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Abstract. Changes in soil surface microrelief with cumula- tions allowing a description of microrelief decay due to rain-
tive rainfall under different tillage systems and crop cover fall in the tilled treatments, although better correlations be-
conditions were investigated in southern Brazil. Surfacetween cumulative rainfall and the most commonly used in-
cover was none (fallow) or the crop succession maize fol-dicesRR and L D were obtained. At the studied scale, pa-
lowed by oats. Tillage treatments were: 1) conventionalrameterg andD have been found to be useful in interpreting
tillage on bare soil BS), 2) conventional tillageT), 3) the configuration properties of the soil surface microrelief.
minimum tillage (M T) and 4) no tillage § T) under maize
and oats. Measurements were taken with a manual relief
meter on small rectangular grids of 0.234 and 0.156mM 1 |ntroduction
throughout growing season of maize and oats, respectively.
Each data set consisted of 200 point height readings, the sizehe Earth’s topography encompasses a considerable range of
of the smallest cells being@ cm during maize and25cm  scales. The horizontal scale of lithosphere relief varies from
during oats growth periods. Random RoughnesR)( Lim- sizes smaller than millimeters to sizes as large as the planet
iting Difference ¢ D), Limiting Slope S) and two frac-  with a perimeter in the order of 40000km (Huang, 1998;
tal parameters, fractal dimensio@) and crossover length Lovejoy and Schertzer, 2007). The vertical scale of litho-
(7) were estimated from the measured microtopographic datgphere relief reaches some 18km considering fluctuations
sets. Indices describing the vertical component of soil rough-between oceanic bed and continental mountains. Therefore,
ness such aB R, LD and! generally decreased with cumu- topography variability on our planet is higher than factors of
lative rain in theB S treatment, left fallow, and inth€T and  over 13° and 10 in the horizontal and vertical scales, re-
MT treatments under maize and oats canopy. However, thesgpectively. At the planetary scale, topography remains rela-
indices were not substantially affected by cumulative rain intively unchanged except in active volcanic and tectonic areas
the NT treatment, whose surface was protected with previ-(Lovejoy and Schertzer, 2007).
ous crop residues. Roughness decay from initial values was Soil microrelief is referred to as the small scale topo-
larger in theB S treatment than iC7 and M T treatments.  graphic variation across a cultivated field (Allmaras et al.,
Moreover, roughness decay generally tended to be faster unt966; Rymkens and Wang, 1986; Huang and Bradford,
der maize than under oats. THeR and LD indices de-  1992). Conversely, soil roughness has been defined as “a
creased quadratically, while tiiéndex decreased exponen- measure of variation in surface microtopography” (Huang,
tially in the tilled, BS, CT and MT treatments. Crossover 1998). For assessing soil surface microtopography features,
length was sensitive to differences in soil roughness condipoint elevation readings are currently taken with millimeter
to centimeter resolution within a meter scale area. This also
i provides an operative definition of soil surface microtopog-
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Both landscape topography and soil surface microrelieflarger than the main structural unities, correlation tends to
are the result of many competing influences. However, un-disappear.
like topography at the landscape scale, the microrelief can Oriented roughness can be easily quantified by determin-
change rapidly in agricultural fields in response to tillage op-istic models, because it depends on slope and/or on a spe-
erations, erosion, deposition and other less dominant factorgific tillage tool (Huang, 1998). In contrast, random rough-
Moreover, the roughness of the soil surface results from dif-ness analysis has been more challenging, as it should include
ferent elements such as individual grains, aggregates, clods, characterization of the spatial structure of microrelief el-
tillage marks and landscape features that each contribute @aments with various sizes. Soil surface roughness, however,
various scale lengths. Conversely, soil roughness can be splitas been most frequently described by the random roughness
into several components. First, surface variations due tor the root mean square roughness index (Allmaras et al.,
the spatial distribution of individual grains, aggregates and1966). This index is equivalent to the standard error of point
clods, define random roughness. Second, systematic differelevations relative to a reference plane and represents a sta-
ences in elevation caused by tillage implements such as futtistical measure of vertical topographic fluctuation, implic-
rows are referred to as oriented roughness; if concentratedly assuming that there is no spatial dependence in surface
erosion occurs, rills and gullies also contribute to orientedroughness. But its main shortcoming is that two soil surfaces
roughness. Third, at the field and landscape scales higher owith identical RR values may have different topographies
der roughness created by the general topographic slope wittRomkens and Wang, 1986; Merril et al., 2001).
its concavities and convexities may be recognized; this type Furthermore, soil surface roughness, measureRlRan-
of roughness is the most interesting to sciences concernecreases as the area extent of point elevation measurements is
with topographic or macrorelief scales@®kens and Wang, increased. Consequently, roughness should be expressed as
1986). a scale-dependent function, not merely as a statistical index
Soil surface roughness affects many transfer processes dtfuang, 1998). Different approaches have been proposed to
and across the soil-atmosphere boundary, for example, infilaccount for the spatial scale. Based on the first order semi-
tration, runoff, soil detachment by water and wind, gas ex-variogram, i.e., elevation difference measure, Linden and van
change and evaporation. The temporal water storage in miboren (1986) defined two indices: limiting difference))
crorelief depressions controls overland flow generation andand limiting slope L S), describing the vertical component
runoff pathways (Hairsine et al., 1992; Hansen et al., 1999;and the separation length scale of soil surface roughness, re-
Favis-Mortlock et al., 2000). The quantification of roughnessspectively. Correlation and spectral density analysis have
related parameters such as depression storage is consideraden used to quantify roughness and to examine roughness
of great relevance and practical importance, because it canhanges as a function of rain and tillage operations (Currence
be used to enhance both water conservation and soil conseand Lovely, 1970; Dexter, 1977).
vation. Fractal models have been used to describe not only the
Soil surface roughness can also act as an erosivity factor éarth’s topography (e.g. Mandelbrot, 1983; Lovejoy and
smaller scales within a microplot, affecting the soil responseShertzer, 2007) but also soil microrelief (Armstrong, 1986;
to raindrop impact and other erosive forces, and as an erodiHuang and Bradford, 1992; Eltz and Norton, 1997; Huang,
bility factor at larger scales of the sizes of a plot, a field or a1998; Miranda, 2000; Vidal zquez et al., 2005, 2006,
hillslope, affecting the origin and spatial organization of the 2007). The term “fractal” is often taken to be synonymous
drainage pattern (Merril et al., 2001). This demonstrates thawith “scale-invariance”, the well known property that many
interaction between the length scale of a physical process ogeologic and soil characteristics look the same at all scales.
the soil surface and the scale of roughness components.  This is referred to as self-similarity. In a self-similar frac-
Because the random roughness condition is initiated bytal the factor that characterizes the invariance is indepen-
the variable disposition of aggregates and clods on the soitlent of the direction. However, a fractal is identified as self-
surface roughness, it is associated to disordered microreaffine when different scaling ratios are found for each inde-
lief (Huang, 1998; Vidal \Azquez et al., 2005). Therefore, pendent direction. Early studies of Mandelbrot (1985) and
the term “random” only describes non-orderly distribution Voss (1985) showed that the height of topography along a lin-
of structural unities on the soil surfaces and should not beear track can only be self-affine and not self-similar. By ex-
misleading, since random roughness is spatially correlatedension, topographic surfaces are also examples of self-affine
at short distances (Linden and van Doren, 1986; Huang andractals (Vidal Vazquez et al., 2005; Lovejoy and Shertzer,
Bradford, 1992; Helming et al., 1998; Eltz and Norton, 1997; 2007).
Miranda, 2000; Zribi et al., 2000; Vidaldzquez et al., 2005, Although few studies have addressed the quantification
2006, 2007). This correlation seems to be a usual propertyf soil surface roughness by fractal models, different tech-
of soil surface random roughness irrespective of soil typeniques have been proposed for estimating fractal dimension,
and tillage condition. The range of spatial dependence is ofD, from point elevation data sets. Principally, two dif-
the same order of magnitude as the largest structural unitiederent categories of fractal models have been applied for
aggregates and clods, on the soil surface. Above distancemssessing soil microrelief: variational and non-variational
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models (Vidal \Azquez et al., 2005). It should be empha- for our study were acquired between May 2003 and October
sized that non-variational techniques such as tortuosity eval2004.
uation (Bertuzzi et al., 1990) and Richardson number (Gal- The studied soil with a moderate A horizon and a silty-clay
lart and Pardini, 1996; Pardini and Gallart, 1998; Pardini, sedimentary bedrock, was classified as an Inceptisol (Soil
2003) are only appropriate for self-similar surfaces and thereSurvey Staff, 1993). The topsoil (0-20 cm depth) is clay tex-
fore they should not be applied for estimating fractal param-tured, with 142 gkg? sand, 437 g kg? silt and 421 g kg?
eters from point elevation data sets, which are self-affine. Inclay contents. Bulk density in this layer was 1.28 kgdmn
contrast, variational models allow a description of soil sur- Soil erodibility was 0.0115 thah hd MJ—1 mm~1 (Bertol et
face microrelief from self-affine data sets. Because varia-al., 2002b) and the mean slope of the experimental plots was
tional and non-variational models are not equivalent, result€.10 m/m.
from both of these types of methods frequently do not agree Field experiments were conducted during the growth
(Miranda, 2000; Vidal \Azquez et al., 2005) and cannot be period of two successive crops, maize and oats, using
directly compared. 3.5mx22.1 m erosion plots. Tillage treatments were as fol-
Two parameters are required to describe the scale ddows: 1) ploughing and two times harrowing on bare soil,
pendent roughness function by a variational fractal modelas a control treatmentB(S), 2) conventional tillage which
namely fractal dimension), and crossover length, Frac-  consisted also of ploughing followed by two successive har-
tal parameterspD and/, account for the multiscale effects rowing (CT), 3) minimum tillage which consisted of chisel
and for the fluctuations of local vertical statistics, respec-ploughing and harrowingM T) and 4) no-tillage over pre-
tively (Huang and Bradford, 1992; Eltz and Norton, 1997; vious crop residuesNT). Tillage systems were in a ran-
Huang, 1998; Miranda, 2000; Vidal&zquez et al., 2005, domized design, without replications. Treatme@s, MT
2007). and NT were cropped first to maizeZéa mayy and after
Soil surface roughness controls microrelief depression patto oats Avena strigosg both crops being a part of a multi-
tern and is clearly relevant to estimate depression storage cgle rotation system. Cumulative rain amounted to 229 mm
pacity (Huang and Bradford, 1990; Kamphorst et al., 2000;and 350 mm in the growth periods of maize and oats, respec-
Darboux et al., 2005). Therefore, the scale dependence dively. A detailed description of tillage operations and exper-
soil microrelief has implications in modeling this parameter. imental setup was presented elsewhere (Bertol et al., 2002,
However, most runoff and erosion processes are not affected006).
by the short-distance correlation so they could be quantified Operations with different tillage implements produced soll
by a single parameter, without taking into account these scalsurfaces visibly different between treatments. In the conven-
dependent function. In other words, fractal-based roughnesgonally tilled treatmentsgS andCT) as well as in the min-
parameters are not necessarily more important than other inmum tillage treatment¥/ T') a range of aggregates and clod
dicators, based on statistics or on geostatistics. sizes was observed. These structural elements were more or
This paper aims to clarify the relevance of the fractal ap-less evenly distributed in thBS andCT treatments. How-
proach for soil surface roughness evaluation. It extends preever, in M T treatment rougher areas of disturbed soil due
vious studies on data sets acquired with low technology deto chisel ploughing were distinct from undisturbed smoother
vices, characterizing large scale surface features. The maiareas between the chisel rows. Furthermdt&, and M T
focus is on soil management effects over initial roughnesdreatments were partly covered by previous crop residues
created during tillage operations and on roughness destrughat contributed to microrelief, because they were not to-
tion and decay by cumulative rainfall under a crop succes+ally incorporated into the soil by ploughing. Therefore, par-
sion. tial residue soil cover was larger i T than inCT treat-
ment. UndeV T soil surface microrelief consisted of undu-
lated land without tillage marks, fully protected by free crop
2 Material and methods residues, covering the entire soil surface.

2.1 Site, soil and tillage operations 2.2 Field data sets and trend removal

This study was conducted at the agricultural research statio®oil surface microrelief was measured five times in the maize
of the University of the State of Santa Catarina (UDESC) growth season and four times in the oats growth season. The
in Lages, Santa Catarina State, Brazil, latitude4®7s, lon- first measurement was made just at sowing time; then succes-
gitude 5020W and mean altitude 937 ma.s.l. The climate sive readings were taken at about 15 days apart throughout
was classified as Cfb type according togpen, with an av-  each crop growth period.

erage yearly rainfall and erosivity of about 1600 mm and Soil microrelief was measured with a pin meter, which
6000 MIJmm halh~2, respectively (Bertol et al., 2002a). held 40 calibrated needles. The interval between surface el-
The experimental area has been used for water erosion stu@vation readings made in the maize growth period was set
ies under natural rainfall since November 1988. The data setat 3 cm, thus extending over a length of 117 cm. However,
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measurements in the oats season were performed with negshereZi andZ are point elevation and mean point elevation,
dles spaced 2 cm apart, along 78 cm transects. In both caseg&spectively, and is the number of experimental points.
profiles were taken per plot, 5 cm apart from each other. This LD andLS quantification is based on the first-order vari-
gave 200 readings at any location. Therefore, the samplinggram of mean absolute differences in elevatiaZf) sep-
scheme was a 3 crb cm rectangular grid when the soil was arated by a distance vectdr, Following Linden and van
cropped to maize and it was a 2 sficm grid in the oats sea- Doren (1986), the first step in estimatihd andL S consists
son. The area of the roughness experimental plot was 0.23# the computation of the mean absolute elevation difference,
and 0.156 A in the maize and oats crops, respectively. Foras:
each transect, the pin position was registered photographi- )
cally and later digitized to record readings of 40 calibrated , , _ 3 |Zi — Ziqnl @
needles, as described by Wagner and Yiming Yu (1991). n

Manual pinmeters are destructive devices. Thus, different
microplots were used for surface roughness measurementhereZ; andz; ., are elevations at positions located a hor-
at increasing amounts of cumulative rainfall in successiveizontal distancer apart and: is the number of data points.
dates. Within each tillage treatment, experimental plots werel herefore, for a two-dimensional data sgt,, corresponds
located as close as possible to minimize the effect of spatial® Point heights located in a disk of radii h around paint

i=1

variability between them. Then, parametersg, andb, of the linear relationship be-
Microrelief data sets were corrected for slope and tillagefWeen 1AZ;, and 1Ak are estimated:

marks. Correction for slope was obtained using the plane of 4 b

best fit to the 200 point elevation readings of each plot. Ad- =a+ — 3)

ditionally, non-directional random roughness surfaces were" " AXp

obtained by removing row and column effects, as proposedParameters D andL S are quantified, respectively, as:
by Currence and Lovely (1970). Therefore, all the indices in
this study were estimated for data sets representing the ranL- 1

dom roughness condition. D=~ (4a)

The configuration of soil topography was simple described
by a set of points of known-, y- andz-coordinates. The ele-
vation values given as a function of the horizontal coordinate
system provide a numerical representation of the surface and o ) ) ) ]
constitute a digital elevation model (DEM). From each ex- The limiting differenceL D, is mathematically interpreted

perimental data set of soil surface microtopography a DEM?S the value oA Z whenk approaches large spatial intervals.

was obtained after trend removal, representing the randon] N€ limiting slope,L S, is the slope on\Z/Ah, when/: ap-
roughness condition. proaches zero. This analysis is essentially independent of

the minimum spacing interval because of the linear nature of

1
=3 (4b)

2.3 Statistical and geostatistical indices Eq. (3). N - -
In estimating roughness indices based on geostatistical

Besides quantifying of fractal parameters, in this study thre concep_ts_L D andLS5), surface m|c_rorgl|ef was assume_d _to
eQF statistically homogeneous, which implies that statistical

traditional roughness indicators were assessed: a statistic . .
index, random roughnes® ), and two geostatistical in- properties do not depend on the position, but only depend on
' ' the spatial separatioh,

dices estimated from the first order semivariogram of point
elevation differences, referred to as “limiting difference”
(L D) and “limiting slope” ).

In accordance with Currence and Lovely (1970) and Kam- ractal analysis was performed on the soil microrelief data
phorst et al. (2000)RR was estimated simply as the stan- geg ysing a variational method, thus assuming a self-affine
dard deviation of height readings after correction for slopem e for microrelief description. This method is based on
and tillage marks. Therefore, in this stuyt was assessed 5 fractional Brownian motion (fBm) model to calculate the

without a log-transformation of the residual point elevation py, st exponentH , from which the fractal parametersand
data and without removing extreme values, as initially pro-; 5re gbtained.

posed by Allmaras (1966). Random Roughness was calcu- The semivariance function or semivariograpi), was

lated as: selected as structural o scale-dependent function, because of
the rectangular shape of the sampling grid (Miranda, 2000).
Under these conditions, the semivariogram is more accu-
rate and gives more consistent results than other structural

(1) functions such as the root-mean square (RMS) algorithm

2.4 Fractal dimension and crossover length
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(Malinverno, 1990; Miranda, 2000). The semivariance canThe fractal dimensionp, of a fractal surface or profile repre-
be estimated from sampling data as: sented by its semivariogram can be estimated from the slope
of the straight line portion of the semivariange(h), ver-
1 ¢ 2 sus the lag distancé, when plotted on a double logarithmic
y X ()=o) 120 +h) = Z(x) ] B scale.
i=1 For a two dimensional data set of point heights, the fractal

wherey x (k) is known as the experimental semivariogram, dimension,Dswy, is computed from the Hurst exponer,
n is the number of pairs of sample points of observations ofPPtained by Eq. (7), and the Euclidean dimensién3) as:
the values of the studied attributé, between any two places Deyy = 3— H ®)
x andx+h, separated by a distange Z(x) is the elevation

at locationx. In addition to the commonly used fractal dimensidn, pa-

Data sets were checked for the intrinsic hypothesis of therameter, the fractal roughness model requires a second pa-
regional variable theory. After trend removal the two condi- rameter to define the relative position of the straight line of
tions defining the requirements for the intrinsic hypothesis,the variogram plotted on a log-log scale. Huang and Brad-
i.e., stationarity of differences and variance of differencesford (1990) defined this parameter as the crossover lehgth,
were verified. and it should be used together withfor characterizing soil

The use of they (h) function as the roughness measure surface roughness at small distances. The semivariance func-
gives a direct relationship between an elevation differencetion of the fMb fractal model may be described as a function
term and the separation length scadeThis is an important  of both, crossover lengtlh, and the exponenH, as:
step in fractal analysis as the estimated values of fractal pa-

. _ j2-2H;2H
rameters D and! from soil topography surfaces or transects, ¥ (h) =1""h 9)
may show some bias depending not only on the assumption

2 . . . .
made in formulating the fractal model but also on the algo—ﬁ:c tliq. t(g) v (h)=h whlenhE]l, f\.Nht'Ch eXpIa'(;‘SbthE origin d
rithm which is used (Miranda, 2000; VidalaZquez et al., O "€ €M Crossover length, 1irst proposed by Huang an
2005, 2006). Bradford (1992) for soil microrelief quantification.

Burrough (1983 a,b) first used the(h) structural func- The crossover lengtli, may be estimated from the slope

tion in soil science. The semivariance function for estimat- of the straight line portion of a variogram by:

ing fractal dimension of soil height tracks was introduced ;o\, — exg(a/2 — 2H)] (10)

by Armstrong (1986) and later on applied to various surface

types (Carr and Benzer, 1991; Davis and Hall, 1999), includ-wherea, is the intercept of the straight line of the semivari-

ing agricultural soils (Huang and Bradford, 1992; Miranda, ance log-log plot at the y-axis.

2000; Vidal Vazquez et al., 2005, 2006, 2007). It follows that characterizing soil surface roughness by a
The fractal model used for soil surface roughness quantififractal fBm model requires two parameters, fractal dimen-

cation was the fractal Brownian motion model (fBm). The sion, D, and crossover length,as shown by theoretical con-

elevation difference of a fBm is given by: siderations (Huang and Bradford, 1992) and by experimental
. results (Huang and Bradford, 1992; Eltz and Norton, 1997;
(AZp) o h7,1>H>0 (6)  Miranda 2000; Vidal et al., 2005).

where the exponent of the incremental functidh, is the

Hurst exponent. The power model, which describes a self3 Results and discussion

similar fractal, corresponds to a phenomenon with an unlim-

ited capacity for spatial dispersion and with an a priori unde-3.1 Statistical and geostatistical roughness indices
fined variance.

In a fractal Brownian motion model (Eq. 6), the Hurst ex- From the various indicators that appear in the literature to
ponent is allowed to vary from 0 to 1 (Huang and Bradford, characterize soil surface microrelief, the statistical index ran-
1992). A fBm is an expansion of the random walk or Brown- dom roughness and the two indices based on geostatistical
ian model (Bm) characterized by Hurst expon&t0.5, first ~ concepts, limiting difference and limiting slope, were se-
proposed by Mandelbrot and van Ness (1968). Conversely{eCted- Random roughness index was chosen because it is
the random walk or Bm model can be considered an especidhe most widely used microrelief index and also because of
case of the fBm. its performance for modelling water storage in soil microre-

For a fractal transect the semivariance function, accordlief depressions (Kamphorst et al., 2000). The reasons to
ing to Mandelbrot (1983, p. 353), is a function of the spatial SelectL D andLS were: first that D index is based on ele-

separation: vation differences at large spatial intervals, and second, that
LS index can provide insight into the configuration proper-
y(h) « w2t (7 ties of the soil surface at small scale intervals.
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Table 1. Sampling date, cumulative rainfall, random roughness
(RR), limiting difference D) and limiting slope LS) during
the maize season for different tillage treatment®.S£bare soil,
CT=conventional tillageM T=minimum tillage,N T=no-tillage).

Tillage Date Rain RR LD LS
(mm) (mm) (mm)

BS 11-14-2003 O 14.49 18.11 0.069
11-21-2003 35 11.15 13.56 0.088
12-08-2003 77 10.97 14.19 0.055
12-19-2003 205 8.00 10.95 0.025
05-01-2004 229 6.00 7.35 0.029

cT 11-14-2003 O 1425 18.13 0.064
11-21-2003 35 1440 16.78 0.108
12-08-2003 77 10.02 13.06 0.053
12-19-2003 205 8.23 10.06 0.064
05-01-2004 229 8.62 10.37 0.067

MT 11-14-2003 O 13.00 15.79 0.142
11-21-2003 35 11.36 17.72 0.040
12-08-2003 77 8.41 10.98 0.058
12-19-2003 205 7.13 11.20 0.023
05-01-2004 229 6.63 8.97 0.032

NT 11-14-2003 O 5.36 5.74  0.090
11-21-2003 35 4.51 5.31 0.053
12-08-2003 77 3.75 4.24 0.032
12-19-2003 205 4.89 6.23 0.022
05-01-2004 229 4.64 6.02 0.026

Table 2. Sampling date, cumulative rainfall, random roughness
(RR), limiting difference ¢ D) and limiting slope LS) during
the oats season for different tillage treatmentss S£bare soil,
CT=conventional tillageM T=minimum tillage,N T=no-tillage).

Tillage Date Rain  RR LD LS
(mm) (mm) (mm)
BS 08-18-2004 O 1497 17.04 0.206

08-31-2004 50 11.81 1156 0.090
09-17-2004 153 9.22 9.82 0.213
10-05-2004 350 5.77 8.79 0.013
cT 08-18-2004 O 8.02 9.66 0.137
08-31-2004 50 8.90 10.66 0.130
09-17-2004 153 8.41 9.73 0.144
10-05-2004 350 4.56 5.34 0.058
MT 08-18-2004 O 7.40 8.70 0.126
08-31-2004 50 6.36 7.75 0.112
09-17-2004 153 7.63 8.72 0.119
10-05-2004 350 5.32 6.34 0.070
NT 08-18-2004 O 12.12 1425 0.135
08-31-2004 50 11.90 14.06 0.264
09-17-2004 153 11.22 13.14 0.144
10-05-2004 350 11.65 13.54 0.055
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Fig. 1. Random roughnessR(R) versus limiting difference{ D)
indices as recorded during maize and oats seasons.

Tables 1 and 2 lisiRR, LD and LS values estimated
throughout the growth period of maize and oats, respectively.
Both RR and LD were sensitive to vertical differences in
roughness between experimental plots. Taking into account
the four tillage treatmentk R varied between 3.75mm and
14.49 mm during the maize season and ranged from 4.56 mm
to 14.97 mm during the oats season. Limiting difference
values tended to be slightly higher th&R values as they
fluctuate from 4.24mm to 18.11 mm and from 5.34 mm to
17.04 mm in the maize and oats growth periods, respectively.

The initial RR values for surfaces with Omm rain in the
maize season were 14.49, 14.25, 13.00 and 5.36 mB®in
CT, MT andNT treatments, respectively. A similar trend
was observed fok D initial values. Therefore, initial surface
roughness evaluated by indicR® andL D in the maize sea-
son were similar forBS, CT, and M T treatments. Hence,
under maize, the NT treatment had the lowest ini#& and
LD values (Table 1). In the oats season, howeR& values
were 14.97, 8.02, 7.40 and 12.12mm #®§, CT, MT and
NT treatments, respectively. So, under oats, Rfetreat-
ment had higher initial values of the vertical component of
roughness as estimated ByR andL D indices tharCT and
MT treatments (Table 2). The effect of tillage on initial sur-
face roughness depends on the tillage tool, the number of
passes, and on other minor factors such as tractor speed, clay
content and soil water content. In our case study, additional
microrelief levelling during manual sowing of oats may ex-
plain the divergences between initial roughness$6fand
CT treatments. Also, amount and management of previous
crop residue may influence initial soil roughness. Notewor-
thy, in the NT treatment under oats values BR, LD and
[ indices were high throughout the crop period. Moreover,
with NT, the initial roughness under oats was more than
two-fold higher than in the respective treatment under maize.
This illustrates the effect of large amounts of previous crop
residues, which may contribute to the formation of remark-
able roughness on the soil surface.
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The relationship betweeRR and L D is shown in Fig. 1. 200
In our study the correlation coefficients between these in-
dices were 0.944 and 0.943 for the 20 data sets acquired 180 [ .
during the maize season and the 16 data sets acquired in—~ "o - n
the oats season, respectively. Both relationships were lin- é 160 " -
ear and significantf<0.01). Linden and van Doren (1986) " 150
and Bertuzzi et al. (1990) also found a linear relationship be- 2 140 -
tween these two indices. =
The limiting difference L D=1/a, in Eq. (4a) is the asymp- ; 120
tote value of the first-order semivariance, i.e. the sill of the g
first-order semivariogram. Indee®R corresponds to the &
square root of the sill of the second order semivariogram. 1001

Consequently strong correlation coefficients betweah 20 100 700
and LD are expected. However, distinct regression equa-
tions in the maize and oats seasons in our study together with

previous results (Linden and van Doren, 1986; Bertuzzi EtFi 2. An example of the relationship between the structural func-
al., 1990) suggest that there is not a general relationship bet g. <. P P

tween these two indices, in spite of its strong dependenceIon y (k) plotied on a log-log diagram and the scale.
for a given specific experimental condition. Althoug@R
and L D are indicators of the height distribution of surface
microrelief, they do not account for the spatial component,
i.e. mutual location of higher and lower points. Spatial struc-
ture of the microtopography is critical for a thorough charac-
terization of the configuration properties of the soil surface
and for depressional storage evaluation.

Linden and van Doren (1986) stated tli is soil surface
slope at small intervals, becaua& / Ah would approacld §
whenA#h approaches zero. Therefore§ should give infor-
mation on the side slopes of structural units, such as larg AR
aggregates or clods, at small intervals. Moreover, on an ide:09 scalg and number of data points in this first segment of
alized soil surface, maximum roughness depends on the sidtge sen.nvarlog.ram. )
slope of the structural elements protruding the soil surface. 1Ne firstportion of the structural functign(z), when plot-

The magnitude of. S was small when compared with those ted on a log-log diagram, showed a similar trend in the 36
of RR or LD, as this index ranged from 0.013 to 0.264 in the data sets studied, indicating the existence of a correlation be-
oats season and from 0.022 to 0.142 in the maize season. fWeen semivariance and scale at small scale intervals. An

our study cases no significant correlation was found betwee@*@Mmple is shown in Fig. 2. The graphed results show a
LD or RR andLSs. straight-line portion of the semivariogram at short lag dis-

Because of the linear nature of Eq. (3)p andLS are  tances with a step slope and then a secpnd portlion, which
essentially independent of the minimum sampling interval,could be approximately modelled by a horizontal sill, so that
which represent an advantage for analyzing data sets witif? th|s_ segme_nt correlat_lon between the structural function
various sampling grids. However, maximum soil surface@nd distance in general is absent.
roughness as assessed by i@ or the RR indices is in- A self-affine model may quantify the first straight-line por-
dependent of the size of the structural elements at the soffion of the semivariogram. Thus, stable estimates of fractal
surface, which means that two different surface configurafarametersp and/, could be obtained only from the first
tions may result in the sanieD or RR values (Merril etal., segment of the structural functiong(h), before the scale
2001). This continues to be a major problem in characteriz-breaks in slope. This break in scale is mainly related with
ing soil surface microtopography. the size of the structural units, aggregates or clods, at the

soil surface, consistent with previous work on soil surfaces
recorded by pinmeter (Miranda, 2000; Vidah¥uez et al.,
2005, 2006) and by laser scanning (Huang and Bradford,
1992; Eltz and Norton, 1997; Davis and Hall, 1999; Vidal
Vazquez et al., 2005).

Fitting the first straight-line portion of the structural func-
tion, y(h), has been recognized as a critical step in frac-
tal analysis when a self-affine fractional Brownian model is

Scale (mm)

3.1.1 Fractal parameters: fractal dimension and crossover
length

The main results of fractal analysis during maize and oats
growth periods are listed in Tables 3 and 4, respectively.
These include: sampling date, cumulative rainfall, fractal di-
mension and its standard error, crossover length and its stan-
dard error, coefficients of determination, upper cutoff of the
traight line portion of the semivariogram plotted on a log-
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Table 3. Sampling date, cumulative rainfall, fractal parametérsad!) with respective standard errors (S.E.), coefficients of determination
(r), upper limit of self-affine behaviour (U.l.) and number of data couples for fitting the first straight line portion of the semivariogram (
during the maize season for different tillage treatmerg@ssbare soil,C T=conservation tillage} T=minimum tillage,N T=no-tillage).

Tillage Date Rain (mm) D [(mm) r Ul . (mm) n
BS 11-14-2003 0 2.760.06 7.5%2.42 0.972 151.9 5
11-21-2003 35 2.6080.23 3.3#4.21 0.924 82.6 3
12-08-2003 77 2.750.02 5.31%#0.61 0.996 113.3 4
12-19-2003 205 2.560.07 1.1@&0.31 0.990 113.3 4
05-01-2004 229 2.640.07 1.24-0.30 0.986 113.3 4
CT 11-14-2003 0 2.860.01 8.840.64 0.995 151.9 5
11-21-2003 35 2.580.12 1.8@:1.06 0.977 113.3 4
12-08-2003 77 2.6¢0.13 2.7@:1.62 0.944 113.3 4
12-19-2003 205 2.620.07 1.3Z40.39 0.982 151.9 5
05-01-2004 229 2.A0.03 2.3&0.28 0.993 151.9 5
MT 11-14-2003 0 2.680.07 4.73%1.85 0.976 151.9 5
11-21-2003 35 2.860.05 9.4%256 0.915 215.2 7
12-08-2003 77 2.760.05 4.2%:1.05 0.968 215.2 7
12-19-2003 205 2.670.22 2.9%3.02 0.903 82.6 3
05-01-2004 229 2.750.09 3.8&1.55 0.954 113.3 4
NT 11-14-2003 0 2.750.25 2.342.21 0.816 82.6 3
11-21-2003 35 2.870.03 2.720.32 0.970 151.9 5
12-08-2003 77 2.720.19 1.16:0.67 0.899 82.6 3
12-19-2003 205 2.A0.05 1.44:0.27 0.970 215.2 7
05-01-2004 229 2.6#0.14 0.62:0.26 0.956 113.3 4

used. In our case study the lower cutoff limits of self-affinity semivariogram on a log-log plot against the scale (Miranda,
were about the same magnitude as the distance between t2800; Vidal Vazquez et al., 2005). Furthermore, in each of
pinmeter needles, i.e. 30 and 20 mm for data sets acquirethe 36 surfaces studied, the ratlg/(1) between the upper
during maize and oats seasons, respectively. The upper cutoff,) and lower (1) cutoffs of the structural functiony (k),
limits varied between 82.6 mm and 215.2mm in the maizelargely exceeds2?, which is the minimal condition to ac-
season and between 82.6 mm and 151.8 mm in the oats seeept an experimentab value over a range of fractal self-
son (Tables 3 and 4). The upper limits in this study wereaffinity (Pfeifer and Obert, 1989).

similar to those of a previous case study, where the semivar-

iogram algorithm was applied (Vidalazquez et al., 2007).  Accuracy in fitting a power law will depend essentially on
However, the upper cutoff limits were lower than those previ- the number of data couples of the straight line portion of the

ously estimated with the root-mean-square (RMS) algorithmstructural functiony (h), versus scale;. The results listed
(Vidal Vazquez et al., 2006, 2007). in Tables 3 and 4 show that the linear regression was fitted

with 3 to 7 and 3 to 5 couples of data in the maize and oats

tBetcauls? thet_d|st.ance Zt which s_calets lbreakt, \;]vhej:r(]mp h seasons, respectively. Vidala¥Zquez et al. (2006) used the
structuraffunction 1S used, approximately matches the c "’_‘r'root-mean-square algorithm (RMS) to estimate fractal pa-
acteristic size of the larger clods, residue fragments or in

| structural el ; h i surt this dist rameters,D andl/, from a sampling grid with 225 elevation
general structural elements on the Soil surface, this dis anctﬁoints and 784 chin surface and the straight line portions

_has also bee_n regarded as a fractal parameter of considera f the structural functions were also described by a com-
interest. _Th|s scale has been referred to as the correlanoBarable small number of data couples. However, a 182 m
length (Vidal Vazquez et al., 2006). sampling grid with 3025 height data points yielded at least 7
In general, linear relations between structural function anddata couples to estimate the straight line section of two struc-
scale covering at least two orders of magnitude are requiredural functions, root mean squarRM S, and semivariance,
for estimating the fractal dimensiol), with low standard  y (k) (Vidal Vazquez et al., 2007). Therefore, the main lim-
error values (Miranda, 2000). But in our study cases, as beiation of fractal analysis for assessing changes in soil sur-
fore quoted, the range of self-affinity was between a lowerface roughness may be the number of elevation data points
cutoff of about 20 to 30 mm and an upper cutoff of about that are recorded in each observation. Large data sets are
82.6 to 215.2mm. A millimetric grid resolution acquired by required for a good approximation in fitting the power law
laser scanning would enhance the straight line portion of therom which fractal dimension, and crossover length,are
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Table 4. Sampling date, cumulative rainfall, fractal parametérsafd!) with respective standard errors (S.E.), coefficients of determination
(r), upper limit of self-affine behaviour (U.l.) and number of data couples for fitting the first straight line portion of the semivariogram (
during the oats season for different tillage treatmers=pbare soil,C T=conservation tillageM T=minimum tillage,N T =no-tillage).

Tillage Date Rain (mm) D [(mm) r Ul. (mm) n
BS 08-18-2004 0 2.880.09 11.5%6.12 0.921 82.6 3
08-31-2004 50 2.950.08 10.7&4.32 0.542 82.6 3
09-17-2004 153 2.980.02 8.73%0.90 0.559 82.6 3
10-05-2004 350 2.550.09 0.44:0.10 0.978 151.8 5
CcT 18-08-2004 0 2.760.11 3.641.90 0914 113.3 4
08-31-2004 50 2.790.15 343211 0.891 82.6 3
09-17-2004 153 2.760.13 3.45-2.07 0.903 113.3 4
10-05-2004 350 2.70.19 2.53%1.88 0.845 82.6 3
MT 08-18-2004 0 2.860.07 5.4%1.78 0.877 151.8 5
08-31-2004 50 2.810.06 5.221.65 0.951 113.3 4
09-17-2004 153 2.700.09 4.5%1.88 0.930 113.3 4
10-05-2004 350 2.7/0.11 1.6%0.67 0.953 82.6 3
NT 08-18-2004 0 2.7#0.22 7.73%8.98 0.823 82.6 3
08-31-2004 50 2.740.26 7.34:10.44 0.801 82.6 3
09-17-2004 153 2.880.15 9.4#6.92 0.736 82.6 3
10-05-2004 350 2.84#0.11 8.2#4.85 0.876 113.3 4

estimated. Indeed, the available couple of data for fitting the225 height readings, by Vidal &zquez et al. (2006) were
power law in the first straight line part of thgh) structural ~ more precise, as the respective coefficient of determination
function increased when data sets measured by non-contagtried between 0.972 and 1.000.

laser scanning with a resolution in the order of millimeters  Fractal dimension values ranged from 2.53 to 2.87 and
were available (Miranda, 2000; VidalaZzquez, 2005). from 2.55 to 2.98 in the maize and oats seasons, respectively.

Standard errors of fractal dimension and crossover lengthilherefore, the 36-microrelief data sets studied showed anti-
calculated by the semivariogram method are also listed in Tapersistent featuredx>2.5), also in accordance with previ-
bles 3 and 4 for data sets acquired during the maize and oagus results of fractal parameters estimated in random mi-
seasons, respectively. Standard errors in estim@ingried crorelief data sets, obtained after correction for slope and
between 0.02 and 0.25 under maize and between 0.02 aridllage marks (Miranda, 2000; Vidal &zquez et al., 2005,
0.26 under oats. Standard errors in estimatiranged from 2006, 2007).

0.26 mm to 4.21 mm and from 0.10 mm to 10.44 mm under The crossover length values estimated by i) struc-
maize and oats, respectively. Therefore, standard errors itural function varied from 0.69mm to 9.49 mm and from
crossover length may be as high as its estimated values, @.44 mm to 11.59 mm under maize and oats, respectively.
even higher. Vidal ¥zquez et al. (2006) analyzed data setsThe magnitude of values is also consistent with previous
recorded by pinmeter with a comparable small size, i.e. 225vorks on data sets acquired under field conditions (Vidal
height readings per plot, using the RMS algorithm, and foundvazquez et al., 2005, 2006, 2007). These results clearly
D standard errors being in the range from 0.008 to 0.023ndicate a larger variation in scale of the crossover length,
and! standard errors being in the range from 0.006 mm towhen compared with the fractal dimension as maximum dif-
1.040 mm. These results indicate that the RMS algorithm references between experimental data sets of this later frac-
duces errors in fractal parameters estimation when compareghl parameter were of 0.31 units and 0.40 units under maize
with the semivariogram algorithm by a factor of the order of and oats, respectively. Therefore, values of crossover length
one magnitude. Consequently, the use of square samplinghow a much greater sensitivity to changes in microrelief
grids instead of rectangular ones is recommended for datéhan the fractal dimension. This reinforces the relevance of
sets with a small number of data points, as those recorded bghe crossover length parameter as a discriminator of vertical
pinmeter. differences in roughness.

Coefficients of determination for the straight-line portion  For a microrelief model based on fractal concepts, the sig-
of they (h) structural function were between 0.816 and 0.996 nificance of the crossover length should be emphasized as it
and between 0.542 and 0.978 for data sets acquired dumllows differentiation between various degrees of soil rough-
ing the maize and oats seasons (Tables 3 and 4), respeness, whereas the most known fractal dimension would be an
tively. The results obtained with the RMS algorithm, from indicator of the spatial configuration of soil microtopography
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as recorded during maize and oats seasons.

Fig. 3. Crossover lengthlf versus limiting difference (D) as
recorded during maize and oats seasons.
parameters in Eq. (9). A similar relationship betwd2mand

[ was also found in previous studies (VidahXtjuez et al.,

(Huang and Bradford, 1992). In quantifying soil surface 2006, 2007). ) . .
roughness, the fractal dimensiaB, can be taken as a rela- ~ Moreover, during the maize seasorand D were sig-
tive measure of the spatial distribution of different size struc-Nificantly correlated £ <0.05) for each of the four study
tural elements on the soil surface (Huang, 1998). Howevefréatments as the respective correlation coefficients ranged
fractal dimensionp, does not provide information on rough- rom R?=0.71 toR*=0.81. Likewise/ and D were signif-
ness vertical component. Therefore, the fractal dimension aiantly correlated £ <0.05) in three out of four treatments
a descriptor of horizontal variations of soil roughness shoulgduring the oats season, as the respective correlation coeffi-
be used together with an additional index describing differ-Cients ranged fronk?=0.71 toR?=0.90; in this case the ex-
ences in roughness height for a thorough evaluation of soif€ption was the'T' treatment. So, differenb and!/ values
microtopography (Huang, 1998; VidaB¥¢quez et al., 2006). Were associated with different soil_tillage systems. Conse-
The fractal parameter crossover lengthand the geosta- quently, the couple fractal dimension and crossover length

tistical index limiting difference L D, were compared, be- appear to be a pertinent descriptor of soil roughness.
cause both indices are thought to stand for the vertical com, ,, Tillage, crop cover and rainfall effects on soil rough-
ponent of soil surface roughness (Eltz and Norton, 1997; ness decay
Huang, 1998). Figure 3 shows the relationship betwieen
andLD. Correlation (.:oeff'|C|ents were 0.478 and 0.686 for Overall, roughness indice®R andZ D decreased during the
the 20 data sets acquired in the maize season and the 16 d3jg,yth periods of maize and oats, as a function of cumula-
sets acquired in the oats season, respectivelyd.05). tive rainfall, in the tilled treatments, either left fallow,s, or
Again, LD defines the vertical component of soil rough- under vegetative cove€; T and M T, as shown in Tables 1
ness based on mean absolute elevation differences at reland 2. Crossover length in general also decreased with cu-
tively large distances by the sill of the first-order variance. mulative rain, as shown in Tables 3 and 4. However, the
However, [ represents the intersect of theh) structural  roughness decay during maize and oats seasons was faster in
function with the y-axis on a log-log scale. Therefore, the the BS treatment than in th€ T and M T treatments. Fur-
crossover length parameter is rather a measure of nugget efhermore,RR, LD and! indices, in general, were not sub-
fect or discontinuity at small distances, differing from the stantially affected by cumulative rain in thé7 treatment
sill or variance, which gives vertical fluctuation statistics. In under maize and oats, whose surface was protected by pre-
fact, the magnitude of the discontinuity at small distancesvious crop residues. Therefore, because no changes are in-
depends on the vertical statistics, but it may depend also o@uced by rainfall in no-till systems with various quantities of
the horizontal variation of soil roughness. The relationshipcrop residues, one single observation along the crop season
between/ and LD in Fig. 3 was distinct in the maize and gallowed characterization of soil surface roughness.
oats seasons, pointing to differences in surface configuration Regression equations were developed to evaluate the rela-
between these two experimental periods. tionship between roughness decay as quantifiet By L D
Crossover length and fractal dimension values estimate@nd! indices and cumulative rainfall foBS, CT and M T
during the two successive growth periods showed a signifireatments, presented in Figs. 5, 6 and 7. The independent
icant correlation P <0.05), as shown in Fig. 4. Therefore, variable was the ratio between the values of an index for
the D value showed a trend, to increase ascreased, which  a given cumulative rainfall amount relative to the value of
is an expected result, given the dependence between theseat index for the initial surface, instead of the estimated row
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Fig. 6. Random RoughnesRR), Limiting Difference ¢ D) and
crossover length parametéy,(as a function of cumulative rainfall,
under maize and oats with conventional tillaggr).

Fig. 5. Random Roughnes®R), Limiting Difference ¢ D), and
crossover length parametéy,(as a function of cumulative rainfall
for bare soil conventionally tilledKksS).

In the bare soil treatmenB S, left fallow, the RR index
creased 41% and 39% from initial values after 229 and
0mm cumulative rainfall in the maize and oats seasons,
respectively. The respective figures for t6¢", MT and

NT treatments under crop cover during the maize season
were 60%, 51% and 87% and during the oats season they
were 57%, 72% and 96%. Therefore, the roughness destruc-
tion evaluated by the® R index can be ranked as follows:
BS>CT=MT>NT.

values listed in Tables 1to 4. These equations had a quadratig
or an exponential negative shape depending on the index a
in all cases were fitted to honor the initial value for 0 mm
rain. Therefore, the fitted general equation for quadratic
and exponential roughness decrease werex? — bx+1
andy=exp.(—ax), respectively, where y is the proportion of
roughness relative to its initial value,is cumulative rainfall
anda andb are regression parameters.
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Fig. 7. Random RoughnesR), Limiting Difference (D), and  Fig. 8. Roughness indicesk® and L D), and crossover length pa-
crossover length parametéy,(as a function of cumulative rainfall,  rameter {), as a function of cumulative rainfall along the maize and
under maize and oats with minimum tIIIagMT) oats season for no U”ag&l(]‘)

TheRR index decay was best fitted by a quadratic negative The LD index decreased 41% and 52% from initial val-
relationship given byR R; /R Rg=a P?—b P +1, whereRR; is ues after 229 and 350 mm cumulative rainfall in the maize
random roughness for a given rainfall amouBt,and R Rg and oats seasons, respectively, in & treatment, which
is the initial random roughness. In tiS treatment a sin- was left fallow. The respective changes for th&', MT
gle quadratic relationship was fitted to all the data collectedandN T treatments under crop cover during the maize season
in the maize and oats seasons since the relative decreasevere 57%, 57% and 105 % and during the oats season they
roughness as a function of cumulative rainfall agreed for bothwere 55%, 73% and 95%. Therefore, the roughness destruc-
data series. M T andN T treatments two different relation- tion evaluated by thd.D index can be ranked as follows:
ships were fitted to maize and to oats data series. The fitted®S>CT=NT>NT, similar to that of theR R index.
equations showed that unde7 andN T tillage treatments,

RR decay was faster in the maize than in the oats season.
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The LD index decay was also best fitted by a quadratic The values of thel.S parameter in general were much
negative relationship. However, better correlations were oblower at the end of the experimental period, i.e. after 229 mm
tained in general between cumulative precipitation &Rl rain in the maize season and 350 mm rain in the oats sea-
than between cumulative precipitation ahf. With the BS son, than at the initial soil surfaces with O mm rain. This
tillage treatment. D decay was also modelled by a single re- notwithstanding, in most of the rain seriéss values first
gression equation for the maize and oats data series. The dehowed a tendency to increase and then decrease with cumu-
cay of LD withthe M T andNT tillage treatments, however, lative rain. An increase in thé S index indicates increased
was modelled using two different curves. Th® decrease slope of structural units in the soil surface. Such slope in-
was also faster in the maize than in the oats season. crease may be the result of consolidation effects during the

Crossover length showed in general a well-defined trendfirst rain events (Eltz and Norton, 1997). Th& decrease
to decrease in the tilled treatments during the maize andht the end of the growth period indicates reduction of slope
oats seasons. In most of the rain sequences the decline at small distance intervals due to filling of small depressions
[ from its initial value (0 mm rain) at the end of the season around largest structural units and crust development.
was very strong. For example, in the bare soil treatment, There was little variation of fractal dimension with in-
BS, I index decreased 16% and 4% from initial values after creasing cumulative rainfall. Small changedinvalues ver-

229 and 350 mm cumulative rainfall in the maize and oatssus cumulative precipitation were characterized by various
seasons, respectively. However, in the maize sea®dh, patterns, so that no general trend was recognized. Values for
treatment started with a relatively low value loparameter D were similar to those obtained in previous studies by Eltz
(4.73mm) for Omm rain at sowing time, which increased and Norton (1997), Huang (1998) and Vidahxtjuez (2005,
after 35 mm cumulative rainfall to about double the initial 2006, 2007). It is noteworthy that mean values of fractal di-
value (9.49mm). This is an inconsistent result and will be mension in the maize season (2.707) were significantly lower
discussed below. In this particular case, the valué foir (P <0.05) than those in the oats season (2.804), and this in
35 mm rainfall was not taken into account for regression pur-spite of the fact that essentially the same tillage operations
poses. had been conducted in both periods. These differences in

In general,! values in theBS, CT and MT treatments fractal dimension, thus, on configuration of the soil surface,
exhibit a rapid decline from the initial reference state (O mmmay be attributed to factors such as contrasting soil water
rain) during the earlier rainfall events. The exception wascontent and aggregate stability during tillage (Kamphost et
again theM T treatment in the maize growth period. There- al., 2000) or to plant growth effects (Mamez-Turanzas et
fore, I decay as a function of cumulative rainfal,, was  al., 1997) which further modify the soil surface configura-
best fitted by a negative exponential relationship given bytion.
the equatior,/lp=exp(—a P), wherel, is the crossover length
for a given cumulative rainfall amount arig is the initial 3.3 Physical interpretation
crossover length for 0mm rain. Crossover length was sen-
sitive to differences in soil roughness conditions, allowing aOn agricultural soils, traditional tillage by mouldboard
description of microrelief decay due to rainfall in the tilled ploughing, followed by chisel ploughing, creates the largest
treatments, although better correlations between cumulativelegree of roughness (Kamphorst et al., 2000). Other less
rainfall and the indiceR R and L D were most commonly dominant factors influencing the configuration of soil surface
obtained (Figs. 5, 6 and 7). microrelief may be the number of passes of the tillage tool,

In a review of tillage and rainfall effects on rough- i.e. primary or secondary tillage, soil water content and ag-
ness decay, Zobeck and Onstad (1987) described Randogregate stability.

Roughness degradation caused by rainfall with the equation On bare soil, the main factors that cause roughness de-
RRp=RRoexp (-0.026 P) and reported that this equation ex-cay or levelling should be first, the kinetic energy of rain
plained 76% of the variance among 418 data sets for differ-drops, and second, slaking associated to air entrapment ef-
ent tillage operations and soils. Eltz and Norton (1997) con-fects or differential swelling after sudden wetting. Moreover,
ducted experiments with simulated rain for measuring soilsoil roughness can either decrease or increase during rainfall,
surface microtopography decline using a laser scanning dedepending on both the surface condition and processes oc-
vice under fallow and soybeans. These authors found thaturring on that surface. Surface breakdown processes due to
the decrease in roughness as measured by théex was  kinetic energy and/or slaking are likely to reduce soil rough-
more rapid in the earliest degradation stages tR&nde- ness, whereas erosion processes lean towards roughness in-
cline, after which changed very slowly. Moreover, Eltz and crease because of rill formation (Huang, 1998; Darboux et
Norton (1987) described thRR and! decline versus kinetic  al., 2005). Since these processes may occur simultaneously,
energy of rain by quadratic and exponential relationships, rewith one or the other dominating at different spatial loca-
spectively. tions, the net result mainly affects the rate of change of sur-
face roughness during rainfall. In our case study, no erosion
symptoms were observed on any of the tilled treatments, not
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even in the bare soilBS, treatment, left fallow. Therefore, also may lead to increased side slopes, as mentioned above
no secondary roughness increases by erosion will be takefor the LS index.
into account. However, the big increase in crossover length withdhE

Soil cover by plant canopy and/or cover crop and no tillagetreatment in the maize season (Table 3) when the initial soil
prevents soil surface from raindrop impact, reducing the ratesurface and the stage after 35 mm cumulative rainfall was
of roughness changes. However, plant growth may increaseompared was more difficult to interpret. For a cumulative
soil surface roughness (Mamez-Turanzas et al., 1997) while rain of 35 mm, the ratid/lo can be considered as an outlier,
modifying the configuration of the soil surface microrelief, because of the relative high value of the numerator. Then,
mainly due to interactions between soil surface and root systhe value ofj in the freshly tilled soil surface may have been
tem. underestimated, which would change the shape of the regres-

Again on bare soils, and when slaking is neglected, the desion betweer/lo and cumulative rainfall.
cay or degree or destruction of soil roughness should depend A major problem of the characterization of roughness in
on the initial roughness and on the kinetic energy of rain-our study was the small size of data sets acquired with low
drops. Therefore, under these conditions it may be assumegchnology devices. The randomization process of locat-
that roughness decay will follow first order kinetics, which ing successive small measurement plots for characterizing
means that the diminution of roughness per unit rain amoung given treatment may partly explain the dispersion of the
(or per unit kinetic energy of rain) depends on the degree ofregression functions developed for roughness decay. This
roughness that is still available. As a first approach, this camotwithstanding, our microrelief data sets have been found

be expressed as: to be self-affine in a small range of scales with an upper limit
p matching the size of the largest structural units in the soil
R; = Roe (11)  surface and a lower limit equal to the horizontal resolution

of point heights measurements. Therefore, accuracy and re-
) - . . ,Iproducibility of the roughness indices and fractal parameters
roughr!ess and k is aconstant.descrlblng the soil susceptibils ) 14 pe increased in different ways: i) a large measuring
ity against roughqess destruction. o grid could be used and a higher number of readings could
Our results mainly support the above physical interpreta-pg taken, ii) replicate microplots could be measured on each

tion. Roughness decreased with increased rain at differerwot and on each date, and iii) the same microplot on each
rates in theBS, CT and NT treatments. However, rough- aatment could be used on each date.

ness decay did not always follow negative exponential kinet- The fractal parameter® and/ have been useful to fur-

ics. Various reasons may explain the experimental beha\”o{her guantifying the soil surface configuration and to discrim-

of roughness decay in our case studies, which were fitted anate between soil uses and crop cover. MBavalues were

expor_lential and quz_idratic functions, o!epe_nding_onthe rOthﬁigher in the oats season, which means a more rugged soll
ness index used (Figs. 5, 6 and 7). First, if slaking occurs, Itsurface, even if parameters accounting for vertical roughness,

st](ouldt r((jasf:Jltn:nﬂ? falzisr;[etri rour?hrnessl b;eakgownnghanr can :(ER andL D, did not follow this trend. Also, the relationships
expected 1o € KINElic energy ajone. Second, Crop anfhqyyeeng R and LD versus in the maize and the oats pe-

residue cover modifies the rate of decay in roughness. Alsoriods were not equivalent (see Fig. 3), which is indicative of

less dominant fa_ctors such as soil watercon_tentdurmg tlIIagEt‘jiﬁ‘erences in soil surface configuration properties between
may play a role in roughness decay dynamics. Furthermoret,he WO Cro X

; 4 . p canopies.
maize and oats root systems may modify the soil surface con-
figuration, hence, the roughness decay dynamics in different
ways.

In some instances, roughness indices may slightly increasé Conclusions
with the first rainfall after roughness was increased by tillage.
This initial small increase in roughness was detected for exMicrorelief measurements taken on small plots and consist-
ample in theCT treatment during the maize season, whereing of 225 height measurements showed spatial correlation
the RR index increased from 14.25 to 14.40 mm for rain- after slope and tillage trend removal in a limited range of
falls of 0 and 35mm, respectively (Table 1). Also, in the scales, allowing to estimate two fractal indices, fractal di-
CT treatment during the oats seas®® and LD detected  mension and crossover length.
slight roughness increases between the initial stage with Roughness decay with increasing rainfall was highest
0mm rain and the stage after 50 mm cumulative rain (Ta-for bare soil left fallow and it was not noticeable for no-
ble 2). These effects have been previously reported (Eltz andill soil protected by both plant canopy and crop residue
Norton, 1997; Huang, 1998). Consolidation of loosened soilcover. Roughness decay of conventional tillage and mini-
particles within the largest voids without significant reduc- mum tillage under vegetative cover was in-between those of
tion in largest clods size may originate a denser soil surfacéare soil and no-till. Vertical roughness decay showed a trend
with greater roughness than the freshly tilled soil surface ando be faster under maize than under oats.

whereR;, is the roughness at a certain timeRg,is the initial
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