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Abstract. We present results from a computational study
of predictability in fully-developed baroclinically unstable
laboratory flows. This behaviour is studied in the Met
Office/Oxford Rotating Annulus Laboratory Simulation –
a model of the classic rotating annulus laboratory experi-
ment with differentially heated cylindrical sidewalls, which
is firmly established as an insightful laboratory analogue
for certain kinds of atmospheric dynamical behaviour. This
work is the first study of “predictability of the first kind” in
the annulus experiment. We devise an ensemble prediction
scheme using the breeding method to study the predictability
of the annulus in the perfect model scenario. This scenario
allows one simulation to be defined as the true state, against
which all forecasts are measured. We present results from
forecasts over a range of quasi-periodic and chaotic annu-
lus flow regimes. A number of statistical and meteorologi-
cal techniques are used to compare the predictability of these
flows: bred vector growth rate and dimension, error variance,
“spaghetti plots”, probability forecasts, Brier score, and the
Kolmogorov-Smirnov test. These techniques gauge both the
predictability of the flow and the performance of the ensem-
ble relative to a forecast using a climatological distribution.
It is found that in the perfect model scenario, the two quasi-
periodic regimes examined may be indefinitely predictable.
The two chaotic regimes (structural vacillation and period
doubled amplitude vacillation) show a loss of predictabil-
ity on a timescale of hundreds to thousands of seconds (65–
280 annulus rotation periods, or 1–3 Lyapunov times).
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1 Introduction

Knowledge of short to medium-term atmospheric pre-
dictability is important for meteorologists and society in gen-
eral. How far ahead can we predict the weather with accu-
racy? Quantification is difficult and complex in real atmo-
spheres, so we need simpler analogues for testing ideas and
methods. The rotating annulus (Hide, 1953; Hide and Ma-
son, 1975; Read et al., 1992, and Fig. 1) is a laboratory sys-
tem which has been used for some 50 years to produce be-
haviour qualitatively similar to the mid-latitudes of a generic
planetary atmosphere. It is a useful test bed for certain kinds
of atmospheric dynamical behaviour and the methods used
to study them, and displays interesting behaviour worthy of
study in its own right. This paper details the first stages of an
investigation into the predictability of baroclinically unstable
flow in this system. Baroclinic instability is important in the
Earth’s midlatitudes for the large scale transport of heat and
momentum. It can be reproduced in the annulus under certain
conditions, and the laboratory setting allows this to be stud-
ied in a controlled and reproducible manner. The main aim
of this work is to investigate the breakdown in predictability
of these flows in the laboratory in a range of quasi-periodic
and chaotic regimes.

Our approach to predictability is to forecast annulus be-
haviour using techniques common to weather forecasting –
an ensemble prediction scheme, combined with a numerical
forecast model of the annulus itself. Lorenz (1975) defined
two kinds of predictability: the first kind concerns the future
evolution of a system from initial conditions, and the sec-
ond kind concerns predicted behaviour given certain bound-
ary conditions (i.e. prediction of the climate or attractor of
the system, or in the annulus context, prediction of the flow
regime given a particular experimental setup). This second
kind of predictability is well characterised in some regions
of parameter space for the rotating annulus (Hide and Ma-
son, 1975; Read et al., 1992; Früh and Read, 1997; Young
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Fig. 1. Schematic (to scale) showing the “standard” rotating an-
nulus setup, with inner and outer cylinders at temperaturesTa and
Tb respectively, rotating with constant angular velocity�. Fluid is
contained between the cylinders.

and Read, 2008, for example). Prediction of the first kind,
however, has not previously been studied in any depth for
the annulus system, and we believe this study is the first to do
so. Some previous studies have calculated the Lyapunov ex-
ponents for various annulus flow regimes using experimental
time series (Read et al., 1992; Früh and Read, 1997) and sim-
ulated time series (Young and Read, 2008). The Lyapunov
exponent is a measure of first-kind predictability, but these
exponents have only limited usefulness for characterizing the
general predictability of complex systems.

This paper reports exclusively on computational work. We
devise an ensemble prediction scheme based on the breed-
ing method (Toth and Kalnay, 1993, 1996, 1997) to explore
the predictability of the annulus in the perfect model sce-
nario. In this scenario, we assume that our model is a perfect
representation of the annulus experiment; equivalently, the
“data” used to verify our forecasts and to set up our ensem-
ble are generated using the same simulation as the forecasts
themselves, and are assumed to be exact. No model is truly
perfect, but with care this scenario may be applied as long
as its limitations are appreciated. In this context, the main
advantages of the perfect model scenario are that forecast er-
rors can be calculated explicitly, and that those errors are due
only to the uncertainty in the initial conditions and the dy-
namics of the flow under study. Practical complexities asso-

ciated with including a data assimilation scheme are avoided
because the “true” state of the system is known, so data as-
similation is not required. The broader goal for follow-up
work is to extend this scheme into the more realistic imper-
fect model scenario, which will requires assimilating labora-
tory data into the forecasts. The work in this paper is a nec-
essary step towards that goal, and assuming a perfect model
is a common technique for working under simplified condi-
tions (Houtekamer and Derome, 1994, for example). Using
a similar scheme with real data and an imperfect model will
then allow the practical predictability of the laboratory sys-
tem to be estimated, and hindcasts to be made of the annulus
flow.

The method for choosing ensemble initial conditions is
important in numerical weather prediction (NWP). The dis-
tribution of perturbations about the analysis should best rep-
resent the analysis errors, so that the distribution of potential
states is well-sampled by the ensemble. In this work we use
the breeding method to generate the ensemble. Breeding was
developed as a computationally inexpensive way to perturb
the atmospheric analysis and to follow those perturbations
in a way reflecting the previous non-linear evolution of the
flow. The resulting error fields (the “breeding vectors”) iden-
tify regions of most rapidly growing instability. Its first use
was in the National Meteorological Center operational en-
semble (Tracton and Kalnay, 1993), and has been used in a
number of other contexts since then (see Sect. 3).

We will examine predictability using a range of qualita-
tive and quantitative measures: evolution of the forecast er-
ror variance gives a simple measurement of the ensemble
spread; the bred vector growth rate is related to the leading
Lyapunov exponent (Kalnay et al., 2002), and can be used as
a measure of predictability in a similar way; the bred vector
dimension (Patil et al., 2001) has been shown to be directly
related to predictability in simple systems, and we shall see
whether this is also the case in the annulus model; “spaghetti
plots” (Tracton and Kalnay, 1993) allow the forecast evo-
lution to be visualized clearly; Kolmogorov-Smirnov good-
ness of fit statistics (Massey, 1951) compare the evolution of
an ensemble of forecasts with a climatological forecast, so
can be used to estimate when the “usefulness” of the fore-
cast is exhausted; probability forecasts visualize how predic-
tive power varies in space, and the Brier score (Brier, 1950)
verifies these probabilities against the actual outcome. Nei-
ther the absolute nor the relative predictability of a system
should depend on the method used to measure it. Therefore,
we expect each of these measures to give the same conclu-
sions, certainly about the relative predictability of different
flow regimes. If they do not give the same conclusions then
their usefulness as a measure of predictability may be ques-
tionable.

A secondary aim of this work concerns NWP. Few at-
tempts have taken advantage of the properties of laboratory
systems mentioned above to inform the development of op-
erational forecasting techniques, and this study is the first to
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apply NWP methodology in the controlled and reproducible
environment provided by the annulus. We believe that be-
cause of the properties of the rotating annulus, it could pro-
vide useful insights in the future for improving existing ap-
proaches to assimilation and forecasting, by investigating
and comparing techniques in current use for NWP, but in
a system where much of the behaviour can be controlled.
An additional advantage of the annulus setup is that non-
chaotic flow can be generated. Operational NWP is almost
exclusively restricted to chaotic flow, so the techniques are
little-used in non-chaotic systems, and doing so might pro-
vide some previously-unseen insights into their use.

We are aware that using the annulus as a direct analogue
for the Earth’s highly turbulent atmosphere is questionable,
but as the annulus can represent a wide range of rotational
and temperature forcing, the analogue may be closer to the
situation on other planets such as Mars (where NWP tech-
niques are also applicable, of course). Observations and nu-
merical simulations of the Martian atmosphere (see Leovy,
1985, for a review) have generally concluded that baroclinic
waves are much more regular on Mars than on Earth (Barnes,
1981; Collins and James, 1995; Collins et al., 1996). Baro-
clinic flow on Mars may therefore be better represented by
the rotating annulus analogue than baroclinic flow on Earth
(Read et al., 1998). Recent work by Newman et al. (2004)
also concluded that the Martian atmosphere is at times more
predictable than the Earth’s – is there something fundamen-
tally different about the Martian atmosphere which deter-
mines this behaviour? Comparing annulus flow regimes sim-
ilar to the atmospheres of the Earth and Mars may also allow
aspects of this question to be tackled.

Section 2 briefly describes the simulation used to model
the rotating annulus. Section 3 outlines the ensemble predic-
tion scheme developed to forecast annulus flow in the perfect
model scenario. The results from ten ensemble forecasts in
a range of different regimes are presented in Sect. 4, and our
findings are discussed and concluded in Sect. 5.

2 The simulation

We use the Met Office/Oxford Rotating Annulus Labora-
tory Simulation (MORALS) code (Farnell and Plumb, 1976;
Hignett et al., 1985; Read et al., 2000)1, which is well-
established as a comprehensive and quantitatively accurate
model for dynamical behaviour in the rotating annulus, at
least in regular and weakly vacillating regimes (Read et al.,
1997). It solves the Navier-Stokes, mass continuity, and heat
transfer equations along with a Poisson equation for pres-
sure, and equations of state for density, viscosity and ther-
mal diffusivity (Table 1), under the Boussinesq approxima-

1Farnell, L. and Plumb, R. A.: Numerical integration of flow in a
rotating annulus II: three dimensional model, Occasional Note Met
O 21 76/1, Meteorological Office, Bracknell, UK, unpublished, 24
pp., 1976.
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Fig. 2. A schematic of the ensemble prediction scheme, showing
the evolution of each component of the forecast as a function of
time during the three stages described in the text. The bred vectors
are initialised in stage one by perturbing the truthxt. The bred
vectors are then added to the truth in stage two to form the control
forecastxc and the perturbed forecastsxB,m±. These forecasts are
then verified against the truth during the forecast stage.

tion for a cylindrical fluid annulus rotating at angular ve-
locity �. The equations are cast in velocity-temperature-
pressure form:u (radial), v (azimuthal) andw (vertical)
velocities/cm s−1, temperatureT /◦C and a scaled pressure
5=P/ρ0/cm2 s−2. T is defined relative to a reference
temperatureT0, and 5 is relative to a reference pressure
50(R, z)=1

2�2R2
+g(d − z). We use the “standard” con-

figuration (Fig. 1) with inner and outer walls maintained at
constant temperaturesTa andTb respectively, with no inter-
nal heating, and include a ‘rigid lid’ (a no-slip upper bound-
ary condition). The model grid is defined using cylindrical
polar coordinates(R, φ, z), stretched inR andz to resolve
the boundary layers. All simulations were performed on a
grid of NR×Nφ×Nz≡24×64×24 nodes.

3 An algorithm for breeding in the rotating annulus

The main use of the breeding method is in operational
weather forecasts in a number of countries, including the
United States (NCEP, FNMOC) (Tracton and Kalnay, 1993;
Toth and Kalnay, 1997; Toth et al., 1997; Pu et al., 1997),
Japan (JMA), Korea (KMA), China (CMA), and India
(NCMRWF). The method was originally implemented at
NCEP using a 17-member ensemble with three control fore-
casts and seven bred-pair perturbations (Toth et al., 1997,
Figs. 1 and 2), and was used there until the Ensemble Trans-
form technique (an extension of the breeding method) was
implemented in 2006 (Wei et al., 2008).

Breeding has also been used in other contexts: in El Niño-
Southern Oscillation studies (Cai et al., 2003; Yang et al.,
2006), in idealized systems like the Lorenz (1963) equations
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Table 1. Properties of the annulus and fluid setup. It is identical to the “main comparison” of Hignett et al. (1985).

Annulus inner cylinder radius a=2.5 cm
Annulus outer cylinder radius b=8.0 cm
Annulus height d=14.0 cm
Working fluid (by volume) 83% water / 17% glycerol
Mean density ρ0=1.044 g cm−3

Volume expansion coefficient α=2.86× 10−4/ K−1

Prandtl number Pr = 13.1
Initial temperature T0=20◦ C (midway betweenTa andTb)

Viscosity / 10−2 cm2 s−1 ν=1.620
[
1 − 2.790× 10−2(T − TR) + 6.730× 10−4(T − TR)2

]
Density / g cm−3 ρ=1.043

[
1 − 3.070× 10−4(T − TR) − 7.830× 10−6(T − TR)2

]
Thermal diffusivity / 10−3 cm2 s−1 κ=1.290

[
1 + 2.330× 10−3(T − TR)

]
TR=22◦ C in each case.

(Evans et al., 2004), in coupled chaotic systems (Kalnay
et al., 2003; Pẽna and Kalnay, 2004; Primo et al., 2005), us-
ing a quasi-geostrophic channel model (Corazza et al., 2003),
and in a Martian general-circulation model (Newman et al.,
2004). Breeding has been used in the context of the rotating
annulus by Gilmour (1998, pp.131–136), Smith and Gilmour
(1999), and Gilmour et al. (2001), who used a radial basis
function model to compare breeding methods and to measure
nonlinearity.

The algorithm is adapted from Houtekamer and Derome
(1994), and is shown schematically in Fig. 2. In the perfect
model scenario, one simulationxt is defined as the “truth”
(unknowable experimentally, due to incomplete and noisy
observations), and all the forecasts are then compared with
that state.

We shall usex≡x(R, φ, z, t)≡x(r, t)≡x(t) to denote the
complete state of the system as a function of both time and
space.x refers to the set of fieldsu, v, w, T , and5, all of
which are functions ofR, φ, z, and t . When one of these
fields is being considered on its own but in a context applica-
ble to any of the five fields, theñx will be used to denote this
field.

3.1 Stage zero: initialize simulation

The simulations are initialized by first running a reduced ver-
sion of MORALS to integrate the axisymmetric form of the
equations of motion over a vertical 2D slice (using the same
parameters as the subsequent 3D simulation). This is run to a
steady state (at aroundt=10 000 s). The slice is then copied
to each azimuthal coordinate, and a sinusoidal perturbation
is applied to the temperature field:

δT (R, φ, z) / K=

{
0.1 sin

(
R−a
b−a

π
)

sin
(

z
d
π

)
φ=0

0 otherwise

(1)

wherea, b, andd are constants defined in Table 1. This
perturbation is applied only atφ=0, so does not excite any
particular azimuthal mode. Each simulation therefore starts
from its own axisymmetric state, but is initialized using the
same perturbation. The perturbation is necessary to create an
azimuthal asymmetry in the model state, as it would other-
wise remain axisymmetric (at least until the effects of using
finite precision arithmetic grow to appreciable levels).

MORALS is then run fromt=0 to t=t0, to generate the
truth statext(t0). t0 is chosen to be large enough so that any
transient oscillations caused by the perturbation in Eq. 1 have
decayed.

3.2 Stage one: initialize bred vectors

In stage one, initial perturbations are generated for the fore-
cast stage two (t1 → t2). First, the truth statext(t0) is inte-
grated fromxt(t0) → xt(t1).

M+1 simulationsxm, m=[0, ...,M] are then run to gen-
erate perturbed states aroundxt. One simulation (m=0) will
subsequently be used to define the control forecast in stage
two, andM simulations (m=[1, ...,M]) will be used to de-
fine the perturbed forecasts. In stage one all these simula-
tions are treated identically. Each one is initialized att=t0
by adding, at each model grid point, normally distributed
random numbers with mean zero and standard deviationσx̃t

to the truth statẽxt. This is done in each of the five fields
x̃t

=ut, vt, wt, T t, and5t:

x̃m(t0)=x̃t(t0) + N(0, σ 2
x̃t) m=[0, ...,M] (2)

Eachσx̃t is defined as the peak-to-peak value of the azimuthal
variation in the fieldx̃t(t0) at mid-height [zmid=d/2] and
mid-radius [Rmid=(a+b)/2], multiplied by some constant
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factorF (we useF=0.1 in this work – see Sect. 3.4).

σx̃t(t0)= F

[
max

j
x̃t (Rmid, j, zmid, t0)

− min
j

x̃t (Rmid, j, zmid, t0)

] (3)

TheseM + 1 complete model states are then integrated for-
ward using MORALS for a time1t0 (the “rescaling time”).
At t=t0 + 1t0, the difference field is calculated between
each of theM + 1 perturbed states and the truth:

xd,m(t0 + 1t0)=xm(t0 + 1t0) − xt(t0 + 1t0)

m=[0, ...,M]
(4)

These difference fields are then renormalized. The norm is
a volume-weighted pressure differenceηm(t). In this work,
area and volume-weighted statistics will be used a number
of times; the weighting is necessary because the spacing be-
tween model grid points is non-uniform. For the pressure
difference field5d,m,

ηm(t)=

√√√√√√√√
∑
ijk

(
5

d,m
ijkt

)2
1Vijk∑

ijk

1Vijk

(5)

where1Vijk is the volume element at(i, j, k). For eachm in
turn,ηm(t0+1t0) is calculated and compared with the equiv-
alentηm calculated att=t0. If the perturbation has grown,
then

ηm(t0)

ηm(t0 + 1t0)
< 1 (6)

If this is the case, then all five difference fields for ensemble
memberm are scaled by this ratio to produce a set ofbred
vectors:

xbv,m (t0 + 1t0) =
ηm(t0)

ηm(t0+1t0)
xd,m(t0 + 1t0) (7)

If the perturbation has decayed, then

ηm(t0)

ηm(t0 + 1t0)
≥ 1 (8)

In this case, the fields are not rescaled, and the bred vector for
ensemble memberm is simply the difference field [this renor-
malization condition is also used by Newman et al. (2004)]:

xbv,m (t0 + 1t0) =xd,m (t0 + 1t0) (9)

This point marks the end of the first breeding cycle. The
M + 1 bred vectors are then used as new perturbations to the
truth statext at t=t0 +1t0, and each state is integrated again
using MORALS. The cycle is repeated in intervals of1t0,
comparing the new difference fields withηm(t0) each time,
until the required number of breeding cycles are completed,
at t=t1=t0 + N11t0. (For the choice ofN1, see Sect. 4.)

3.3 Stage two: forecast

Stages zero and one are essentially preparation for stage two,
in which the true statext is forecast using the ensemble per-
turbed by breeding vectors. We have already defined the truth
statext(t1) andM+1 bred vectorsxbv,m(t1), m=[0, ...,M],
at t=t1. The first step in stage two is to rescale the bred vec-
tors to make theirηm(t1) values equal toF times the peak-to-
peak pressure variation inxt over the mid-height/mid-radius
azimuthal circle att=t1:

xbv,m′
(t1)=

σ5t(t1)

ηm(t1)
xbv,m(t1) m=[0, ...,M] (10)

whereσ5t(t1) is calculated using Eq. (3) andηm(t1) using
Eq. (5). UsingF=0.1, this rescaling means that the magni-
tude of perturbations is 10% of the size of the attractor (see
Sect. 3.4).

The first bred vectorxbv,0′
(t1) is used to define the analysis

state, which is the initial condition for the control forecast:

xc(t1)=xt(t1) + λ xbv,0′

(t1) (11)

whereλ is the “analysis error amplitude”, a constant to be
defined shortly. This step is justified by Houtekamer and
Derome (1994) and Cai et al. (2003); they argue that in the
perfect model scenario bred vectors reflect the difference be-
tween truth and analysis.

The otherM bred vectorsxbv,m′
(t1) with m=[1, ...,M]

define an ensemble of 2M bred-pair perturbationsxB,m±(t1)

around the analysisxc(t1):

xB,m+(t1) = xc(t1) + µ xbv,m′
(t1) (12)

= xt(t1) + λ xbv,0′
(t1) + µ xbv,m′

(t1)

xB,m−(t1) = xc(t1) − µ xbv,m′
(t1) (13)

= xt(t1) + λ xbv,0′
(t1) − µ xbv,m′

(t1)

whereµ is the “bred vector amplitude”, another constant to
be defined shortly. This step ensures that the ensemble is
centred around the analysis state, and is justified because the
distribution of analysis error is assumed to be symmetrical,
so addition and subtraction are equivalent.

The 2M+2 states thus defined att=t1 are integrated using
MORALS from t1→t2=t1+tf , which is the end of the fore-
cast. At t=t2, the truthxt(t2) is forecast using the control
forecastxc(t2) and the 2M perturbed forecastsxB,m±(t2), for
m=[1, ...,M].

3.4 Parameter selection

Two parameters determine the behaviour of a breeding cycle:
the rescaling time and the initial amplitude (Kalnay, 2003,
Fig. 6.5.3). A third parameter, the initial random seed, dis-
tinguishes between individual bred vectors, but in this section
we are concerned with parameters that affect the ensemble as
a whole.
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Fig. 3. Regime diagram showing the approximate distribution of
annulus flow regimes as a function of the two standard dimension-
less parameters, the Taylor number and the thermal Rossby number.
This distribution of regimes is seen for the fluid and annulus dimen-
sions used here, in Hignett et al. (1985), and in Young and Read
(2008).

The rescaling time (1t0) should be short enough so that
nonlinear saturation does not occur within one cycle, as oth-
erwise information on the shape and magnitude of the per-
turbation is lost. Nonlinear saturation occurs if perturbations
grow to the size of the system during one breeding cycle, or

gm
c ≥ 1/F (14)

whereF is defined in Sect. 3.2, and calculated below.gm
c is

the “growth factor” – a measure of bred vector growth during
cyclec:

gm
c =

ηm(t0 + c1t0)

ηm(t0)
(15)

The rescaling time should also be long enough for perturba-
tions to become nonlinear (in order to cover the space of pos-
sible perturbations as much as possible). Operational centres
use several hours (Toth and Kalnay, 1993), but the equivalent
in the annulus isπ/2� (1/4 revolution≡6 h); this is always
too short for interesting behaviour to appear. Gilmour et al.
(2001) define the relative nonlinearity and the anticorrelation
of a pair of bred vectors; conditions on both must be satisfied
for a pair to be linear.

Tests with a number of different parameter combinations
showed that1t0=70 s is a suitable rescaling time, as it satis-
fies the condition for nonlinearity, but does not saturate.

The initial amplitude (F ) represents an estimate of the size
of actual analysis errors. Houtekamer and Derome (1994)
test different amplitudes and show that the forecasting ad-
vantage in using a breeding ensemble over a control forecast
is maximized when this amplitude is about 10% of the natu-
ral variability.

Tests were done with varyingF . We want the bred vector
growth to be as large as possible, so as to sample the largest
amount of state space, but without saturating the perturba-
tions in one cycle. Values ofF between 0.003 and 0.3 were
tested. ForF=0.3 some error saturation was observed, so
F=0.1 was chosen for use in practice. Co-incidentally, this
is the same as Houtekamer and Derome (1994) above.

The analysis error amplitudeλ and the bred vector ampli-
tudeµ represent the error in the analysis statexc(t1), and
the initial spread of the ensemble, respectively. They were
chosen to maximize bred vector growth over time, and to
offer the best improvement in forecast accuracy over the
control forecast. Tests using a range of different values
gaveλ=1.0 andµ=0.5 as suitable values. In each of these
tests, the initial growth rate of the bred vector was the same
over the whole range ofλ and µ used (0.25≤λ≤2.00 and
0.50≤µ≤1.00); only after 4–6 cycles did the growth rate be-
gin to diverge2. This indicates that the same modes were
excited over the whole range of perturbation magnitudes. In
the atmosphere, convective modes are preferentially excited
at small perturbation magnitudes (Kalnay, 2003, Fig. 6.5.6),
so our tests indicate that such convective modes may not be
as important in the annulus as they are in the atmosphere. In-
ternal gravity waves are important small-scale modes in the
annulus, but from our tests we see no evidence that these are
excited over the range of magnitudes used. Therefore, we
feel that our conclusions should be robust over a range of
initial perturbation magnitudes.

4 Forecast results and analysis

The annulus displays a wide range of behaviour depending
on the rotation rate, temperature forcing, fluid, and tank di-
mensions (Fig. 3). We shall not describe these different dy-
namical regimes in detail here; see Hide and Mason (1975)
or Read et al. (1992) for reviews. Ten complete forecasts
were made using the method in Sect. 3, and the forecast pa-
rameters are detailed in Table 2. The full range of regimes
detailed in Hignett et al. (1985) and Young and Read (2008)
were covered, except steady wave flow and irregular flow.

For our purposes, the regimes can be divided into two dis-
tinct classes: quasi-periodic and chaotic. From the quasi-
periodic regimes, we shall examine one case from the ampli-
tude vacillation (AV) regime, and two from the modulated
amplitude vacillation (MAV) regime, both with dominant
wavenumber three. We shall examine two chaotic regimes:
the wavenumber three structural vacillation regime (3SV),
which is believed to display high-dimensional chaotic be-
haviour (Read et al., 1992), and a wavenumber two “period-
doubled” regime (2AV–dh) whose amplitude modulation bi-

2Young, R. M. B.: Breeding vectors in the rotating annulus as a
measure of intrinsic predictability, unpublished internal report, At-
mospheric, Oceanic and Planetary Physics, University of Oxford,
68 pp., 2006.
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Table 2. Parameters defining each of the forecasts.

Forecast A B C D E F G H I J

Regime AX 3AV 3MAV 3MAV 2AV–dh 2AV–dh 2AV–dh 3SV 3SV 3SV

Parameters defining the flow:
�/ rad s−1 0.19 0.65 0.81 0.75 0.84 0.845 0.8251 2.50 3.00 3.50
1T /◦C 0.01 3.00 3.50 3.00 9.54 9.64 9.21 4.00 4.00 4.00
1t /s 0.05 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
t0/s 8000 1500 1500 2000 1500 1500 1000 1500 1500 1500
t1/s 8700 2200 2200 2700 2200 2200 1700 2200 2200 2200
tf /s – 1050 3150 1050 1050 1050 1050 1050 420 2100
t1 + tf /s – 3250 5350 3750 3250 3250 2750 3250 2620 4300
Derived quantities:
Taylor number / 106 0.188 2.21 3.42 2.94 3.68 3.73 3.55 32.6 47.0 63.9
Thermal Rossby number 0.036 0.92 0.69 0.69 1.76 1.76 1.76 0.083 0.058 0.042
Rotation period / s=2π/� 33.1 9.67 7.76 8.38 7.48 7.44 7.62 2.51 2.09 1.80

(a) True state xt (b) Control forecast xc (c) Ensemble mean xB (d) Ensemble spread σxB

1

Fig. 4. Example pressure fields from forecast I (3SV) showing different components of the forecast at mid-height (z=7cm) at the end of the
forecast (t=420 s). The axes indicate the distance in cm from the rotational axis. The colour scale is the same for Fig. 4a–c, and all scales
are in cm2 s−2.

Table 3. Parameters common to each forecast.

Analysis error amplitude λ 1.0
Bred vector amplitude µ 0.5
Breeding cycles in stage one N1 10
Stage one perturbation scaling factorF 0.1
Stage one rescaling time/s 1t0 70
Total perturbed ensemble members 2M 10

furcates like the logistic map when the Taylor number is var-
ied (Young and Read, 2008). Some of our analysis will focus
on three forecasts in particular, one from each of the three
main regimes: forecast C (3MAV), forecast G (2AV–dh), and
forecast I (3SV).

As a null test of the procedure, one forecast (forecast A)
was done in the axisymmetric regime; all forecasts remained
within machine precision of the truth. This forecast is there-
fore omitted from the analysis below, but is included in Ta-
ble 2 for completeness.

Table 3 lists the parameters common to each forecast.
Each forecast usedM=5 for a perturbed ensemble of ten
members in the forecast stage. This figure is based on the
available computer power and the conclusions of Toth and
Kalnay (1997, p.3313), who show that much of the predic-
tive advantage gained from an ensemble is obtained with
ensembles of size ten.1t is the model timestep and is
chosen to be as large as possible without making the dis-
cretized model equations unstable. Ten breeding cycles in
stage one (N1=10) was sufficiently long for coherent struc-
tures to emerge in the breeding vectors. The forecast timetf
was chosen to cover several vacillation cycles.

Typical pressure fields from the forecasts are shown in
Fig. 4; this figure shows pressure fields at mid-height at the
end of the 3SV forecast with�=3.00 rad s−1 and1T =4.0◦C
(forecast I). During stage two, the ensemble mean is the av-
erage of the 2M perturbed forecasts:

x̄B(t)=
1

2M

M+∑
m=M−
m6=0

xB,m(t) (16)

www.nonlin-processes-geophys.net/15/469/2008/ Nonlin. Processes Geophys., 15, 469–487, 2008



476 R. M. B. Young and P. L. Read: Perfect model predictability in the rotating annulus

Fig. 5. Bred vector cumulative growth during the breeding vector
initialization stage. Each line shows the mean cumulative growth
(averaged over the bred vectors) as a function of time from the start
of this stage. Each breeding cycle is 70 s long. The 3AV forecast is
indicated by a dotted line, 3MAV by dot-dashed lines, 2AV-dh by
dashed lines, and 3SV by solid lines. Each letter corresponds to a
forecast in Table 2.

and the forecast error variance is

σ 2
x̄B(t)=

1

2M

M+∑
m=M−
m 6=0

[
xB,m(t) − x̄B(t)

]2
(17)

For ease of comparison, most of the analysis below uses the
pressure field at mid-height.

4.1 Bred vector growth rates

We shall first examine two quantitative measures of pre-
dictability made during stage one. These give us an a priori
estimate of the predictability in the second stage (at least in
principle). In this and Sect. 4.2 all the times referred to are
relative to the start of stage one.

We define the cumulative growth factor for breeding vector
m after cycleC as

Gm
C=


gm

1 C=1
gm

C Gm
C−1 gm

C−1 ≥ 1
gm
C

gm
C−1

Gm
C−1 gm

C−1 < 1
(18)

Less formally,Gm
C isgm

C multiplied by the cumulative growth
the last time the fields were rescaled. This formulation is re-
quired because the field is only rescaled if the breeding vector
grows during the cycle.

Figure 5 shows, for each forecast, the mean cumulative
growth factorGC as a function of time in stage one, aver-
aged (geometric mean) over theM+1 bred vectors. The er-
ror bars are omitted for clarity; they are in the range 0.2–0.8.

The 3AV forecast is indicated by a dotted line, 3MAV by
dot-dashed lines, 2AV–dh by dashed lines, and 3SV by solid
lines. The letters correspond to the forecasts in Table 2.

As the plot is logarithmic, straight lines with positive gra-
dient indicate exponential growth of the breeding vector.
This is seen in the 3SV forecasts (solid lines). The approxi-
mately flat lines for 3AV and 3MAV indicate that these per-
turbations decay by a factor of five during the first cycle, and
then remain at that size over the remainder of stage one (as
the perturbations are not rescaled ifgm

c <1, from Eqs. 8–9).
The behaviour of the 2AV–dh forecasts are quite differ-

ent, however. There are large fluctuations in the cumulative
growth plots themselves, and a large range in the final cumu-
lative growth values between the three forecasts, compared
with the other regimes. During the first half of the stage, the
cumulative growth increases but during the second half it de-
cays again, before starting to grow during the final cycles. By
comparing the cumulative growth with a time series showing
the magnitude of the dominant pressure wavenumber over
the same time frame, it was found that this oscillation is
strongly correlated with the vacillation cycle. Both have ap-
proximately the same period (∼400 s), and the perturbation
growth rate is highest as the amplitude of the dominant wave
increases. This same behaviour is seen in all three 2AV–dh
forecasts, and also 3AV. It is not seen in either 3MAV or 3SV,
possibly because the amplitude of the dominant wave does
not change appreciably over time.

4.2 Bred vector dimension

The bred vector dimension9 is a measure of the local di-
mension of a set of breeding vectors (Patil et al., 2001). Fran-
cisco and Muruganandam (2003) show that for a system of
coupled Lorenz equations,9 is directly related to the intrin-
sic predictability of a system: the higher the value of9, the
less predictable the system. We shall test whether this is also
the case in the perfect model rotating annulus (a much more
complex system), by calculating a measure of9 for each of
the forecasts during stage one, and comparing with later mea-
sures of predictability. The bred vector dimension is defined
at each grid point as follows:

9 (σ1, σ2, ..., σL) =

(∑L
l=1 σl

)2

∑L
l=1 σ 2

l

(19)

We follow Patil et al. (2001) to calculate theσl . Theσl are
the singular values of a 50×L matrix constructed fromL col-
umn vectors of length 50. The elements of thel–th column
vector are theu andv velocities of thel–th bred vector at
the 25 nearest horizontal grid points (arranged in a 5×5box).
A box of 5×5 grid points is appropriate here, as it corre-
sponds to a box size of about 1 cm×1 cm near the inner and
outer walls, and 2 cm×2 cm in the interior of the fluid; this
is about the size of medium-large scale features in the flow.
Theu andv data are first defined as two separate vectors of
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length 25, normalized, and theu velocity is rescaled to give
bothu andv the same mean square norm. The two vectors
are combined into one vector of length 50, which is again
normalized to length one. This process is repeated for all the
ensemble membersxbv,m, m=[0, ...,M], then combined to
form a 50×L≡50×(M+1) matrix, and9 is then calculated
using Eq. (19).9 can take values between 1 andL=M+1
(=6 here), and we use the two components of horizontal ve-
locity because they were used in previous work with the bred
vector dimension (Patil et al., 2001).

For each of the forecasts,9 was calculated at each grid
point after each cycle during stage one. For a simple com-
parison between forecasts, the mean9 was calculated for
the entire fluid:

9(t)=
1

V

∫
V

9(r, t)dV (20)

Figure 6 shows this quantity over time for each forecast (NB:
To produce this diagram, stage one was repeated for each
forecast, forN1=20 instead ofN1=10). These results show
clear differences between the three regimes. Initially9 be-
gins at high values, as the initial perturbations are random.
Over time, as the breeding vectors become more structured,
we expect the value of9 to equilibrate. For 3SV (solid lines
in Fig. 6),9 does not equilibrate, but varies between 3.2 and
4.2. For 2AV–dh, all three cases (dashed lines) eventually
fall to between 1 and 2, which is a surprising result, as this is
a chaotic regime. The quasi-periodic cases (dotted and dot-
dash lines) do not fall to one, but equilibrate in the range 2.2–
3.2. From Francisco and Muruganandam (2003), we would
expect9 for the chaotic regimes to be higher.

These results predict that 3SV will be the least predictable
regime during the forecast stage, and 2AV–dh will be the
most predictable (a surprising result).

We shall use the results from both Sects. 4.1 and 4.2 later,
as predictors of predictability.

4.3 Error variance

We now turn to analysis of the forecast stage. In the rest
of Sect. 4, references to time are relative to the start of the
forecast stage(t=t1).

One of the most commonly used quantitative measures of
the progress of a forecast is the error variance. The mean
error variance between a forecast and the truth as a function
of time for the pressure field5 is

s(t)2
=

∑
ijk

(
εijk − ε̄

)2
1Vijk∑

ijk 1Vijk

(21)

where

ε̄(t)=

∑
ijk εijk1Vijk∑

ijk 1Vijk

(22)

and

εijk=5(i, j, k, t) − 5t(i, j, k, t) (23)

εijk is the difference between the two fields at spatial coordi-
natesijk, and1Vijk is the volume of the grid element over
which it is valid. Highers2 indicates a poorer forecast. For
each forecast,s2 is plotted as a function of time in Fig. 7 for
both the ensemble mean̄xB(t) (solid line, Eq. 16) and the
control forecastxc(t) (dashed line). Two conclusions can be
drawn. First, in almost all cases the ensemble mean performs
better than the control. Second, there is a clear difference be-
tween the quasi-periodic regimes (Fig. 7a–c), and the chaotic
regimes (Fig. 7d–i): The error variance for the AV and MAV
forecasts is very small, and not increasing (forecasts B and C
are slowly decreasing, in fact). This indicates that the fore-
casts are very good in these regimes, as one might expect –
the model trajectories are falling onto non-chaotic attractors,
and hence their behaviour may be indefinitely predictable.
The chaotic forecasts are very different: the error variance is
some two or three orders of magnitude larger than the quasi-
periodic forecasts, in general. The 2AV–dh forecasts have
generally increasing trends, and there are large fluctuations
in the plots, like in the bred vector cumulative growth (again,
on the order of the vacillation period). The 3SV forecasts
also have much larger error variance than the quasi-periodic
forecasts, but only forecast J is increasing over time. The
fact that the error variances in forecasts H and I have stopped
increasing may imply that their predictability limit has been
reached after a few hundred seconds.

In conclusion, these results give preliminary indications
that the 2AV–dh and 3SV regimes are much less predictable
than the 3AV and 3MAV regimes.

4.4 Behaviour at a single point

An intuitive way to look at predictability is the behaviour of
the ensemble at a single point. Figure 8 shows the pressure at
mid-radius/mid-height, atφ=0.147 rad, for each of the nine
forecasts. The red lines indicate the perturbed ensemble fore-
cast, the green line is the control forecast, and the black line
is the true state.

In the 3AV and 3MAV forecasts (Fig. 8a–c), the ensemble
is tightly bound for the whole forecast, again indicating that
these regimes may be indefinitely predictable.

The 2AV–dh forecasts (Fig. 8d–f) are well forecast for a
time, before the ensemble splits suddenly. The ensemble
members in forecast F split into two groups aroundt=700 s,
and forecast G first splits aroundt=400 s. The ensemble in
forecast E begins to spread aroundt=100 s, and eventually
splits into two groups aroundt=1000 s. The next section will
examine this behaviour in more detail.
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Fig. 6. Bred vector dimensions in extended re-runs of the breeding
vector initialization stage. Each line shows the volume-weighted
mean bred vector dimension9 as a function of time, measured from
the start of this stage. The line styles and letters are the same as in
Fig. 5.

The 3SV forecasts (Fig. 8g–i) show the quickest initial
spread. However, after the first few hundred seconds the
spread of values remains approximately constant; compare
this with the error variances in Fig. 7, which also plateau
after a few hundred seconds. The range of pressure values
over the whole domain is 4–6 cm2 s−2, so we might expect
the forecast spread to approach this range over time. How-
ever, in Fig. 8 the range is about 1 cm2 s−2. For a chaotic
system, the spread should be exponential until the attractor
size is reached. Therefore, it is possible that SV is a sec-
ondary instability which saturates at a low amplitude rela-
tive to the primary (baroclinic) instability; this may lead to a
“fuzzy manifold” on the baroclinic wave.

The ensembles in the 3SV regime follow the truth (at this
location at least) better than the period-doubled regime. The
period-doubled forecasts are affected by a number of “fore-
cast busts”, where the truth state lies outside both the groups,
even after the ensemble has split. This happens particu-
larly in forecast G, aroundt=350–550 s, and 700–900 s. By
contrast, the truth state remains within the 3SV ensembles
at all times except for two short periods during forecast I
(t ∼230 s) and forecastJ (t=400–500 s).

4.5 Spaghetti plots

The top row of Figs 9–11 show forecasts in the 3SV, 2AV–
dh, and 3MAV regimes, using a visualization technique com-
monly called a “spaghetti plot” in weather forecasting (Trac-
ton and Kalnay, 1993). A single pressure contour is plotted
for each perturbed ensemble member (red), as well as the
control (green), truth (blue), and ensemble mean (black), at
mid-height. The contour is determined by the pressure range

at that level: the contour used is the median of the range over
the whole forecast.

There is a qualitative difference in the predictability of the
flows. The SV forecast (Fig. 9) spreads out over time, and
predictability is lost over a timescale of hundreds of seconds.
The period-doubled forecast (Fig. 10) is also unpredictable
on a similar timescale, but loses its predictability in a dif-
ferent way. The ensemble behaves similarly to the quasi-
periodic forecast (Fig. 11) for the first part of the forecast,
but as the amplitude of the wave goes through its minimum
(betweent=300 s andt=400 s in the figure), the ensemble
splits into two groups of approximately equal size. In one
group, the peaks of the waves before the minimum remain as
peaks after the minimum; in the second, the peaks before the
minimum become troughs afterwards. The two groups areπ

out of phase after the minimum. This behaviour is reminis-
cent of the Lorenz (1963) attractor, where the unstable fixed
point at the origin causes trajectories to diverge unpredictably
between the two wings of the attractor.

On further inspection, it was found that there is some cor-
relation between the groups in the period-doubled forecasts
and whether the perturbation applied was positive or negative
at the start of the forecast stage. In forecast G, the two groups
are split by original positive/negative perturbation for the en-
tire length of the forecast (the negative perturbations follow
the truth state). In forecast E this is also the case initially, but
by the end of the forecast the groups have mixed (the positive
perturbations follow the truth in this case, however). This is
also the case for forecast F, where one group consists only of
two ensemble members and the truth state itself. Finally, the
split does not always occur at the first minimum. In forecast
E it occurs on the third minimum, and in forecast F on the
second (this can also be seen in Fig. 8d–e).

3MAV flow (Fig. 11) is very predictable, as all the ensem-
ble members and the truth are bunched together for the entire
length of the forecast (for this reason, only the final timestep
is shown here). This behaviour also occurred for 3AV flow
(forecast B, not shown).

4.6 Probability forecasts and Brier score

We can quantify the spaghetti plots presented above by con-
sidering the ensemble as a probability forecast. The bot-
tom row of Figs 9–11 show probability forecasts for the
three forecasts presented above as spaghetti plots. Each plot
shows, at each point at mid-height, the percentage of per-
turbed ensemble members whose pressure values at that level
are above the contour values used to define the spaghetti plots
in those figures. Suppose, by analogy with weather fore-
casting, that a particular event is conditional on the pres-
sure being above this value. The plots on the bottom row
of Figs 9–11 give the forecast probability that the event will
occur. Again, the 3MAV case (Fig. 11) is the most pre-
dictable: whether the event will or will not occur is predicted
with near-certainty at almost all points. The 2AV–dh and
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Fig. 7: Mean error variance over the whole pressure field (Eq. 21) as afunction of time during each forecast.

The solid line shows the volume–weighted mean error variance for the ensemble mean, and the dashed line

shows the equivalent for the control forecast.

(a)Forecast B (3AV) (b) Forecast C (3MAV) (c) Forecast D (3MAV)

(d) Forecast E (2AV–dh) (e)Forecast F (2AV–dh) (f) Forecast G (2AV–dh)

(g) Forecast H (3SV) (h) Forecast I (3SV) (i) Forecast J (3SV)

32

Fig. 7. Mean error variance over the whole pressure field (Eq. 21) as a function of time during each forecast. The solid line shows the
volume-weighted mean error variance for the ensemble mean, and the dashed line shows the equivalent for the control forecast.

3SV forecasts, however, show a significant drop in predictive
power over the course of the forecast. The ensemble splitting
in the 2AV–dh forecast (Fig. 10,t>400 s) results in a signifi-
cant loss of predictive power, as only about 50% probability
is assigned to each of the two groups – not much better than
guessing one way or the other with no knowledge about the
system at all. In the 3SV forecast (Fig. 9), the initial cer-
tainty in the forecasts at the wave peaks is quickly lost as the
ensemble members spread out over the domain.

These probability forecasts may be evaluated using the
Brier score (Brier, 1950). This quantifies the success of the
probability forecast in predicting whether the “event” above
occurs. At each grid point and time, if the forecast assigns
the probabilityf1 that the event will occur, and the probabil-

ity f2=1−f1 that it will not, the Brier score is

B(t) =

2∑
j=1

(
fj − Ej

)2
= 2(f1 − E1)

2 (24)

whereE1=1 if the event does happen, andE1=0 if it does
not. B takes values in the range 0–2, where lower values
indicate higher forecast skill.

This quantity was calculated at each grid point in the three
forecasts above, and these results are summarized in Fig. 12.
The top row shows contours of Brier score at mid-height at
the forecast time corresponding to the final frame in the se-
quence of forecasts in Figs. 9–11. The line plots in the bot-
tom row show the mean Brier score as a function of time,
weighted by volume over the whole domain. An increasing
Brier score corresponds to decreasing forecast skill.

www.nonlin-processes-geophys.net/15/469/2008/ Nonlin. Processes Geophys., 15, 469–487, 2008



480 R. M. B. Young and P. L. Read: Perfect model predictability in the rotating annulus

Fig. 8: The behaviour of the ensemble at a single point during the forecast stage. Pressure (Π) is plotted as a

function of time at mid–height / mid–radius (R = 5.25 cm, z = 7 cm), atφ = 0.147 rad. Red lines show the

pressure of the perturbed ensemble members, the green line is the control, and the black line is the truth.

(a)Forecast B (3AV) (b) Forecast C (3MAV) (c) Forecast D (3MAV)

(d) Forecast E (2AV–dh) (e)Forecast F (2AV–dh) (f) Forecast G (2AV–dh)

(g) Forecast H (3SV) (h) Forecast I (3SV) (i) Forecast J (3SV)

33

Fig. 8. The behaviour of the ensemble at a single point during the forecast stage. Pressure (5) is plotted as a function of time at mid-height
/ mid-radius (R=5.25 cm,z=7 cm), atφ=0.147 rad. Red lines show the pressure of the perturbed ensemble members, the green line is the
control, and the black line is the truth.

The Brier score for a forecast probability of 50% is 0.5,
if there are only two possible outcomes. In general, the line
plots in Fig. 12 show that on average, the true value was pre-
dicted with better than 50% probability at each point, which
is encouraging. It is difficult to say from these plots whether
there is a general upwards trend, associated with the fore-
cast getting worse over time. The near-certainty associated
with the probabilities in Fig. 11 (forecast C, 3MAV) is well-
founded: the Brier score in Fig. 12c is very small, both the
volume-weighted values and over the area shown, except for
a few places on the boundary between “definitely yes” and
“definitely no”. The 2AV–dh forecasts (Fig. 12b, forecast G)
are severely diminished by the splitting ensemble, resulting
in B∼1 over large areas. The spreading of the forecast en-
semble in the 3SV case (Fig. 12a) results in the Brier score

being high in regions where the gradient of the pressure field
is highest.

In any discussion of predictability it is helpful to ask how
“useful” the ensemble is compared to alternative forecasts.
A forecast using the climate is one such alternative. The en-
semble is then only “useful” as long as it can predict the true
state better than the climate. Using the Brier score, the en-
semble and the climate can be compared as predictors of the
true state. By plotting a cumulative frequency distribution
showing the fraction of the fluid volume below each possi-
ble score, the distribution of skill from the ensemble can be
compared with what is expected from a forecast using the
climate to define the probabilities. This representation filters
out isolated abnormally poor or good forecasts.

Nonlin. Processes Geophys., 15, 469–487, 2008 www.nonlin-processes-geophys.net/15/469/2008/



R. M. B. Young and P. L. Read: Perfect model predictability in the rotating annulus 481

Fig. 9: Top: sequence of spaghetti plots showing an ensemble forecast of pressure in the structural vacillation

regime (forecast I). All plots show theΠ = −0.201 cm2s−2 pressure contour atz = 7 cm. The axes indicate

the distance in cm from the rotational axis. Red contours indicate the perturbed forecastsxB,m±, green the

control forecastxc, black the ensemble mean̄xB (Eq. 16) and blue the truthxt. Bottom: the equivalent

probability forecast for the same regime. Each plot shows the percentage of perturbed ensemble members above

the pressure contourΠ = −0.201 cm2s−2, over the horizontal slice atz = 7 cm. Black is 0% probability, and

red is 100%.

(a) t = 70 s (b) t = 140 s (c) t = 210 s (d) t = 280 s (e) t = 350 s (f) t = 420 s

Fig. 10:As Fig. 9, but in the period–doubled regime (forecast G), atΠ = −0.561 cm2s−2.

(a) t = 100 s (b) t = 200 s (c) t = 300 s (d) t = 400 s (e) t = 500 s (f) t = 600 s

34

Fig. 9. Top: sequence of spaghetti plots showing an ensemble forecast of pressure in the structural vacillation regime (forecast I). All plots
show the5=–0.201 cm2s−2 pressure contour atz=7 cm. The axes indicate the distance in cm from the rotational axis. Red contours indicate
the perturbed forecastsxB,m±, green the control forecastxc, black the ensemble mean̄xB (Eq. 16) and blue the truthxt. Bottom: the
equivalent probability forecast for the same regime. Each plot shows the percentage of perturbed ensemble members above the pressure
contour5= − 0.201 cm2s−2, over the horizontal slice atz=7 cm. Black is 0% probability, and red is 100%.

Fig. 9: Top: sequence of spaghetti plots showing an ensemble forecast of pressure in the structural vacillation

regime (forecast I). All plots show theΠ = −0.201 cm2s−2 pressure contour atz = 7 cm. The axes indicate

the distance in cm from the rotational axis. Red contours indicate the perturbed forecastsxB,m±, green the

control forecastxc, black the ensemble mean̄xB (Eq. 16) and blue the truthxt. Bottom: the equivalent

probability forecast for the same regime. Each plot shows the percentage of perturbed ensemble members above

the pressure contourΠ = −0.201 cm2s−2, over the horizontal slice atz = 7 cm. Black is 0% probability, and

red is 100%.

(a) t = 70 s (b) t = 140 s (c) t = 210 s (d) t = 280 s (e) t = 350 s (f) t = 420 s

Fig. 10:As Fig. 9, but in the period–doubled regime (forecast G), atΠ = −0.561 cm2s−2.

(a) t = 100 s (b) t = 200 s (c) t = 300 s (d) t = 400 s (e) t = 500 s (f) t = 600 s

34

Fig. 10. As Fig. 9, but in the period-doubled regime (forecast G), at5= − 0.561 cm2s−2.

To construct a probability forecast using the climate, the
climatological pressure distribution is defined at each point in
the flow as the distribution of pressure over a long simulation
(the truth simulation over stage two is used). The probability
that the “event” considered above will occur according to the
climatological distribution is then assigned. The Brier score
at each point is calculated using the climatological probabil-
ity as the forecast. At each forecast time, the forecast using
the climatology can then be directly compared with the en-
semble. We define a cumulative frequency distribution for
the fluid volume containing grid points with Brier scoreb or
below, as a function ofb:

CF(b)=
∑

B(R,φ,z)≤b

1V (R, φ, z) (25)

This calculation was done for each forecast as a function of
time. Figures 13 and 14 show the results at four times during
forecasts I (3SV) and G (2AV–dh). The solid lines show the
distribution of Brier scores using the climatological distribu-
tion as the forecast, and the dashed lines the same for the en-
semble forecast. Four times during the forecast are shown, in
different colours. If the ensemble is more skilful, the dashed
line will be to the left of the solid line, and vice versa.

In general, the climate is a more skilful predictor of the
truth for the 3SV forecast in Fig. 13. A useful comparison to
make is the value atB=0.5. This corresponds to the volume
fraction where the true state is predicted with better than 50%
probability. In general, the results for forecast I (Fig. 13)
are encouraging, as about 80%–90% of points satisfy this
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Fig. 11: As Fig. 9, but in the modulated amplitude vacillation regime(forecast C), forΠ = −0.238 cm2s−2,

at t = 3150 s only.

(a) Spaghetti plot (b) Probability forecast

Fig. 12: Top: Horizontal distribution of Brier score in the three forecasts shown earlier as spaghetti plots and

probability diagrams. The scores shown in this figure are from the end of the sequences shown in Figs 9 – 11,

at the same height. The colour scale is the same for each diagram, and the axes indicate the distance in cm from

the rotational axis. Bottom: volume–weighted mean Brier score as a function of time over the forecast stage,

for the same three forecasts.

(a)Forecast I (3SV),t = 420 s (b) Forecast G (2AV–dh),t = 600 s (c) Forecast C (3MAV),t = 3150 s

35

Fig. 11. As Fig. 9, but in the modulated amplitude vacillation
regime (forecast C), for5= − 0.238 cm2s−2, at t=3150 s only.

condition, using either the ensemble or the climate as the
predictor. Aroundt∼120 s there is a transition from the en-
semble to the climatology as the better predictor of the true
state, and this remains so for the rest of the forecast. This is
not the case for the other 3SV forecasts, where the ensemble
remains marginally better than the climatology, even at the
end.

The 2AV–dh results (Fig. 14) are affected, again, by the
ensemble forecast splitting into two. The sharp jump around
b=0.6 in all cases butt=250 s in Fig. 14 shows that after
250s about 15–25% of the volume is predicted with 50% ac-
curacy at best.

Figure 15 shows the same as Figs. 13–14 but for forecast
C (3MAV), and is representative of the quasi-periodic fore-
casts: the ensemble forecast is significantly better than the
climatology at all times.

4.7 Kolmogorov-Smirnov goodness-of-fit tests

The Kolmogorov-Smirnov (K-S) goodness-of-fit test
(Massey, 1951) is another way to estimate the “usefulness”
of an ensemble forecast relative to the climate. The useful-
ness of the forecast is exhausted when the distribution of
ensemble forecast values and climatological forecast values
can be drawn from the same statistical distribution. At that
time, an equally good forecast could be obtained by using
the climate as the predictor. Consider the following null
hypothesis:

H0: The cumulative frequency distribution of pres-
sure values predicted by the ensemble and control
forecasts at a point in time and space,S, is drawn
from the same statistical distribution as the cumu-
lative frequency distribution of the climatological
values at that point,F0.

and the alternative hypothesis:

H1: S andF0 are drawn from different statistical
distributions.

The K-S test assigns a confidence level for retaining the
null hypothesis. The climatological cumulative frequency
distributionF0 is defined as

F0(R, z, x)=

N2∑
n=1

Nφ∑
j=1

[
5t(R, φj , z, tn) ≤ x

]
NφN2

(26)

where N2 is the number of datasets obtained during the
forecast stage, andNφ=64 is the number of azimuthal grid
points, taking advantage of the rotational symmetry of the
system to define a more accurate climatological distribution
(note that volume-weighting is not needed here as the az-
imuthal model grid is uniform). At each point in the vertical
slice,F0 is the fraction of points in the time series at(R, z)

below the valuex. An equivalent cumulative frequency dis-
tribution is calculated at each point in the ensemble forecast,
as a function of time:

S(R, φ, z, t, x)=

[5c(R,φ,z,t)≤x]+
M+∑

m=M−
m6=0

5B,m [(R, φ, z, t) ≤ x]

2M+1

(27)

The maximum difference between the two is the K-S statistic
D:

D(R, φ, z, t)= max
x

∣∣F0(R, z, x) − S(R, φ, z, t, x)
∣∣ (28)

Each value ofD corresponds to a confidence level for retain-
ing the null hypothesis, calculated using Press et al. (1992,
pp.617–622).

The K-S statisticD and the corresponding confidence
level for retainingH0 were calculated at each point and time
in forecasts B-J. The area-weighted meanD was also calcu-
lated for each vertical slice. As the ensemble forecast ap-
proaches the climatological distribution,D will fall to zero.
Figure 16 shows the evolution ofD over the vertical slice at
φ=0.147 rad for each forecast, as a function of time.

The quasi-periodic forecasts (Fig. 16a–c) remain at
D>0.5 for the whole forecast duration, with no general de-
creasing trend (except possibly in forecast D). ThereforeH0
is rejected at all points and times with almost 100% signifi-
cance – the ensemble forecast retains its predictive power at
all times.

The two chaotic regimes (Fig. 16d–i) have general down-
ward trends, indicating thatD should eventually approach
zero. Over the forecast period, the value ofD where the null
hypothesis is retained even at the 50% confidence level is not
reached:D50%=0.239, which is not reached in any of the
forecasts. If the rate of decrease remains constant,D will fall
approximately to zero (and all ‘usefulness’ in the ensemble
forecast will be lost) after about 4000–6000 s for the 2AV–
dh forecasts, and after about 1500–3000 s for the 3SV fore-
casts. These values indicate that the ensemble will remain
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at t = 3150 s only.
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Fig. 12: Top: Horizontal distribution of Brier score in the three forecasts shown earlier as spaghetti plots and

probability diagrams. The scores shown in this figure are from the end of the sequences shown in Figs 9 – 11,

at the same height. The colour scale is the same for each diagram, and the axes indicate the distance in cm from

the rotational axis. Bottom: volume–weighted mean Brier score as a function of time over the forecast stage,

for the same three forecasts.

(a)Forecast I (3SV),t = 420 s (b) Forecast G (2AV–dh),t = 600 s (c) Forecast C (3MAV),t = 3150 s
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Fig. 12. Top: Horizontal distribution of Brier score in the three forecasts shown earlier as spaghetti plots and probability diagrams. The
scores shown in this figure are from the end of the sequences shown in Figs 9–11, at the same height. The colour scale is the same for each
diagram, and the axes indicate the distance in cm from the rotational axis. Bottom: volume-weighted mean Brier score as a function of time
over the forecast stage, for the same three forecasts.

Fig. 13. Brier score cumulative frequency distributions for forecast
I (3SV). Each plot shows the fraction of annulus volume where the
forecast scores below each Brier score, as a function of Brier score.
Four times during the forecast are shown, in different colours. For
each colour, the solid line shows the distribution using the clima-
tology as the predictor, and the dashed line shows the distribution
using the ensemble. Black=105 s, blue=210 s, green=315 s, and
red=420 s.

more useful for forecasting the truth than the climatological
distribution for some time.

Fig. 14. As Fig. 13, but for forecast G (2AV–dh). Black=250 s,
blue=500 s, green=750 s, and red=1000 s.

5 Summary and conclusions

We have detailed the first part of a study of deterministic
predictability in the rotating annulus laboratory experiment.
This work is the first study of the annulus to focus on pre-
dictability of the first kind (Lorenz, 1975); the second kind
of predictability defined by Lorenz is already well charac-
terised by previous studies.
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Fig. 15. As Fig. 13, but for forecast C (3MAV), att=3150 s only.

Forecasts of the rotating annulus in the perfect model
scenario have shown significant differences between the
predictability of quasi-periodic and chaotic flow regimes.
Computational evidence suggests that quasi-periodic regimes
may be forecast indefinitely using an ensemble prediction
scheme, but the predictability of structural vacillation and
period-doubling regimes is limited to a timescale of hundreds
of seconds. Furthermore, there is a fundamental difference
in the way predictability is lost between low-order chaotic
regimes (2AV-dh) and high-order chaos (3SV).

Initial estimates of predictability using the bred vector
growth rate predicted that quasi-periodic regimes would be
much more predictable than chaotic regimes, but it was not
possible to make any quantitative separation between the two
chaotic regimes. (Note that – strictly – the bred vector growth
rate only reflects the dynamics at the selected magnitude
of perturbations, so using it to predict the behaviour of the
whole system may be limited.) The bred vector dimension
gave the surprising prediction that 3SV would be the least
predictable and 2AV–dh (which is also chaotic) the most pre-
dictable.

Forecasts were made at nine points in parameter space
using an ensemble of bred-pair perturbations (Eqs. 12–13),
assuming a perfect model. The same technique was ap-
plied to each regime, so all things being equal, the differ-
ences in the forecasts should reflect the differences between
the regimes themselves. Error variance statistics showed a
marked forecast improvement by using the ensemble mean
instead of a control forecast. Spaghetti plots and probabil-
ity forecasts showed the chaotic regimes are much less pre-
dictable than the quasi-periodic regimes; predictability in the
2AV–dh regime was lost primarily at the minimum point
in the vacillation cycle, which was confirmed by examin-
ing behaviour at a single point. It would be interesting to
see whether this ensemble split also occurs in quasi-periodic
flows with a large vacillation index (i.e. where the wave am-

plitude approaches zero at the cycle minimum).
Comparisons were made between the ensemble forecast

and a climatological forecast using the Brier score and the
Kolmogorov-Smirnov goodness-of-fit test. The Brier score
identified regions of high pressure gradient to be the least
predictable parts of the flow, at least in the 3SV regime. We
are not aware of any quantitative numerical weather predic-
tion studies that verify this behaviour, so this may be an
interesting result worthy of further study. The skill of the
2AV–dh forecasts is diminished by the ensemble split, with
some regions of the flow better predicted by the climatol-
ogy than the ensemble. Kolmogorov-Smirnov tests indicated
that forecasts in quasi-periodic regimes may outperform the
climatological forecast indefinitely, while the ensemble “use-
fulness” in the chaotic regimes will be exhausted after a few
thousand seconds.

We have used a number of predictability measures in this
work, which (apart from the bred vector dimension) all gave
the same conclusion about the relative predictability of the
regimes studied: 3SV and 2AV–dh are much less predictable
than 3MAV and 3AV. The predictions made using bred vec-
tor growth rate and dimension hold in all cases except the
anomalous bred vector dimension results for the 2AV–dh
forecasts. The measures which have enabled us to distin-
guish most clearly between regimes are behaviour at a point
(Fig. 8) and the Brier score – the contour plots in Fig. 12 are a
particularly clear indication of which regions of the flow are
the most predictable. We noted in the introduction that the
predictability of a system should not depend on the method
used to measure it. This work has compared a number of
validation techniques and predictability measures, and our
results indicate that the bred vector dimension may be a ques-
tionable measure of predictability in complex systems such
as the annulus (or indeed the atmosphere), and that its power
as a predictor is limited to low-order models like those used
by Francisco and Muruganandam (2003).

Gathering together all the results above, approxi-
mate prediction times in the perfect model scenario
are summarized below, with equivalent times in an-
nulus rotation periods and Lyapunov times [exponents
are taken from Young and Read (2008)]. The values
for 3AV/3MAV are lower bounds, as predictability was
retained throughout the whole forecast in each case.

Regime 3SV 2AV–dh 3(M)AV
Prediction time / s 300–500 500–1000>3000
Rotation periods 120–280 65–130 >400
Lyapunov times 1.0–1.5 1.5–3.0 >0.5

Of course, it is not possible to make any firm statements
about the predictability of a system without using data from
the system itself. We do not claim that the numbers above
reflect the true absolute predictability of these regimes –
such conclusions cannot be made without using experi-
mental data, in any case, so will need to wait until further
work using real data has been completed. In this study,
the conclusions about the relative predictability of different
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Fig. 16: Area–weighted Kolmogorov–Smirnov statisticD as a function of time over the forecast stage. The

average is over the vertical slice atφ = 0.147 rad. The lower the value ofD, the better the climatology is

relative to the ensemble as a predictor of the truth.

(a)Forecast B (3AV) (b) Forecast C (3MAV) (c) Forecast D (3MAV)

(d) Forecast E (2AV–dh) (e)Forecast F (2AV–dh) (f) Forecast G (2AV–dh)

(g) Forecast H (3SV) (h) Forecast I (3SV) (i) Forecast J (3SV)
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Fig. 16. Area-weighted Kolmogorov-Smirnov statisticD as a function of time over the forecast stage. The average is over the vertical slice
atφ=0.147 rad. The lower the value ofD, the better the climatology is relative to the ensemble as a predictor of the truth.

regimes are more important. We feel that our conclusions
about relative predictability are robust, because even though
only one forecast was done for each case, three cases were
examined in each regime (taking the two quasi-periodic
regimes together), with the same conclusions for each.
Our results show that it is possible to distinguish between
regimes on the basis of their predictability, and this is an
important step towards measuring the absolute predictability
of the annulus.

We are now in the process of extending this work into the
imperfect model scenario, using archival laboratory data to
verify the forecasts. We are in the process of developing
two data assimilation schemes to do this, the first based on
the well-established Met Office analysis correction scheme
(Lorenc et al., 1991), and the second based on the more ex-
perimental gradient descent filter (Judd, 2003). By combin-

ing these schemes with the method detailed in Sect. 3, this
will allow us to make hindcasts of real annulus data, which
should provide some insight into the predictability of the ro-
tating annulus in both chaotic and non-chaotic regimes.

In general, we expect real flows to be noticeably more un-
predictable than the behaviour examined in this paper. Re-
laxing the perfect model assumption will also be a useful
exercise in validation of the annulus model MORALS; pre-
vious work comparing simulated and experimental data has
been used to study temperature spectra and velocity profiles
(Hignett et al., 1985), flow behaviour with internal heating
(Read et al., 1997), heat transport (Read, 2003), and has
been used to improve the model integration scheme (Read
et al., 2000), but has not compared numerical and experi-
mental time series. Finally, because these techniques are be-
ing used in a controlled and reproducible environment, we
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re-iterate our proposal mentioned in the introduction, that in
the future the annulus could be used as a testbed for assimila-
tion and forecasting techniques currently in operational use,
and to test the features and limitations of new techniques be-
fore they are made operational.
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