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Abstract. Non-extensive systems, accounting for long-range
interactions and correlations, are fundamentally related to
non-Maxwellian distributions where a duality of equilibria
appears in two families, the non-extensive thermodynamic
equilibria and the kinetic equilibria. Both states emerge
out of particular entropy generalization leading to a class of
probability distributions, where bifurcation into two station-
ary states is naturally introduced by finite positive or nega-
tive values of the involved entropic index kappa. The limit-
ing Boltzmann-Gibbs-Shannon state (BGS), neglecting any
kind of interactions within the system, is subject to infinite
entropic index and thus characterized by self-duality. Funda-
mental consequences of non-extensive entropy bifurcation,
manifest in different astrophysical environments, as particu-
lar core-halo patterns of solar wind velocity distributions, the
probability distributions of the differences of the fluctuations
in plasma turbulence as well as the structure of density dis-
tributions in stellar gravitational equilibrium are discussed.
In all cases a lower entropy core is accompanied by a higher
entropy halo state as compared to the standard BGS solution.
Data analysis and comparison with high resolution observa-
tions significantly support the theoretical requirement of non-
extensive entropy generalization when dealing with systems
subject to long-range interactions and correlations.

1 Introduction

Power-law behavior as manifestation of fractal or multi-
fractal structures is found in a great variety of complex phe-
nomena in different scientific fields. A novel context of de-
scription is based on entropy generalization and maximiza-
tion of the corresponding particular entropy function. Such a
generalization is an intrinsic nonlinear process where the re-
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sulting power-law distributions follow in a natural way. Na-
ture is per se nonextensive and complex since any member
of an ensemble of particles, e.g. the solar wind, the inter-
stellar medium or star clusters, is subject to electromagnetic
and/or gravitational interactions. With regard to the two lim-
its, the crystal as system of maximum order described by
pure geometry and, vice versa, a thermalized gas of indepen-
dently moving particles described by standard Boltzmann-
Gibbs-Shannon (BGS) statistics, nature appears somewhere
between. In extensive systems no interactions or correla-
tions are present and the BGS logarithmic entropy yields
the Maxwellian distribution. On the other hand, the mem-
bers of nonextensive systems are subject to long-range inter-
actions and couplings, accessible by a generalized entropy
functional, where the corresponding power-law distributions
depend on a specific parameter, the entropic index.

Leptokurtic, long-tailed probability distribution functions
(PDF’s) subject to a non-Gaussian core and a pronounced
halo are a persistent feature in a variety of different astro-
physical environments. Those include the thermo-statistical
properties of the interplanetary medium where the electron,
proton and even heavy ion velocity space distributions show
ubiquitously suprathermal halo patterns (seeMendis and
Rosenberg(1994) for a general review, orLeubner(2000);
Leubner and Schupfer(2001) and references therein), well
described by the empirical family ofκ-distributions, a power
law in particle speed and first recognized byVasyliunas
(1968). In continuation, significant progress was provided by
Treumann(1999a,b) who developed a kinetic theory, demon-
strating that power-law velocity distributions are a particular
thermodynamic equilibrium state. The empirical family ofκ-
distribution functions was linked to power-law distributions
derived in the context of nonextensive statistics byLeubner
(2000, 2004a,b), thus providing the hitherto missing theoret-
ical foundation of non-thermal interplanetary velocity distri-
butions.
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Moreover, also the PDF’s of the turbulent fluctuations of
the magnetic field strength, density and velocity field dif-
ferences in space and astrophysical plasmas (Leubner and
Vörös, 2005a,b) show pronounced leptokurtic cores and ex-
tended tails on small scales. Since high resolution in situ
satellite observations are available detailed analyses of the
PDFs of the solar wind plasma are of considerable interest to
study intermittency and multi-scale statistical properties in
fully developed turbulence. The characteristics of the spec-
tral properties of fluctuations in the incompressible interplan-
etary medium were provided in classical statistical theory
via the phase space distribution obtained from ideal MHD
invariants byMatthaeus and Goldstein(1982) followed by
a confirmation of the existence of solar wind multi-fractal
structures (Burlaga, 1991, 1992). The PDFs of the magnetic
field and plasma fluctuations were analyzed and linked to
intermittency of the solar wind MHD fluctuations (Marsch
and Tu, 1994, 1997) along with detailed investigations of
the non-Gaussian characteristics (Bruno et al., 2001; Hnat et
al., 2003). WIND, ACE and Voyager observations of inter-
planetary multi-scale statistical properties verify that the lep-
tokurtic, long-tailed shapes of the PDFs at small scales rep-
resent correctly the characteristics of intermittent turbulence
and approach a Gaussian, reflecting a decoupled state, on
large scales (Sorriso-Valvo et al., 1999; Leubner and V̈orös,
2005a,b; Leubner et al., 2006), thus confirming that the prob-
ability of rare events is raised on small scales.

Remarkably, we have to add to this diversity scale invari-
ant power-law distributions relying on self organized criti-
cality (SOC) (Bak et al., 1988; Bak, 1996; Chapman et al.,
1998; Watkins et al., 2001; Chapman and Watkins, 2001)
as well as gravitationally bound astrophysical stellar sys-
tems (Nakamichi et al., 2002; Chavanis and Bouchet, 2005).
Furthermore,Leubner(2005) developed in this conjunction
recently a nonextensive theory representing accurately the
hot plasma and dark matter (DM) density profiles in galax-
ies and clusters in the context of scale invariant power-law
distributions. The significance and accuracy of nonexten-
sive statistics modeling density distributions of astrophysi-
cal bound structures was confirmed by N-body and hydrody-
namic simulations as well as from observations (Kronberger
et al., 2006).

In all physically different situations nonextensive statis-
tics, accounting for long-range interactions and correlations,
provides a highly successful context of description whereas
standard BGS statistics does not apply. In the following we
summarize the concept of entropy generalization and discuss
the corresponding entropy bifurcation along with the result-
ing power-law distributions. Nonextensive statistics is then
tested on three fundamentally different physical situations:
(1) the free solar wind distributions in velocity space, (2)
the probability distributions of fluctuations in turbulence and
(3) the radial density distributions of gravitationally clustered
structures.

2 Nonextensive entropy generalization and velocity dis-
tribution functions

The classical BGS extensive thermo-statistics applies when
microscopic interactions are short ranged and the environ-
ment is a continuous and differentiable manifold. Astrophys-
ical systems, however, are generally subject to long-range
interactions in a non-Euclidean, for instance fractal or multi-
fractal environment. A suitable nonextensive generalization
of the BGS entropy for statistical equilibrium was first recog-
nized byRenyi(1955) and subsequently proposed byTsallis
(1988), suitably extending the standard additivity of the en-
tropies to the nonlinear, nonextensive case where one particu-
lar parameter, the entropic index, characterizes the degree of
nonextensivity of the system considered. A variety of sub-
sequent analyses were devoted to clarify the mathematical
and physical consequences of pseudo-additivity (Plastino et
al., 1994; Tsallis, 1995; Silva et al., 1998; Almeida, 2001)
where a deterministic connection between the generalized
entropy and the resulting power-law functionals (Andrade
et al., 2002), as well as the duality of nonextensive statis-
tics were recognized (Karlin et al., 2002). Derived within
the context of nonextensive statistics, power-law distribu-
tions provided also the missing justification for the use of the
hitherto empirical, but ubiquitously observed,κ-distribution
family favored in space plasma modeling from fundamental
physics (Leubner, 2000; Leubner and Schupfer, 2001; Leub-
ner, 2004a,b). The corresponding entropic indexκ, as mea-
sure of the degree of long-range interactions or correlations,
is not restricted to positive values and thus manifests the du-
ality of nonextensive statistics.

Assuming that particles move independently from each
other, i.e. there are no correlations present in the system con-
sidered, the BGS statistics is based on the extensive entropy
measureSB=−kB

∑
pi ln pi , wherepi is the probability of

the ith microstate,kB is Boltzmann’s constant andSB is ex-
tremized for equiprobability. This entropy implies isotropy
of the velocity directions and thus appears as additive quan-
tity yielding the standard Maxwellian distribution function.
Accounting for long-range interactions requires to introduce
correlation within the system, which is done fundamentally
in the context of nonextensive entropy generalization leading
to scale-free power-law PDFs. Considering, as example, two
sub-systemsA andB one can illuminate nonextensivity by
the property of pseudo-additivity of the entropies such that

Sκ(A + B) = Sκ(A) + Sκ(B) +
kB

κ
Sκ(A)Sκ(B) (1)

where the entropic indexκ quantifies the degree of nonexten-
sivity in the system. Forκ=∞ the last term on the right hand
side cancels leaving the additive terms of the standard BGS
statistics. Hence, nonlocality is introduced by the nonlinear
term accounting for correlations between the subsystems. In
general, the pseudo-additive,κ-weighted term may assume
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positive or negative definite values indicating a nonexten-
sive entropy bifurcation. Obviously, nonextensive systems
are subject to a dual nature since positiveκ-values imply the
tendency to less organized states where the entropy increases,
whereas negativeκ-values provide states of a higher level of
organization and decreased entropy, as compared to the BGS
state, see e.g.Leubner(2004a, 2005).

The general nonextensive entropy is consistent with the
example in Eq. (1) and reads (Tsallis, 1988; Leubner, 2004a)

Sκ = κkB(
∑

p
1−1/κ
i − 1) (2)

whereκ=∞ represents the extensive limit of statistical in-
dependence. Consequently, the interaction term in Eq. (1)
cancels recovering with respect to Eq. (2) the classical BGS
entropy. A further generalization of Eq. (2) for complex sys-
tems was provided byMilovanov and Zelenyi(2000), where
appropriate higher order terms in the entropy appear. Once
the entropy is known the corresponding probability distribu-
tions are available.

In Maxwells derivation the velocity components of the dis-
tribution f (v) are uncorrelated so thatlnf can be expressed
as a sum of the logarithms of the one dimensional distribu-
tion functions. In nonextensive systems one needs to intro-
duce correlations between the components. Extremizing the
entropy Eq. (2) under conservation of mass and energy the
resulting distribution function in velocity space reads

f ±
= A±

[
1 +

1

κ

v2

v2
t

]−κ

(3)

where vt corresponds to the mean energy or thermal
speed. Hence, the exponential probability function of the
Maxwellian gas of an uncorrelated ensemble of particles is
replaced by the characteristics of a scale invariant power-law
where the sign ofκ, indicated by superscripts, governs the
corresponding entropy bifurcation. We note that the distri-
bution Eq. (3) can be derived by means of Lagrangian mul-
tiplyers without introducing a specific form for long-range
interactions. Incorporating the sign ofκ into Eq. (3) and per-
forming the normalization separately for positive and neg-
ative κ-values generates a dual solution subject also to two
different,κ-dependent normalizing factorsA±(κ).

The entropy bifurcation appears also in higher order mo-
ments yielding for instanceκ-dependent generalized temper-
atures. Furthermore, the positive solution is restricted to
κ>3/2 whereas the negative solutions are subject to a cut
off in the distribution atvmax=vt

√
κ, for details see (Leub-

ner, 2004a). Both functions,f + andf − in Eq. (3) approach
one and the same Maxwellian asκ→∞. Figure 1 demon-
strates schematically the non-Maxwellian behavior of both,
the suprathermal halo component and the less pronounced
core distribution, subject to finite support in velocity space,
where the caseκ=∞ recovers the Maxwellian equilibrium
distribution.
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Fig. 1. A schematic plot of the characteristics of the nonextensive
bi-kappa distribution family: withκ=3 the outermost and inner-
most curve correspond to the halof + and coref − distribution
fraction. For increasingκ-values both sets of curves merge at the
same Maxwellian limit, indicated as dotted line,f + from outside
andf − from inside.f (v) andv are normalized to the maximum of
the Maxwellian and to the thermal speed, respectively.

Next, we construct a unique nonextensive distribution sub-
ject to the constraints: (a) the distribution approaches one and
the same Maxwellian asκ→∞, (b) a unique, global distri-
bution must be definable by one single density and a unique
temperature and (c) upon variation of the coupling param-
eterκ particle conservation and adiabatic evolution are re-
quired, such that a redistribution in a box (a source free envi-
ronment) can be performed. Subject to these constraints the
appropriate mathematical functional, representing observed
core-halo (ch) structures in nonextensive astrophysical en-
vironments, is available from the elementary combination
fch=Bch(f

+
+ f −), Bch being a proper normalization con-

stant. In this context the velocity space “bi-kappa distribu-
tion”, compatible with nonextensive entropy generalization
and obeying the above constraints, reads

fch =
N

π1/2vt

G(κ)

{[
1 +

1

κ

v2

v2
t

]−κ

+

[
1 −

1

κ

v2

v2
t

]κ}
(4)

The last term on the right-hand side denotes an expres-
sion subject to a thermal cut off at the maximum allowed ve-
locity vmax=

√
κvt , which limits also required integrations,

see Fig. 1. For details regarding the corresponding second
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Fig. 2. Left: Reconstruction of a double-Maxwellian fit to interplanetary core-halo electron structures (dashed lines) as compared to
the single, one parameter nonextensive distribution (solid line). Normalization as in Fig1. Right: Theκ−dependent entropy function for
increasing peak separation scale from bottom to top. The sequence of curves belong to stepwise increasingvs in thirds of the thermal velocity
and the dashed line indicates the Maxwellian reference with zero peak separation. The dashed-dotted line shows the entropy maximum for
vs∼2vt and relates therefore the mean observed peak separation atvs=1.17vA=1.97vt to a value ofκ=5.5. S(κ) is normalized to one, the
Maxwellian reference.

moments or generalized temperatures seeLeubner(2004a,b).
The functionG(κ) is defined by

G(κ) =

[
κ1/20(κ − 1/2)

0(κ)
+

κ1/20(κ + 1)

0(κ + 3/2)

]−1

(5)

from the normalization offch and is subject to a particular
weakκ-dependence whereG(κ)∼1/2, seeLeubner(2004a)
for a graphical illustration and discussion. Hence, the nor-
malization is independent of the parameterκ and the factor
1/2 reflects consistently the superposition of the two counter-
organizing contributions in Eq. (4). For κ=∞, G(κ)=1/2
and the power laws in the brackets of the right hand side of
Eq. (4) turn each into the same Maxwellian exponential and
the resulting factor 2 cancels withG(κ).

The duality of equilibria in nonextensive statistics is man-
ifest in two families, the nonextensive thermodynamic equi-
libria and the kinetic equilibria, where both families are re-
lated via the nonextensive parameter byκ

′

=−κ (Karlin et
al., 2002; Leubner, 2005). κ

′

andκ denote the correspond-
ing entropic index of the particular family where the trans-
formationq=1−1/κ for the transition between the Tsallis q-
notation and theκ-formalism used here is applied (Leubner,
2004a). Positiveκ-values are related to the stationary states
of thermodynamics and negativeκ-values to kinetic station-
ary states. The limiting BGS state forκ=∞ is therefore char-
acterized by self-duality. The nonextensive parameterκ finds
also a physical interpretation in terms of the heat capacity

of a medium (Almeida, 2001). A system withκ>0 repre-
sents an environment with finite positive heat capacity and
vice versa, forκ<0 the heat capacity is negative. Negative
heat capacity is a typical property of self-interacting systems,
see e.g.Firmani et al.(2000). Moreover, contrary to ther-
modynamic systems where the tendency to dis-organization
is accompanied by increasing entropy, self-interaction tends
to result in structures of a higher level of organization and
decreased entropy. Consistently, “core” refers to negative
definite κ and “halo” to positive definiteκ-values and the
corresponding distribution families merge forκ→∞ into the
extensive, selfdual state.

2.1 Interplanetary velocity distribution functions

Clear signature of persistent core-halo solar wind electron
structures were provided by Ulysses and WIND observa-
tions (Maksimovic et al., 1997a; Pierrard et al., 1999). Based
on Ulysses detectionsMaksimovic et al.(2000) studied so-
lar wind core-halo electron density and temperature profiles,
performing also a classical two-Maxwellian fit to observed
distributions. The Maxwellian core fit resembles accurately
the observed characteristics but, due to the concave distri-
bution slope of the Maxwellian, only a rough representa-
tion of the measured convex high-energy tail structure (see
Fig. 1 of their study) is provided. Figure 2, left panel,
shows a reconstruction of the two-Maxwellian fit as com-
pared to the unique nonextensive bi-kappa fit, demonstrating
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clearly the advantage of the nonextensive representation, in
particular with regard to the strongly pronounced core con-
tinuing smoothly into the observed convex halo distribution
shape. Further significant support for the nonextensive bi-
kappa approach is provided from solar wind electron ob-
servations (Maksimovic et al., 1997b; Pierrard et al., 1999)
where matching shortcomings of Maxwellian fits and empir-
ical positive-kappa distribution fits are corrected with the bi-
kappa core-halo approach, in particular due to the enhanced
distribution maximum and a reduced distribution width of the
nonextensive core for particle energies just below the core-
halo transition, for details seeLeubner(2004a,b).

As fundamental advantage, best fits are obtained on the
basis of a unique core/halo density and temperature accord-
ing to Eq. (4) providing one single distribution, which repre-
sents accurately the observed electron structures, where the
entropic indexκ remains as the only distribution shaping pa-
rameter. Theoretically, any separation of an observed veloc-
ity distribution, for instance into two different Maxwellians
and therefore subject to different temperatures and densities
in the core and halo, respectively, is questionable since den-
sity and temperature are defined as moments of the entire
distribution.

In contrast to interplanetary electron distributions proton
velocity space structures typically exhibit a clear core-halo
peak separationvs along the ambient magnetic field where
the separation scale was suggested to average around 1.4
times the local Alfv́en speedvA (Marsch et al., 1982). In
view of the proposed correlation between peak separation
and the Alfv́en speed, or relative core-halo drift, it must be
emphasized that the data are subject to a significant spread of
(0.58...1.73)vA around the favored value of 1.4vA. Therefore
much effort was spent over two decades to clarify the origin
of the persistent solar wind core-halo separation, observed in
particular in high speed streams.

We refer to HELIOS observations of proton velocity dis-
tributions between 0.3 and 1 AU (Marsch et al., 1982), later
theoretically supported byLeubner and Vĩnas(1986) provid-
ing in view of cyclotron instability analysis a series of ac-
curate analytical two-dimensional representations of the de-
tected double humped structures. This context assists to an-
alyze the dependence of the nonextensive entropy function
on the entropic indexκ and the relative drift speed where
the entropyS=−kB

∫
f (v, r) ln[f (v, r)]dvdr is evaluated

following Collier (1995). Using the Boltzmann entropy for
the evaluation of non-thermal distributions introduces an ap-
proximation, a subject presently under investigation. Starting
with zero model peak separation and increasing stepwise the
relative core-halo drift as parameter, see Fig. 2, right panel,
associates through the the entropy maximum the mean peak
separation scale to a particular value ofκ. Most signifi-
cantly, the entropy maximum relates a peak separation of
vs∼2vt to κ∼5, a value consistent with solar wind obser-
vations. For a givenκ-value it is therefore possible to de-
duce via the maximum entropy condition the corresponding

relative core-halo drift speed of interplanetary velocity dis-
tributions. This enables one to construct typically observed
double-humped distributions directly from the knowledge of
the particle density and plasma temperature, since the maxi-
mum entropy condition relates the relative driftvs to the cor-
responding nonextensive indexκ. κ-distributions subject to
low κ-values (κ=3...6) represent best the “normal” situation
in space plasmas.

2.2 Probability distributions in turbulence

The analysis of probability distribution functions (PDFs) is
of considerable interest to study intermittency and multi-
scale statistical properties in fully developed turbulence in
the solar wind plasma where high resolution in situ obser-
vations are available. We test in the following the relevance
of the nonextensive, global bi-kappa PDF Eq. (4), adapted
to study the observed scale dependence of the PDFs of the
differences of magnetic field fluctuations in the intermittent,
turbulent interplanetary medium.

For this purpose we relate the energy levelsEi of the tur-
bulent spectrum to the corresponding kinetic energy of ve-
locity differencesδv(t)=v(t+τ)−v(t) between two points
of separationτ , allowing to transform the 1-D Maxwellian
particle distribution of mean energyvt into the mathemat-
ical form of a Gaussian of varianceσ . Upon normalizing
the one-dimensional bi-kappa particle distribution Eq. (4) to
unity and assigning the distribution varianceσ to the thermal
spreadvt the “Maxwellian form” of the bi-kappa distribution
transforms into a “Gaussian form” of a global bi-kappa PDF
for statistical analyses in turbulence as

Pch(κ, σ ) =
1

2
√

πσ

{[
1 +

δX2

κσ 2

]−κ

+

[
1 −

δX2

κσ 2

]κ}
(6)

The spatial separation scale is characterized in common
notation by the differencesδX(t)=X(t+τ)−X(t), X(t) de-
noting any characteristic solar wind variable at timet andτ

is the time lag. As previously,κ characterizes physically the
degree of nonextensivity or nonlocality in the system, thus
being a measure of the degree of organization or intermit-
tency, respectively, (Leubner and V̈orös, 2005a) andσ de-
notes the distribution variance. In analogy, Fig. 1 illuminates
now that large values ofδX correspond to the tails of the dis-
tribution, represented by the first term on the right-hand side
of Eq. (6), whereas small differences are related to the dis-
tribution core and are modeled primarily by the second term
of Eq. (6). As κ→∞ the bi-kappa distributionPch(κ, σ ) ap-
proaches a single Gaussian.

The basic assumption for deriving the velocity space bi-
kappa distribution was the pseudo-additivity of the entropies
of particle sub-systems expressed by Eqs. (1) and (2). It
is important to recognize that the same type of expression
for a bi-kappa distribution is obtained, if we assume instead
of interacting particles interacting coherent structures with
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Fig. 3. The PDF of the increments of observed ACE magnetic field fluctuations forτ=100 and a resolution of 16s as compared to the
bi-kappa function withκ=1.8. Based on the same data the central panel provides the characteristics for increasedτ=2000 whereκ assumes
a value of 3.0 for the best representation. The PDF of large-scale magnetic field fluctuations,τ=10000, are well modeled by a Gaussian with
κ=∞, right panel. The dotted lines correspond to the standard deviations of observational data, the PDFs are normalized to the maximum
value,δB to the standard deviation andτ is normalized to the time resolution.

the same pseudo-additive property. In the context of MHD,
non-propagating multi-scale coherent structures or flux tubes
can interact, deform and produce new sites of nonpropagat-
ing fluctuations. Coherent structures of the same polarity
merge into a structure with lower local energetic states, while
structures of opposite polarities may repel each other (Chang,
1999; Bruno and Carbone, 2005). These coherent structures
can be considered as discrete interacting “particles” in MHD
flows, validating the analogy to the kinetic level of PDFs
(Leubner and V̈orös, 2005b). Moreover, passive scalars as
the magnetic fieldB, discussed here, follow the dynamics of
v or δv (Vörös et al., 2006).

Multi-scale redistribution of energy – a basic feature of
turbulent flows - appears, where interacting coherent struc-
tures may also reduce the entropy of the system, leading to
negativeκ-values. At the same time, turbulence enhances
dissipation and mixing of the plasma, which increases en-
tropy and is described in terms of positiveκ-values. Both
processes are incorporated in Eq. (6).

Based on the nonextensive two parameter bi-kappa distri-
bution Eq. (6) we compare the PDFs of magnetic field fluc-
tuations, obtained from slow and fast solar wind data, with
particular attention to the scale dependent changes of the
two physically interpretable parameters (κ, σ ) involved. The
presence of discontinuities or shocks is a problem investi-
gated elsewhere (Vörös et al., 2006) and is not considered
here. For each data set the magnetic field increments were
calculated at a given time lagτ by δB(t)=B(t+τ)−B(t),
normalized to the standard deviation and followed by the
computation of the probability distribution function (his-
togram). δB(t) represents the characteristic fluctuations at
a particular time scaleτ or, equivalently, across eddies of
sizel=vτ , v being the solar wind speed. The dimensionless
τ is multiplied by the time resolution to generate an effective
time lag. Changingτ allows then to analyze the statistical
features of fluctuations on different scales. For this analysis

magnetic field data, available with 16 s from the ACE mag-
netic field experiment are used (Smith et al., 1998).

Fig. 3 demonstrates that the scale dependence of the PDFs
in the low speed solar wind are accurately represented via the
tuning parametersκ andσ of the bi-kappa functional Eq. (6).
The strong non-Gaussianity of the PDFs of small scale fluc-
tuations must be associated physically with long-range inter-
actions and correlations due to the underlying nonextensive
context. Undisturbed solar wind ACE magnetic field am-
plitude data of 16 s time resolution are analyzed where the
evolution of magnetic field fluctuations is subject to a two
point separation scale ofτ=100, 2000 and 10000. The cor-
responding best fits of the bi-kappa distribution are obtained
for κ=1.8, 3 and∞ and the dotted lines refer to the stan-
dard deviation of observational data. The accuracy of the
bi-kappa distribution fits clearly indicates that non-locality
in turbulence, when introduced theoretically by long-range
interactions through a nonextensive entropy generalization,
provides a precise representation of the observed PDFs char-
acterizing the intermittency of the magnetic field fluctuations
at all scales.

The three panels in Fig. 4 show PDFs of high speed asso-
ciated magnetic field magnitude fluctuations where the two-
point statistics is performed for the scalesτ=40, 400 and
10000. Note that in comparison to low speed data the de-
gree of nonextensivity does not change during high speed in-
tervals, leavingκ almost constant over the range of scales
(τ=40 to 400), where only for decoupled Gaussian state
(τ=10000)κ approaches∞. In high speed environments
the mean energy represented byσ needs to be adjusted for
accurate fits. This indicates physically that the abundance of
large scale energy content in high speed flows facilitates to
maintain the degree of nonextensivity and self-organisation
unchanged over the considered range of scales, for details
seeLeubner et al.(2006).
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Fig. 4. The PDF of the increments of observed ACE high-speed associated magnetic field magnitude fluctuations (16 s time resolution)
normalized to the maximum value. Left panel: fluctuations at the scaleτ=40 as compared to the bi-kappa function withκ=1.4 andσ=0.12;
Medium panel:τ=400,κ=1.2 andσ=0.6; Right panel: Gaussian fit withτ=10000,κ=∞ andσ=15. τ is normalized to the time resolution
andδB to the standard deviation.

As ordering parameterκ accounts for nonlocality or cor-
relations within the system. Highly correlated turbulent con-
ditions characterized byκ-distributions represent stationary
states far from equilibrium where a generalization of the
BGS entropy, as measure of the level of organization or inter-
mittency, applies (Goldstein and Lebowitz, 2004; Treumann
et al., 2004). Physically this can be understood considering
a system at a certain nonlinear stage where turbulence may
reach a state of high energy level, balanced by turbulent dis-
sipation. In this environment equilibrium statistics can be ex-
tended to dissipative systems, approaching a stationary state
beyond thermal equilibrium (Gotoh and Kraichnan, 2002).

2.3 Density distributions in clustered structures

To date only a few attempts provide physically motivated
models for density profiles of astrophysical clusters. Early
analytical analysis (Gunn and Gott, 1972) for the collapse
of density perturbations was subsequently further studied
(Hoffman, 1988) and based on infall models (Williams et al.,
2004; Ascebar et al., 2004).

In practice, dark matter (DM) and hot plasma density
profiles, as observed in galaxies and clusters or generated
in simulations, are widely modeled by empirical fitting
functions. The phenomenologicalβ−model (Cavaliere and
Fusco-Femiano, 1976), provides a reasonable representation
of the hot plasma density distribution of clustered structures,
further improved by the doubleβ-model with the aim of re-
solving theβ−discrepancy (Bahcall and Lubin, 1994). Sim-
ilarly, the radial density profiles of DM halos are analyzed
primarily with the aid of phenomenological fitting functions,
thus lacking physical support as well (Burkert, 1995; Navarro
et al., 1996; Moore et al., 1998).

Since any astrophysical system is subject to long-range
gravitational and/or electromagnetic interactions, this situa-
tion motivates again to introduce nonextensive statistics as
physical background for the analysis of DM and hot plasma
density profiles. In this context the entropy of the standard
(BGS) statistics is generalized, as outlined in section 1, by
the pseudo-additiveκ-weighted term to mimic the degree of
long-range gravitational interactions and correlations within
the system.

Extremizing the generalized entropy with regard to con-
servation of mass and energy in a gravitational potential9

yields the energy distribution

f ±(v) = C±

[
1 + (v2/2 − 9)/(κσ 2)

]−κ

(7)

As previously, the superscripts refer to the positive or neg-
ative intervals of the entropic indexκ, accounting for less (+)
and higher (–) organized states and thus reflecting the accom-
panying entropy increase or decrease, respectively (Leubner,
2005). σ represents the mean energy of the distribution and
C± are the corresponding normalization constants. The den-
sity evolution of a system subject to long range interactions
in a gravitational potential

ρ±
= ρ0

[
1 − 9/(κσ 2)

](3/2−κ)

(8)

is found after integration over all velocities. Combining with
Poisson’s equation19=−4πGρ± provides a second order
nonlinear differential equation, determining the radial den-
sity profiles of both components, plasma and DM in clustered
structures as (Leubner, 2005)

d2ρ

dr2
+

2

r

dρ

dr
−(1−

1

n
)
1

ρ
(
dρ

dr
)2

−
4πGn

(3
2−n)

ρ2

σ 2
(

ρ

ρ0
)−

1
n =0 (9)
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Fig. 5. Left: Nonextensive family of density profiles. The set of curves left of the bold dotted line, denoting the standard BGS case,
corresponds to the DM (ρ−) solutions and the right branch of curves to the plasma (ρ+) distributions. For increasingκ−values both
sets of curves converge to the BGS isothermal sphere solution (κ=∞, bold dotted line). The density is normalized to one, generating the
corresponding radius normalization. Center: Radial DM density profile obtained from N-body simulations (crosses). The solid line shows
a fit of the nonextensive theory to the data with best fitting values ofκ=−15 andσ=0.12. For comparison, also the best fittingNavarro et
al. (1996) profile is provided (dashed line) and shifted to the right for better visibility.R200 indicates the virial radius. Right: Radial plasma
density profile obtained from the hydrodynamic simulations (dashed line). The solid line shows a fit of the nonextensive theory to the data
with best fitting values ofκ=6.5 andσ=0.086. For comparison, also the best fitting double beta model is provided (dashed-dotted line),
shifted to the right for better visibility. Normalization as in the left panel of Fig. 5.

where n=3/2−κ is introduced and corresponds to the
polytropic index of stellar dynamical systems (Binney and
Tremaine, 1994). As natural consequence of nonextensive
entropy generalization the standard isothermal sphere profile
(Binney and Tremaine, 1994) bifurcates into two distribution
families controlled by the sign and value of the correlation
parameterκ.

Physically, we regard the DM halo as an ensemble of self-
gravitating, weakly interacting particles in dynamical equi-
librium (Firmani et al., 2000; Spergel and Steinhardt, 2000)
and the hot gas component as an electromagnetically inter-
acting high temperature plasma in thermodynamic equilib-
rium. Hence, astrophysical clusters experience long-range
gravitational and/or electromagnetic interactions leading to
correlations, such that the standard BGS statistics does not
apply again. As discussed previously, the duality of equi-
libria in nonextensive statistics appears in the nonextensive
stationary states of thermodynamics subject to finite positive
heat capacity and in the kinetic stationary states with negative
heat capacity, a typical property of self-gravitating systems
(Firmani et al., 2000), where both are related only via the
sign of the coupling parameterκ. Consequently we have to
assign negativeκ-values, describing the lower entropy state
due to gravitational interaction, to the DM component and
the second branch of positiveκ-values and higher entropy,
as compared to the BGS self-dual state, to the hot plasma
component.

The left panel in Fig. 5 illuminates schematically the ra-
dial density profile characteristics for some values ofκ for
both, DM below and the plasma distributions above the stan-

dard exponential BGS solution. Increasingκ values corre-
spond to a decoupling within the system and both branches
merge simultaneously in the isothermal sphere profile for
κ=∞, representing the extensive limit of statistical inde-
pendence in analogy to the Maxwellian limit for systems
where gravitational interaction is neglected. In Fig. 5, central
panel, the result of N-body DM simulations are compared
with the nonextensive theoretical approach forκ=−15 and
σ=0.12 indicating perfect agreement. For comparison also
the best fittingNavarro et al.(1996) (NFW) profile is pro-
vided. Again, reproducing simulations precisely, the radial
nonextensive plasma density distribution (solid line) is com-
pared with the results of hydrodynamic simulations in the
right panel of Fig. 5. Shifted to the right also the empiri-
cal best fitting double-beta model is shown, confirming that
the nonextensive theory provides naturally a context able to
solve theβ−discrepancy (Bahcall and Lubin, 1994).

3 Summary and conclusions

The nonextensive entropy generalization for systems subject
to long-range interactions and correlations provides a natural
way to redistribute a velocity space structure such that core-
halo distributions, known from a variety of astrophysical ob-
servations, are generated. Tuning only the entropic indexκ a
thermalized Maxwellian can be transformed into highly non-
thermal features, as persistently detected for instance in the
interplanetary medium. The nonextensive bi-kappa distribu-
tion in Eq. (4) offers access to understand the significantly
pronounced, but normally symmetrically appearing, electron
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core-halo distributions. Interplanetary proton or ion struc-
tures, typically subject to a core-halo separation in velocity
space, are equivalently well represented within a generalized
entropy concept where the separation scale obeys a maxi-
mum entropy condition.

Furthermore, this generalization yields a two-parameter
global bi-kappa function providing theoretical access to the
scale dependence of the differences of fluctuations of any
physical variable via the PDFs observed in astrophysical
plasma turbulence. The redistribution of a Gaussian on large
scales into highly non-Gaussian leptokurtic and long-tailed
structures, manifest on small scales, is theoratically well de-
scribed by the family of nonextensive distributions. Pseudo-
additive entropy generalization provides the required physi-
cal interpretation of the parameterκ in terms of the degree of
nonextensivity of the system as a measure of nonlocality or
couplings, whereas the varianceσ measures the mean energy
in the system. The scale dependence in the slow speed solar
wind is sensitive to variations ofκ and in high speed streams
to variations ofσ , see alsoLeubner et al.(2006).

Finally, generalizing to self-gravitating systems the dual
nature of the nonextensive theory provides also a solution to
the problem of DM and plasma density distributions of clus-
tered matter from fundamental physics, where both parame-
ters admit again physical interpretation.

Concluding, based on a fundamental entropy principle
nonextensive statistics provides naturally the power to cre-
ate highly non-Maxwellian core-halo velocity distributions
as observed in space plasma environments. In additon, we
argue that multi-scale coupling and intermittency of the tur-
bulent solar wind fluctuations must be related to the nonex-
tensive character of the interplanetary medium, accounting
for long-range interaction via the entropy generalization. Ex-
tending the theory to gravitationally bound structures implies
also the requirement to favor the physical family of nonex-
tensive distributions over empirical models, when fitting ob-
served or simulated density profiles of astrophysical clusters.

Hitherto, in all three cases phenomenological models
served for theoretical and data analyses and should be re-
placed by distributions arising from the physical approach of
nonextensive statistics and the underlying fundamental en-
tropy bifurcation.
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