
Nonlin. Processes Geophys., 15, 503–521, 2008
www.nonlin-processes-geophys.net/15/503/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Nonlinear Processes
in Geophysics

Controlling instabilities along a 3DVar analysis cycle by assimilating
in the unstable subspace: a comparison with the EnKF

A. Carrassi1,2, A. Trevisan3, L. Descamps4, O. Talagrand4, and F. Uboldi5

1Royal Meteorological Institute of Belgium – RMI, Bruxelles, Belgium
2Dept. of Physics – University of Ferrara, Ferrara, Italy
3Istituto di Scienze dell’Atmosfera e del Clima (ISAC) – Consiglio Nazionale delle Ricerche (CNR), Largo Gobetti 101,
Bologna, Italy
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Abstract. A hybrid scheme obtained by combining 3DVar
with the Assimilation in the Unstable Subspace (3DVar-
AUS) is tested in a QG model, under perfect model condi-
tions, with a fixed observational network, with and without
observational noise. The AUS scheme, originally formulated
to assimilate adaptive observations, is used here to assimilate
the fixed observations that are found in the region of local
maxima of BDAS vectors (Bred vectors subject to assimi-
lation), while the remaining observations are assimilated by
3DVar. The performance of the hybrid scheme is compared
with that of 3DVar and of an EnKF. The improvement gained
by 3DVar-AUS and the EnKF with respect to 3DVar alone is
similar in the present model and observational configuration,
while 3DVar-AUS outperforms the EnKF during the forecast
stage. The 3DVar-AUS algorithm is easy to implement and
the results obtained in the idealized conditions of this study
encourage further investigation toward an implementation in
more realistic contexts.

1 Introduction

Data assimilation in meteorology and oceanography is expe-
riencing a rapid phase of development, with flourishing of
theoretical studies and applications. Traditionally the reg-
ular, globally available measurements network has been em-
ployed in the process of combining data with model forecasts
to obtain the initial condition for model integrations. Re-
cently there has been also a growing interest inadaptiveob-
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servational systems (Langland, 2005) and satellite data thin-
ning (Ochotta et al., 2005).

While the merits of the relatively new ensemble meth-
ods are being compared with those of traditional variational
methods, the potential benefit of the use of adaptive observa-
tions, added to the standard network, is being tested (Szun-
yogh et al., 2002).

The present is a follow-up study on the testing of an as-
similation scheme developed by the authors (Trevisan and
Uboldi, 2004; Uboldi et al., 2005; Uboldi and Trevisan,
2006; Carrassi et al., 2007) and referred to as Assimilation in
the Unstable Subspace (AUS). The basic paradigm of AUS
is to track and control the analysis-forecast cycle instabili-
ties. As a consequence, AUS has found its most natural ap-
plications in an adaptive observation context. Making use of
just a few additional observations, properly located at each
observing time in order to detect the analysis-forecast cycle
instabilities estimated by Breeding on the Data Assimilation
System (BDAS) it was possible to drastically reduce the fore-
cast error.

Previous studies have in fact proven the AUS-BDAS sys-
tem effectiveness in a hierarchy of dynamical systems char-
acterized by different features and complexity, such as the
Lorenz 40-variable model (Lorenz, 1996), the atmospheric
quasigeostrophic model used here (Rotunno and Bao, 1996)
and a primitive equation ocean model (Bleck, 1978). These
results support, on the one hand, that BDAS, in view of its
ability of tracking the instabilities of the assimilation system,
provides a feasible targeting strategy; on the other hand that
AUS is an efficient, computationally affordable, relatively
easy to implement method to assimilate the adaptively lo-
cated observations. Moreover, they show that, even dealing
with high-dimensional system, an efficient error control and
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an accurate state estimate can be obtained by monitoring only
a reduced number of unstable directions and by properly us-
ing a limited number of observations.

By allowing ad hoc observations of the estimated insta-
bilities, the deployment of an adaptive network naturally en-
hances the efficiency of AUS. In fact, targeting the spatial
unstable structures improves the estimate of the amplitude of
the unstable components of the error, thus enhancing the sta-
bilizing effect. One natural question is therefore how AUS-
BDAS performs with a fixed, standard, observational net-
work. As long as the spatial and temporal observational cov-
erage of the standard network is dense enough, the instabil-
ities can be detected as they move throughout the domain,
although a reduced efficiency may be expected with respect
to the adaptive observations case.

Uboldi and Trevisan(2006) investigated the use of fixed
“satellite” surface elevation observations in a primitive equa-
tion oceanic model and pointed out the weakness of such an
observational network. A stable error reduction could not
be achieved by using only surface observations since domi-
nating instabilities developed in deeper model layers before
they could be detected at the surface. Instead, an efficient
error reduction and a drastic improvement of the assimila-
tion performance were obtained by means of vertical profiles
adaptively located by BDAS and assimilated by AUS.

We investigate the best use of the AUS-BDAS method in
an atmospheric context where only a network of fixed sound-
ings is available.

Errors, in an operational data assimilation cycle, are of var-
ious origin. Even if it is assumed that errors in the description
of the system dynamics (the model error) are not present,
noise is introduced at different stages of the observing and
assimilation procedure. It includes, among others, the mea-
surement noise (coming also, for instance, by deficiencies in
the retrieval procedures of indirect measurements), represen-
tativity errors and errors due to imperfections in the assimi-
lation procedure itself. Moreover, if the instabilities cannot
be controlled by adequate (ad hoc) observations, nonlinear-
ities become important. Thus, in the presence of large un-
structured errors due to observation and system noise and to
strong nonlinearities that can be expected to be important in a
fixed observational setting, a failure of the unstable subspace
paradigm of AUS is expected. These arguments suggest and
motivate the combined use of AUS and a stationary assimi-
lation method.

In the present study we propose an algorithm composed of
a least-square based data assimilation scheme, the 3DVar, in
combination with AUS, hereafter referred to as 3DVar-AUS.
The added value of AUS over a 3DVar analysis cycle is in-
vestigated with a fixed observational network chosen to sim-
ulate a realistic observation coverage, and observation sys-
tem simulation experiments are performed with both perfect
and noisy observations.

Given the properties of the available observing network, a
practical relevant question is how AUS compares with other

assimilation methods. For comparison, an ensemble Kalman
filter (EnKF) (Evensen, 1994, 2003), has been implemented
and optimized for the model and observational network used
here. The EnKF is considered among the most promising
ensemble-based sequential data assimilation schemes and
therefore is an ideal candidate for the comparison with the
proposed 3DVar-AUS scheme.

This article is organized as follows. In Sect. 2 the details
of the model and of the observational network are given. In
Sect. 3 the three data assimilation schemes, objects of the
comparison, are briefly described along with the specific im-
plementation choices adopted here; particular emphasis is
given to the proposed 3DVar-AUS. Results are described in
Sect. 4, while the final summary and discussion can be found
in Sect. 5.

2 Model and observation network configuration

All the experiments described in this study are performed by
making use of an atmospheric numerical model based on the
quasigeostrophic equations in a periodic channel (Rotunno
and Bao, 1996). The model features mid-latitude large-
scale flows and the channel is centered at 45◦ N; its length
is 16 000 km while its width is 8000 km (approximately 180◦

of longitude by 70◦ of latitude). At the resolution of 250 km
used here, the model fields are discretized at 64×33 hori-
zontal gridpoints on 5 vertical inner levels where potential
vorticity, PV, is defined, plus 2 (top and bottom) levels where
potential temperature, PT, is defined, so that the model state
vector has dimensionI=14784. The model solution is forced
by relaxation to a zonal mean state with constant stratifica-
tion and damped by a∇4 horizontal diffusion and by an Ek-
man pumping at the surface. The time step for integration is
approximately 30 minutes. At the resolution used, the model
possesses 24 positive Lyapunov exponents, the leading one
corresponds to a doubling time of 2.2 days. This model pro-
vides a qualitatively good representation of the true atmo-
spheric mid-latitude dynamics while being simple enough to
make long runs and statistical analysis feasible; it has been
already used in some previous works on AUS (Uboldi et al.,
2005; Carrassi et al., 2007) as well as in a number of other
data assimilation studies (Morss et al., 2001; Corazza et al.,
2003, 2007). An analysis of its dynamical properties can be
found inSnyder and Hamill(2003).

The forward model integration evolves from the analysis
state at a given timetk to the forecast state at timetk+1=tk+τ

wherek=0, 1, 2..., andτ is the assimilation interval of a se-
quential assimilation scheme:

xf (tk+1)=M(xa(tk)), (1)

wherexf andxa indicate the forecast and analysis states re-
spectively.

The observing network consists of a fixed set of observa-
tions simulating synoptic profiles located at model gridpoints
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Fig. 1. The observational network used in the experiments. Each
dot represents the horizontal location of a vertical sounding profile.

and measuring model variables, (potential vorticity, PV, at
the five inner levels and potential temperature, PT, at top and
bottom), at each level.

In a previous work with the same model (Carrassi et al.,
2007), AUS was used to assimilate a single adaptive obser-
vation in a large data-void area, and was combined with a
3DVar that assimilated all the fixed observations over a data-
rich area.

In the present study, we intentionally work with a fixed
network of observations to investigate the potential useful-
ness of AUS in the absence of adaptive observations that nat-
urally enhance its efficiency. The observational network used
here (Fig.1) alternates data-rich/data-void areas as it is typi-
cal of a real observation network: the distribution ofM=125
soundings is obtained through a random selection procedure.

Observing system simulation experiments are performed:
a given trajectory, solution of the model equations, is taken
to represent the true atmospheric evolution. At each analysis
time, everyτ=12 h, observations are taken by sampling the
”true trajectory” at the observation locations. Following the
widely used notation (Ide et al., 1997), observation values are
stored as components of the observation vectory◦:

y◦(tk)=H(x(tk))+ε(tk) (2)

where ε(tk) represents the additive observation error, as-
sumed to be white in time, Gaussian distributed with covari-
anceR andH is the observation operator, estimating the ob-
served variables from the model state. Since the observations
are located at model gridpoints and observe model variables,
the observation operator is inherently linear and the notation
H is used hereafter.

Observation errors are assumed to be correlated in the ver-
tical direction only and uncorrelated for different soundings.
The observational Root-Mean-Square (RMS) error at each
level is set to 10% of the system’s natural variability while,
as in Morss (1999), the covariance between different lev-
els is expressed in terms of the respective variances and of
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Fig. 2. Normalized time and domain RMS analysis error for the
EnKF experiment as a function of the inflation factor (α) by setting
d0=3000 Km, and, in the inset, as a function of the zero correlation
distanced0, by settingα=0.07. The experiments last 60 days and
the average refers to the last 50 days. Errors are normalized with
natural variability and expressed with potential enstrophy norm.

a vertical correlation function (Eq. 3.19 inBergman, 1979),
depending on the vertical distance only. With these assump-
tions the observation error covariance matrixR takes the sim-
ple form of a diagonal block matrix, with a 7×7 square ma-
trix in each of theM diagonal blocks.

Following Morss (1999) andHoutekamer(1993), obser-
vation errors are randomly generated, and added to the true
values, by sampling a Gaussian distributionN (0, R) with
zero mean and consistent with the assumed observation error
statistics.

3 Data assimilation algorithms

The analysis state at an arbitrary timetk is obtained as a linear
combination of a forecast state, taken as a background field,
with the observations:

xa
= (I − KH ) xf

+Ky◦
=xf

+Kd (3)

whered=y◦
−Hxf is the innovation vector, while the expres-

sion of the gain matrixK that minimizes the analysis error
variance is the Kalman gain (Jazwinski, 1970):

K=Pf HT
[
HPf HT

+R
]−1

(4)

wherePf represents the forecast error covariance matrix. In
Eqs. (3) and (4) all vectors and matrices refer to the same
time tk, andT indicates matrix transposition.
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Fig. 3. Perfect observations: normalized RMS analysis error as
a function of time for 3DVar (black), 3DVar-AUS (green) and the
EnKF (red). Errors are normalized with natural variability and ex-
pressed with potential enstrophy norm. In the bottom panel loga-
rithmic scale is given in the y-axis.

3.1 3-Dimensional variational assimilation

The three dimensional variational algorithm, 3DVar, used
here has been developed on the basis of that described in
Morss (1999). The forecast error covariance is estimated
by the stationary matrixPf

3DVar=B (background error co-
variance), so that the analysis update is (see e.gTalagrand,
1997):

xa
=xf

+BHT
[
HBHT

+R
]−1

d (5)

corresponding to the minimum of the 3D-Var objective func-
tion for a linear observation operatorH. The matrixB, that is
kept constant throughout the analysis cycle, was statistically
estimated byMorss(1999) and has been multiplied here by
a scalar coefficient in order to optimize it for the present ob-
servational setting. The optimal value, chosen by minimizing
the analysis error with the present network of 125 noisy pro-
files (Fig. 1) is 0.97.

Equation (5) is solved globally by using a conjugate resid-
ual solver algorithm (Morss, 1999). The initial conditions for
all the experiments described in the text is the final state of
a 1-year-long 3DVar analysis cycle initialized by randomly
perturbing the truth state.

3.2 Ensemble kalman filter

The ensemble Kalman Filter, EnKF, used here is based on
that described in Descamps and Talagrand (2007) who used
it for the study and intercomparison of ensemble initializa-

tion techniques. It basically follows the approach given by
Evensen(2003, 2004).

Let {xf
i (tk)} and{xa

i (tk)}, with i=1, 2, ..N , be the ensem-
ble ofN forecast and analysis states at timestk, while x̄f (tk)

and x̄a(tk) represent their respective means. The forecast
and analysis deviations from the mean,δxf,a

i =xf,a
i − x̄f,a

are stored as columns of theI×N matricesXf andXa , re-
spectively. The ensemble-based forecast and analysis error
covariance matrices are then defined as:

Pf
EnKF=

1

N − 1
Xf Xf T Pa

EnKF=
1

N − 1
XaXaT (6)

At each assimilation timetk, a set of perturbed observa-
tions is generated, and then used for the ensemble analysis
update, by randomly perturbing the actual observation vec-
tor:

y◦

i =y◦
+εi i=1, 2, ..., N, (7)

whereεi are independent realizations of the observational
noiseN (0, R).

At the analysis time the ensemble of forecast states is up-
dated:

xa
i =(I − KEnKFH)xf

i +KEnKFy◦

i i=1, 2, ..., N, (8)

where the gain matrixKEnKF is obtained by setting
Pf

=Pf
EnKF in Eq. (4). The ensemble of analysis states is

then used to initializeN full nonlinear model forecasts.
In all the experiments described here,N=30 members are

used and the very first analysis ensemble is generated by
adding random noise to the reference initial condition. This
noise is drawn from a Gaussian distribution with zero mean
and variance equal to the average analysis error variance of
the 3DVar experiment.

In order to avoid ensemble collapse, prevent filter di-
vergence and optimize the EnKF performance, following
Descamps and Talagrand(2007), forecast error covariance
inflation (Anderson and Anderson, 1999) and localization
(Houtekamer and Mitchell, 2001) have been adopted. The
covariance inflation is obtained by multiplying the matrixPf

by a scalar coefficient before using it in the analysis:

Pf
EnKF=(1+α)

1

N − 1
Xf Xf T , (9)

whereα is the (tunable) inflation factor. As in Houtekamer
and Mitchell (2001), the 5th orderGaspari and Cohn(1999)
function is used to localize thePf

EnKF, the main parameter
being the zero-correlation distance,d0.

Both α and d0 have been optimized, over a 60 days
analysis cycle, for the specific model and noisy observa-
tional network used here. The best results are obtained with
d0=3000 km and a 7% of inflation (α=0.07). Figure2 shows
the normalized RMS analysis error as a function of the infla-
tion factor (fixed zero correlation distanced0=3000 km), and
as a function of the zero correlation distance (fixed inflation
factorα=0.07) in the inset.
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Fig. 4. Perfect observations: mid-level PV background error (shaded) and PV bred mode (contour) at days: 100, 200, 300, 400, 500, 600
along the perfect observation 3DVar-AUS experiment.

3.3 Assimilation in the unstable subspace (AUS) combined
with 3DVar

3.3.1 Assimilation in the unstable subspace

The mathematical formulation of AUS is briefly reported in
the following, along with the description of the setup of its
application in the present model and fixed observations con-
figuration. A full description of its mathematical and the-
oretical foundations can be found inTrevisan and Uboldi
(2004),Uboldi and Trevisan(2006) andCarrassi et al.(2007).

The AUS method is basically aimed at tracking, and
controlling, the instabilities of the (observationally forced)
analysis-forecast cyclic system in view of their prominent
role in the error evolution and their impact on the overall
performance of the data assimilation scheme. To this end,
when observations are available, an estimate of the analysis-
forecast cycle unstable subspace is used to confine the anal-
ysis correction within this subspace, thus maximizing the ef-

fect of the assimilation where it is expected to be more nec-
essary.

By combining Eqs. (1) and (3), the evolution equation for
the analysis state, the analysis-forecast cycle, is obtained:

xa(tk+1)=(I − KH )M(xa(tk))+Ky◦(tk+1), (10)

Apart from the presence of a linearized observation operator
H, Eq. (10) is the governing equation of most sequential data
assimilation schemes.

The analysis-forecast cycle perturbation equations are
given by:

δxa(tk+1)=(I − KH )Mδxa(tk) (11)

whereM , the Jacobian matrix ofM , represents the tangent
linear model evolution. In principle, from Eq. (11), it is
possible to estimate the unstable manifold of the forecast-
analysis system.

www.nonlin-processes-geophys.net/15/503/2008/ Nonlin. Processes Geophys., 15, 503–521, 2008
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Fig. 5. Noisy observations: normalized RMS analysis error as
a function of time for 3DVar (black), 3DVar-AUS (green) and the
EnKF (red). Errors are normalized with natural variability and ex-
pressed with potential enstrophy norm. In the bottom panel loga-
rithmic scale is given in the y-axis.

After storing the unstable vectors as the columns of aI×N

matrix E, and confining the analysis increment in the unsta-
ble subspace, the AUS analysis becomes:

xa
=xf

+KAUSd, (12)

where:

KAUS=E0(HE)T
[
R+(HE)0(HE)T

]−1
, (13)

or, equivalently:

KAUS=E
[
(HE)T R−1(HE)+0−1

]−1
(HE)T R−1, (14)

where, as before, all terms refer to the same timetk and where
0 is aN×N positive definite matrix, representing the fore-
cast error covariance matrix in the unstable subspace:

Pf

AUS=E0ET . (15)

Suppose that a single modee is detected by a set of obser-
vations, then the AUS analysis reads:

xa
=xf

+
(He)T R−1d

(He)T R−1(He)+γ −2
e (16)

whereγ 2, the forecast error variance in thee direction, can
be estimated from innovations.

From Eq. (16) we see that the analysis increment vector
has the direction ofe, and the amplitude that best-fits the
observations. This means that, in physical space, the dif-
ference between the analysis and the forecast state has the
three-dimensional structure of the unstable perturbation.

In practice, the unstable subspace of the data-assimilation
system is estimated by means of an extension of the Breeding
technique (Toth and Kalnay, 1993, 1997), known as Breed-
ing on the Data Assimilation System (BDAS) (Trevisan and
Uboldi, 2004), which naturally incorporates the observa-
tional forcing in the perturbations dynamics.

Equation (11) is at the base of BDAS although in prac-
tice, as in the standard breeding, the full nonlinear modelM
is used instead ofM to evolve initial random perturbations
which are then kept small by repeatedly scaling them down
to their initial amplitude. At each assimilation time, Eq. (12)
is used to update both the control reference trajectory, solu-
tion of (1), and the set of the BDAS perturbed trajectories.

This choice is motivated by the interest in testing and
developing techniques feasible for realistic contexts where
coding, implementing and keeping updated a tangent linear
model may require some effort (for details on the implemen-
tation of BDAS seeTrevisan and Uboldi(2004); Uboldi et al.
(2005) and Sect. 3.3.2).

Furthermore, it is impractical to estimate the whole unsta-
ble subspace; this would require either a recursive orthonor-
malization to be applied to the set of BDAS vectors, ac-
cording to the standard technique ofBenettin et al.(1980)
or the use of computationally demanding techniques such as
those describedTrevisan and Pancotti(1998) and byWolfe
and Samelson(2007), which allow the estimation of the Lya-
punov vectors. Instead, in this as in previous applications of
AUS, a refreshprocedure is introduced in the breeding cy-
cle in order to systematically explore the unstable subspace
of the system. In fact, as discussed inTrevisan and Uboldi
(2004) andUboldi and Trevisan(2006), the more accurately
the forecast error projection on a particular unstable direc-
tion is estimated, the more dominant will become the error
projection on the complementary subspace.

Once a breeding cycle has been established, the BDAS
modes and the forecast error will approximately have a struc-
ture given by a different linear combinations of independent
unstable vectors of the underlying dynamics.

Local structures appearing in the global BDAS modes will
be positively or negatively correlated with similar structures
in the forecast error. It is therefore necessary to localize these
structures before entering them in an assimilation expression
of type (16). In addition, the localized structure needs to be
observed, i.e.He should be non-zero and large enough to
provide a reliable estimate of the analysis increment, whose
sign is correctly determined by the innovation1. It is im-
portant to notice that, by applying only a horizontal localiz-
ing function, the vertical structure of the perturbation is pre-
served in the definition of the analysis increment.

1By usingR−1 as metrics, the norm ofHe is (He)T R−1 (He):
the components ofe detected by different observations are weighted
by the observational accuracy. Noisy observations can then be ef-
fective if thee component they detect is large enough.
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While EnKF-like methods are based on an estimate of the
forecast error covariance built from an ensemble of trajec-
tories, the identification of unstable directions of the given
control solution, which provide the three-dimensional struc-
ture of the analysis increment whose sign is determined by
the innovation, is the distinctive feature of AUS.

EnKFs are based on the traditional Kalman filter equations
and use a Monte Carlo approach to estimate the forecast er-
ror covariance matrix entering the analysis update, therefore
they have to face the consequences of sampling errors with or
without perturbed observations (Whitaker and Hamill, 2002)
and filter divergence. As a consequence, several ensemble
filters formulations have been proposed to overcome these
difficulties (for a review seeAnderson, 2003; Evensen, 2003;
Tippet et al., 2003). Similarly, the AUS approach, that re-
lies on the estimate of the forecast error projection on the
unstable subspace, faces the practical difficulties of accu-
rately estimating the unstable directions and the amplitude
of the forecast error on each of them. While the theoretical
premises of the two approaches are different but clear, when
it comes to the implementation all schemes are subject to
several practical choices that make quantitative comparisons
rather subjective.

An adaptive observations approach was followed by
Uboldi and Trevisan(2006) and byCarrassi et al.(2007) in
an oceanic and atmospheric model applications respectively.
In fact, the AUS approach of tracking and controlling the
data assimilation system instabilities is most efficient when
observations are indeed available at the moment and in the
region where an instability develops. In other words, if the
set of unstable vectorsE can effectively be detected (that is
to say if the components ofHE are large enough), thenE can
be used in Eq. (12) to update the background state. When, as
in the present application, only fixed synoptic observations
are available, the efficiency of the AUS scheme is expected
to be determined by the spacing and frequency of the obser-
vational network in relation to the typical spatial patterns and
growing times of the system’s instabilities.

3.3.2 Implementation of 3DVar-AUS

Several approaches have been proposed to combine 3DVar
with ensemble-based filters. These hybrid Ensemble/3DVar
analysis schemes introduce information on flow-dependent
instabilities by properly weighting the static covariance with
the ensemble estimated forecast error covariance (Hamill and
Snyder, 2000; Wang et al., 2007a). Etherton and Bishop
(2004) investigated the robustness of hybrid schemes to
model error: the model error modifies the optimal values of
the weights to be given to the ensemble based and static co-
variance matrices, significantly reducing the weights corre-
sponding to the former.

In the present study, we introduce a hybrid scheme that
uses the flow-dependent covariance and the 3DVar covari-
ance separately to assimilate different observations. The

AUS assimilation is applied first to reduce the forecast error
component in the model’s unstable subspace estimated by the
BDAS modes, using those observations that are able to detect
them. The residual forecast error is assumed to be unstruc-
tured and a static 3DVar covariance is used to assimilate the
remaining observations. Possibly, error associated with un-
stable structures that were not present in the BDAS modes,
or whose amplitude could not be reliably estimated with the
available observations may be still present in the analysis and
subsequent forecast: hopefully they will be accounted for at
successive assimilation times.

The 3DVar-AUS forecast-assimilation and breeding cycle
is implemented through the following recursive steps:

1. addN (=1) random perturbations to the control analysis
state (store the new set of perturbed states in place of
those discarded; see step 9);

2. perform forecast integration of the control analysis and
all perturbed states. The total number (=12) of per-
turbed trajectories evolved is equal to thebreeding time
(6 days) divided by the assimilation interval (12 h) times
N (=1);

3. determine theN(=1) global BDAS modes to be used
in the following step, as the difference between the
perturbed trajectories that have completed a forecast-
analysis breeding cycle (6 days) and the control fore-
cast;

4. select from theN(=1) global BDAS vectors the (̂N◦,
see below) local structures that are detected by observa-
tions;

5. estimate the forecast error variance,γ 2, from recent in-
novations;

6. apply AUS analysis, using the selected structures with
relative observations, and making use ofγ 2 (step 5), to
the control and to the full set of (=12) perturbed trajec-
tories;

7. store the innovations to be used in step 5;

8. apply 3DVar, using the remaining observations, to the
control and to the full set of (=12) perturbed trajecto-
ries;

9. discard the trajectories relative to theN(=1) BDAS
modes used in steps 4–5, and rescale the remaining per-
turbations;

10. go back to step 1.
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The values given in parenthesis refer to the specific values
adopted in the present application.

During the first 6 days of experiment, the control and all
the perturbed trajectories are subject to only the 3DVar analy-
sis update to assimilate all the observations; the AUS analysis
cycle begins at day 7.

Thus, in all the experiments described below, a single
N=1 BDAS mode is used at each assimilation time while
the breeding time interval is set to 6 days. This latter value
was chosen by tuning to minimize the average analysis error
(see alsoCarrassi et al., 2007). The breeding time is related
to number and growth rate of the unstable directions of the
reference trajectory, solution of the assimilation cycle. In
practice the breeding time has to be long enough for the per-
turbations to acquire the structure of the local instabilities of
the flow.

At the analysis times, instead of directly using the global
BDAS modese in Eq. (16),N̂ local isolated structures are ex-
tracted frome. Once the unstable structures are selected, we
identify the observations, if any, able to detect theN̂ local
structures; this defines a set ofN̂◦

≤N̂ “observable” struc-
tures which are finally used in the analysis update. Details
on steps 4–6 are given in the following:

(a) Selection and localizations of structures. The lo-
calization is made by repeating the point-by-point
multiplication of an horizontal Gaussian function,
f (x)=e||x−xmax||

2/d2
(d being the characteristic dis-

tance), centered on the local maxima,xmax, of each
BDAS modee. The process starts from the absolute
maxima; subsequent maxima are searched at a distance
larger than twiced. The N̂ extracted structures are
therefore assumed to be uncorrelated. We point out that
the localization is made in the horizontal direction only,
so that the vertical structure of the local maxima is pre-
served.

(b) Identify available observations and observable struc-
tures. The observations selection is made in two steps:
all the structures with no observations within an hor-
izontal (l, l) gridpoints box, centered on their maxi-
mum, are discarded; the amplitude of the structure at
the observation locations must be larger than a fixed ra-
tio β of its maximum amplitude. At the end of these
steps,N̂◦

≤N̂ “observable” structures,̂e◦

i , are obtained,
each one detected byMi observations at the same level,
i=1, ..., N̂◦. For each of theN̂◦ observable structures,
define one innovation vector,di , one observation error
covariance, theMi×Mi matrix Ri , one observation op-
erator, theMi×I matrixHi and one scalarγ 2

i .

(c) AUS analysis update. If̂N◦
6=0, that is at least one ob-

servable structurêe◦

i is identified, the AUS analysis up-
date is performed, otherwise all the observations are as-

similated with 3DVar. The analysis is made according
to Eq. (16), using thêN◦ structureŝe◦

i sequentially:

xa
=xf

+

N̂◦∑
i=1

(Hi ê◦

i )
T (Ri)

−1di

(Hi ê◦

i )
T (Ri)−1(Hi ê◦

i )+(γi)−2
ê◦

i (17)

Expression (17) is the AUS analysis equation in the case
of N̂◦ isolated structures each one observed byMi ob-
servations whose associated error covariance matrices
areRi .

Given the characteristics of the observational network
used here and in view of the selection procedure (point
(b)), each set ofMi observations associated to the ob-
servable structurêe◦

i consists of scalar measurements
at the same level (where the structure maximum is lo-
cated). As a consequence, the observations are uncor-
related and all have the same varianceσ 2: Ri=σ 2I i ,
whereI i is the identity matrix of orderMi . By mak-
ing use of these hypotheses, after rearranging, Eq. (17)
becomes:

xa
=xf

+

N̂◦∑
i=1

γ 2
i (Hi ê◦

i )
T (Hi ê◦

i )

σ 2+γ 2
i (Hi ê◦

i )
T (Hi ê◦

i )

(Hi ê◦

i )
T di

(Hi ê◦

i )
T (Hi ê◦

i )
ê◦

i (18)

Equation (18) is the AUS analysis update used in the
experiments described hereafter. Each of the scalarsγ 2

i ,
representing the variance of the forecast error along the
structurêe◦

i , needs to be estimated.

In practice the termsγ 2
i (Hi ê◦

i )
T (Hi ê◦

i ) are estimated
statistically using the innovations, according to the ap-
proach introduced inCarrassi et al.(2007): details can
be found in the Appendix.

Once the AUS analysis is completed, the analysis field is
used as the background in the 3DVar analysis to assimilate

the remainingM−
∑N̂◦

i=1 Mi observations (step 8).

As mentioned above, a refresh procedure (steps 1 and 9) is
used in the implementation of BDAS (Trevisan and Uboldi,
2004). At each assimilation time, after the analysis update,
the set of BDAS modes is discarded after being used in the
assimilation. A new one is introduced, which starts to un-
dergo a new breeding procedure: after completion of its
breeding period it will be used in an assimilation step. Al-
though this procedure increases the computational cost of
BDAS (with respect to evolving the same set of perturbed
states), it is very beneficial to efficiently span the trajectory’s
unstable subspace and to provide a reliable estimate of the
data assimilation system instabilities. The refresh was also
used inCarrassi et al.(2007) in the context of the same QG
model used here, while a trade-off procedure between keep-
ing and discarding theN (=6 in that case) BDAS modes alto-
gether was used inUboldi and Trevisan(2006) in the context
of a primitive equation ocean model.
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Fig. 6. Noisy observations experiments: top level potential temperature (PT) 12 h forecast error (shaded) and analysis increment (contour)
in a sequence of three assimilation times starting at day 204, for 3DVar (left column) and EnKF (right column). Black dots indicate locations
of the observations used.
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Fig. 7. Noisy observations experiments: top level potential temperature (PT) 12 h forecast error (shaded) and analysis increment (contour) in
a sequence of three assimilation times starting at day 204, for 3DVar-AUS. The rights panels show the AUS analysis increment superimposed
to the 12 h forecast error; the left panels show the 3DVar analysis increment superimposed to the AUS analysis error (which is used as the
background in the 3DVar analysis update). Black dots indicate locations of the observations used.
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In the experiments described here, the characteristic dis-
tance is chosen, after optimization, to bed=1500 km. Also,
a limit to the total number of the extracted assimilating struc-
tures is set,N̂=20. Furthermore, the size of the searching
box l and the coefficientβ have been optimized by tuning,
and are equal tol=7 gridpoints (equivalent to an area of
1500 km2) andβ=0.6

A practical aspect which has to be taken into account when
comparing 3DVar-AUS and EnKF is the computational cost.
Both schemes, the hybrid 3DVar-AUS and the EnKF, require
high computational power determined mainly by the num-
ber of evolving trajectories (perturbations of control for the
3DVar-AUS; ensemble members for the EnKF). At the analy-
sis step, the computational most demanding part in the EnKF
are the large matrix multiplication and inversion needed to
compute the gain matrix; in 3DVar-AUS, the computational
cost is mainly due to the 3DVar analysis update which has to
be repeated for all the simultaneously evolved perturbed tra-
jectories. A detailed comparison of the computational cost of
the two algorithms needs to be done case by case, since the
implementation choices are expected to depend on the sys-
tem under consideration and on the available observation net-
work. The computational cost, in terms of computing time,
in the present application are given at the end of the next sec-
tion.

4 Results

4.1 Experiments with perfect observations

We first compare the performance of the algorithms in a per-
fect observation setting.

Clearly real observations are not perfect. Anyhow, the ide-
alized perfect observations setting is related to the problem of
observability of the assimilation system and provides insight
on the ability of various methods to track the instabilities of
the system. The use of perfect observations with AUS allows
for an accurate evaluation of the analysis increment and po-
tentially reduces to zero the analysis error projection along
the unstable structures used in the analysis update (18); the
relation between the observability condition and AUS was
discussed byTrevisan and Uboldi(2004). Furthermore, the
perturbed observation case provides an upper limit of perfor-
mance of the assimilation schemes under comparison.

Perfect observations are obtained by applying the obser-
vation operator to the true state;ε=0 in Eq. (2) andεi=0 in
Eq. (7). The observation error covariance matrices are set to
zero in Eqs. (5) and (8) andσ 2

=0 in (18). Under these con-
ditions all EnKF members assimilate the same (unperturbed)
observationsy◦; the parametersα andd0 of the EnKF exper-
iments are set to the same values optimized in the noisy case,
α=0.07 andd0=3000 km.

Figure3 shows the normalized RMS analysis error, as a
function of time, for 3DVar, 3DVar-AUS and EnKF over 2
years. The 3DVar analysis error undergoes fluctuations with
large spikes, presumably related to an unreliable representa-
tion of the actual forecast error in the stationary estimateB
of the forecast error covariance matrix.

The average RMS analysis error, excluding the first 100
days, is about 6% of the system’s natural variability. The
behaviour of 3DVar-AUS and EnKF is impressive: the av-
erage RMS analysis error, excluding the first 100 days, is
about 1.6×10−6 (0.00016%) and 5.0×10−7 (0.00005%) of
the system’s natural variability, respectively. At the very be-
ginning of the assimilation cycle, the EnKF solution drifts
away from the truth, probably because thePf

EnKF has not
yet acquired the dynamic consistency, then, within about 50
days, the analysis error rapidly decreases and remains con-
fined to very low values for all the subsequent period. Anal-
ogously the 3DVar-AUS experiment takes a transient time
before error reduction; after about 80 days the 3DVar-AUS
analysis error drops to very low values until the end of the
experiment.

Figure4 shows the current BDAS mode superimposed to
the actual forecast error, at 6 instants during the 3DVar-AUS
perfect observations experiment. Although the coincidence
is not systematic, the BDAS mode ability to capture the rel-
evant components of the forecast error appears evident. The
actual forecast error patterns appear composed of spatially
distributed structures, often in a dipole or quadrupole con-
figuration, separated by wide, relatively homogeneous, low
error regions. Such pronounced and localized structures, pre-
sumably related to the instabilities of the underlying dynam-
ics, are also frequently found in the corresponding BDAS
mode. These are the instabilities we want to track and con-
trol. If they are not eliminated by the assimilation at one
analysis time, they may still migrate to observed areas and,
possibly, be detected at a later time. From Fig.4 we also
see that the spatial scale of these structures does not exceed
3000 km (11 gridpoints): this supports the use of the Gaus-
sian masking function withd=1500 km.

The local character of the atmospheric instabilities are de-
scribed inPatil et al.(2001) and have been efficiently ex-
ploited in AUS as well as in most of the ensemble prediction
and data assimilation applications, as for instance the Local
Ensemble Kalman Filter (Ott et al., 2004; Szunyogh et al.,
2005; Corazza et al., 2007) and the Local Ensemble Trans-
form Kalman Filter (Hunt et al., 2007).

4.2 Experiments with noisy observations

Although very instructive and useful in providing insight into
possible advantages and drawbacks of a given algorithm, the
use of perfect observation is not realistic: in real applications,
the assimilation of noisy observations introduces unstruc-
tured random errors. Therefore, we now turn to noisy obser-
vations experiments; observations are generated according to
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Fig. 8. The same as Fig. 6 but for the mid level potential vorticity (PV).
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Fig. 9. The same as Fig. 7 but for the mid level potential vorticity (PV).
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Fig. 10.Perfect observations experiments: top level potential temperature (PT) 12 h forecast error (shaded) and analysis increment (contour)
at day 272 12:00 UTC, for 3DVar, EnKF and 3DVar-AUS. Black dots indicate locations of the observations used.

the procedure described in Sect.2. A set of observation re-
alizations, Eq. (7), is used to update the ensemble forecast in
the EnKF by means of Eq. (8), while Eq. (18) is used for the
AUS assimilation in the 3DVar-AUS experiment.

Figure5 shows the normalized RMS analysis error, as a
function of time, relative to the 2 years trajectory obtained
by the assimilation of noisy observations with 3DVar, 3DVar-
AUS and EnKF. The 3DVar RMS error, excluding the first
100 days, is now about 22% of the system’s natural variabil-
ity, more than twice the RMS observation error, and large
spikes are still present. Remarkably, both 3DVar-AUS and
EnKF have an average RMS analysis error of about 7% of
the natural system’s variability, below the RMS observational
error (10%, Sect.2).

Reducing the number of ensemble members to 25 and 20
(optimized valuesd0=3000 km andα=0.09 in both cases),
the EnKF RMS analysis error is equal to 10.08% and 14.21%
respectively.

Notice that besides having comparable time mean values,
the 3DVar-AUS and EnKF RMS analysis error shows highly
correlated fluctuations which can be interpreted as induced
by the same flow-dependent instabilities of the underlying
dynamics. The large improvement of the 3DVar-AUS over
the standard 3DVar appears impressive considering that a sin-
gle BDAS mode and very few observations are used by AUS
at each assimilation time.

During the 2 years of simulated time, the AUS analysis
was performed 89% of the total assimilation times: the analy-
sis update was based, on average, onN̂◦

=9 observable struc-
turesê◦

i each one detected by (most of the times)Mi=1 ob-
servation.

These findings confirm the authors’ claim that a limited
number of observations and unstable directions, if properly
used, allow to improve upon the 3DVar performance and
make the hybrid scheme performance comparable to that of
the EnKF.
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Figures 6 and 8 show the 3DVar (left column) and the
EnKF (right column) analysis increment superimposed to the
12 h actual forecast error, in a sequence of three assimilation
times starting at day 204, 00:00 UTC. For the same times,
Figs. 7 and 9 show, for the 3DVar-AUS experiment, the incre-
ment obtained by AUS only (left column) and 3DVar (right
column) superimposed to the 12 h forecast error and to the
background error after the AUS update.

In all panels, black dots indicate the locations of the obser-
vations used by the assimilation algorithm (at the considered
assimilation time). Figures 6 and 8 show the top PT while
the mid level PV is shown in Figs. 7 and 9.

The 3DVar increments have the typical almost isotropic
features coming from the simplified assumption in the defi-
nition of the stationary matrixB. The EnKF increments, on
the other hand, reproduce very well the features present in
the forecast error: by making use of all the available obser-
vations and exploiting the accurate description of the actual
forecast error realized by the 30 members ensemble-based
Pf

EnKF, the EnKF provides reliable analysis updates.
The 3DVar-AUS increments reveal a number of remark-

able features. From Fig. 7, we see that the number of ob-
servations actually used by AUS is very small; 15 scalar ob-
servations only are used at day 204, 00UTC and 9 obser-
vations only at days 204, 12:00 UTC and 205, 00:00 UTC.
For most of the prominent local maxima in forecast error
the AUS analysis increment has the proper spatial structure
that leads to their reduction. At day 204, 00:00 UTC, for in-
stance, large error spikes are present along the mid latitude
of the channel. Two areas are clearly identifiable: one, north-
south oriented, between the 5th and the 10th longitudinal
gridpoints and another, located between the 35th and the 55th
longitudinal gridpoints. Both areas are characterized by pos-
itive and negative error elongated structures. The AUS analy-
sis correction accurately reproduces most of these structures;
just a small number of observations is sufficient to obtain a
reliable and dynamically consistent analysis. For instance,
the elliptic-shaped, westernmost maximum, located between
longitudinal gridpoints 5 and 10, is accurately accounted for
by the localized structure extracted from the BDAS mode.
However the figure indicates that although the analysis in-
crement has the proper shape, residual background error is
present as shown in the corresponding right panel. Anal-
ogously, the strong error maximum at the east side of the
channel, between longitudinal gridpoints 45 and 55, is repro-
duced by the AUS increment and partially reduced by using
a single observation only. The figure also shows a number of
other forecast error local maxima, some of which captured by
AUS. This is the case, for instance, of two small dipole-type
corrections located between 10–15 longitude, 18–21 latitude
and between 40–45 longitude, 3–9 latitude, each obtained by
assimilating two observations.
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Fig. 11. Normalized RMS analysis error as a function of time for
the 3DVar-AUS experiments. Noisy observations.

The need to use the 3DVar after the AUS analysis is high-
lighted by the right panels of the figure. In fact by exploiting
the remaining observations 3DVar further reduces the error
throughout the domain, and not only in the localized areas of
large error development where AUS is most effective.

After 12 h, at day 204, 12:00 UTC, there is no evidence of
the large error structure which was present in the west side
of the channel at the previous analysis time since the AUS
assimilation efficiently reduced the forecast error in that area,
inhibiting further error growth.

The error maximum located between 12–20 longitude, 6–
16 latitude, “ignored” by the assimilation, is still present in
the forecast error field.

The presence of the strong positive error maximum lo-
cated, as at the previous analysis time, in the eastern side
of the channel, at mid latitude, suggests that the analysis cor-
rection at day 204, 00:00 UTC, was not sufficient to eliminate
it. Now, at day 204, 12:00 UTC, although its shape is again
well captured by the current BDAS mode, the AUS analysis
is able only to reduce it. Notice that, a very similar pattern
(with opposite sign), manifestation of the same instability, is
present in the EnKF forecast error. Similar considerations
apply to the last instant shown, day 205, 00:00 UTC.

For all three algorithms, the mid-level PV increments
shown in Figs. 8 and 9 present features similar to the PT
analysis increments of Figs. 6 and 7. It is most remarkable,
however, that, except for the single observation at day 204,
12:00 UTC, no observations are used by AUS to provide the
analysis update at this level. Still, the analysis increments
strongly correlate with the forecast errors, but the analysis
is based on observations located at the top level: it is only
due to the vertical correlation between the BDAS mode and
the forecast error that the analysis update is accurate also at
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Fig. 12. Noisy observations experiment. Time and domain normal-
ized RMS analysis and forecast error as a function of the forecast
range: 3DVar (triangles), 3DVar-AUS (circles), EnKF (squares).

levels different from the observed ones. The single observa-
tion at day 204, 12:00 UTC detects the error maximum on the
northern side of the channel, between longitudinal gridpoints
21 and 26.

Figures 7 and 9 illustrate the basic mechanism and the
practical conditions necessary for the success of AUS: the
ability of the observational network, in terms of its spatial
and temporal distribution, to efficiently detect the unstable
structures that grow along the trajectory of the assimilation
system. They also show the successful use of just a single
BDAS mode and a small number of observations at each as-
similation time. The 3DVar analysis update, in this hybrid
scheme, allows for the use of all the remaining observations,
distributed throughout the domain to correct errors in regions
where AUS was not effective.

For completeness Fig. 10 illustrates the perfect observa-
tions case. In the four panels of Fig. 10 are shown the forecast
error and corresponding analysis increment for the 3DVar,
EnKF, AUS and 3DVar after AUS. The plots refer to day 272
12:00 UTC and black dots indicate the positions of the obser-
vations used, in analogy to Figs. 6–9.

The relative contribution of AUS and 3DVAR in the er-
ror reduction in the hybrid scheme, is illustrated by Fig. 11.
The RMS forecast error, AUS analysis error ( i.e. the back-
ground error for 3DVar) and final 3DVar-AUS analysis error,
are shown as a function of time, for a 50 days period starting
at day 175. The plot shows that AUS and 3DVar give a com-
parable contribution to error reduction. This gives further
evidence that when instabilities are present the few observa-
tions used by AUS (approximately 1% of the total available
observations) are almost as effective as the remaining ones.
In any case, while the 3DVar always reduces the correspond-

ing background error of approximately the same amount, the
effect of AUS is more intermittent.

Finally, Fig. 12 shows the time and domain averaged anal-
ysis and forecast errors as a function of the forecast lead time.
These are all deterministic forecasts; in particular the EnKF
forecast is initialized from the EnKF analysis, mean among
analysis ensemble members. It is interesting to note that al-
though the EnKF and 3DVar-AUS average analysis error is
comparable, the 12 h forecast error growth is much more
rapid in the former case, while it has approximately the same
rate afterward.

With the specific setup choices adopted here, the comput-
ing time required to complete the 2-year 3DVar-AUS assimi-
lation experiment described in the text, was about 60% of the
time required by the EnKF.

5 Summary and discussion

5.1 Summary

A combined data assimilation scheme, the 3DVar-AUS,
based on 3DVar and on the dynamically based AUS algo-
rithm, was presented and discussed here. The test ground
of the study was the implementation of observation system
simulation experiments with a synoptic-like network of ob-
servations in the context of an atmospheric quasigeostrophic
model. The performance of this proposed scheme was com-
pared with that of the advanced ensemble Kalman filter algo-
rithm.

According to the formulation given here, 3DVar-AUS is a
two-step scheme in which the analysis obtained with AUS is
used as the background for the 3DVar analysis update. At
each analysis time, an automatic procedure searched for ob-
servable structures, extracted from the current BDAS mode,
on which the analysis update is based.

In all the experiments described in the text, just a single
global BDAS mode and only a very small number of obser-
vations were used by AUS at each assimilation time.

The system at hand has 24 positive Lyapunov exponents,
corresponding to 24 independent diverging directions; in-
spection of the full spectrum shows that these directions have
competitive growth rates (Carrassi et al., 2008). These com-
petitive instabilities are present simultaneously in the single
global BDAS mode used at a particular analysis time under
the form of localized structures dominated by local instabil-
ities; these are the structures exploited in the AUS assimila-
tion.

A key ingredient for the success of AUS is clearly the
accuracy of the BDAS modes to explain relevant compo-
nents of the actual forecast error. The BDAS procedure is
built to estimate the instabilities growing along the com-
plete analysis-forecast cycle and implicitly embeds all the
information about the observational forcing. As indicated
by Fig. 4 and, indirectly through the analysis increment in
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Figs. 6 and 7, the correlation between the single BDAS mode
and the actual forecast error is evident. In particular, the
BDAS modes reliably reproduce most of the small scales fea-
tures of the error spatial patterns.

In the model and observational context used here, the
EnKF and the 3DVar-AUS showed a comparable perfor-
mance in terms of accuracy of the state estimate, either
with perfect or noisy observations. In the perfect observa-
tions case, both algorithms are able to reduce errors to a
very low level demonstrating, on the one hand, an efficient
tracking of the instabilities (AUS), and, on the other hand,
a reliable time-dependent forecast error covariance descrip-
tion (EnKF). With noisy observations, the analysis error of
3DVar-AUS and of EnKF rapidly decreases, then remains be-
low the observational noise level: the improvement over the
regular 3DVar alone is dramatic in both cases.

It is remarkable that, despite the fact that 3DVar-AUS and
the EnKF attain a comparable average analysis error (6.8%
and 6.6% of the system’s natural variability, respectively) the
12 h forecast error in the EnKF is larger than in the 3DVar-
AUS (9.9% and 7.3%, respectively) and its 24 h forecast skill
is somewhere between the 36 h and the 48 h forecast skill of
the 3DVar-AUS.

This result confirms the efficiency of AUS in reducing the
flow instabilities responsible for the error growth even in a
fixed observations setting.

5.2 Conclusions

The results of the present study lead to the following inter-
pretation: the forecast error shows very intense and local-
ized structures that are similar in the three assimilation ex-
periments and in particular between the 3DVar-AUS and the
EnKF: accordingly, a high correlation in the time evolution
of the RMS error of the two schemes is observed. As indi-
cated by these similarities, the local maxima of the forecast
error are presumably concentrated in regions where dynam-
ical instabilities, compatible with the observational forcing,
develop along the analysis-forecast cycle.

With a fixed observational network, observations are as-
similated by AUS only when they are found in correspon-
dence to the local maxima of the unstable structures. There-
fore it is necessary to use 3DVar to assimilate the remain-
ing observations. Three dimensional error structures, provide
the corresponding AUS analysis correction, whose amplitude
and sign are determined from the innovation: hence its abil-
ity to reduce the forecast error also at levels other than the
observed ones.

In real world applications, the employment of AUS is ex-
pected to give an improvement over a 3DVar (or Optimal
Interpolation) every time an unstable structure is observed
by either fixed or adaptive observations. When the latter are
available and there is no need to wait for the instability to
travel into observed regions, the expected improvement in
using AUS is enhanced.

Also the EnKF takes advantage of the observations that
happen to be (or are intentionally located) in regions where
instabilities develop and the present fixed observations exper-
iments prove that the observations are exploited by the two
methods with similar efficiency. The EnKF obtains the same
goal of capturing and controlling the instabilities, the differ-
ent approach of the two methods being exemplified by the
following idealized example where a single unstable struc-
ture is present in the forecast error. In this simple case, the
EnKF would identify the unstable structure as difference of
the members (two members would be sufficient for this pur-
pose) from the ensemble mean. To estimate the amplitude of
the correction, however, a sufficiently large number of rep-
resentative members would still be necessary to provide a
reliable estimate of the associated error variance. In contrast,
AUS estimates the direction as difference of a single unstable
perturbation from the control and estimates the amplitude of
the correction from innovation.

The present result, where EnKF and 3DVar-AUS have a
similar analysis performance, seems to indicate that both
methods were able to efficiently exploit all the available ob-
servations useful to control the flow-dependent instabilities.
A point in favor of the 3DVar-AUS scheme is its better per-
formance in the forecast stage.

Other hybrid schemes have been proposed which combine
3DVar with the ensemble based filters (Hamill and Snyder,
2000; Etherton and Bishop, 2004; Wang et al., 2007a,b).

Apart from the differences among the different approaches
proposed in previous studies (seeWang et al., 2007band ref-
erences therein) two results deserve to be mentioned here.
Usually, in these hybrid schemes, the forecast error covari-
ance matrix is obtained by combining a static covariance with
an ensemble based one, through a tunable scalar weight. Im-
provements over a 3DVar conveyed by the flow-dependent
covariance are less important when a dense observational
network is available (Hamill and Snyder, 2000). Moreover
the presence of model error significantly reduces the optimal
value of the weight to be given to the flow-dependent covari-
ance (Etherton and Bishop, 2004).

Based on these works and on the results of the present
study we draw the following conclusion.

To hybridize an ensemble based scheme or AUS with a
static covariance might turn to be more convenient when in-
stabilities loose some of their significance, either because
the observational network is particularly dense (Whitaker
et al., 2007) or if the model error is such that the model does
not provide an adequate representation of the true unstable
modes (Etherton and Bishop, 2004). In view of the latter con-
sideration, while the hybrid approach proposed in the present
study may turn out to be useful also in the presence of model
error, further work is needed to address this problem.

Because the performance of different schemes depends
upon many different factors, including model error and the
number and distribution of observations, it remains to be
seen which method is more efficient in a particular opera-
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tional setting. Therefore a quantitative comparison relevant
for operational purposes is out of the scope of the present
study.

However, given the ubiquity of the role of instabilities in
degrading the analysis accuracy, we believe that AUS may
turn out to be useful in those circumstances in which the ob-
servational network, and in particular an adaptive one, allows
their detection.

Appendix A

Estimate of the forecast error variance along
the BDAS mode

In the AUS analysis update Eq. (18), each of the scalarsγ 2
i ,

representing the variance of the forecast error along the struc-
ture ê◦

i , need to be estimated. Following the approach used
in Carrassi et al.(2007) this is done statistically, by making
use of the innovations.

In practice the termsγ 2
i (Hi ê◦

i )
T (Hi ê◦

i ) are estimated as
follows:

γ 2
i (Hi ê◦

i )
T (Hi ê◦

i )

≈


1
D

〈dT
i , di〉T − σ 2, 1

D
〈dT

i , di〉T > σ 2

1
D

〈dT
i , di〉T , 1

D
〈dT

i , di〉T ≤ σ 2
(A1)

where〈, 〉T represents the average over an appropriate time
interval T andD is a scalar coefficient to be tuned. After
optimization, these values are set toD=1.35 andT =8 days.

Based on Eq. (18), ifHe approaches zero the analysis cor-
rection approaches infinity. However because only observa-
tions in proximity of maxima in the BDAS mode are chosen
and in view of the selection procedure described in Sect. 3.3
(point (b)) this circumstance is never encountered.

Acknowledgements.This work was supported by the HPC-Europa
project (RII3-CT-2003-506079) of the European Community –
Research Infrastructure Action under the FP6 ”Structuring the
European Research Area” Program, and by Belgian Federal
Science Policy Program under contract MO/34/017.

Edited by: Z. Toth
Reviewed by: three anonymous referees

References

Anderson, J.: A local least squares framework for ensemble filter-
ing, Mon. Wea. Rev., 131, 634–642, 2003.

Anderson, J. and Anderson, S.: A Monte Carlo implementation of
the nonlinear filtering problem to produce ensemble assimilation
and forecast, Mon. Wea. Rev., 127, 2741–2758, 1999.

Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.: Lyapunov
characteristic exponents for smooth dynamical systems and for

Hamiltonian systems; a method for computing them, Meccanica,
15, 9–30, 1980.

Bergman, K. H.: Multivariate analysis of temperature and winds
using optimum interpolation., Mon. Wea. Rev., 107, 1423–1444,
1979.

Bleck, R.: Simulation of coastal upwelling frontogenesis with an
isopycnic coordinate model, J. Geophys. Res., 83C, 6163–6172,
1978.

Carrassi, A., Trevisan, A., and Uboldi, F.: Adaptive observations
and assimilation in the unstable subspace by breeding on the
data-assimilation system, Tellus, 59A, 101–113, 2007.

Carrassi, A., Ghil, M., Trevisan, A., and Uboldi, F.: Data Assim-
ilation as a nonlinear dynamical system problem: Stability and
convergence of the prediction-assimilation system, Chaos, 18,
023112, 2008.

Corazza, M., Kalnay, E., Patil, D., Yang, S.-C., Morss, R., Cai,
M., Szunyogh, I., Hunt, B., and Yorke, J.: Use of the breeding
technique to estimate the structure of the analysis “error of the
day”, Nonlin. Processes Geophys., 10, 233–243, 2003,
http://www.nonlin-processes-geophys.net/10/233/2003/.

Corazza, M., Kalnay, E., and Yang, S.-C.: An implementation of
the Local Ensemble Kalman filter for a simple quasi-geostrophic
model: Results and comparison with a 3D-Var data assimilation
system, Nonlin. Processes Geophys., 14, 89–101, 2007,
http://www.nonlin-processes-geophys.net/14/89/2007/.

Descamps, L. and Talagrand, O.: On some aspects of the definition
of initial conditions for ensemble prediction, Mon. Wea. Rev.,
135, 3260–3272, 2007.

Etherton, B. and Bishop, C.: Resilience of hybrid ensemble/3DVAR
analysis schemes to model error and ensemble covariance error,
Mon. Wea. Rev., 132, 1065–1080, 2004.

Evensen, G.: Inverse Methods and Data Assimilation in Nonlinear
Ocean Models, Physica D, 77, 108–129, 1994.

Evensen, G.: The Ensemble Kalman Filter: theoretical formulation
and practical implementation, Oc. Dyn., 53, 343–367, 2003.

Evensen, G.: Sampling strategies and square root analysis schemes
for the EnKF, Oc. Dyn., 53, 539–560, 2004.

Gaspari, G. and Cohn, S.: Construction of correlation functions in
two and three dimensions, Quart. J. Roy. Meteor. Soc., 125, 723–
757, 1999.

Hamill, T. M. and Snyder, C.: A hybrid ensemble Kalman filter 3D
variational scheme., Mon. Wea. Rev., 129, 2905–2919, 2000.

Houtekamer, P. L.: Global and local skill forecast, Mon. Wea. Rev.,
121, 1834–1846, 1993.

Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble
Kalman filter fot atmospheric data assimilation, Mon. Wea. Rev.,
129, 123–137, 2001.

Hunt, B., Kostelich, E., and Szunyogh, I.: Efficient data assim-
ilation for spatiotemporal chaos: a local ensemble transform
Kalman filter, Physica D, p. in print, 2007.

Ide, K., Courtier, P., Ghil, M., and Lorenc, A.: Unified notation for
data assimilation: Operational, variational and sequential, J. Met.
Soc. Japan, 75, 181–189, 1997.

Jazwinski, A. H.: Stochastic Processes and Filtering Theory, Aca-
demic Press, 1970.

Langland, R. H.: Observation Impact during the North Atlantic
TReC-2003, Mon. Wea. Rev., 133, 2297–2309, 2005.

Lorenz, E.: Predictability: A problem partly solved., Proc. Seminar
on Predictability Vol. 1, ECMWF, Reading, Berkshire, UK, 1–

Nonlin. Processes Geophys., 15, 503–521, 2008 www.nonlin-processes-geophys.net/15/503/2008/

http://www.nonlin-processes-geophys.net/10/233/2003/
http://www.nonlin-processes-geophys.net/14/89/2007/


A. Carrassi et al.: Assimilating in the unstable subspace 521

18, 1996.
Morss, R., Emanuel, K., and Snyder, C.: Idealized adaptive obser-

vation strategies for improving numerical weather prediction, J.
Atmos. Sci., 58, 210–232, 2001.

Morss, R. E.: Adaptive observations: Idealized sampling strategies
for improving numerical weather prediction., PhD thesis, Mas-
sachusetts Institute of Technology, 1999.

Ochotta, T., Gebhardt, C., Saupe, D., and Wergen, W.: Adaptive
thinning of atmospheric observations in data assimilation with
vector quantization and filtering methods, Quart. J. Roy. Meteo-
rol. Soc., 131, 3427–3437, 2005.

Ott, E., Hunt, B., Szunyogh, I., Zimin, A., Kostelich, E., Corazza,
M., Kalnay, E., Patil, D., and Yorke, J.: A local ensemble Kalman
filter for atmospheric data assimilation, Tellus, 56, 415–428,
2004.

Patil, D., Hunt, B., Kalnay, E., Yorke, J., and Ott, E.: Local low
dimensionality of atmospheric dynamics, Phys. Rev. Lett., 86,
5878–5881, 2001.

Rotunno, R. and Bao, J.: A case study of cyclogenesis using a
model hierarchy, Mon. Weather Rev., 124, 1051–1066, 1996.

Snyder, C. and Hamill, T. H.: Leading Lyapunov Vectors of a Tur-
bolent Baroclinic Jet in a Quasigeostrophic Model, J. Atmos.
Sci., 60, 683–688, 2003.

Szunyogh, I., Toth, Z., Zimin, A., Majumdar, S., and Persson, A.:
Propagation of the Effect of Targeted Observations: The 2000
Winter Storm Reconnaissance Program, Mon. Wea. Rev., 130,
1144–1165, 2002.

Szunyogh, I., Kostelich, E., Gyarmati, G., Patil, D., Kalnay, E.,
Ott, E., and Yorke, J.: Assessing a local ensemble Kalman filter:
Perfect model experiments with the National Center for the En-
vironmental Prediction global model, Tellus, 57, 528–545, 2005.

Talagrand, O.: Assimilation of observations, an introduction, J.
Met. Soc. Japan, 75, 191–209, 1997.

Tippet, M., Anderson, J., Bishop, C., Hamill, T., and Whitaker, J.:
Ensemble square root filters, Mon. Wea. Rev., 131, 1485–1490,
2003.

Toth, Z. and Kalnay, E.: Ensemble forecasting at NMC. The gener-
ation of perturbations, Bull. Amer. Meteor. Soc., 74, 2317–2330,
1993.

Toth, Z. and Kalnay, E.: Ensemble forecasting at NCEP: the breed-
ing method, Mon. Wea. Rev., 125, 3297–3318, 1997.

Trevisan, A. and Pancotti, F.: Periodic orbits, Lyapunov vectors and
singular vectors in the Lorenz system, J. Atmos. Sci., 55, 390–
398, 1998.

Trevisan, A. and Uboldi, F.: Assimilation of Standard and Targeted
Observations within the Unstable Subspace of the Observation-
Analysis-Forecast Cycle System, J. Atmos. Sci., 61, 103–113,
2004.

Uboldi, F. and Trevisan, A.: Detecting unstable structures and con-
trolling error growth by assimilation of standard and adaptive
observations in a primitive equation ocean model, Nonlin. Pro-
cesses Geophys., 13, 67–81, 2006,
http://www.nonlin-processes-geophys.net/13/67/2006/.

Uboldi, F., Trevisan, A., and Carrassi, A.: Developing a dynami-
cally based assimilation method for targeted and standard obser-
vations, Nonlin. Processes Geophys., 12, 149–156, 2005,
http://www.nonlin-processes-geophys.net/12/149/2005/.

Wang, X., Hamill, T., Whitaker, J., and Bishop, C.: A compari-
son of hybrid ensemble transform Kalman filter-OI and ensem-
ble square root filter analysis schemes, Mon. Wea. Rev., 135,
1055–1076, 2007a.

Wang, X., Snyder, C., and Hamill, T.: On the theoretical equiva-
lence of differently proposed ensemble-3DVAR hybrid analysis
schemes, Mon. Wea. Rev., 135, 222–227, 2007b.

Whitaker, J. and Hamill, T.: Ensemble data assimilation without
perturbed observations, Mon. Wea. Rev., 130, 1913–1924, 2002.

Whitaker, J., Hamill, T., Wei, X., Song, Y., and Toth, Z.: Ensemble
Data Assimilation with the NCEP global forecast system, Mon.
Wea. Rev., 136, 463–482, 2008.

Wolfe, C. L. and Samelson, R. M.: An efficient method for recover-
ing Lyapunov vectors from singular vectors, Tellus, 59A, 355–
366, 2007.

www.nonlin-processes-geophys.net/15/503/2008/ Nonlin. Processes Geophys., 15, 503–521, 2008

http://www.nonlin-processes-geophys.net/13/67/2006/
http://www.nonlin-processes-geophys.net/12/149/2005/

