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Abstract. Climate is usually considered to depend on a
large number of parameters, this being essentially a func-
tional in multi-dimensional parameter space. We propose a
low-dimensional model of a climate where the temperature
field on a thermally conducting planet depends on the exter-
nal energy input and very limited number of internal param-
eters, like thermal conductivity and reflectivity. Equilibrium
temperature and quasistatic variations of climate following
slow variations of the energy input are studied. The single
phase model exhibits adiabatic behavior and stability with
respect to small axisymmetric perturbation. The two phase
model shows a non-trivial response to the variations of the
external parameter. History dependence, global instabilities
and hysteresis behavior characterize the surface temperature
evolution.

1 Introduction

In a non-orthodox way we define climate as a thermal state of
a planet which is described by a number of suitable param-
eters (temperature in the simplest case) and varying at the
time scale of larger than that of the seasons. Climate is deter-
mined by the external energy input (solar irradiance) as well
as the internal parameters (like. e.g., absorption coefficients)
and the processes of heat transfer. Heat transfer may be a re-
sult of a number of micro-processes like diffusion, material
motion, chemical reactions, etc. These are called here micro-
processes since they do not necessarily occur at the scale of
the whole planet or at the time scale of the climate variations,
but may operate at much smaller spatial and temporal scales.
When speaking about climate we shall refer to the results
of the proper averaging over these micro-processes. Climate
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variations can occur due to the changes in the solar irradi-
ance (external forcing agent) and/or changes of the internal
planetary parameters, like atmosphere composition (internal
forcing agent). The large number of possible forcing agents
brings about the necessity of sophisticated numerical anal-
yses (see, e.g.Hansen et al., 2005, and references therein).
Lower dimensional approaches, which sometimes allow an-
alytical treatment, are based on the globally-averaged energy
budget analysis (Boer et al., 2005) or box models (Cai, 2005).
Models of intermediate complexity (Petoukhov et al., 2000;
Claussen et al., 2002) are particularly attractive since they
incorporate a reduced number of micro-processes and/or op-
erate at a reduced level of detail for the sake of simulating
the interaction between as many components of the system
as possible. Except for the very low-dimensional and con-
ceptual models, analytical study is not possible, and time
consuming numerical simulations are necessary. Although
sophisticated models are, in a whole, quite successive in the
description of the present Earth climate there is a risk that
this agreement with observations might be partly a result of
tuning (Räis̈anen, 2007). Long-term predictions are still not
sufficiently certain.

The Earth climate varies at large time scales (kyears) in a
non-adiabatic manner. Slow changes of the temperature are
followed by abrupt climate changes (Alley et al., 2003), like
the Dansgaard-Oeschger osciilations (Dansgaard et al., 1982;
Rahmstorf, 2001). These oscillations are clear evidence of
the nonlinear dynamics of the system, possibly indicating
two or more (meta)stable equilibria (Stommel, 1961). A
simple conceptual model has been proposed recently (Braun
et al., 2007), which postulates the existence of two climate
states and a threshold process. The two most central factors
affecting the climate variation in such systems are, in our
opinion, the oceanic heat content and hear transfer (Rahm-
storf, 2001, 2002) and the solar forcing (Van Geel, 1999;
Paillard, 2001; Braun et al., 2005; Swindles et al., 2007) (the
latter is believed to be due to the Milankovich cycles of the
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Earths orbit). Numerical simulations in coupled ice-sheet
models have been used for studies of glacial climate varia-
tions (Oerlemans, 1982; Pollard, 1983; Gallée et al., 1991;
Ganopolski et al., 1998; Ganopolski and Rahmstorf, 2001)

In the present paper we suggest a low-dimensional ap-
proach, which is based on the ideas similar to those presented
by, e.g.,Boer et al.(2005) andCai (2005), developed in the
spirit of the nonlinear dynamics models (likeLorentz, 1963).
Namely, we suggest that it makes direct physical sense to
start building simplified global climate models which would
allow mapping of, e.g., temperature distribution on the planet
surface, as a function of a small number of parameters. Such
a model would incorporate only a very limited number of
most important processes, with the objective to establish
whether climate is intrinsically stable and what is the influ-
ence of the perturbations in the external forcing or the ef-
fects of slow (or rapid) changes of the planet parameters (like
albedo, thermal conductivity, etc.). In the present paper we
propose a simplest model of this kind, where the external
forcing is due to the solar heat flux, which is balanced by
the thermal black body radiation from the planet. The only
modification of the temperature distribution is due to the uni-
form diffusion-like heat transfer. We study the steady climate
and the response to the perturbations of the external forcing.
Our objectives are rather modest, and we do not attempt to
apply the results of our analysis directly to the interpreta-
tion of the Earth climate variations. Instead, we are aiming
on establishing the most general tendencies of the climate
evolution as depending on a small number of agents, with-
out further complication introduced by multitude of possible
micro-processes.

The proposed model is similar to the energy-balance mod-
els proposed first byBudyko (1969) andSellers(1969) and
extensively studied during last several decades (see reviews
and references inNorth et al., 1981; North and Stevens,
2006). In these models some terms on the energy balance
equations were chosen on a phenomenological basis, and
certain boundary conditions were imposed following exper-
imentally established values rather than from the physics of
the interaction. We, instead, specify a small number of phys-
ical processes governing the system behavior. Accordingly,
the boundary and interface conditions are derived from the
physics of interaction and not imposed as an external con-
straint. Thus, physical conclusions derived from the model
should be applicable to systems with a wide range of param-
eters.

2 Single-phase model

In this section we develop our model for a single-phase
planet. Analysis of the two-phase system is delayed until
Sect.3.

2.1 The basic model

We consider an imaginary spherical planet without atmo-
sphere, covered with a thermally conductive layer of a con-
stant width. In order to avoid unnecessary complications,
the planet is assumed to be rotating with the rotation axis
perpendicular to the direction to the Sun. We shall describe
the planet climate with the field of the single scalar variable,
daily average temperature,T (θ), whereθ is the polar an-
gle from the north pole. By doing so we ignore the day-
night variations of the temperature which occur on a much
faster time scale than we are interested in. A number of
processes and parameters which affect the temperature dis-
tribution on this planet is small. Let us consider a ring be-
tweenθ andθ+dθ , with the surface areadS=2πR2 sinθdθ .
Let the temperature of the area change bydT during time
dt . The heat amount the ring gets isdQ=cdS dT , where
c is the specific heat of the unit area. This heat comes
from the Sun illuminationdQ1=f sinθdS, wheref is the
flux density of the solar energy, and sinθ takes into ac-
count that only the normal component of the flux is ab-
sorbed. The (uniform) albedo of the planet surface is in-
cluded in the definition of the fluxf . Another contribution
is due to the thermal conductivity. Let the heat flux density
be j=(dQ/dL)=−κ∇T =−(κ/R)(dT /dθ). The total heat
flux out of the ring would be

dQ

dt
= −

κ

R

d

dθ

(
2πR sinθ

dT

dθ

)
dθ, (1)

so that the total heat gain of the ring area is

dQg =

[
f sinθ +

κ

R2 sinθ

d

dθ
sinθ

dT

dθ

]
dSdt. (2)

On the other hand, the amountdQd=σT 4dS dt is dissipated
into radiation. Strictly speaking, the radiative term should be
∝〈T 4

〉6=〈T 〉
4, where the angular brackets denote averaging

over the planet rotation. For our present purposes the differ-
ence may be ignored since the most important feature is that
the radiative losses are a nonlinear monotonically increasing
function of the daily average temperature. Energy conserva-
tion impliesdQ=dQ1−dQ2, so that

c
∂T

∂t
= f sinθ + k 1

sinθ
∂
∂θ

sinθ ∂
∂θ

T − σT 4
= (3)

= f
√

1 − x2 + k ∂
∂x

(1 − x2) ∂
∂x

T − σT 4, (4)

wherex= cosθ , −1≤x≤1, andk=κ/R2.
Polar regions require special treatment. Forθ→0 the ra-

diative losses are∝θ2, the incoming flux is∝θ3 (see, how-
ever, below), and the heat flux is∝θ(∂T /∂θ). Therefore, one
has

θ
∂T

∂θ
∝ θ2

⇒ T ∝ θ2 (5)

In other words, the boundary condition at the poles is

1

θ

∂T

∂θ
< ∞ (6)
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The developed model should be compared to the classical
energy-balance models (Budyko, 1969; Sellers, 1969; North
et al., 1981) where the black-body radiative term is substi-
tuted by a phenomenological radiative term which depends
linearly on the temperature. As a result, nonlinearity disap-
pears completely from the model.

We can further reduce the number of parameters by mak-
ing transformation

T → (k/σ )1/3T , t → (c/k)t, (7)

so that Eq. (4) reduces to the following one-parametric equa-
tion

∂T

∂t
= F(1 − x2)1/2

+
∂

∂x
(1 − x2)

∂

∂x
T − T 4, (8)

whereF=f σ 1/3/k4/3. This representation is useful for the
analysis of the perturbations of the forcingf .

2.2 Equilibrium

In the equilibrium temperature is time independent, so that
one has

f (1 − x2)1/2
+ k

d

dx
(1 − x2)

d

dx
T − σT 4

= 0, (9)

or

f sinθ + k
1

sinθ

d

dθ
sinθ

d

dθ
T − σT 4

= 0. (10)

The first term in this equation is the energy input from out-
side, the second one is the energy transfer to the poles, while
the last one is the dissipation. Iff =0 the only solution is
the trivial one,T =0. If σ=0 there is no equilibrium solu-
tion. If k = 0 the obvious solution isT =(f sinθ/σ)1/4, so
that the temperature on the poles is zero, while the maximum
(equatorial) temperature isT0=(f/σ)1/4 It is easy to see that
whenk 6=0, the temperature on the poles cannot vanish since
the nonzero energy flux into the pole region should be bal-
anced by the radiation. Near the poles,θ�1, Eq. (10) can be
approximately written as

f θ + k
1

θ

d

dθ
θ

d

dθ
T − σT 4

= 0 (11)

We shall seek for a solution of the form

T = T̃0 + A1θ
α

+ A2θ
α+1

+ . . . , (12)

whereα>0. Direct substitution immediately givesα=2 and

T = T̃0 + (σ T̃ 4
0 /4k)θ2

− (f/9k)θ3
+ . . . . (13)

For k→∞ one hasdT /dθ=0 andT =Tav=const (other so-
lutions diverge) and, therefore,

4πσT 4
av = 2π

∫ π

0
f sin2 θdθ = π2f (14)

andTav=T0(π/4)1/4.
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Fig. 1. Temperature distribution as a function ofx= cosθ for vari-
ousK=0.01, 0.1, 1, 10, 100.

In general, it makes sense to normalize the temperature as
follows: T̃ =T/T0=T σ 1/4f −1/4, so that Eq. (9) is rewritten
in the form

(1 − x2)1/2
+ K

∂

∂x
(1 − x2)

∂

∂x
T̃ − T̃ 4

= 0, (15)

whereK=k/σT 3
0 =kσ−1/4f −3/4.

Figure1 shows distribution of the normalized temperature
T̃ as a function ofx= cosθ for various values of the parame-
ter K=0.01, 0.1, 1, 10, 100. HigherK correspond to higher
heat conductivity, and, therefore, to the more homogeneous
temperature distributions.

2.3 Perturbation analysis

Let us assume that we succeeded to find an equilibrium so-
lution Teq(θ). It it is perturbed,T =Teq+T1, T1�Teq , the
equation for the perturbation takes the following form:

∂T1

∂t
= K

1

sinθ

∂

∂θ
sinθ

∂

∂θ
T1 − 4T 3

eqT1, (16)

where t/(c/σT 3
0 )→t . Putting T1∝ exp(pt), we have the

equation for the eigenvalue problem:

LT1 = pT1, (17)

where

L = K
1

sinθ

∂

∂θ
sinθ

∂

∂θ
− 4T 3

eq

= K
∂

∂x
(1 − x2)

∂

∂x
− 4T 3

eq (18)
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It is easy to find (∗ denotes complex conjugate)

T ∗

1 LT1 + T1LT ∗

1 = K
∂

∂x

[
(1 − x2)

∂

∂x
|T1|

2
]

−K(1 − x2)

∣∣∣∣∂T1

∂x

∣∣∣∣2 − 4T 3
eq |T1|

2
= 2Rep|T1|

2 (19)

Integrating over−1≤x≤1 one easily gets Rep<0, which
means that all perturbations damp.

In the limit of zero thermal conductivityK=0 and one im-
mediately has

Teq = sin1/4 θ (20)

Respectively, Eq. (17) is immediately solved

T1 ∝ exp(−4T 3
eq t) (21)

In the limit of the very high thermal conductivity,K�1,
one hasTeq=Tav=const, so that the equation for the pertur-
bation reads

K
∂

∂x
(1 − x2)

∂T1

∂x
= (p + 4T 3

av)T1. (22)

It has the solutions in the form of Legendre polynomials
with (p+4T 3

av)/K=−n(n+1), n≥0 and integer. The small-
est damping rate is achieved forn=0 and isp=−4T 3

eq , as
above.

2.4 Perturbed forcing

Let us now consider the response of the system to small forc-
ing perturbations. In other words, letTs(x) be the solution
of the stationary Eq. (9) and we seek for the solution of the
time-dependent equation

∂T

∂t
=(1 + εη(t))(1 − x2)1/2

+K
∂

∂x
(1 − x2)

∂

∂x
T −T 4, (23)

whereε is the smallness parameter. AssumingT =Teq+εT ′,
one gets

∂T ′

∂t
−K

∂

∂x
(1 − x2)

∂

∂x
T ′

+4T 3
eqT ′

=η(t)(1 − x2)1/2. (24)

Since this equation is linear, one may put
η(t)=η0 exp(−iωt), and T ′

=T̃ exp(−iωt). One im-
mediately gets

− iωT ′
= LT ′

+ η0(1 − x2)1/2. (25)

Expanding T ′ in terms of orthonormal eigenfunctions
LTp=pTp, T ′

=
∑

p αpTp, one has

αp = −
η0

p + iω

∫ 1

−1
(1 − x2)3/2Tpdx (26)

Sincep is real, the response is always nonresonant.

3 Two-phase model description

In this section we extend the analysis of the model developed
in Sect.2.1 onto a two-phase system. Our attention will be
mainly devoted to the equilibrium dependence on the planet
parameters as well as the response of the system to slow ex-
ternal variations.

3.1 The two-phase model

We assume that the substance covering the surface of the
planet can exist in two phases: a) “ice” at temperaturesT ≤Tc

(subscript “1”), and b) “water” at temperaturesT ≥Tc (sub-
script “2”). Each phase is characterized by its own specific
heatci (per unit area). The latent (melting) heat isλ per
unit area. We shall also assume that different phases absorb
radiation differently, the coefficientαi is the fraction of the
incident flux which is absorbed (1−α is reflected). For each
phase the equation for the local temperature reads

ci

∂Ti

∂t
= αif sinθ + ki

1
sinθ

∂
∂θ

sinθ ∂
∂θ

Ti − σT 4
i (27)

whereki are the properly normalized specific thermal con-
ductivities. If the temperature everywhere is too low,T <Tc

for all θ , the planet is covered be ice. IfT >Tc for all θ the
planet is covered by water. In both cases the single phase
model is applicable.

If there are regions withT =Tc a mixed state is possible.
We shall assume that such mixed can be represented as two
icy polar caps, 0≤θ<θp and π−θp<θ≤π , and water be-
tween them,θp<θ<π−θp. In what follows we shall restrict
our analysis with one hemisphere 0≤θ≤π/2, because of the
symmetry. In each region, icy or watery, the temperature dis-
tribution is described the Eq. (27).

At the boundaryθ=θp the temperatures should be equal to
the melting temperature,Ti=Tc, unless heat transfer between
ice and water is inhibited (see below).

In general, the boundary may be moving,θ̇p 6=0. Let
the ice-water boundary move byδθp=θ̇pdt toward the
equatorial plane. The amount of energy added to the
ring with the radius R sinθp and the width Rδθp is
δQ=−λdS=−2πR2λ sinθp θ̇pdt , whereλ is the specific la-
tent heat. This energy is due to the difference between the
fluxes from the both sides of the boundary

δQ =

[
−k1

∂T1

∂θ θ=θp

+ k2
∂T2

∂θ θ=θp

]
2πR sinθpdt

which gives

λRθ̇p = −

[
k2

∂

∂θ
T2 − k1

∂

∂θ
T1

]
θ=θp

(28)

It is worth noting that the change of the absorbed power
δP ′

=(α1−α2)f sinθp(2πR2 sinθp)·θpdt gives the energy
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change only in the second order,δQ′
∼ δP ′δt . In the sta-

tionary statėθp=0 and[
k2

∂

∂θ
T2 − k1

∂

∂θ
T1

]
θ=θp

= 0 (29)

It is instructive to arrive at the equation for the boundary
motion from the consideration of the “total heat content”

Qc

2πR2
=

∫ θp

0
c1T1 sinθdθ

+

∫ π/2

θp

(c1Tc + c2(T2 − Tc) + λ) sinθdθ (30)

where T1=T1(θ), T2=T2(θ), θp=θp(t), and
T1(θp)=T2(θp)=Tc. Here λ is the latent heat neces-
sary to melt the ice to water at the melting temperatureTc.
The heat content change rate due to solar irradiance and
radiative losses is

Q̇r

2πR2 = α1f
∫ θp

0 sin2 θdθ + α2f
∫ π/2
θp

sin2 θdθ

−σ
∫ θp

0 T 4
1 sinθdθ − σ

∫ π/2
θp

T 4
2 sinθdθ

(31)

=
f
4 [α1π + (α2 − α1)(π − 2θp + sin 2θp)]

−σ
∫ θp

0 T 4
1 sinθdθ − σ

∫ π/2
θp

T 4
2 sinθdθ

(32)

Energy conservation requires (in what follows we omit the
constant non-essential factor 2πR2)

Q̇c = Q̇r . (33)

Using Eq. (27) one arrives again to Eq. (28).
Additional boundary conditions read

1

sinθ

∂T1

∂θ
→ 0, θ → 0, (34)

∂T2

∂θ
= 0, θ = π/2 (35)

the first of which have been obtained earlier while the second
follows from the symmetryθ↔π−θ .

The derived equations for the temperature evolution to-
gether with the condition at the ice-water boundary give a
complete description of the system. In what follows we start
the analysis of the set with simple limiting cases. We will be
mostly interested in stationary states and their perturbations.

It is worth noting that previous energy-balance models
(Budyko, 1969; Sellers, 1969; Cahalan and North, 1979;
North et al., 1981; North, 1984; North and Stevens, 2006;
Wu and North, 2007) treated the two-phase system with the
use of the temperature-dependent albedo (and possibly spe-
cific heat and thermal conductivity), where the albedo above
the critical temperature corresponds to that of the water, and
below the critical temperature corresponds to that of the ice.
The boundary condition at the ice cap boundary has been
imposed phenomenologically (see, e.g.North et al., 1981)
by specifyingT (θp). The melting-freezing process was not
considered. Here we explicitly introduce teh latent heat for
the ice melting, and derive the boundary conditions from the
first principles.

3.2 No heat conductance

In the absence of heat conductance,ki=0, the local tempera-
ture is determined by the local energy balance,

ci

∂Ti

∂t
= αif sinθ − σT 4

i (36)

Absence of the heat flux across the ice-water boundary al-
lows jump of the temperature at the boundary, which, in turn,
permits stationary solutions of the form

Ti = (αif sinθ/σ)1/4 (37)

Such solution is possible only forα1<α2 (“normal” case),
since only in this case it is possible to achieve the necessary
relation

T1(θp) = (α1f sinθp/σ)1/4
≤ Tc

≤ (α2f sinθp/σ)1/4
= T2(θp) (38)

The polar cap sizeθp is not determined unambiguously by
the equations and may be within the limits restricted by
Eq. (38):

σT 4
c

α2f
≤ sinθp ≤

σT 4
c

α1f
(39)

providedσT 4
c /α2f <1. WhenσT 4

c /α2f ≥1 the whole planet
is covered by ice. The opposite (whole planet covered by
water) is impossible since the radiation flux is always zero at
the pole.

The caseα1>α2 (“abnormal” case) does not allow station-
ary solutions, since at the ice-water boundary one would have
T1>T2 which is impossible.

Let us now consider the adiabatic switch-on of the radi-
ation in the normal caseα1<α2. For very lowf the whole
planet is covered with ice. With the increase off the temper-
ature increases. It first reachesT =Tc at the equator, where
the ice starts to melt. Once melted the absorbed energy in-
creases so that the temperature jumps toTw=Tc(α2/α1)

1/4.
With the further increase of the irradiation the ice-water
boundary moves poleward with the ice temperature at the
boundary equal to the melting temperature while the water
temperatureTw>Tc. If we now start to decreasef adiabat-
ically, the temperature starts to decrease on both sides until
water begins to freeze. Eventually the boundary moves to-
ward equator and the water temperature at the boundary isTc

while the ice temperature isTi=Tc(α1/α2)
1/4<Tc.

In the abnormal case the beginning of melting results in
the decrease of energy absorption which should stop the
melting. A quasi-stationary state cannot be achieved and a
time-dependent state is developing. With the increase off

the planet develops into a three-zone system: a watery zone
around the equatorial plane, icy polar caps, and an intermedi-
ate zone with time-dependent melting and freezing. We shall
not devote more time to the abnormal case here.
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Fig. 2. Dependence of the angular size of the ice capθp on the solar
radiation constantf for α1=0.4, 0.6, 0.8, whenα2=1.

3.3 Uniform temperature

If k1=k2=∞ the temperature should be uniform all over the
planet. IfT >Tc then the whole planet is covered with water,
if T <Tc the planet surface is completely ice. The two phases
may coexist ifT =Tc. In this case the total heat content is

Qc = c1Tc + λ cosθp (40)

and the integral energy conservation gives

−λ sinθp θ̇p =
πf

4

[
α1

+(α2 − α1)(1 − 2θp/π + sin 2θp/π)
]
− σT 4

c (41)

Stationary state is achieved when

f [1 + (s − 1)φ(θp)] = f1 (42)

where we introduced the notation

s = α2/α1, f1 = 4σT 4
c /πα1, (43)

f2 = 4σT 4
c /πα2 = f1/s, (44)

φ(θ) = 1 − 2θ/π + sin 2θ/π (45)

The functionφ(θ) is a monotonically decreasing function
of the angle withφ(0)=1 andφ(π/2)=0. Figure2 shows
the dependence ofθp on f for severalα1 (for convenience
α2=1).

We shall analyze in detail all options. IfT <Tc the whole
planet is covered with ice. In this caseπf α1/4=σT 4<σT 4

c

which is possible only forf <f1. If T >Tc the whole planet
is covered with water which is possible only iff >f2. In the
mixed regimeT =Tc and min(f1, f2)<f < max(f1, f2). Let
us consider separately the normal cases>1 and the abnormal
cases<1.

3.3.1 Normal case

In this cases>1 andf2<f1. The mixed state exists for
f2<f <f1, and Eq. (42) immediately gives

φ =
1

s − 1
(f1/f − 1) (46)

Sincedφ/df <0 anddφ/dθp<0, one hasdθp/df >0, which
means that when the irradiance increases the icy polar cap
increases too! This happens because the increase of the po-
lar cap reduces the absorption of the incoming heat which is
necessary to maintain the same temperatureTc and the bal-
ance between the energy income and outcome (the latter re-
mains constant). We show below, however, that this quasi-
stationary behavior is unstable and cannot be observed.

Let us now consider the adiabatic (slow) changes of the
heat fluxf . Let us start withf <f2 andT <Tc (ice only).
Gradual increase off results in the gradual increase of the
temperature until the melting pointT =Tcv is achieved when
f =f1. At this point the ice melts completely, the radiation
absorption becomes stronger, and the temperature jumps to
Tw=Tcs

1/4. Slow decrease of the flux results in the grad-
ual decrease of the water temperature down to the freezing
point atf =f2 where the temperature falls toTi=Tcs

−1/4.
Thus, a history dependent hysteresis behavior of the planet
temperature should be observed while the planet should be
covered by a single phase (either ice of water), except for the
transient periods of melting and freezing. A quasi-stationary
mixed state cannot be achieved.

Let us now assume that a mixed state is somehow achieved
as an initial condition. A small increase of the flux would the
result in melting of a small part of the ice, which would re-
sult in the increase of the radiation absorption, further melt-
ing, and so on, until all ice would melt and the planet would
switch into a single phase. Similar reduction of the flux
would result in the freezing of the whole planet. Thus, the
mixed state is unstable. This can be shown quantitatively.
Let us start with a mixed-state equilibrium, wheref =f0 and
θp=θ0 are related by the relationf0[1+(s−1)φ(θ0)]=f +1.
Let us consider small perturbationsf =f0+δf , θp=θ0+δθ ,
then one has

−λ sinθ0δ̇θ = σT 4
c δf/f0 − µ2(s − 1)δθ, (47)

µ2
= −(πf0α1/4)(dφ/dθ)θ=θ0 (48)

It is easily seen that the homogeneous part of the equation
has exponentially growing solutions

δθ ∝ exp(pt), p = µ2(s − 1)/λ sinθ0 (49)

Equation (47) is easily solved:

δθ = −
σT 4

c

λ sinθ0f0

∫ t

0
δf (t ′)ep(t−t ′)dt ′ (50)

If δf ′ varies slowly at the time scale 1/p one has

δθ ≈ −
σT 4

c δf

µ2(s − 1)f0
(ept

− 1) (51)
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that is, exponentially fast contraction of the polar cap (for
δf >0) at the time scale 1/p.

3.3.2 Abnormal case

In this cases<1 andf1<f2. As a result, melting starts at
lower fluxes, and a stable mixed state exists forf2<f <f1,
wheredθp/df <0. The latter means that gradual increase
of the radiation flux results in the gradual melting of the ice
and gradual contraction of the polar cap. Same analysis as
above shows that the state is stable: perturbations decay ex-
ponentially and the system falls back into a quasi-stationary
regime.

4 Global stability: general approach

For finite nonzero values of the thermal conductivity coef-
ficients analysis is more difficult. We are interested here in
the global stability: let us assume that the ice-water bound-
ary moves by and infinitesimal displacementδθp during the
infinitesimal timeδt . The energy conservation Eq. (33) gives

δQc

δθp

d

dt
δθp =

δQ̇r

δθp

δθp. (52)

It is clear that if

δQc

δθp

·
δQ̇r

δθp

> 0 (53)

the system is unstable since the displacement will exponen-
tially grow.

Since the functional form of the temperature depends on
θp we shall writeT1=T1(θ, θp), T2=T2(θp, θ), and denote

δT =
δT

δθp

δθp (54)

Now the variational derivatives can be expressed as follows:

δQc

δθp

= −λ sinθp +

∫ θp

0
c1

δT1

δθp

sinθdθ

+

∫ π/2

θp

c2
δT2

δθp

sinθdθ, (55)

δQ̇r

δθp

= −f (α2 − α1) sin2 θp

−4σ

∫ θp

0
T 3

1
δT1

δθp

sinθdθ

−4σ

∫ π/2

θp

T 3
2

δT2

δθp

sinθdθ (56)

Unfortunately,T1(θ, θp), T2(θp, θ) cannot (at least, at the
present stage) be found explicitly in general case. We shall
consider the case of high but finite thermal conductivities.

4.1 High finite thermal conductivity

We are unable to solve analytically the set of the Eqs. (27),
(28), (34) and (35). However, analysis is possible for high
(but finite) thermal conductivities. Indeed, Fig.1 shows
that the temperature profile for largeK does not vary much
around an average value. We can, therefore, assume that
Ti=Tc+τi , whereτi∝1/ki . In the stationary case, substi-
tuting into Eq. (27), in the lowest nontrivial order one has

1

sinθ

d

dθ
sinθ

d

dθ
τi = σT 4

c − αif sinθ (57)

Taking into account the boundary conditions Eq. (34) and
Eq. (35), one has

k1 sinθ
d

dθ
τ1 =

∫ θ

0 (σT 4
c − α1f sinx) sinxdx, (58)

k2 sinθ
d

dθ
τ2 =

∫ θ

π/2(σT 4
c − α2f sinx) sinxdx (59)

The boundary conditions at the ice-water interface give∫ θp

0
(σT 4

c − α1f sinx) sinxdx

=

∫ θp

π/2
(σT 4

c − α2f sinx) sinxdx (60)

which is equivalent to Eq. (42). Integrating Eqs. (58) and
(59) further and taking into accountT =Tc at θ=θp, one has

T1 = Tc +
∫ θ

θp

1
k1 siny

∫ y

0 (σT 4
c − α1f sinx) sinxdx, (61)

T2 = Tc +
∫ θ

θp

1
k2 siny

∫ y

π/2(σT 4
c − α2f sinx) sinxdx. (62)

Respectively,

δT1

δθp

= −
1

k1 sinθp

∫ θp

0 (σT 4
c − α1f sinx) sinxdx, (63)

δT2

δθp

= −
1

k2 sinθp

∫ θp

π/2(σT 4
c − α2f sinx) sinxdx (64)

and do not depend onθ .
In the equilibrium one has∫ θp

0
(σT 4

1 − α1f sinθ) sinθdθ

+

∫ π/2

θp

(σT 4
2 − α2f sinθ) sinθdθ = 0 (65)

which gives in the lowest order

χp =

∫ θp

0
(σT 4

c − α1f sinθ) sinθdθ

=

∫ θp

π/2
(σT 4

c − α2f sinθ) sinθdθ > 0, (66)
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and

δT1

δθp

= −
χp

k1 sinθp
< 0, (67)

δT2

δθp

= −
χp

k2 sinθp
< 0 (68)

Eventually,

δQ̇r

δθp

= −f (α2 − α1) sin2 θp

+4σT 3
c χp

(
1 − cosθp

k1 sinθp

+
cosθp

k2 sinθp

)
(69)

The obtained relation shows that temperature inhomogeneity
improves stability, since terms∝1/k are positive while the
instability causing term∝(α2−α1) is negative. We have seen
earlier that in the casek→∞ the mixed state is unstable,
while for k=0 it is stable. The transition occurs when

f (α2 − α1) sin2 θp

= 4σT 3
c χp

(
1 − cosθp

k1 sinθp

+
cosθp

k2 sinθp

)
(70)

Sinceχp andθ+p depend onf the derived condition for the
change of stability is a very nonlinear condition onf . Fur-
ther analysis is beyond the framework of the present paper
and will be published elsewhere.

5 Discussion and conclusions

It is quite clear that the proposed model cannot properly
describe the Earth climate. Among the features which
have to be included in a realistic model are the multi-layer
atmosphere-ocean-solid surface structure, ocean currents and
winds, differential volume absorption of the solar radiation,
effects of chemical composition, etc. The mentioned fac-
tors make the temperature distribution a three-dimensional
field which varies at the spatial scales much smaller than the
Earth radius and at the temporal scales substantially smaller
than the planet rotation period. It is obvious that a simple
model like ours cannot possible take into account the small
scale fluctuations in a number of parameters. Nevertheless,
it is reasonable to expect that the average heat flux in a layer
about the surface would be directed from the regions getting
more external heat to the regions with weaker heating. In
this case, it makes sense to approximate such flux by a gra-
dient like term, similar to the heat conductivity in our model.
The highly fluctuating (because of the temperature inhomo-
geneities and day-night asymmetry) emission from the planet
surface may be represented, in the lowest order, by a non-
linear function of the temperature averaged over the small
spatial and temporal scales. While this function is not neces-
sarily T 4 it can be expected to have similar behavior. Thus,
we expect that the proposed model does provide information
about basic features of the planet climate.

In the above analysis we have shown that the climate of
the planet covered by a single phase of a thermally conduct-
ing substance is stable, in the sense that small variations of
the external energy input results in small variations of the
planet temperature. However, when the substance can ex-
ist in two different phases, the situation changes drastically.
There exists a range of parameters for which the planet is in
an unstable state, when a small and slow variation of the so-
lar flux may result in a large global response of the planet.
In this case the typical time of the changes on the planet sur-
face depends on the internal planetary parameters and not on
the temporal scale of the solar irradiance variations. Simply
speaking, when the solar constant drops below some thresh-
old and ice age develops quickly (we warn the reader to not
take this words as a direct application to the Earth ice ages).
The equilibrium state of the planet becomes history depen-
dent and exhibits a hysteresis behavior. The unstable behav-
ior of the climate and rapid transitions following long pe-
riods of slow adiabatic variations resembles the Dansgaard-
Oeschger events. The bistable regime and bifurcations of the
Stommel type are also the intrinsic features of the proposed
model, albeit at this stage verified only for the limiting cases.

To summarize, we have developed a simple low-
dimensional model of the planet climate from the first phys-
ical principles, not invoking any heuristic ingredients. We
have shown that the climate of a two-phase planet is intrinsi-
cally unstable. Slow and weak variations of the forcing trig-
ger fast and large changes of the climate, like drastic increase
or decrease of the surface area covered with ice. We suggest
that this intrinsic instability is the basic feature of most, if not
all, climate systems.

Edited by: L. Zelenyi
Reviewed by: N. M. Astafyeva and another anonymous referee
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