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Abstract. Changes in soil surface microrelief with cumula-
tive rainfall under different tillage systems and crop cover
conditions were investigated in southern Brazil. Surface
cover was none (fallow) or the crop succession maize fol-
lowed by oats. Tillage treatments were: 1) conventional
tillage on bare soil (BS), 2) conventional tillage (CT ), 3)
minimum tillage (MT ) and 4) no tillage (NT ) under maize
and oats. Measurements were taken with a manual relief
meter on small rectangular grids of 0.234 and 0.156 m2,
throughout growing season of maize and oats, respectively.
Each data set consisted of 200 point height readings, the size
of the smallest cells being 3×5 cm during maize and 2×5 cm
during oats growth periods. Random Roughness (RR), Lim-
iting Difference (LD), Limiting Slope (LS) and two frac-
tal parameters, fractal dimension (D) and crossover length
(l) were estimated from the measured microtopographic data
sets. Indices describing the vertical component of soil rough-
ness such asRR, LD andl generally decreased with cumu-
lative rain in theBS treatment, left fallow, and in theCT and
MT treatments under maize and oats canopy. However, these
indices were not substantially affected by cumulative rain in
theNT treatment, whose surface was protected with previ-
ous crop residues. Roughness decay from initial values was
larger in theBS treatment than inCT andMT treatments.
Moreover, roughness decay generally tended to be faster un-
der maize than under oats. TheRR and LD indices de-
creased quadratically, while thel index decreased exponen-
tially in the tilled, BS, CT andMT treatments. Crossover
length was sensitive to differences in soil roughness condi-
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tions allowing a description of microrelief decay due to rain-
fall in the tilled treatments, although better correlations be-
tween cumulative rainfall and the most commonly used in-
dicesRR andLD were obtained. At the studied scale, pa-
rametersl andD have been found to be useful in interpreting
the configuration properties of the soil surface microrelief.

1 Introduction

The Earth’s topography encompasses a considerable range of
scales. The horizontal scale of lithosphere relief varies from
sizes smaller than millimeters to sizes as large as the planet
with a perimeter in the order of 40 000 km (Huang, 1998;
Lovejoy and Schertzer, 2007). The vertical scale of litho-
sphere relief reaches some 18 km considering fluctuations
between oceanic bed and continental mountains. Therefore,
topography variability on our planet is higher than factors of
over 1010 and 107 in the horizontal and vertical scales, re-
spectively. At the planetary scale, topography remains rela-
tively unchanged except in active volcanic and tectonic areas
(Lovejoy and Schertzer, 2007).

Soil microrelief is referred to as the small scale topo-
graphic variation across a cultivated field (Allmaras et al.,
1966; R̈omkens and Wang, 1986; Huang and Bradford,
1992). Conversely, soil roughness has been defined as “a
measure of variation in surface microtopography” (Huang,
1998). For assessing soil surface microtopography features,
point elevation readings are currently taken with millimeter
to centimeter resolution within a meter scale area. This also
provides an operative definition of soil surface microtopog-
raphy (Huang, 1998; Vidal V́azquez et al., 2005).
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Both landscape topography and soil surface microrelief
are the result of many competing influences. However, un-
like topography at the landscape scale, the microrelief can
change rapidly in agricultural fields in response to tillage op-
erations, erosion, deposition and other less dominant factors.
Moreover, the roughness of the soil surface results from dif-
ferent elements such as individual grains, aggregates, clods,
tillage marks and landscape features that each contribute at
various scale lengths. Conversely, soil roughness can be split
into several components. First, surface variations due to
the spatial distribution of individual grains, aggregates and
clods, define random roughness. Second, systematic differ-
ences in elevation caused by tillage implements such as fur-
rows are referred to as oriented roughness; if concentrated
erosion occurs, rills and gullies also contribute to oriented
roughness. Third, at the field and landscape scales higher or-
der roughness created by the general topographic slope with
its concavities and convexities may be recognized; this type
of roughness is the most interesting to sciences concerned
with topographic or macrorelief scales (Römkens and Wang,
1986).

Soil surface roughness affects many transfer processes on
and across the soil-atmosphere boundary, for example, infil-
tration, runoff, soil detachment by water and wind, gas ex-
change and evaporation. The temporal water storage in mi-
crorelief depressions controls overland flow generation and
runoff pathways (Hairsine et al., 1992; Hansen et al., 1999;
Favis-Mortlock et al., 2000). The quantification of roughness
related parameters such as depression storage is considered
of great relevance and practical importance, because it can
be used to enhance both water conservation and soil conser-
vation.

Soil surface roughness can also act as an erosivity factor at
smaller scales within a microplot, affecting the soil response
to raindrop impact and other erosive forces, and as an erodi-
bility factor at larger scales of the sizes of a plot, a field or a
hillslope, affecting the origin and spatial organization of the
drainage pattern (Merril et al., 2001). This demonstrates the
interaction between the length scale of a physical process on
the soil surface and the scale of roughness components.

Because the random roughness condition is initiated by
the variable disposition of aggregates and clods on the soil
surface roughness, it is associated to disordered microre-
lief (Huang, 1998; Vidal V́azquez et al., 2005). Therefore,
the term “random” only describes non-orderly distribution
of structural unities on the soil surfaces and should not be
misleading, since random roughness is spatially correlated
at short distances (Linden and van Doren, 1986; Huang and
Bradford, 1992; Helming et al., 1998; Eltz and Norton, 1997;
Miranda, 2000; Zribi et al., 2000; Vidal V́azquez et al., 2005,
2006, 2007). This correlation seems to be a usual property
of soil surface random roughness irrespective of soil type
and tillage condition. The range of spatial dependence is of
the same order of magnitude as the largest structural unities,
aggregates and clods, on the soil surface. Above distances

larger than the main structural unities, correlation tends to
disappear.

Oriented roughness can be easily quantified by determin-
istic models, because it depends on slope and/or on a spe-
cific tillage tool (Huang, 1998). In contrast, random rough-
ness analysis has been more challenging, as it should include
a characterization of the spatial structure of microrelief el-
ements with various sizes. Soil surface roughness, however,
has been most frequently described by the random roughness
or the root mean square roughness index (Allmaras et al.,
1966). This index is equivalent to the standard error of point
elevations relative to a reference plane and represents a sta-
tistical measure of vertical topographic fluctuation, implic-
itly assuming that there is no spatial dependence in surface
roughness. But its main shortcoming is that two soil surfaces
with identical RR values may have different topographies
(Römkens and Wang, 1986; Merril et al., 2001).

Furthermore, soil surface roughness, measured asRR, in-
creases as the area extent of point elevation measurements is
increased. Consequently, roughness should be expressed as
a scale-dependent function, not merely as a statistical index
(Huang, 1998). Different approaches have been proposed to
account for the spatial scale. Based on the first order semi-
variogram, i.e., elevation difference measure, Linden and van
Doren (1986) defined two indices: limiting difference (LD)
and limiting slope (LS), describing the vertical component
and the separation length scale of soil surface roughness, re-
spectively. Correlation and spectral density analysis have
been used to quantify roughness and to examine roughness
changes as a function of rain and tillage operations (Currence
and Lovely, 1970; Dexter, 1977).

Fractal models have been used to describe not only the
Earth’s topography (e.g. Mandelbrot, 1983; Lovejoy and
Shertzer, 2007) but also soil microrelief (Armstrong, 1986;
Huang and Bradford, 1992; Eltz and Norton, 1997; Huang,
1998; Miranda, 2000; Vidal V́azquez et al., 2005, 2006,
2007). The term “fractal” is often taken to be synonymous
with “scale-invariance”, the well known property that many
geologic and soil characteristics look the same at all scales.
This is referred to as self-similarity. In a self-similar frac-
tal the factor that characterizes the invariance is indepen-
dent of the direction. However, a fractal is identified as self-
affine when different scaling ratios are found for each inde-
pendent direction. Early studies of Mandelbrot (1985) and
Voss (1985) showed that the height of topography along a lin-
ear track can only be self-affine and not self-similar. By ex-
tension, topographic surfaces are also examples of self-affine
fractals (Vidal V́azquez et al., 2005; Lovejoy and Shertzer,
2007).

Although few studies have addressed the quantification
of soil surface roughness by fractal models, different tech-
niques have been proposed for estimating fractal dimension,
D, from point elevation data sets. Principally, two dif-
ferent categories of fractal models have been applied for
assessing soil microrelief: variational and non-variational
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models (Vidal V́azquez et al., 2005). It should be empha-
sized that non-variational techniques such as tortuosity eval-
uation (Bertuzzi et al., 1990) and Richardson number (Gal-
lart and Pardini, 1996; Pardini and Gallart, 1998; Pardini,
2003) are only appropriate for self-similar surfaces and there-
fore they should not be applied for estimating fractal param-
eters from point elevation data sets, which are self-affine. In
contrast, variational models allow a description of soil sur-
face microrelief from self-affine data sets. Because varia-
tional and non-variational models are not equivalent, results
from both of these types of methods frequently do not agree
(Miranda, 2000; Vidal V́azquez et al., 2005) and cannot be
directly compared.

Two parameters are required to describe the scale de-
pendent roughness function by a variational fractal model,
namely fractal dimension,D, and crossover length,l. Frac-
tal parameters,D and l, account for the multiscale effects
and for the fluctuations of local vertical statistics, respec-
tively (Huang and Bradford, 1992; Eltz and Norton, 1997;
Huang, 1998; Miranda, 2000; Vidal Vázquez et al., 2005,
2007).

Soil surface roughness controls microrelief depression pat-
tern and is clearly relevant to estimate depression storage ca-
pacity (Huang and Bradford, 1990; Kamphorst et al., 2000;
Darboux et al., 2005). Therefore, the scale dependence of
soil microrelief has implications in modeling this parameter.
However, most runoff and erosion processes are not affected
by the short-distance correlation so they could be quantified
by a single parameter, without taking into account these scale
dependent function. In other words, fractal-based roughness
parameters are not necessarily more important than other in-
dicators, based on statistics or on geostatistics.

This paper aims to clarify the relevance of the fractal ap-
proach for soil surface roughness evaluation. It extends pre-
vious studies on data sets acquired with low technology de-
vices, characterizing large scale surface features. The main
focus is on soil management effects over initial roughness
created during tillage operations and on roughness destruc-
tion and decay by cumulative rainfall under a crop succes-
sion.

2 Material and methods

2.1 Site, soil and tillage operations

This study was conducted at the agricultural research station
of the University of the State of Santa Catarina (UDESC)
in Lages, Santa Catarina State, Brazil, latitude 27◦49′S, lon-
gitude 50◦20′W and mean altitude 937 m a.s.l. The climate
was classified as Cfb type according to Köppen, with an av-
erage yearly rainfall and erosivity of about 1600 mm and
6000 MJ mm ha−1h−1, respectively (Bertol et al., 2002a).
The experimental area has been used for water erosion stud-
ies under natural rainfall since November 1988. The data sets

for our study were acquired between May 2003 and October
2004.

The studied soil with a moderate A horizon and a silty-clay
sedimentary bedrock, was classified as an Inceptisol (Soil
Survey Staff, 1993). The topsoil (0–20 cm depth) is clay tex-
tured, with 142 g kg−1 sand, 437 g kg−1 silt and 421 g kg−1

clay contents. Bulk density in this layer was 1.28 kg dm−3.
Soil erodibility was 0.0115 t ha h ha−1 MJ−1 mm−1 (Bertol et
al., 2002b) and the mean slope of the experimental plots was
0.10 m/m.

Field experiments were conducted during the growth
period of two successive crops, maize and oats, using
3.5 m×22.1 m erosion plots. Tillage treatments were as fol-
lows: 1) ploughing and two times harrowing on bare soil,
as a control treatment (BS), 2) conventional tillage which
consisted also of ploughing followed by two successive har-
rowing (CT ), 3) minimum tillage which consisted of chisel
ploughing and harrowing (MT ) and 4) no-tillage over pre-
vious crop residues (NT ). Tillage systems were in a ran-
domized design, without replications. TreatmentsCT , MT

and NT were cropped first to maize (Zea mays) and after
to oats (Avena strigosa), both crops being a part of a multi-
ple rotation system. Cumulative rain amounted to 229 mm
and 350 mm in the growth periods of maize and oats, respec-
tively. A detailed description of tillage operations and exper-
imental setup was presented elsewhere (Bertol et al., 2002,
2006).

Operations with different tillage implements produced soil
surfaces visibly different between treatments. In the conven-
tionally tilled treatments (BS andCT ) as well as in the min-
imum tillage treatment (MT ) a range of aggregates and clod
sizes was observed. These structural elements were more or
less evenly distributed in theBS andCT treatments. How-
ever, inMT treatment rougher areas of disturbed soil due
to chisel ploughing were distinct from undisturbed smoother
areas between the chisel rows. Furthermore,CT andMT

treatments were partly covered by previous crop residues
that contributed to microrelief, because they were not to-
tally incorporated into the soil by ploughing. Therefore, par-
tial residue soil cover was larger inMT than inCT treat-
ment. UnderNT soil surface microrelief consisted of undu-
lated land without tillage marks, fully protected by free crop
residues, covering the entire soil surface.

2.2 Field data sets and trend removal

Soil surface microrelief was measured five times in the maize
growth season and four times in the oats growth season. The
first measurement was made just at sowing time; then succes-
sive readings were taken at about 15 days apart throughout
each crop growth period.

Soil microrelief was measured with a pin meter, which
held 40 calibrated needles. The interval between surface el-
evation readings made in the maize growth period was set
at 3 cm, thus extending over a length of 117 cm. However,
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measurements in the oats season were performed with nee-
dles spaced 2 cm apart, along 78 cm transects. In both cases 5
profiles were taken per plot, 5 cm apart from each other. This
gave 200 readings at any location. Therefore, the sampling
scheme was a 3 cm×5 cm rectangular grid when the soil was
cropped to maize and it was a 2 cm×5 cm grid in the oats sea-
son. The area of the roughness experimental plot was 0.234
and 0.156 m2 in the maize and oats crops, respectively. For
each transect, the pin position was registered photographi-
cally and later digitized to record readings of 40 calibrated
needles, as described by Wagner and Yiming Yu (1991).

Manual pinmeters are destructive devices. Thus, different
microplots were used for surface roughness measurements
at increasing amounts of cumulative rainfall in successive
dates. Within each tillage treatment, experimental plots were
located as close as possible to minimize the effect of spatial
variability between them.

Microrelief data sets were corrected for slope and tillage
marks. Correction for slope was obtained using the plane of
best fit to the 200 point elevation readings of each plot. Ad-
ditionally, non-directional random roughness surfaces were
obtained by removing row and column effects, as proposed
by Currence and Lovely (1970). Therefore, all the indices in
this study were estimated for data sets representing the ran-
dom roughness condition.

The configuration of soil topography was simple described
by a set of points of knownx-, y- andz-coordinates. The ele-
vation values given as a function of the horizontal coordinate
system provide a numerical representation of the surface and
constitute a digital elevation model (DEM). From each ex-
perimental data set of soil surface microtopography a DEM
was obtained after trend removal, representing the random
roughness condition.

2.3 Statistical and geostatistical indices

Besides quantifying of fractal parameters, in this study three
traditional roughness indicators were assessed: a statistical
index, random roughness (RR), and two geostatistical in-
dices estimated from the first order semivariogram of point
elevation differences, referred to as “limiting difference”
(LD) and “limiting slope” (LS).

In accordance with Currence and Lovely (1970) and Kam-
phorst et al. (2000),RR was estimated simply as the stan-
dard deviation of height readings after correction for slope
and tillage marks. Therefore, in this studyRR was assessed
without a log-transformation of the residual point elevation
data and without removing extreme values, as initially pro-
posed by Allmaras (1966). Random Roughness was calcu-
lated as:

RR =

√√√√√ n∑
i=1

(Zi − Z)2

n
(1)

whereZi andZ are point elevation and mean point elevation,
respectively, andn is the number of experimental points.

LD andLS quantification is based on the first-order vari-
ogram of mean absolute differences in elevation (1Zh) sep-
arated by a distance vector,h. Following Linden and van
Doren (1986), the first step in estimatingLD andLS consists
in the computation of the mean absolute elevation difference,
as:

1Zh =

n∑
i=1

|Zi − Zi+h|

n
(2)

whereZi andZi+h are elevations at positions located a hor-
izontal distanceh apart andn is the number of data points.
Therefore, for a two-dimensional data set,Zi+h corresponds
to point heights located in a disk of radii h around pointi.

Then, parameters,a andb, of the linear relationship be-
tween 1/1Zh and 1/1h are estimated:

1

1Zh

= a +
b

1Xh

(3)

ParametersLD andLS are quantified, respectively, as:

LD =
1

a
(4a)

LS =
1

b
(4b)

The limiting difference,LD, is mathematically interpreted
as the value of1Z whenh approaches large spatial intervals.
The limiting slope,LS, is the slope or1Z/1h, whenh ap-
proaches zero. This analysis is essentially independent of
the minimum spacing interval because of the linear nature of
Eq. (3).

In estimating roughness indices based on geostatistical
concepts (LD andLS), surface microrelief was assumed to
be statistically homogeneous, which implies that statistical
properties do not depend on the position, but only depend on
the spatial separation,h.

2.4 Fractal dimension and crossover length

A fractal analysis was performed on the soil microrelief data
sets using a variational method, thus assuming a self-affine
model for microrelief description. This method is based on
a fractional Brownian motion (fBm) model to calculate the
Hurst exponent,H , from which the fractal parametersD and
l are obtained.

The semivariance function or semivariogram,γ (h), was
selected as structural o scale-dependent function, because of
the rectangular shape of the sampling grid (Miranda, 2000).
Under these conditions, the semivariogram is more accu-
rate and gives more consistent results than other structural
functions such as the root-mean square (RMS) algorithm
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(Malinverno, 1990; Miranda, 2000). The semivariance can
be estimated from sampling data as:

γ × (h) =
1

2n

n∑
i=1

[Z(xi + h) − Z(xi) ]
2 (5)

whereγ×(h) is known as the experimental semivariogram,
n is the number of pairs of sample points of observations of
the values of the studied attribute,Z, between any two places
x andx+h, separated by a distanceh, Z(x) is the elevation
at locationx.

Data sets were checked for the intrinsic hypothesis of the
regional variable theory. After trend removal the two condi-
tions defining the requirements for the intrinsic hypothesis,
i.e., stationarity of differences and variance of differences
were verified.

The use of theγ (h) function as the roughness measure
gives a direct relationship between an elevation difference
term and the separation length scale,h. This is an important
step in fractal analysis as the estimated values of fractal pa-
rameters,D andl from soil topography surfaces or transects,
may show some bias depending not only on the assumptions
made in formulating the fractal model but also on the algo-
rithm which is used (Miranda, 2000; Vidal Vázquez et al.,
2005, 2006).

Burrough (1983 a,b) first used theγ (h) structural func-
tion in soil science. The semivariance function for estimat-
ing fractal dimension of soil height tracks was introduced
by Armstrong (1986) and later on applied to various surface
types (Carr and Benzer, 1991; Davis and Hall, 1999), includ-
ing agricultural soils (Huang and Bradford, 1992; Miranda,
2000; Vidal V́azquez et al., 2005, 2006, 2007).

The fractal model used for soil surface roughness quantifi-
cation was the fractal Brownian motion model (fBm). The
elevation difference of a fBm is given by:

(1Zh) ∝ hH , 1 > H > 0 (6)

where the exponent of the incremental function,H , is the
Hurst exponent. The power model, which describes a self-
similar fractal, corresponds to a phenomenon with an unlim-
ited capacity for spatial dispersion and with an a priori unde-
fined variance.

In a fractal Brownian motion model (Eq. 6), the Hurst ex-
ponent is allowed to vary from 0 to 1 (Huang and Bradford,
1992). A fBm is an expansion of the random walk or Brown-
ian model (Bm) characterized by Hurst exponentH=0.5, first
proposed by Mandelbrot and van Ness (1968). Conversely,
the random walk or Bm model can be considered an especial
case of the fBm.

For a fractal transect the semivariance function, accord-
ing to Mandelbrot (1983, p. 353), is a function of the spatial
separation:

γ (h) ∝ h2H (7)

The fractal dimension,D, of a fractal surface or profile repre-
sented by its semivariogram can be estimated from the slope
of the straight line portion of the semivariance,γ (h), ver-
sus the lag distance,h, when plotted on a double logarithmic
scale.

For a two dimensional data set of point heights, the fractal
dimension,DSMV, is computed from the Hurst exponent,H ,
obtained by Eq. (7), and the Euclidean dimension (d=3) as:

DSMV = 3 − H (8)

In addition to the commonly used fractal dimension,D, pa-
rameter, the fractal roughness model requires a second pa-
rameter to define the relative position of the straight line of
the variogram plotted on a log-log scale. Huang and Brad-
ford (1990) defined this parameter as the crossover length,l,
and it should be used together withD for characterizing soil
surface roughness at small distances. The semivariance func-
tion of the fMb fractal model may be described as a function
of both, crossover length,l, and the exponent,H , as:

γ (h) = l2−2H h2H (9)

In Eq. (9) γ (h)=h2 when h=l, which explains the origin
of the term crossover length, first proposed by Huang and
Bradford (1992) for soil microrelief quantification.

The crossover length,l, may be estimated from the slope
of the straight line portion of a variogram by:

lSMV = exp[(a/2 − 2H)] (10)

wherea, is the intercept of the straight line of the semivari-
ance log-log plot at the y-axis.

It follows that characterizing soil surface roughness by a
fractal fBm model requires two parameters, fractal dimen-
sion,D, and crossover length,l, as shown by theoretical con-
siderations (Huang and Bradford, 1992) and by experimental
results (Huang and Bradford, 1992; Eltz and Norton, 1997;
Miranda 2000; Vidal et al., 2005).

3 Results and discussion

3.1 Statistical and geostatistical roughness indices

From the various indicators that appear in the literature to
characterize soil surface microrelief, the statistical index ran-
dom roughness and the two indices based on geostatistical
concepts, limiting difference and limiting slope, were se-
lected. Random roughness index was chosen because it is
the most widely used microrelief index and also because of
its performance for modelling water storage in soil microre-
lief depressions (Kamphorst et al., 2000). The reasons to
selectLD andLS were: first thatLD index is based on ele-
vation differences at large spatial intervals, and second, that
LS index can provide insight into the configuration proper-
ties of the soil surface at small scale intervals.
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Table 1. Sampling date, cumulative rainfall, random roughness
(RR), limiting difference (LD) and limiting slope (LS) during
the maize season for different tillage treatments. (BS=bare soil,
CT =conventional tillage,MT =minimum tillage,NT =no-tillage).

Tillage Date Rain RR LD LS

(mm) (mm) (mm)

BS 11-14-2003 0 14.49 18.11 0.069
11-21-2003 35 11.15 13.56 0.088
12-08-2003 77 10.97 14.19 0.055
12-19-2003 205 8.00 10.95 0.025
05-01-2004 229 6.00 7.35 0.029

CT 11-14-2003 0 14.25 18.13 0.064
11-21-2003 35 14.40 16.78 0.108
12-08-2003 77 10.02 13.06 0.053
12-19-2003 205 8.23 10.06 0.064
05-01-2004 229 8.62 10.37 0.067

MT 11-14-2003 0 13.00 15.79 0.142
11-21-2003 35 11.36 17.72 0.040
12-08-2003 77 8.41 10.98 0.058
12-19-2003 205 7.13 11.20 0.023
05-01-2004 229 6.63 8.97 0.032

NT 11-14-2003 0 5.36 5.74 0.090
11-21-2003 35 4.51 5.31 0.053
12-08-2003 77 3.75 4.24 0.032
12-19-2003 205 4.89 6.23 0.022
05-01-2004 229 4.64 6.02 0.026

Table 2. Sampling date, cumulative rainfall, random roughness
(RR), limiting difference (LD) and limiting slope (LS) during
the oats season for different tillage treatments. (BS=bare soil,
CT =conventional tillage,MT =minimum tillage,NT =no-tillage).

Tillage Date Rain RR LD LS

(mm) (mm) (mm)

BS 08-18-2004 0 14.97 17.04 0.206
08-31-2004 50 11.81 11.56 0.090
09-17-2004 153 9.22 9.82 0.213
10-05-2004 350 5.77 8.79 0.013

CT 08-18-2004 0 8.02 9.66 0.137
08-31-2004 50 8.90 10.66 0.130
09-17-2004 153 8.41 9.73 0.144
10-05-2004 350 4.56 5.34 0.058

MT 08-18-2004 0 7.40 8.70 0.126
08-31-2004 50 6.36 7.75 0.112
09-17-2004 153 7.63 8.72 0.119
10-05-2004 350 5.32 6.34 0.070

NT 08-18-2004 0 12.12 14.25 0.135
08-31-2004 50 11.90 14.06 0.264
09-17-2004 153 11.22 13.14 0.144
10-05-2004 350 11.65 13.54 0.055
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Figure 1. Random roughness (RR) versus limiting difference (LD) indices as recorded 

during maize and oats seasons. 
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Fig. 1. Random roughness (RR) versus limiting difference (LD)
indices as recorded during maize and oats seasons.

Tables 1 and 2 listRR, LD and LS values estimated
throughout the growth period of maize and oats, respectively.
Both RR and LD were sensitive to vertical differences in
roughness between experimental plots. Taking into account
the four tillage treatments,RR varied between 3.75 mm and
14.49 mm during the maize season and ranged from 4.56 mm
to 14.97 mm during the oats season. Limiting difference
values tended to be slightly higher thanRR values as they
fluctuate from 4.24 mm to 18.11 mm and from 5.34 mm to
17.04 mm in the maize and oats growth periods, respectively.

The initial RR values for surfaces with 0 mm rain in the
maize season were 14.49, 14.25, 13.00 and 5.36 mm inBS,
CT , MT andNT treatments, respectively. A similar trend
was observed forLD initial values. Therefore, initial surface
roughness evaluated by indicesRR andLD in the maize sea-
son were similar forBS, CT , andMT treatments. Hence,
under maize, the NT treatment had the lowest initialRR and
LD values (Table 1). In the oats season, however,RR values
were 14.97, 8.02, 7.40 and 12.12 mm forBS, CT , MT and
NT treatments, respectively. So, under oats, theBS treat-
ment had higher initial values of the vertical component of
roughness as estimated byRR andLD indices thanCT and
MT treatments (Table 2). The effect of tillage on initial sur-
face roughness depends on the tillage tool, the number of
passes, and on other minor factors such as tractor speed, clay
content and soil water content. In our case study, additional
microrelief levelling during manual sowing of oats may ex-
plain the divergences between initial roughness ofBS and
CT treatments. Also, amount and management of previous
crop residue may influence initial soil roughness. Notewor-
thy, in theNT treatment under oats values ofRR, LD and
l indices were high throughout the crop period. Moreover,
with NT , the initial roughness under oats was more than
two-fold higher than in the respective treatment under maize.
This illustrates the effect of large amounts of previous crop
residues, which may contribute to the formation of remark-
able roughness on the soil surface.
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The relationship betweenRR andLD is shown in Fig. 1.
In our study the correlation coefficients between these in-
dices were 0.944 and 0.943 for the 20 data sets acquired
during the maize season and the 16 data sets acquired in
the oats season, respectively. Both relationships were lin-
ear and significant (P<0.01). Linden and van Doren (1986)
and Bertuzzi et al. (1990) also found a linear relationship be-
tween these two indices.

The limiting difference,LD=1/a, in Eq. (4a) is the asymp-
tote value of the first-order semivariance, i.e. the sill of the
first-order semivariogram. Indeed,RR corresponds to the
square root of the sill of the second order semivariogram.
Consequently strong correlation coefficients betweenRR

and LD are expected. However, distinct regression equa-
tions in the maize and oats seasons in our study together with
previous results (Linden and van Doren, 1986; Bertuzzi et
al., 1990) suggest that there is not a general relationship be-
tween these two indices, in spite of its strong dependence
for a given specific experimental condition. AlthoughRR

andLD are indicators of the height distribution of surface
microrelief, they do not account for the spatial component,
i.e. mutual location of higher and lower points. Spatial struc-
ture of the microtopography is critical for a thorough charac-
terization of the configuration properties of the soil surface
and for depressional storage evaluation.

Linden and van Doren (1986) stated thatLS is soil surface
slope at small intervals, because1Z/1h would approachLS

when1h approaches zero. Therefore,LS should give infor-
mation on the side slopes of structural units, such as large
aggregates or clods, at small intervals. Moreover, on an ide-
alized soil surface, maximum roughness depends on the side
slope of the structural elements protruding the soil surface.
The magnitude ofLS was small when compared with those
of RR or LD, as this index ranged from 0.013 to 0.264 in the
oats season and from 0.022 to 0.142 in the maize season. In
our study cases no significant correlation was found between
LD or RR andLS.

Because of the linear nature of Eq. (3),LD andLS are
essentially independent of the minimum sampling interval,
which represent an advantage for analyzing data sets with
various sampling grids. However, maximum soil surface
roughness as assessed by theLD or theRR indices is in-
dependent of the size of the structural elements at the soil
surface, which means that two different surface configura-
tions may result in the sameLD or RR values (Merril et al.,
2001). This continues to be a major problem in characteriz-
ing soil surface microtopography.
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Figure 2. An example of the relationship between the structural function ��K� plotted on 

a log-log diagram and the scale. 
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Fig. 2. An example of the relationship between the structural func-
tion γ (h) plotted on a log-log diagram and the scale.

3.1.1 Fractal parameters: fractal dimension and crossover
length

The main results of fractal analysis during maize and oats
growth periods are listed in Tables 3 and 4, respectively.
These include: sampling date, cumulative rainfall, fractal di-
mension and its standard error, crossover length and its stan-
dard error, coefficients of determination, upper cutoff of the
straight line portion of the semivariogram plotted on a log-
log scale and number of data points in this first segment of
the semivariogram.

The first portion of the structural functionγ (h), when plot-
ted on a log-log diagram, showed a similar trend in the 36
data sets studied, indicating the existence of a correlation be-
tween semivariance and scale at small scale intervals. An
example is shown in Fig. 2. The graphed results show a
straight-line portion of the semivariogram at short lag dis-
tances with a step slope and then a second portion, which
could be approximately modelled by a horizontal sill, so that
in this segment correlation between the structural function
and distance in general is absent.

A self-affine model may quantify the first straight-line por-
tion of the semivariogram. Thus, stable estimates of fractal
parameters,D and l, could be obtained only from the first
segment of the structural functions,γ (h), before the scale
breaks in slope. This break in scale is mainly related with
the size of the structural units, aggregates or clods, at the
soil surface, consistent with previous work on soil surfaces
recorded by pinmeter (Miranda, 2000; Vidal Vázquez et al.,
2005, 2006) and by laser scanning (Huang and Bradford,
1992; Eltz and Norton, 1997; Davis and Hall, 1999; Vidal
Vázquez et al., 2005).

Fitting the first straight-line portion of the structural func-
tion, γ (h), has been recognized as a critical step in frac-
tal analysis when a self-affine fractional Brownian model is
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Table 3. Sampling date, cumulative rainfall, fractal parameters (D andl) with respective standard errors (S.E.), coefficients of determination
(r), upper limit of self-affine behaviour (U.l.) and number of data couples for fitting the first straight line portion of the semivariogram (n)
during the maize season for different tillage treatments. (BS=bare soil,CT =conservation tillage,MT =minimum tillage,NT =no-tillage).

Tillage Date Rain (mm) D l(mm) r U.l. (mm) n

BS 11-14-2003 0 2.76±0.06 7.57±2.42 0.972 151.9 5
11-21-2003 35 2.60±0.23 3.37±4.21 0.924 82.6 3
12-08-2003 77 2.75±0.02 5.31±0.61 0.996 113.3 4
12-19-2003 205 2.56±0.07 1.10±0.31 0.990 113.3 4
05-01-2004 229 2.64±0.07 1.24±0.30 0.986 113.3 4

CT 11-14-2003 0 2.86±0.01 8.87±0.64 0.995 151.9 5
11-21-2003 35 2.53±0.12 1.80±1.06 0.977 113.3 4
12-08-2003 77 2.67±0.13 2.70±1.62 0.944 113.3 4
12-19-2003 205 2.62±0.07 1.37±0.39 0.982 151.9 5
05-01-2004 229 2.73±0.03 2.30±0.28 0.993 151.9 5

MT 11-14-2003 0 2.68±0.07 4.73±1.85 0.976 151.9 5
11-21-2003 35 2.86±0.05 9.49±2.56 0.915 215.2 7
12-08-2003 77 2.76±0.05 4.29±1.05 0.968 215.2 7
12-19-2003 205 2.67±0.22 2.99±3.02 0.903 82.6 3
05-01-2004 229 2.75±0.09 3.80±1.55 0.954 113.3 4

NT 11-14-2003 0 2.75±0.25 2.34±2.21 0.816 82.6 3
11-21-2003 35 2.87±0.03 2.72±0.32 0.970 151.9 5
12-08-2003 77 2.72±0.19 1.16±0.67 0.899 82.6 3
12-19-2003 205 2.74±0.05 1.44±0.27 0.970 215.2 7
05-01-2004 229 2.61±0.14 0.69±0.26 0.956 113.3 4

used. In our case study the lower cutoff limits of self-affinity
were about the same magnitude as the distance between the
pinmeter needles, i.e. 30 and 20 mm for data sets acquired
during maize and oats seasons, respectively. The upper cutoff
limits varied between 82.6 mm and 215.2 mm in the maize
season and between 82.6 mm and 151.8 mm in the oats sea-
son (Tables 3 and 4). The upper limits in this study were
similar to those of a previous case study, where the semivar-
iogram algorithm was applied (Vidal V́azquez et al., 2007).
However, the upper cutoff limits were lower than those previ-
ously estimated with the root-mean-square (RMS) algorithm
(Vidal Vázquez et al., 2006, 2007).

Because the distance at which scales break, when theγ (h)

structural function is used, approximately matches the char-
acteristic size of the larger clods, residue fragments or in
general structural elements on the soil surface, this distance
has also been regarded as a fractal parameter of considerable
interest. This scale has been referred to as the correlation
length (Vidal V́azquez et al., 2006).

In general, linear relations between structural function and
scale covering at least two orders of magnitude are required
for estimating the fractal dimension,D, with low standard
error values (Miranda, 2000). But in our study cases, as be-
fore quoted, the range of self-affinity was between a lower
cutoff of about 20 to 30 mm and an upper cutoff of about
82.6 to 215.2 mm. A millimetric grid resolution acquired by
laser scanning would enhance the straight line portion of the

semivariogram on a log-log plot against the scale (Miranda,
2000; Vidal V́azquez et al., 2005). Furthermore, in each of
the 36 surfaces studied, the ratio (l2/l1) between the upper
(l2) and lower (l1) cutoffs of the structural function,γ (h),
largely exceeds 21/D, which is the minimal condition to ac-
cept an experimentalD value over a range of fractal self-
affinity (Pfeifer and Obert, 1989).

Accuracy in fitting a power law will depend essentially on
the number of data couples of the straight line portion of the
structural function,γ (h), versus scale,h. The results listed
in Tables 3 and 4 show that the linear regression was fitted
with 3 to 7 and 3 to 5 couples of data in the maize and oats
seasons, respectively. Vidal Vázquez et al. (2006) used the
root-mean-square algorithm (RMS) to estimate fractal pa-
rameters,D andl, from a sampling grid with 225 elevation
points and 784 cm2 in surface and the straight line portions
of the structural functions were also described by a com-
parable small number of data couples. However, a 1.82 m2

sampling grid with 3025 height data points yielded at least 7
data couples to estimate the straight line section of two struc-
tural functions, root mean square,RMS, and semivariance,
γ (h) (Vidal Vázquez et al., 2007). Therefore, the main lim-
itation of fractal analysis for assessing changes in soil sur-
face roughness may be the number of elevation data points
that are recorded in each observation. Large data sets are
required for a good approximation in fitting the power law
from which fractal dimension,D, and crossover length,l, are
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Table 4. Sampling date, cumulative rainfall, fractal parameters (D andl) with respective standard errors (S.E.), coefficients of determination
(r), upper limit of self-affine behaviour (U.l.) and number of data couples for fitting the first straight line portion of the semivariogram (n)
during the oats season for different tillage treatments. (BS=bare soil,CT =conservation tillage,MT =minimum tillage,NT =no-tillage).

Tillage Date Rain (mm) D l(mm) r U.l. (mm) n

BS 08-18-2004 0 2.83±0.09 11.59±6.12 0.921 82.6 3
08-31-2004 50 2.95±0.08 10.78±4.32 0.542 82.6 3
09-17-2004 153 2.98±0.02 8.73±0.90 0.559 82.6 3
10-05-2004 350 2.55±0.09 0.44±0.10 0.978 151.8 5

CT 18-08-2004 0 2.76±0.11 3.64±1.90 0.914 113.3 4
08-31-2004 50 2.79±0.15 3.43±2.11 0.891 82.6 3
09-17-2004 153 2.75±0.13 3.45±2.07 0.903 113.3 4
10-05-2004 350 2.77±0.19 2.53±1.88 0.845 82.6 3

MT 08-18-2004 0 2.86±0.07 5.49±1.78 0.877 151.8 5
08-31-2004 50 2.81±0.06 5.22±1.65 0.951 113.3 4
09-17-2004 153 2.79±0.09 4.53±1.88 0.930 113.3 4
10-05-2004 350 2.73±0.11 1.69±0.67 0.953 82.6 3

NT 08-18-2004 0 2.77±0.22 7.73±8.98 0.823 82.6 3
08-31-2004 50 2.74±0.26 7.34±10.44 0.801 82.6 3
09-17-2004 153 2.88±0.15 9.47±6.92 0.736 82.6 3
10-05-2004 350 2.81±0.11 8.27±4.85 0.876 113.3 4

estimated. Indeed, the available couple of data for fitting the
power law in the first straight line part of theγ (h) structural
function increased when data sets measured by non-contact
laser scanning with a resolution in the order of millimeters
were available (Miranda, 2000; Vidal Vázquez, 2005).

Standard errors of fractal dimension and crossover length
calculated by the semivariogram method are also listed in Ta-
bles 3 and 4 for data sets acquired during the maize and oats
seasons, respectively. Standard errors in estimatingD varied
between 0.02 and 0.25 under maize and between 0.02 and
0.26 under oats. Standard errors in estimatingl ranged from
0.26 mm to 4.21 mm and from 0.10 mm to 10.44 mm under
maize and oats, respectively. Therefore, standard errors in
crossover length may be as high as its estimated values, or
even higher. Vidal V́azquez et al. (2006) analyzed data sets
recorded by pinmeter with a comparable small size, i.e. 225
height readings per plot, using the RMS algorithm, and found
D standard errors being in the range from 0.008 to 0.023
and l standard errors being in the range from 0.006 mm to
1.040 mm. These results indicate that the RMS algorithm re-
duces errors in fractal parameters estimation when compared
with the semivariogram algorithm by a factor of the order of
one magnitude. Consequently, the use of square sampling
grids instead of rectangular ones is recommended for data
sets with a small number of data points, as those recorded by
pinmeter.

Coefficients of determination for the straight-line portion
of theγ (h) structural function were between 0.816 and 0.996
and between 0.542 and 0.978 for data sets acquired dur-
ing the maize and oats seasons (Tables 3 and 4), respec-
tively. The results obtained with the RMS algorithm, from

225 height readings, by Vidal V́azquez et al. (2006) were
more precise, as the respective coefficient of determination
varied between 0.972 and 1.000.

Fractal dimension values ranged from 2.53 to 2.87 and
from 2.55 to 2.98 in the maize and oats seasons, respectively.
Therefore, the 36-microrelief data sets studied showed anti-
persistent features (D>2.5), also in accordance with previ-
ous results of fractal parameters estimated in random mi-
crorelief data sets, obtained after correction for slope and
tillage marks (Miranda, 2000; Vidal V́azquez et al., 2005,
2006, 2007).

The crossover length values estimated by theγ (h) struc-
tural function varied from 0.69 mm to 9.49 mm and from
0.44 mm to 11.59 mm under maize and oats, respectively.
The magnitude ofl values is also consistent with previous
works on data sets acquired under field conditions (Vidal
Vázquez et al., 2005, 2006, 2007). These results clearly
indicate a larger variation in scale of the crossover length,
when compared with the fractal dimension as maximum dif-
ferences between experimental data sets of this later frac-
tal parameter were of 0.31 units and 0.40 units under maize
and oats, respectively. Therefore, values of crossover length
show a much greater sensitivity to changes in microrelief
than the fractal dimension. This reinforces the relevance of
the crossover length parameter as a discriminator of vertical
differences in roughness.

For a microrelief model based on fractal concepts, the sig-
nificance of the crossover length should be emphasized as it
allows differentiation between various degrees of soil rough-
ness, whereas the most known fractal dimension would be an
indicator of the spatial configuration of soil microtopography
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Figure 3. Crossover length (l) versus limiting difference (LD) as recorded during maize 

and oats seasons.  
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Fig. 3. Crossover length (l) versus limiting difference (LD) as
recorded during maize and oats seasons.

(Huang and Bradford, 1992). In quantifying soil surface
roughness, the fractal dimension,D, can be taken as a rela-
tive measure of the spatial distribution of different size struc-
tural elements on the soil surface (Huang, 1998). However
fractal dimension,D, does not provide information on rough-
ness vertical component. Therefore, the fractal dimension as
a descriptor of horizontal variations of soil roughness should
be used together with an additional index describing differ-
ences in roughness height for a thorough evaluation of soil
microtopography (Huang, 1998; Vidal Vázquez et al., 2006).

The fractal parameter crossover length,l, and the geosta-
tistical index limiting difference,LD, were compared, be-
cause both indices are thought to stand for the vertical com-
ponent of soil surface roughness (Eltz and Norton, 1997;
Huang, 1998). Figure 3 shows the relationship betweenl

andLD. Correlation coefficients were 0.478 and 0.686 for
the 20 data sets acquired in the maize season and the 16 data
sets acquired in the oats season, respectively (P<0.05).

Again, LD defines the vertical component of soil rough-
ness based on mean absolute elevation differences at rela-
tively large distances by the sill of the first-order variance.
However, l represents the intersect of theγ (h) structural
function with the y-axis on a log-log scale. Therefore, the
crossover length parameter is rather a measure of nugget ef-
fect or discontinuity at small distances, differing from the
sill or variance, which gives vertical fluctuation statistics. In
fact, the magnitude of the discontinuity at small distances
depends on the vertical statistics, but it may depend also on
the horizontal variation of soil roughness. The relationship
betweenl andLD in Fig. 3 was distinct in the maize and
oats seasons, pointing to differences in surface configuration
between these two experimental periods.

Crossover length and fractal dimension values estimated
during the two successive growth periods showed a signif-
icant correlation (P<0.05), as shown in Fig. 4. Therefore,
theD value showed a trend, to increase asl increased, which
is an expected result, given the dependence between these
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Figure 4. Crossover length parameter (l) versus fractal dimension (D) as recorded 

during maize and oats seasons. 
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Fig. 4. Crossover length parameter (l) versus fractal dimension (D)
as recorded during maize and oats seasons.

parameters in Eq. (9). A similar relationship betweenD and
l was also found in previous studies (Vidal Vázquez et al.,
2006, 2007).

Moreover, during the maize seasonl and D were sig-
nificantly correlated (P<0.05) for each of the four study
treatments as the respective correlation coefficients ranged
from R2=0.71 toR2=0.81. Likewise,l andD were signif-
icantly correlated (P<0.05) in three out of four treatments
during the oats season, as the respective correlation coeffi-
cients ranged fromR2=0.71 toR2=0.90; in this case the ex-
ception was theCT treatment. So, differentD andl values
were associated with different soil tillage systems. Conse-
quently, the couple fractal dimension and crossover length
appear to be a pertinent descriptor of soil roughness.

3.2 Tillage, crop cover and rainfall effects on soil rough-
ness decay

Overall, roughness indicesRR andLD decreased during the
growth periods of maize and oats, as a function of cumula-
tive rainfall, in the tilled treatments, either left fallow,BS, or
under vegetative cover,CT andMT , as shown in Tables 1
and 2. Crossover length in general also decreased with cu-
mulative rain, as shown in Tables 3 and 4. However, the
roughness decay during maize and oats seasons was faster in
theBS treatment than in theCT andMT treatments. Fur-
thermore,RR, LD and l indices, in general, were not sub-
stantially affected by cumulative rain in theNT treatment
under maize and oats, whose surface was protected by pre-
vious crop residues. Therefore, because no changes are in-
duced by rainfall in no-till systems with various quantities of
crop residues, one single observation along the crop season
allowed characterization of soil surface roughness.

Regression equations were developed to evaluate the rela-
tionship between roughness decay as quantified byRR, LD

and l indices and cumulative rainfall forBS, CT andMT

treatments, presented in Figs. 5, 6 and 7. The independent
variable was the ratio between the values of an index for
a given cumulative rainfall amount relative to the value of
that index for the initial surface, instead of the estimated row
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 38 

 

Figure 5. Random Roughness (RR), Limiting Difference (LD), and crossover length 

parameter (l), as a function of cumulative rainfall for bare soil conventionally tilled 

(BS). 
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Fig. 5. Random Roughness (RR), Limiting Difference (LD), and
crossover length parameter (l), as a function of cumulative rainfall
for bare soil conventionally tilled (BS).

values listed in Tables 1 to 4. These equations had a quadratic
or an exponential negative shape depending on the index and
in all cases were fitted to honor the initial value for 0 mm
rain. Therefore, the fitted general equation for quadratic
and exponential roughness decrease werey=ax2

− bx+1
andy=exp.(−ax), respectively, where y is the proportion of
roughness relative to its initial value,x is cumulative rainfall
anda andb are regression parameters.
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Figure 6. Random Roughness (RR), Limiting Difference (LD) and crossover length 

parameter (l), as a function of cumulative rainfall, under maize and oats with 

conventional tillage (CT). 

 

 

y = -9E-06x
2
 + 0.0018x + 1

R
2
 = 0.987

y = 8E-06x
2
 - 0.0036x + 1

R
2
 = 0.882

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150 200 250 300 350 400

Cummulative precipitation (mm)

R
R

/R
R

0

Maize

Oats

 

y = -3E-06x
2
 - 0.0001x + 1

R
2
 = 0.271

y = 1E-05x
2
 - 0.0036x + 1

R
2
 = 0.935

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150 200 250 300 350 400

Cummulative precipitation (mm)

L
D

/L
D

0

Maize

Oats

 

y = e
-0.001 5x

R
2
 = 0.673

y = e
-0.003x

R
2
 = 0.893

0.0

0.4

0.8

1.2

1.6

2.0

0 50 100 150 200 250 300 350 400

Cummulative precipitation (mm)

l/
l 0

Maize

Oats

 
 Fig. 6. Random Roughness (RR), Limiting Difference (LD) and

crossover length parameter (l), as a function of cumulative rainfall,
under maize and oats with conventional tillage (CT ).

In the bare soil treatment,BS, left fallow, theRR index
decreased 41% and 39% from initial values after 229 and
350 mm cumulative rainfall in the maize and oats seasons,
respectively. The respective figures for theCT , MT and
NT treatments under crop cover during the maize season
were 60%, 51% and 87% and during the oats season they
were 57%, 72% and 96%. Therefore, the roughness destruc-
tion evaluated by theRR index can be ranked as follows:
BS>CT ∼=MT >NT .
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Figure 7. Random Roughness (RR), Limiting Difference (LD), and crossover length 

parameter (l), as a function of cumulative rainfall, under maize and oats with minimum 

tillage (MT). 
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Fig. 7. Random Roughness (RR), Limiting Difference (LD), and
crossover length parameter (l), as a function of cumulative rainfall,
under maize and oats with minimum tillage (MT ).

TheRR index decay was best fitted by a quadratic negative
relationship given byRRt/RR0=aP 2

−bP +1, whereRRt is
random roughness for a given rainfall amount,P , andRR0
is the initial random roughness. In theBS treatment a sin-
gle quadratic relationship was fitted to all the data collected
in the maize and oats seasons since the relative decrease in
roughness as a function of cumulative rainfall agreed for both
data series. InMT andNT treatments two different relation-
ships were fitted to maize and to oats data series. The fitted
equations showed that underMT andNT tillage treatments,
RR decay was faster in the maize than in the oats season.
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Figure 8. Roughness indices (RR and LD), and crossover length parameter (l), as a 

function of cumulative rainfall along the maize and oats season for no tillage (NT). 
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Fig. 8. Roughness indices (RR andLD), and crossover length pa-
rameter (l), as a function of cumulative rainfall along the maize and
oats season for no tillage (NT ).

The LD index decreased 41% and 52% from initial val-
ues after 229 and 350 mm cumulative rainfall in the maize
and oats seasons, respectively, in theBS treatment, which
was left fallow. The respective changes for theCT , MT

andNT treatments under crop cover during the maize season
were 57%, 57% and 105 % and during the oats season they
were 55%, 73% and 95%. Therefore, the roughness destruc-
tion evaluated by theLD index can be ranked as follows:
BS>CT ∼=NT >NT , similar to that of theRR index.
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The LD index decay was also best fitted by a quadratic
negative relationship. However, better correlations were ob-
tained in general between cumulative precipitation andRR

than between cumulative precipitation andLD. With theBS

tillage treatmentLD decay was also modelled by a single re-
gression equation for the maize and oats data series. The de-
cay ofLD with theMT andNT tillage treatments, however,
was modelled using two different curves. TheLD decrease
was also faster in the maize than in the oats season.

Crossover length showed in general a well-defined trend,
to decrease in the tilled treatments during the maize and
oats seasons. In most of the rain sequences the decline of
l from its initial value (0 mm rain) at the end of the season
was very strong. For example, in the bare soil treatment,
BS, l index decreased 16% and 4% from initial values after
229 and 350 mm cumulative rainfall in the maize and oats
seasons, respectively. However, in the maize season,MT

treatment started with a relatively low value ofl parameter
(4.73 mm) for 0 mm rain at sowing time, which increased
after 35 mm cumulative rainfall to about double the initial
value (9.49 mm). This is an inconsistent result and will be
discussed below. In this particular case, the value ofl for
35 mm rainfall was not taken into account for regression pur-
poses.

In general,l values in theBS, CT and MT treatments
exhibit a rapid decline from the initial reference state (0 mm
rain) during the earlier rainfall events. The exception was
again theMT treatment in the maize growth period. There-
fore, l decay as a function of cumulative rainfall,P , was
best fitted by a negative exponential relationship given by
the equationlt /l0=exp(−aP ), wherelt is the crossover length
for a given cumulative rainfall amount andl0 is the initial
crossover length for 0 mm rain. Crossover length was sen-
sitive to differences in soil roughness conditions, allowing a
description of microrelief decay due to rainfall in the tilled
treatments, although better correlations between cumulative
rainfall and the indicesRR andLD were most commonly
obtained (Figs. 5, 6 and 7).

In a review of tillage and rainfall effects on rough-
ness decay, Zobeck and Onstad (1987) described Random
Roughness degradation caused by rainfall with the equation
RRp=RR0exp (–0.026 P) and reported that this equation ex-
plained 76% of the variance among 418 data sets for differ-
ent tillage operations and soils. Eltz and Norton (1997) con-
ducted experiments with simulated rain for measuring soil
surface microtopography decline using a laser scanning de-
vice under fallow and soybeans. These authors found that
the decrease in roughness as measured by thel index was
more rapid in the earliest degradation stages thanRR de-
cline, after which changed very slowly. Moreover, Eltz and
Norton (1987) described theRR andl decline versus kinetic
energy of rain by quadratic and exponential relationships, re-
spectively.

The values of theLS parameter in general were much
lower at the end of the experimental period, i.e. after 229 mm
rain in the maize season and 350 mm rain in the oats sea-
son, than at the initial soil surfaces with 0 mm rain. This
notwithstanding, in most of the rain seriesLS values first
showed a tendency to increase and then decrease with cumu-
lative rain. An increase in theLS index indicates increased
slope of structural units in the soil surface. Such slope in-
crease may be the result of consolidation effects during the
first rain events (Eltz and Norton, 1997). TheLS decrease
at the end of the growth period indicates reduction of slope
at small distance intervals due to filling of small depressions
around largest structural units and crust development.

There was little variation of fractal dimension with in-
creasing cumulative rainfall. Small changes inD values ver-
sus cumulative precipitation were characterized by various
patterns, so that no general trend was recognized. Values for
D were similar to those obtained in previous studies by Eltz
and Norton (1997), Huang (1998) and Vidal Vázquez (2005,
2006, 2007). It is noteworthy that mean values of fractal di-
mension in the maize season (2.707) were significantly lower
(P<0.05) than those in the oats season (2.804), and this in
spite of the fact that essentially the same tillage operations
had been conducted in both periods. These differences in
fractal dimension, thus, on configuration of the soil surface,
may be attributed to factors such as contrasting soil water
content and aggregate stability during tillage (Kamphost et
al., 2000) or to plant growth effects (Martı́nez-Turanzas et
al., 1997) which further modify the soil surface configura-
tion.

3.3 Physical interpretation

On agricultural soils, traditional tillage by mouldboard
ploughing, followed by chisel ploughing, creates the largest
degree of roughness (Kamphorst et al., 2000). Other less
dominant factors influencing the configuration of soil surface
microrelief may be the number of passes of the tillage tool,
i.e. primary or secondary tillage, soil water content and ag-
gregate stability.

On bare soil, the main factors that cause roughness de-
cay or levelling should be first, the kinetic energy of rain
drops, and second, slaking associated to air entrapment ef-
fects or differential swelling after sudden wetting. Moreover,
soil roughness can either decrease or increase during rainfall,
depending on both the surface condition and processes oc-
curring on that surface. Surface breakdown processes due to
kinetic energy and/or slaking are likely to reduce soil rough-
ness, whereas erosion processes lean towards roughness in-
crease because of rill formation (Huang, 1998; Darboux et
al., 2005). Since these processes may occur simultaneously,
with one or the other dominating at different spatial loca-
tions, the net result mainly affects the rate of change of sur-
face roughness during rainfall. In our case study, no erosion
symptoms were observed on any of the tilled treatments, not
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even in the bare soil,BS, treatment, left fallow. Therefore,
no secondary roughness increases by erosion will be taken
into account.

Soil cover by plant canopy and/or cover crop and no tillage
prevents soil surface from raindrop impact, reducing the rate
of roughness changes. However, plant growth may increase
soil surface roughness (Martı́nez-Turanzas et al., 1997) while
modifying the configuration of the soil surface microrelief,
mainly due to interactions between soil surface and root sys-
tem.

Again on bare soils, and when slaking is neglected, the de-
cay or degree or destruction of soil roughness should depend
on the initial roughness and on the kinetic energy of rain-
drops. Therefore, under these conditions it may be assumed
that roughness decay will follow first order kinetics, which
means that the diminution of roughness per unit rain amount
(or per unit kinetic energy of rain) depends on the degree of
roughness that is still available. As a first approach, this can
be expressed as:

Rt = R0e
−kP (11)

whereRt , is the roughness at a certain time, t,R0 is the initial
roughness and k is a constant describing the soil susceptibil-
ity against roughness destruction.

Our results mainly support the above physical interpreta-
tion. Roughness decreased with increased rain at different
rates in theBS, CT andNT treatments. However, rough-
ness decay did not always follow negative exponential kinet-
ics. Various reasons may explain the experimental behavior
of roughness decay in our case studies, which were fitted by
exponential and quadratic functions, depending on the rough-
ness index used (Figs. 5, 6 and 7). First, if slaking occurs, it
should result in a faster roughness breakdown than can be
expected from the kinetic energy alone. Second, crop and
residue cover modifies the rate of decay in roughness. Also,
less dominant factors such as soil water content during tillage
may play a role in roughness decay dynamics. Furthermore,
maize and oats root systems may modify the soil surface con-
figuration, hence, the roughness decay dynamics in different
ways.

In some instances, roughness indices may slightly increase
with the first rainfall after roughness was increased by tillage.
This initial small increase in roughness was detected for ex-
ample in theCT treatment during the maize season, where
the RR index increased from 14.25 to 14.40 mm for rain-
falls of 0 and 35 mm, respectively (Table 1). Also, in the
CT treatment during the oats season,RR andLD detected
slight roughness increases between the initial stage with
0 mm rain and the stage after 50 mm cumulative rain (Ta-
ble 2). These effects have been previously reported (Eltz and
Norton, 1997; Huang, 1998). Consolidation of loosened soil
particles within the largest voids without significant reduc-
tion in largest clods size may originate a denser soil surface
with greater roughness than the freshly tilled soil surface and

also may lead to increased side slopes, as mentioned above
for theLS index.

However, the big increase in crossover length with theMT

treatment in the maize season (Table 3) when the initial soil
surface and the stage after 35 mm cumulative rainfall was
compared was more difficult to interpret. For a cumulative
rain of 35 mm, the ratiol/l0 can be considered as an outlier,
because of the relative high value of the numerator. Then,
the value ofl0 in the freshly tilled soil surface may have been
underestimated, which would change the shape of the regres-
sion betweenl/l0 and cumulative rainfall.

A major problem of the characterization of roughness in
our study was the small size of data sets acquired with low
technology devices. The randomization process of locat-
ing successive small measurement plots for characterizing
a given treatment may partly explain the dispersion of the
regression functions developed for roughness decay. This
notwithstanding, our microrelief data sets have been found
to be self-affine in a small range of scales with an upper limit
matching the size of the largest structural units in the soil
surface and a lower limit equal to the horizontal resolution
of point heights measurements. Therefore, accuracy and re-
producibility of the roughness indices and fractal parameters
could be increased in different ways: i) a large measuring
grid could be used and a higher number of readings could
be taken, ii) replicate microplots could be measured on each
plot and on each date, and iii) the same microplot on each
treatment could be used on each date.

The fractal parametersD and l have been useful to fur-
ther quantifying the soil surface configuration and to discrim-
inate between soil uses and crop cover. MeanD values were
higher in the oats season, which means a more rugged soil
surface, even if parameters accounting for vertical roughness,
RR andLD, did not follow this trend. Also, the relationships
betweenRR andLD versusl in the maize and the oats pe-
riods were not equivalent (see Fig. 3), which is indicative of
differences in soil surface configuration properties between
the two crop canopies.

4 Conclusions

Microrelief measurements taken on small plots and consist-
ing of 225 height measurements showed spatial correlation
after slope and tillage trend removal in a limited range of
scales, allowing to estimate two fractal indices, fractal di-
mension and crossover length.

Roughness decay with increasing rainfall was highest
for bare soil left fallow and it was not noticeable for no-
till soil protected by both plant canopy and crop residue
cover. Roughness decay of conventional tillage and mini-
mum tillage under vegetative cover was in-between those of
bare soil and no-till. Vertical roughness decay showed a trend
to be faster under maize than under oats.
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Both random roughness and limiting difference decreased
from initial values in a similar proportion with increasing
rainfall. Crossover length index,exhibited a faster decrease
from the initial values than random roughness and limiting
difference. Even thought there was little variation in fractal
dimension with cumulative rainfall this parameter was found
to be significantly higher in the oats than in the maize season.
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terminada sob chuva natural entre 1989 e 1998 em Lages (SC)
(In portuguese), Brazilian Revue of Soil Science, 26, 465–471,
2002b.

Bertol, I., Amaral, A., Vidal V́azquez E., Paz González, A., Bar-
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