of
the ACE spacecraft (Smith et al., 1998). Similarly, fluctu-
ations of the magnitude of the bulk velocity of plasma are
defined asv(t)=V (t+τ)−V (t), whereV (t) is the magni-
tude of the velocity measured by the SWEPAM instrument
(McComas et al., 1998). Presenting our results we use here
temporal scales and do not recast the fluctuations into the
space domain using the Taylor hypothesis. However, one

should bear in mind that we analyze highly supersonic and
super-Alfv́enic flow (mean velocityU of about 400 km/s in
the reference system moving with the measuring instrument).
Hence physically the measured temporal scales are rather re-
lated to spatial scales. Assuming that the Taylor hypothesis
is satisfied here, one can easily transform the temporal scale
τ to the spatial scalel using the relationshipl=Uτ (Frisch,
1995). However, in general it is not possible to distinguish
between temporal and spatial variations in the case of one-
point measurements of plasma parameters, as it is for the
ACE spacecraft.

3 Markov processes approach

We investigate here statistics of fluctuations
x(t)=X(t+τ)−X(t) of a physical quantityX(t) at a scaleτ .
We consider the fluctuations as a stochastic process in scale,
i.e., we assume that a turbulent cascade is responsible for the
transfer of a fluctuationxi at the largest (energy-containing)
scaleτi to a fluctuationxi−1 at a smaller scaleτi−1, then
the fluctuationxi−1 at the scaleτi−1 to a fluctuationxi−2
at a scaleτi−2, and so forth till dissipation scale is reached.
Using the joint probability densityP(x1, τ1; x2, τ2) of
finding the fluctuationsx1 at a scaleτ1 and x2 at a scale
τ2, whereτ1 < τ2, we can define the conditional p.d.f. as
P(x1, τ1|x2, τ2)=P(x1, τ1; x2, τ2)/P (x2, τ2). By analogy
to the definition of the two-point probability distributions,
one can define the joint and conditional probability densities
for longer sequences of fluctuationsx1, x2, x3, . . . at scales
τ1, τ2, τ3, . . .. In the case of a Markov process, by definition
the following condition must be satisfied

P(x1, τ1|x2, τ2; . . . ; xN , τN ) = P(x1, τ1|x2, τ2), (1)

thus the N -point joint probability distribution function
(p.d.f.) P(x1, τ1; x2, τ2; . . . ; xN , τN ) is determined by
the product of conditional probabilitiesP(xi−1, τi−1|xi, τi),
whereτi−1<τi . For a finite set of experimental data, the
Markov property can be verified by comparison of a con-
ditional p.d.f.PE(x1, τ1|x2, τ2) evaluated directly from data
with the p.d.f. computed using the Chapman-Kolmogorov
equation

P(x1, τ1|x2, τ2) =

=

∫
∞

−∞

P(x1, τ1|x
′, τ ′)P (x′, τ ′

|x2, τ2)dx′, (2)

whereτ1<τ ′<τ2 (see Figs.1 or 2 for illustration).
Equation (2) is a necessary condition for a stochastic pro-

cess to be Markovian. The Chapman-Kolmogorov equa-
tion can be written in a differential form using the so-called
Kramers-Moyal expansion

−τ
∂P (x, τ |x0, τ0)

∂τ
=

=

∞∑
k=1

(
−

∂

∂x

)k

D(k)(x, τ )P (x, τ |x0, τ0). (3)
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Fig. 1. Contour plots illustrating verification of the Chapman-
Kolmogorov equation for magnetic field fluctuations. Solid lines
represent the conditional p.d.f.PE(b1, τ1|b2, τ2) evaluated di-
rectly from data, whereas dashed lines show the conditional
p.d.f. P(b1, τ1|b2, τ2) computed using Eq. (2). The subse-
quent isolines correspond to the following levels of the p.d.f.:
0.05,0.02,0.005,0.001 (from the middle of the plot).

Kramers-Moyal coefficientsD(k)(x, τ ) can be evaluated by
the limit 1τ→0 of the conditional momentsM(k)(x, τ,1τ),
namely

D(k)(x, τ ) = lim
1τ→0

M(k)(x, τ,1τ) (4)

and

M(k)(x, τ,1τ) =

=
τ

k! 1τ

∫
∞

−∞

(x′
− x)kP(x′, τ ′

|x, τ )dx′, (5)

where1τ=τ−τ ′. In comparison with the definition used
by Risken(1989), the conditional moments given in Eq. (5)
and the resulting Kramers-Moyal coefficients in Eq. (4) are
multiplied by τ , which is equivalent to a logarithmic length
scale (Renner et al., 2001).

As shown byFriedrich and Peinke(1997a,b), it is pos-
sible to estimate the Kramers-Moyal coefficients from ex-
perimental data. In particular, if the estimated coefficient
D(4)(x, τ ) vanishes, then according to the Pawula theorem:
D(k)(x, τ )=0 for k≥3 (Risken, 1989). In this case, starting
from Eq. (3) we arrive at the Fokker-Planck equation

−τ
∂P (x, τ )

∂τ
=

=

(
−

∂D(1)(x, τ )

∂x
+

∂2D(2)(x, τ )

∂x2

)
P(x, τ ), (6)
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Fig. 2. Contour plots illustrating verification of the Chapman-
Kolmogorov equation for velocity fluctuations. Solid lines
represent the conditional p.d.f.PE(v1, τ1|v2, τ2) evaluated di-
rectly from data, whereas dashed lines show the conditional
p.d.f. P(v1, τ1|v2, τ2) computed using Eq. (2). The subse-
quent isolines correspond to the following levels of the p.d.f.:
0.05,0.02,0.005,0.001 (from the middle of the plot).

which determines the evolution of the probability distribu-
tion function of a stochastic process with scaleτ . Therefore,
by estimating the coefficientsD(1)(x, τ ) andD(2)(x, τ ) from
experimental data, one should be able to model experimen-
tally observed collapse of the probability distribution of fluc-
tuations with changing scale for a turbulent cascade.

4 Physical consequences of Markovian character of tur-
bulence

If Eq. (2) is satisfied, then the transition probability from
scaleτ2 to τ1 can be divided into transitions fromτ2 to τ ′

and then fromτ ′ to τ1. Therefore, in the case of a turbulent
cascade, the fulfillment of the Chapman-Kolmogorov equa-
tion for all tripletsτ1<τ ′<τ2 in the inertial range suggests
the presence of a local transfer mechanism in the cascade.
If we consider fluctuations in time domain, it means that the
transfer process is local in scale. However, if the root-mean-
square of the velocity fluctuations is small as compared to
the mean velocity of the flow (Taylor’s hypothesis), temporal
variations at a fixed position are interpreted as spatial vari-
ations. In this case, the local transfer in scale can be inter-
preted as directly related to the local transfer in wave vector
space.

Typically, in MHD turbulence we observe strong inter-
actions between velocity and magnetic field modes, giv-
ing input to the transfer of energy between these quantities.
These interactions should be seen as a statistical dependence
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Fig. 3. Verification of the Chapman-Kolmogorov Eq. (2)
for magnetic field fluctuations. Comparison of cuts through
PE(b1, τ1|b2, τ2) (points) andP(b1, τ1|b2, τ2) (lines) from Fig.1
are shown for fixed values ofb2, namelyb2=−2 nT (on the left),
b2=0 nT (in the middle), andb2=2 nT (on the right).
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Fig. 4. Verification of the Chapman-Kolmogorov Eq. (2) for ve-
locity fluctuations. Comparison of cuts throughPE(v1, τ1|v2, τ2)

(points) andP(v1, τ1|v2, τ2) (lines) from Fig.2 are shown for fixed
values ofv2, namelyv2=−10 km/s (on the left),v2=0 km/s (in the
middle), andv2=10 km/s (on the right).

between fluctuations of the magnetic fieldb(t) and velocity
v(t). In Eq. (2) we assume that the transfer of fluctuations is
related to the same quantityx for all three scalesτ1, τ

′, τ2.
To take into account transfer of fluctuations between different
quantities, we propose the following modification of Eq. (2)

P(x1, τ1|y2, τ2) =

=

∫
∞

−∞

P(x1, τ1|y
′, τ ′)P (y′, τ ′

|y2, τ2)dy′. (7)

By analogy with Eq. (2), Eq. (7) should allow to examine
whether the transfer of fluctuations between the two quanti-
tiesy andx has local or nonlocal character. Namely, if the
conditional p.d.f.PE(x1, τ1|y2, τ2) evaluated directly from
data overlaps with the p.d.f. computed from Eq. (7), then the
transfer of fluctuations can be subdivided into smaller steps
and one can infer that the transfer has local character in scale.

Instead of Eq. (7) one could use a definition containing∫
∞

−∞
P(x1, τ1|x

′, τ ′)P (x′, τ ′
|y2, τ2)dx′, where the quantity

for intermediate scale is different from that in Eq. (7). We
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Fig. 5. Contour plots illustrating verification of the mod-
ified Chapman-Kolmogorov equation for velocity-to-magnetic
transfer of fluctuations. Solid lines represent the conditional
p.d.f. PE(b1, τ1|v2, τ2) evaluated directly from data, whereas
dashed lines show the conditional p.d.f.P(b1, τ1|v2, τ2) computed
using Eq. (7). The subsequent isolines correspond to the following
levels of the p.d.f.: 0.05,0.02,0.005,0.001 (from the middle of the
plot).

have checked these two definitions in our computations and
they generate very similar results, thus further in our paper
we present only results obtained from Eq. (7).

5 Results

In Figs.1 and2 we show superposed contour plots of the con-
ditional p.d.f. estimated directly from data (solid lines) and
the p.d.f. computed using Eq. (2) (dashed lines) forτ1=64,
τ ′

=128, andτ2=192 seconds. The plots have been obtained
for magnetic-to-magnetic and velocity-to-velocity transfer of
fluctuations, correspondingly. In Figs.3 and4 we addition-
ally show cuts through the conditional probability distribu-
tions shown in Figs.1 and2 for fixed values ofb2 andv2,
respectively.

In Figs.5 and6 we present superposed contour plots of the
conditional p.d.f. estimated directly from data (solid lines)
and the p.d.f. computed using Eq. (7) (dashed lines) for
τ1=64, τ ′

=128, andτ2=192 seconds. The plots have been
obtained for velocity-to-magnetic and magnetic-to-velocity
transfer of fluctuations, correspondingly. In Figs.7 and 8
we additionally show cuts through the conditional probabil-
ity distributions shown in Figs.5 and6 for fixed values ofv2
andb2, respectively.

One can see that corresponding contour lines for the ex-
perimental and computed probability distributions are very
close to each other in the central part of Figs.1, 2, 5, and
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Fig. 6. Contour plots illustrating verification of the mod-
ified Chapman-Kolmogorov equation for magnetic-to-velocity
transfer of fluctuations. Solid lines represent the conditional
p.d.f. PE(v1, τ1|b2, τ2) evaluated directly from data, whereas
dashed lines show the conditional p.d.f.P(v1, τ1|b2, τ2) computed
using Eq. (7). The subsequent isolines correspond to the following
levels of the p.d.f.: 0.05,0.02,0.005,0.001 (from the middle of the
plot).

6. In the periphery of the plots there are strong irregularities
resulting from small number of counts during the estimation
of the probability distributions, thus direct verification of the
applicability of Eqs. (2) or (7) is not possible in this region.
In Figs. 3, 4, 7, and8 points representing cuts through ex-
perimental p.d.f. fit rather well the lines representing cuts
through computed p.d.f. The obtained results indicate that
the Chapman-Kolmogorov Eq. (2) (or its modified version
(7), where appropriate) is (at least approximately) satisfied
for the range of scales fromτ1=64 toτ2=192 s, for all of the
examined transfers of fluctuations.

6 Conclusions

Our results suggest that the Chapman-Kolmogorov Eq. (2)
(or its modified version (7), where appropriate) is approxi-
mately satisfied for the smallest scales available for testing
here (tens or hundreds of seconds). In fact we have repeated
the computations also for larger scales (the results are not
shown here) verifying that the Chapman-Kolmogorov equa-
tion is satisfied for scales up to about twenty hours. There-
fore, our results show that the Markov processes approach
can be applied to the description of the turbulent cascade in
slow solar wind turbulence. These results confirm the univer-
sality of the statistical approach to the description of a turbu-
lent cascade proposed byFriedrich and Peinke(1997a,b) and
based on the Markov processes theory.
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Fig. 7. Verification of the modified Chapman-Kolmogorov Eq. (7)
for velocity-to-magnetic transfer of fluctuations. Comparison of
cuts throughPE(b1, τ1|v2, τ2) (points) andP(b1, τ1|v2, τ2) (lines)
from Fig.5 are shown for fixed values ofv2, namelyv2=−10 km/s
(on the left),v2=0 km/s (in the middle), andv2=10 km/s (on the
right).
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Fig. 8. Verification of the modified Chapman-Kolmogorov Eq. (7)
for magnetic-to-velocity transfer of fluctuations. Comparison of
cuts throughPE(v1, τ1|b2, τ2) (points) andP(v1, τ1|b2, τ2) (lines)
from Fig.6 are shown for fixed values ofb2, namelyb2=−2 nT (on
the left),b2=0 nT (in the middle), andb2=2 nT (on the right).

In isotropic hydrodynamical turbulence larger eddies only
advect smaller eddies without altering their scale signifi-
cantly, thus mainly interactions between eddies of similar
size give input to the energy cascade. Therefore, the as-
sumption of the locality of the energy transfer in wave vec-
tor space is well justified, although some details are still not
understood completely (see, e.g.,Kishida et al., 1999). On
the contrary, the question of locality of the energy transfer in
MHD turbulence is much less understood and more compli-
cated because of strong influence of the mean magnetic field
on plasma dynamics. According to the classical Iroshnikov-
Kraichnan picture, taking into account the Alfvén effect,
we should expect nonlocal influence of large-scale magnetic
field on small-scale turbulent eddies, and so also nonlocal
interactions between modes (Pouquet et al., 1976; Biskamp,
2003). However, results of recent numerical simulations sug-
gest that local transfer mechanisms dominate in MHD turbu-
lence (Debliquy et al., 2005; Alexakis et al., 2005; Mininni
et al., 2005).
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Local and nonlocal transfer mechanisms can be distin-
guished in theoretical studies of turbulence using shell mod-
els or numerical simulations, but it is difficult to study the
property of turbulence directly using experimental data. The
Markov processes approach seems to provide such a method.
Namely, analyzing a time series measured in a turbulent flow
we should be able to identify the character of the dominating
transfer mechanism for a given quantity or between different
quantities, i.e., we should be able to answer the question as to
whether the mechanism is local or nonlocal in scale. As we
argued in Sect.4, in the case of turbulent cascade fulfillment
of Eqs. (2) or (7) suggests the presence of a local transfer
mechanism in scale, which means that it is local in the wave
vector space, provided that the Taylor hypothesis is satisfied.

Our results indicate that the Chapman-Kolmogorov
Eq. (2) is approximately satisfied for velocity-to-velocity and
magnetic-to-magnetic transfers of fluctuations, whereas its
modified version (7) is satisfied for velocity-to-magnetic and
magnetic-to-velocity transfers. This suggests that the local
transfer mechanism dominates in all four cases under study.
Our results are in perfect agreement with recent analytical
studies of energy transfer processes in MHD turbulence by
Verma et al.(2005), where velocity-to-velocity, magnetic-
to-magnetic, velocity-to-magnetic, and magnetic-to-velocity
energy transfers are found to be local in nonhelical MHD.
These results are partially consistent with results of direct nu-
merical simulations reported byAlexakis et al.(2005), where
velocity-to-magnetic transfer has been found to be nonlocal,
whereas the rest of the transfers have local character.

We find that the dominating transfer of fluctuations in
turbulence in slow solar wind has similar character as in
the case of Kolmogorov phenomenology describing turbu-
lence in neutral fluids (Frisch, 1995), where according to the
Richardson’s cascade scenario, the energy transfer has local
character in the wave vector space. This means that the en-
ergy at a given scale is transfered mainly to similar scales in
solar wind turbulence.

Acknowledgements.We would like to thank the MAG and
SWEPAM instruments teams (ACE spacecraft) for providing
the magnetic field and bulk velocity data. This work has been
supported by the Polish Ministry of Science and Higher Education
through Grant No. N N202 4127 33.

Edited by: A. C. L. Chian
Reviewed by: two anonymous referees

References

Alexakis, A., Mininni, P. D., and Pouquet, A.: Shell-to-shell en-
ergy transfer in magnetohydrodynamics. I. Steady state turbu-
lence, Phys. Rev. E, 72, 046301, 2005.

Biskamp, D.: Magnetohydrodynamic Turbulence, Cambridge: Uni-
versity Press, 2003.

Bruno, R. and Carbone, V.: The Solar Wind as a Turbulence Labo-
ratory, Living Reviews in Solar Physics, 2, 4, 2005.

Burlaga, L. F.: Multifractal structure of the interplanetary magnetic
field – Voyager 2 observations near 25 AU, 1987–1988, Geophys.
Res. Lett., 18, 69–72, 1991.

Burlaga, L. F.: Lognormal and multifractal distributions of the he-
liospheric magnetic field, J. Geophys. Res., 106, 15917–15928,
2001.

Davoudi, J. and Tabar, M. R.: Theoretical Model for the Kramers-
Moyal Description of Turbulence Cascades, Phys. Rev. Lett., 82,
1680–1683, 1999.

Debliquy, O., Verma, M. K., and Carati, D.: Energy fluxes and
shell-to-shell transfers in three-dimensional decaying magneto-
hydrodynamic turbulence, Phys. Plasmas, 12, 2309, 2005.

Friedrich, R. and Peinke, J.: Statistical properties of a turbulent cas-
cade, Physica D, 102, 147–155, 1997a.

Friedrich, R. and Peinke, J.: Description of a Turbulent Cascade by
a Fokker-Planck Equation, Phys. Rev. Lett., 78, 863–866, 1997b.

Frisch, U.: Turbulence. The legacy of A.N. Kolmogorov, Cam-
bridge: University Press, 1995.

Goldstein, M. L. and Roberts, D. A.: Magnetohydrodynamic turbu-
lence in the solar wind, Phys. Plasmas, 6, 4154–4160, 1999.

Goldstein, M. L., Roberts, D. A., and Matthaeus, W. H.: Magne-
tohydrodynamic Turbulence In The Solar Wind, Annu. Rev. As-
tron. Astrophys., 33, 283–326, 1995.

Hnat, B., Chapman, S. C., and Rowlands, G.: Intermittency, scaling,
and the Fokker-Planck approach to fluctuations of the solar wind
bulk plasma parameters as seen by the WIND spacecraft, Phys.
Rev. E, 67, 056404, 2003.

Kishida, K., Araki, K., Kishiba, S., and Suzuki, K.: Local or Nonlo-
cal? Orthonormal Divergence-Free Wavelet Analysis of Nonlin-
ear Interactions in Turbulence, Phys. Rev. Lett., 83, 5487–5490,
1999.

Macek, W. M. and Szczepaniak, A.: Generalized two-scale
weighted Cantor set model for solar wind turbulence, Geophys.
Res. Lett., 35, L02108, doi:10.1029/2007GL32263, 2008.

Marsch, E. and Tu, C. Y.: Non-Gaussian probability distributions of
solar wind fluctuations, Ann. Geophys., 12, 1127–1138, 1994,
http://www.ann-geophys.net/12/1127/1994/.

Marsch, E., Tu, C.-Y., and Rosenbauer, H.: Multifractal scaling of
the kinetic energy flux in solar wind turbulence, Ann. Geophys.,
14, 259–269, 1996,
http://www.ann-geophys.net/14/259/1996/.

Matthaeus, W. H. and Goldstein, M. L.: Measurement of the rugged
invariants of magnetohydrodynamic turbulence in the solar wind,
J. Geophys. Res., 87, 6011–6028, 1982.

McComas, D. J., Bame, S. J., Barker, P., Feldman, W. C., Phillips,
J. L., Riley, P., and Griffee, J. W.: Solar Wind Electron Proton
Alpha Monitor (SWEPAM) for the Advanced Composition Ex-
plorer, Space Sci. Rev., 86, 563–612, 1998.

Mininni, P., Alexakis, A., and Pouquet, A.: Shell-to-shell energy
transfer in magnetohydrodynamics. II. Kinematic dynamo, Phys.
Rev. E, 72, 046302, 2005.

Nonlin. Processes Geophys., 15, 607–613, 2008 www.nonlin-processes-geophys.net/15/607/2008/

http://www.ann-geophys.net/12/1127/1994/
http://www.ann-geophys.net/14/259/1996/


M. Strumik and W. M. Macek: Statistical analysis of solar wind turbulence 613

Pedrizzetti, G. and Novikov, E. A.: On Markov modelling of turbu-
lence, J. Fluid Mech., 280, 69–93, 1994.

Pouquet, A., Frisch, U., and Leorat, J.: Strong MHD helical turbu-
lence and the nonlinear dynamo effect, J. Fluid Mech., 77, 321–
354, 1976.

Renner, C., Peinke, J., and Friedrich, R.: Experimental indications
for Markov properties of small-scale turbulence, J. Fluid Mech.,
433, 383–409, 2001.

Risken, H.: The Fokker-Planck equation. Methods of solution and
applications, Springer Series in Synergetics, Berlin, New York:
Springer, 2nd ed., 1989.

Schwenn, R.: Large-Scale Structure of the Interplanetary Medium,
in: Physics of the Inner Heliosphere I. Large-Scale Phenom-
ena, edited by Schwenn, R. and Marsch, E., pp. 99–182, Berlin:
Springer-Verlag, 1990.

Schwenn, R.: Solar Wind Sources and Their Variations Over the
Solar Cycle, Space Sci. Rev., 124, 51–76, 2006.

Smith, C. W., L’Heureux, J., Ness, N. F., Acuña, M. H., Burlaga,
L. F., and Scheifele, J.: The ACE Magnetic Fields Experiment,
Space Sci. Rev., 86, 613–632, 1998.

Sorriso-Valvo, L., Carbone, V., Veltri, P., Consolini, G., and Bruno,
R.: Intermittency in the solar wind turbulence through probabil-
ity distribution functions of fluctuations, Geophys. Res. Lett., 26,
1801–1804, 1999.

Sorriso-Valvo, L., Carbone, V., Giuliani, P., Veltri, P., Bruno, R.,
Antoni, V., and Martines, E.: Intermittency in plasma turbulence,
Planet. Space Sci., 49, 1193–1200, 2001.

Tu, C.-Y. and Marsch, E.: MHD structures, waves and turbulence in
the solar wind: Observations and theories, Space Sci. Rev., 73,
1–210, 1995.

Verma, M. K., Ayyer, A., and Chandra, A. V.: Energy transfers and
locality in magnetohydrodynamic turbulence, Phys. Plasmas, 12,
2307, 2005.

www.nonlin-processes-geophys.net/15/607/2008/ Nonlin. Processes Geophys., 15, 607–613, 2008


