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Abstract. Understanding and describing the spatial charac-
teristics of soil surface microrelief are required for modelling
overland flow and erosion. We employed the multifractal ap-
proach to characterize topographical point elevation data sets
acquired by high resolution laser scanning for assessing the
effect of simulated rainfall on microrelief decay. Three soil
surfaces with different initial states or composition and rather
smooth were prepared on microplots and subjected to succes-
sive events of simulated rainfall. Soil roughness was mea-
sured on a 2×2 mm2 grid, initially, i.e. before rain, and after
each simulated storm, yielding a total of thirteen data sets for
three rainfall sequences. The vertical microrelief component
as described by the statistical index random roughness (RR)
exhibited minor changes under rainfall in two out of three
study cases, which was due to the imposed wet initial state
constraining aggregate breakdown. The effect of cumulative
rainfall on microrelief decay was also assessed by multifrac-
tal analysis performed with the box-count algorithm. Gen-
eralized dimension,Dq , spectra allowed characterization of
the spatial variation of soil surface microrelief measured at
the microplot scale. TheseDq spectra were also sensitive
to temporal changes in soil surface microrelief, so that in all
the three study rain sequences, the initial soil surface and the
surfaces disturbed by successive storms displayed great dif-
ferences in their degree of multifractality. Therefore, Multi-
fractal parameters best discriminate between successive soil
stages under a given rain sequence. Decline of RR and mul-
tifractal parameters showed little or no association.
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1 Introduction

The surface of agricultural soils is built up from clods and ag-
gregates arranged in a complex system of successive macro
and/or microstructures. Soil surface roughness (SSR) is de-
fined as the configuration of soil microrelief at small scales,
of less than one meter (Allmaras et al., 1966; Linden and
van Doren, 1986; Huang and Bradford, 1990; Merril et al.,
2001). Soil surface roughness, taken on a scale ranging from
cm to mm, plays a very important role in increasing water
infiltration and the amount of crop water available and reduc-
ing runoff on cultivated lands (Podmore and Huggins, 1981;
Armstrong, 1986; Kamphorst et al., 2000). Besides, SSR
has been demonstrated to influence water infiltration, splash
amount, overland flow and runoff routing (Govers et al.,
2000; R̈omkens et al., 2001; Ǵomez and Nearing, 2005), to
reduce runoff velocity and, thus, to decrease soil detachment
and transport (Cogo et al., 1983) caused by water erosion.

In agricultural fields, tillage implements break-up soil and
produce abrupt roughness increases. Subsequently, rainfall
gradually decreases roughness. Römkens and Wang (1986)
identified four different components of soil roughness. Type
1 is microrelief variations due to the size of individual grains
or aggregates. Type 2 is due to cloudiness, as a result from
tillage break-up. Type 3 consists of systematic differences
in elevation produced by farm implements, such as furrows.
Type 4 represents topographic variations at the plot scale and
at higher scales, such as slope at field or basin scale. Rough-
ness of types 1 and 2 are referred to as random roughness,
whereas roughness of types 3 and 4 are called oriented rough-
ness. Notice that rills and gullies may also create oriented
roughness when concentrated erosion occurs.
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Oriented roughness due to tillage tools exhibit periodic
patterns and is easy to quantify by geometric models. How-
ever, random roughness assessment implies a quantifica-
tion of the spatial distribution of microrelief elements with
various that are randomly oriented, which has been more
challenging (Huang 1998a). This notwithstanding random
roughness (RR) is calculated as the standard error (Allmaras
et al., 1966) or as the standard deviation (Kamphorst et al.,
2000) of point elevations relative to a reference plane. There-
fore, this index represents a statistical measure of vertical
topographic variations, implicitly assuming that there is no
spatial variation in surface roughness (Eltz and Norton, 1997;
Kamphorst et al., 2000).

The relationship between rainfall energy and microtopo-
graphic features controls many transfer processes on and
across the soil surface, including overland flow and erosion.
The effects of soil roughness are mainly evident during the
early stages of erosion processes, when soil detachment by
raindrop impact, seal development and runoff generation are
major factors and surface flow and concentrated flow are ab-
sent or limited (Mitchell and Jones, 1978; Helming et al.,
1998). In these stages, depressional storage affects incip-
ient runoff and soil detachment by raindrop impact due to
the presence of pounded water. One important effect is the
higher infiltration rate of the soil with greater roughness,
although the influence of microrelief tends to decrease or
even disappear due to surface sealing as rainfall progresses
(Moore and Singer, 1990). Depressional storage also re-
duces runoff, and the importance of this effect also decreases
with cumulative rainfall. Therefore, the usual observations
reported in the literature and the common manner that mod-
els account for roughness effects on erosion indicate that a
smooth surface generally yields more runoff and sediment
than does a rough one (Zobeck and Onstad, 1987; Renard et
al., 1997; Hairsine and Rose, 1992). On the other hand, soil
erosion may be lessened under conditions of greater rough-
ness not only from the reduction of runoff but also due to the
greater level of hydraulic resistance that dissipates the flow
energy (Einstein et al., 1951). Spatial configuration of soil
microrelief is decisive for a description of depressional stor-
age areas filled with water and for assessing the connectivity
of runoff pathways (Onstad, 1984).

Erosion processes, i.e. sediment detachment, transport and
deposition interact on both the micro- and macroscales (Fos-
ter, 1982). On the microscale feedback and interaction may
occur with the structural units responsible for random and
oriented roughness. On a soil surface with random roughness
features, detachment on the peaks of the largest clods and
aggregates produces a local sediment load that exceeds the
local transport capacity causing deposition in small depres-
sions. Detachment reduces clod height and deposition fills
local hollows, decreasing both the vertical roughness com-
ponent and the depressional storage through time (Helming
et al., 1998; Kamphorst et al., 2000). As clods and aggre-
gates are eroded and depressions are filled the gap between

detachment and deposition decreases, so that deposition ends
as the soil surface becomes smooth. Although detachment is
not selective, entrainment and specially deposition are highly
selective, resulting in coarse particles being left behind at the
soil surface and fine particles being deposited in depressions,
which may cause severe topography changes at small scales.
Therefore, the total flow energy is unavailable to transport
sediments (Foster, 1982; Abrahams and Parsons, 1991). In
addition, the resistance of soil to detachment affects erosion
by raindrop impact due to the modification of the clod size
distribution (R̈omkens and Wang, 1986; Moldenhauer and
Kemper, 1969).

All of the former effects tend to cause erosion on rough
soil surfaces to be less than that on a corresponding smoother
one, for a given slope. Nevertheless, these effects are mainly
active during the early stages of rainfall, although they are
also perceptible until runoff fills and interconnects the soil
depressions, and a complete drainage network is developed.
Most studies on the effect of the roughness induced by tillage
have been focused on these early stages of rainfall and have
been conducted on small laboratory or field plots, where a
full drainage network can hardly build up. However, when
the effect of the initial roughness on runoff and soil losses
was studied at a scale large enough for the overland flow to
reach a natural velocity, the experimental results have chal-
lenged the conventional view previously commented, show-
ing little effect of roughness on runoff and overall higher sed-
iment yield on the rougher surface at steep slopes (Helming
et al., 1998; Ǵomez and Nearing, 2005). Moreover, these
experiments showed that during the initial stages of rain-
fall, runoff and erosion were delayed on the rougher surfaced
soils. But, as the experiment progressed, both runoff and ero-
sion were less affected by the roughness treatments. At the
end, the total runoff amounts did not vary as a function of
the roughness treatment, and the total erosion rates were ac-
tually greater for the rougher soil surface treatments. This
may be explained in terms of the surface features being of
the same order of magnitude or larger in size than the flow
depth, which affected the spatial distribution of the overland
flow (Abrahams and Parsons, 1990) and induced a higher de-
gree of flow concentration on the rough surfaces (Römkens
et al., 2001).

On the other hand, the near-surface hydraulic gradient, that
is, drainage and seepage, has been shown to significantly af-
fect erosion (Bryan and Rockwell, 1998; Huang and Laflen,
1996; Huang, 1998b; Owoputi and Stolte, 2001). Darboux
and Huang (2005) conducted a laboratory experiment to as-
sess effects of soil surface depressions on runoff initiation,
water runoff, and soil loss under different subsurface mois-
ture regimes (seepage and drainage) and upstream flow con-
ditions (with or without runoff). During the experiment, de-
pressions delayed runoff initiation by storing water in pud-
dles and enhancing infiltration. Once an apparent steady
state was reached, surfaces with initial depressions slightly
increased water flux compared with initially smooth surfaces.
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This effect occurred for both drainage and seepage condi-
tions and persisted even after the surface storage capacity
became low. Then, the authors concluded that the results
showed that roughness had no significant effect on particle
flux and concentration both under drainage and seepage con-
ditions.

The above literature review indicates that the roughness
effect on erosion can be further compounded by surface
and subsurface factors and processes occurring at different
scales. Surface microtopography influence surface processes
like erosion, deposition, infiltration, etc. and many of these
surface processes also causes a change in surface morphol-
ogy (Huang, 1998a). It follows that microrelief is the product
of several feedbacks and multiscale interactions involving a
complex spatial and temporal variability.

Soil surface roughness has been the subject of an increas-
ing number of studies since the pioneering work of Burwell
et al. (1963) and Allmaras et al. (1966). Soil surface rough-
ness has also been described using fractal models (Arm-
strong, 1986; Huang and Bradford, 1992; Gallant et al.,
1994; Eltz and Norton, 1997; Huang, 1998; Davis and Hall,
1999; Vidal V́azquez et al., 2005, 2006, 2007). In general,
for natural surfaces correlation distance has been found to be
equal or smaller than the size of the greatest structural units,
aggregates or clods on the soil surface, i.e. in the range from
a few centimetres to a few decimetres (Huang and Bradford,
1992; Helming, 1993; Vidal V́azquez et al., 2005). Never-
theless, the effects of short-distance correlation on overland
flow generation are thought to be negligible at the plot or mi-
crotopography (Darboux and Huang, 2005). Actually, most
depression storage models assume a completely uncorrelated
soil surface (Mitchell and Jones, 1978; Moore and Larson,
1979, 1978; Kamphorst et al., 2000). This may be the reason
why, in soil microrelief studies, fractals have been relegated
to a narrow range of scales and to specialized technical ap-
plications (Vidal V́azquez et al., 2005).

A fractal model refers to a set and can be characterized by
a single parameter, such as the fractal dimension,D, while
a multifractal model refers to a measure and can be charac-
terized by a continuous spectrum of fractal dimensions usu-
ally referred to as the generalized dimension,Dq . Multi-
fractals are spatially intertwined fractals. Basic information
on the multifractal concept and on procedures to character-
ize multifractals can be found in several books (Everstz and
Mandelbrot, 1992; Falconer, 1997). Multifractal analysis
has been recently used in many fields including soil sciences
(Folorunso et al., 1994; Caniego et al., 2005; Bird et al.,
2006; Dathe et al., 2006; Grau et al., 2006; Ibáñez et al.,
2006; Roisin, 2007). However, very little information has
been reported about the possible application of multifractal
concepts for characterizing soil microrelief (Garcı́a Moreno,
2006; Garćıa Moreno et al., 2008).

The aim of this study is to describe the characteristics of
soil surface microrelief decay under simulated rainfall em-
ploying multifractal concepts and to compare the widely used
statistical index RR with the multifractal quantification.

2 Material and methods

2.1 Soils

Two medium textured soils were selected from Mabegondo
(Corũna province) and Pastoriza (Lugo province), both lo-
cated in Northern Spain, on the basis of differences in clay
and silt fractions, organic matter content and structural sta-
bility. Next, these soils will be referred to as MA for
Mabegondo and LU for Pastoriza. The soils were Umbrisols
(FAO) equivalent with Inceptisols (Umbrepts) according to
the US. Soil Taxonomy (Table 1). Briefly, the Mabegondo
soil had been continuously cropped to corn (Zea mays, L.)
in summer and left fallow in winter for several decades,
whereas the Pastoriza soil had been under corn and winter
cereal (Lolium multiflorum, L.) rotation. Organic matter con-
tent of the later soil was much higher than that of the former.
Silt and sand content differences were also remarkable, with
higher silt values and lower sand values for the Mabegondo
soil. Aggregate stability was significantly greater in the soil
from Pastoriza than in the soil from Mabegondo.

2.2 Microrelief data sets

Roughness measurements were performed in laboratory con-
ditions. Soil surfaces were prepared using air dry aggregates
from the top layer of the studied soils and packing them in
small containers or trays horizontally disposed. The largest
aggregates were 20–40 mm in diameter. The depth of the soil
in the containers was 0.05 m. A sand layer below the artifi-
cial soil layer allowed free drainage. Aggregates with the
largest diameters were randomly located on the soil surface,
avoiding sorting. The initial soil surface was gentle leveled
before starting laser scanning.

These initial conditions were reconstructed to simulate a
natural seedbed so that random roughness was rather low.
Disturbed situations were obtained by simulated rain. Two
different rainfall simulators were used. The Mabegondo soil
(MA4 and MA6) was subjected to simulated rainfall under a
drop-forming device at intensity of 30 mm h−1. The Pastor-
iza soil (LU1) was subjected to simulated rainfall produced
by a nozzle system at intensity of 65 mm h−1.

The soil surface was scanned periodically, before starting
simulated rain and after successive cumulative rainfall appli-
cations. Elevations were measured with an automated laser
relief meter. Sample spacing, or distance between points
along a transect and between transects was 2 mm and vertical
resolution was 0.1 mm.
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Table 1. Composition and main characteristics of the soil surfaces used in this study.

Surface
code

OM
(%)

Clay
(%)

Silt
(%)

Sand
(%)

Initial
state

Plot
size
(m2)

Cells
per
surface

Rain
simulator

Rain
intensity

Scanned
surfaces

MA4 1.2 19.8 56.0 24.2 wet 0.21 52900 dropper 30 mm h−1 4
MA6 1.2 19.8 56.0 24.2 dry 0.21 52900 dropper 30 mm h−1 5
LU1 5.7 22.3 47.0 30.7 wet 0.30 75625 nozzle 65 mm h−1 4

The configuration of soil topography was described by a
set of points of knownx-, y- andz-coordinates. The eleva-
tion values given as a function of the horizontal coordinate
system provide a numerical representation of the surface and
constitute a digital elevation model (DEM). From each ex-
perimental data set of soil surface microtopography a DEM
was obtained after trend removal, representing the random
roughness condition.

2.3 Generalized fractal dimension

The concepts of fractals (Mandelbrot, 1983) and multifrac-
tals (Everstz and Mandelbrot, 1992; Falconer, 1997) and
its application to soil science (Pachepsky et al., 2000) and
more specifically microtopography (Eltz and Norton, 1997;
Huang, 1998a; Vidal V́azquez et al., 2005, 2006; Garcı́a
Moreno, 2006; Garćıa Moreno et al., 2008) has been well
described in the literature, so we shall not reiterate it here.
In our work the scaling of point elevation measurements is
directly assessed to obtain multifractal parameters.

If a profile of point heights measurements in a two dimen-
sional space is covered by boxes of side lengthδ, the number
of such boxes, n (δ) needed to cover the experimental tran-
sect whenδ→0 varies as:

n(δ) ∝ δ−D (1)

The fractal dimension,D, can be obtained by counting the
numbern of boxes required to cover the object under inves-
tigation for increasing box sizesδ and fitting the slope of a
log-log plot.

Using the box-counting technique for estimation of a sin-
gle fractal dimension implies that each box employed for
covering a transect is counted regardless of the proportion
of the area occupied with pixels of a given height class. In
other words, monofractal calculation does not account for the
mass contained in each box, so that all of them have the same
weight.

However, the generalized dimension calculated using the
box-counting (BC) method essentially reflects the mass con-
tained in each box. Let us consider that a domain of sizeR2

as the support of the measure,δ. To assess the heterogeneity
of the measure,δ, the unit initial squareL×L is partitioned
into n boxes of sizeδ×δ, by successive divisions in dyadic

scaling down. Thus, the intervals for downscaling are loga-
rithmically spaced.

Multifractal methods can resolve highly complex patterns
of arrangement of the point elevation measurements defin-
ing soil surface microrelief. This complexity is character-
ized by using a mesh of square boxes of side lengthδ so
that to each region of the space the corresponding quantity
µ(δ) can be assigned. In practice, to implement the multi-
fractal analysis of a distribution supported on a plane, a set of
different meshes with cells or subintervals with equal length
is required. The measureµi (δ) distributed over an inter-
val of sizes was computed from the experimental point el-
evation data,hi . First Hi are normalized,Hi=(hi/

∑
i hi),

i=1, 2, ..., n, with
∑n

i=1 Hi=1, and then the measureµi (δ)
assigned to those blocks was calculated by adding all contri-
butionshi inside a box.

In our case the study regions were square areas of initial
sizes 460 mm for MA data sets and 550 mm for LU data sets
and the size of each cell was 2 mm. Thus, depending on the
data set the range of scales in the available data varied from
1 to 230 cells and from 1 to 275 cells, respectively.

For each boxith the probability distribution is:

pi(δ) = µi(δ) = δαi (2)

whereαi is the Hölder exponentcharacterizing density in
the ith box. For multifractal measures, the numberNδ(α) of
boxes of sizeδ here the probability has values in the interval
obeys a power law:

N(α) ∝ δ−f (α) (3)

In practice, using the box counting method, for every box,i,
the probability of “containing object”, also called the parti-
tion function, is obtained for different momentsq which can
vary from –∞ to +∞. For multifractal distributed measures,
the partition function scales with the block size as follows:

χ(q, δ) =

n(δ)∑
i=1

p
q
i (δ) =

n(δ)∑
i=1

µ
q
i (δ) (4)

A log-log plot of the quantityχ(q,δ) versusδ for different
values ofq yields:

χ(q, δ) ∝ δ−τ(q) (5)
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whereτ(q) is the mass scaling function of orderq. Also τq

can be written as:

τ(q) = lim
δ→0

logχ(q, δ)

logδ
(6)

Multifractal measures are primarily characterized by their
spectrum of dimensions. The concept of generalized dimen-
sion,Dq , corresponds to the scaling exponent for theqth mo-
ment of the measure. Based on the work of Rényi (1955)
generalized dimensions are defined as:

Dq = lim
δ→0

1

q − 1

log[ χ(q, δ)]

logδ
(7)

Therefore,τ andDq are related as:

τ(q) = (q − 1)Dq (8)

For a monofractal,Dq is a constant function ofq, so no addi-
tional information is obtained by examining higher moments.
However, for multifractal measures, the relationship between
Dq andq is not constant. In this case, the most frequently
used generalized dimensions areD0 for q=0, D1 for q=1
andD2 for q=2 termed, respectively, capacity, information
(Shannon entropy) and correlation dimension.

The capacity or box-counting dimension,D0, is indepen-
dent of the quantity of mass in each box; it is the scaling
exponent of the number of non-empty boxes and takes into
account the fact that the boxes are occupied or not.

The information dimension,D1, gives the probability of
occupation of theith box of sizeδ, without taking into ac-
count the way in which the measure is distributed within
each box. Thus,D1 provides a physical characterization in-
dicating how heterogeneity changes across a certain range of
scales and it is also related to Shannon entropy index.D0
andD1 take the same value if all the boxes have equal prob-
ability. Note that using Eq. (7)D1 becomes indeterminate
because the value of denominator is zero. Therefore, for the
particular case thatq=1, the following equation is used:

D1 = lim
δ→0

n(δ)∑
i=1

χi(1, δ) log[ χi(1, δ)]

logδ
(9)

The correlation dimension,D2, describes the uniformity of
the measure values among intervals. The generalized dimen-
sion,Dq , is more useful for the comprehensive study of mul-
tifractals. Differences betweenDq allow comparison of the
complexity between measured soil microrelief data sets.

Commonly the degree of multifractality is assessed from
the curvature of functions involved in multifractal analysis,
i.e. singularity spectraf (α), mass exponent functionτ(q)

or generalized dimension,Dq (e.g. Cheng, 1999). In this
work the main properties of the multifractality will be de-
scribed by a few parameters taken from the functionsDq and
τ(q). A sigma shapedDq spectra is taken as an indication
that the measure is multifractal, whereas quasi-linear spectra
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Fig. 1. Random roughness (RR) versus cumulative rainfall for three
different initial soil surfaces, under given rain sequences.

are close to monofractals. Thus, in homogeneous structures
Dq are close, whereas in a monofractal they are equal. Notice
that, for a monofractal distribution, values ofD0, D1 andD2
become similar. Therefore, if a distribution has a tendency to
multifractality it will be observed thatD0> D1>D2. On the
other hand, also the properties of the functionτ(q), specially
the local properties ofτ(q) aroundq=1, have been found to
be useful for describing multifractality (Cheng, 1997, 1999).
Following Cheng’s work from the mass exponent function
τ(q) the main properties of the multifractality of the measure
can be characterized by the parameterτ (0)–2τ+τ , named
here the multifractality index (MI). If MI<0 the measure cor-
responds to a multifractal, whereas MI=0 indicates a single
fractal or a non-fractal. Other general indices derived from
τ(q) as 1τ(q)−2τ(0)+τ(−q) are usually proportional to
the MI (Cheng, 1999).

3 Results and discussion

3.1 Evolution of the vertical roughness component

The evolution of random roughness (RR) with cumulative
rainfall is shown in Fig. 1. This statistical parameter var-
ied from 3.39 to 4.09 mm in the MA4 sequence, from 3.00
to 2.13 in the MA6 sequence and from 4.72 to 5.10 mm in
the LU1 sequence. In natural conditions RR may vary ap-
proximately between 1 and 40 mm (Kamphorst et al., 2000).
Consequently, the studied soil surfaces were rather smooth,
as it is expected for seedbeds.

The decay of roughness as a function of cumulative rain-
fall exhibits noticeable differences between the soil surface
initially dry (MA6) and the two surfaces initially wet (MA4
and LU1). In the MA6 sequence random roughness after
50 mm cumulative rain was 71% of the initial value. How-
ever, in the MA4 and LU1 sequences roughness decay as a
function of rain was negligible and final values were even
somewhat higher than initial ones. The soil susceptibility
again roughness breakdown depends mainly on kinetic en-
ergy of rain and on air entrapment or differential swelling
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Fig. 2. Plots on a log-log diagram of the partition function,χ(q,δ),
versus measurement scale,δ of two soil surfaces from the MA6
sequence.

after sudden wetting. In the wet surfaces MA4 and LU1 air
entrapment was avoided and therefore the main driving force
of microrelief decay was raindrop kinetic energy. Moreover,
during the experiment with simulated rainfall the soil sur-
faces were partly covered by a water layer acting as mulch
that protected the artificial seedbed from the drop impact.

Therefore, in our study cases, slaking by air entrapment
caused a faster roughness breakdown of the initially dry sur-
face MA6. Notice also that the small increase in random
roughness with increasing rain may be the result of surface
consolidation effects and aggregate rearrangements induced
by rainfall, which have been reported before (Eltz and Nor-
ton, 1997). These effects have been also observed in MA6
surface when comparing the initial dry stage and the stage
after 5.0 mm rain.
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Fig. 3. Plots on a log-log diagram of the partition functionχ(q,
δ), versus measurement scale,δ of two soil surfaces from the LU1
sequence.

3.2 Multifractal parameters of soil surface microrelief

3.2.1 Partition function

Values of the partition functionχ(q,δ) have been estimated
for the whole available box size range in steps of 2k, 0<k<7.
The log-log plots of the normalized measuresχ(q,δ) versus
measurement scales,δ, calculated with Eq. (5) were exam-
ined to find out whether the spatial pattern of soil surface
microrelief obeys power low scaling. Figure 2 shows two se-
lected plots for the MA6 surface, those of the dry initial stage
and the subsequent stage after 5 mm rain. Figure 3 shows two
more plots that correspond to the LU1 surface at the wet ini-
tial state and after cumulative 195 mm rain, respectively.

Forq>0 the partition functions of all investigated data sets
showed a positive slope with a distinct linear behaviour. In
general, forq≤0 the partition functions exhibited a negative
slope and also a clear linear behaviour. However, in some
cases, a deviation from linearity was observed atδ values
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close to unity and for momentsq equal or close to –10. Vi-
sually, the most noticeable departure from the straight-line
model was detected forq=–10 atδ values close to unity on
the initial stage of the MA6 surface, as illustrated in Fig. 2.
In other words, the largest grid length deviates most from
the straight line, although there is also some curvature at the
opposite end, i.e. the smallest grid length. Estimations ofD0
using 8 regression points resulted in values higher than 2.000,
with no physical meaning. Therefore, the point correspond-
ing at the largest grid length in Figs. 2 and 3 was excluded
from the regression analysis. Thus, all the calculations were
done choosing 7 regression points, so that the last point on
the left was discarded.

One of the most important steps in multifractal analysis
is to determine the range ofδ and q exhibiting linear be-
haviour. Particularly forq<0, Dq values may vary depend-
ing on whether all the regression points or only the points of
the straight line region are used in the analysis. This issue
is recurrent ever since multifractal analysis was first applied
and a careful study of coefficients of determination is re-
quired (e.g. Evertsz and Mandelbrot, 1992; Bird et al., 2006;
Grau et al., 2006, among others). Coefficients of determina-
tion,R2, of the straight line logχ(q,δ) versus logδ, standard
errors of the slope, together with the corresponding D values
for selectedq moments, are listed in Table 2. All the calcu-
lations were done choosing 7 regression points as explained
above. Forq=–10, values ofR2 were higher than 0.999. For
q=10, values ofR2 were higher than 0.992. It follows that for
all the studied microrelief conditions and statistical moments
(q=–10 to 10) the logarithm of the normalized measures ver-
sus the logarithm of the measurement scales fit a straight line
with R2>0.992.

The distribution of a measure is considered as a mono-
or multifractal when the moments obey power laws, i.e. the
double log plots ofχ(q,δ) against logδ varies linearly. There
were, however, differences in the degree of power law scal-
ing between and within the three artificial surfaces submit-
ted to simulated rain sequences. Moreover, for a given data
set the linear fittings for momentsq�1 and forq�1 often
showed divergences. For instance, the coefficients of deter-
mination of the generalized dimension values,Dmax, calcu-
lated forq=10 were greater in all the surfaces of the LU1 se-
quence, than in those of the MA4 and MA6 sequences. How-
everDmin values calculated forq=–10 showed lower coeffi-
cients of determination in the surfaces of the LU1 sequence.
Consequently, analysis of the partition function indicates by
now different degrees of multifractality, which will be next
addressed by analyzing the generalized dimension function,
Dq , and some derived parameters.

3.3 Generalized dimensions

Generalized dimensionsDq were calculated with Eqs. 7 and
9 from the slopes of the partition functionχ(q, δ), versus
distance,δ, on a log-log plot. The obtainedDq curves of
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Fig. 4. Generalized dimensions and standard errors as a function of
q for MA4, MA6 and LU1 sequences.

the 13 studied data sets computed for –10<q<10 together
with their standard errors are shown in Fig. 4. TheseDq ,
curves are grouped according with the three different rain
sequences. In general,Dq is larger for low values ofq and
decreases with increasingq. This, notwithstanding, a wide
variety of Ŕenyi spectra was found within each of the three
rain sequences.

Most of the Ŕenyi spectra in Fig. 4 are sigma-shaped
curves with a clear asymmetry with respect to the cut point
(q=0) with the vertical axis and much more curvature for
negative values ofq than for positive ones where they are
quasi linear. Their left part is concave down and it changes
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Table 2. Cumulative rain and multifractal parameters for three soil surfaces with different initial state conditions subjected to simulated rain.
Multifractal parameters are: generalized dimensions forq=–10 andq=+10, and for the three positive moments,q=0, 1 and 2, respectively.

rain (mm) qmin qmax Dmin R2 Dmax R2 D0 R2 D1 R2 D2 R2

MA4, initially wet, dropper rain simulator

0.0 –10 10 2.185±0.039 0.998 1.904±0.013 1.000 2.000±0 1.000 1.988±0.002 1.000 1.977±0.004 1.000
10.0 –10 10 2.018±0.003 1.000 1.976±0.004 1.000 2.000±0 1.000 1.998±0.000 1.000 1.996±0.001 1.000
55.0 –10 10 2.027±0.004 1.000 1.961±0.007 1.000 2.000±0 1.000 1.997±0.001 1.000 1.993±0.001 1.000
85.0 –10 10 2.204±0.033 0.999 1.869±0.021 0.999 2.000±0 1.000 1.985±0.003 1.000 1.970±0.005 1.000

MA6, initially dry, dropper rain simulator

0.0 –10 10 2.227±0.052 0.997 1.900±0.014 1.000 2.000±0 1.000 1.989±0.002 1.000 1.978±0.003 1.000
5.0 –10 10 2.179±0.032 0.999 1.902±0.013 1.000 2.000±0 1.000 1.989±0.002 1.000 1.978±0.003 1.000
12.5 –10 10 2.436±0.099 0.992 1.868±0.016 1.000 2.000±0 1.000 1.985±0.002 1.000 1.971±0.003 1.000
27.5 –10 10 2.364±0.097 0.992 1.852±0.017 1.000 2.000±0 1.000 1.984±0.001 1.000 1.968±0.003 1.000
50.0 –10 10 2.143±0.015 1.000 1.871±0.015 1.000 2.000±0 1.000 1.987±0.001 1.000 1.974±0.003 1.000

LU1, initially wet, nozzle rain simulator

0.0 –10 10 2.463±0.083 0.994 1.831±0.022 0.999 2.000±0 1.000 1.981±0.002 1.000 1.961±0.005 1.000
65.0 –10 10 2.058±0.014 1.000 1.922±0.010 1.000 2.000±0 1.000 1.994±0.001 1.000 1.988±0.001 1.000
130.0 –10 10 2.011±0.001 1.000 1.975±0.004 1.000 2.000±0 1.000 1.998±0.000 1.000 1.997±0.000 1.000
195.0 –10 10 2.010±0.001 1.000 1.978±0.003 1.000 2.000±0 1.000 1.998±0.000 1.000 1.997±0.000 1.000

to slightly concave up on the right. Consequently, the largest
variation in1q was observed in the range of negativeq val-
ues. Moreover, for negative values ofq, different rates of
Dq decrease are clearly observed. Rényi spectra were quasi
linear in 3 out of 13 microrelief data sets, namely MA4 with
10 and 55 mm cumulative rain and LU1 with 195 mm of cu-
mulative rain. Again these results indicate different degrees
of heterogeneity in the point height measurements. As be-
fore stated a sigma shapedDq is taken as an indication that
the measure is multifractal, whereas quasi-linear spectra are
close to monofractals.

Results forD0, D1, andD2 are listed in Table 2. Val-
ues for the capacity dimension,D0, were always 2.0 for the
two soils, Mabegondo (MA) and Pastoriza (LU), indicating
that the support of the measure is the Euclidean plane. The
information dimension,D1, ranged from 1.998 to 1.984 and
from 1.998 to 1.981 in the MA and the LU soils, respectively.
The correlation dimension,D2, oscillated between 1.996 and
1.968 in the MA soil and between 1.997 and 1.961 in the LU
soil. Coefficients of determination forD0, D1, andD2 were
equal to 1.000 both, for the Mabegondo and Pastoriza soils.
Standard errors given in Table 2 are the standard errors of
the slope obtained with linear regression. The errors forD0
were equal to 0.0 in both, Mabegondo (MA) and Pastoriza
(LU) soils. In the MA surfaces the± deviation ranged from
0.000 to 0.003 and from 0.001 to 0.005 forD1 andD2, re-
spectively. In the LU surface the± deviation forD1 and
D2 oscillated from 0.000 to 0.002 and from 0.000 to 0.005,
respectively.

Statistical moment,q, acts as a scanning tool scrutiniz-
ing the denser and rarer regions of the measure. Forq�1,
regions with a high degree of concentration are amplified,

while regions with a small degree of concentration are mag-
nified for q�1. Values of D forq=–10 andq=10, i.e.Dmin
andDmax, respectively also are shown in Table 2. Coeffi-
cients of determination forDmin andDmax were lower than
those for the three first moments, as quoted above. ForD−10
the highest standard error was 0.099, which corresponded to
the MA6, surface with cumulative 55 mm of rain. Likewise
for D10 the highest standard error was 0.022 in the LU1 ini-
tial soil surface.

The value of the information dimension,D1, has been also
considered as a good index of the heterogeneity in spatial dis-
tribution of a measure. The closer theD1 value to the capac-
ity dimension,D0, the more homogeneous is the distribution
of the measure. In general, the width of the multifractal spec-
trum could be a practical parameter for characterizing and
comparing soil surface roughness in microplots. However,
the width parameter may be assessed in different ways. Fre-
quently, either it has been referred to as the deviation of the
D (q>0) from theD0 values, as given by the ratioDmin/D0,
or it has been considered as the amplitude of the maximum
and minimum dimensions,D(qmin)−D(qmax), and, in this
case, positive or negativeq=10 are commonly retained. No-
tice also that uncertainties in estimatingDq values forq<0
lead to errors in the width parameter when estimated both by
the Dmin/D0 ratio or by the amplitude of positive and neg-
ativeqmax=10, i.e. (Dmin−Dmax) as discussed by Tarquis et
al. (2003). Therefore, the degree of multifractality depends
also on the uncertainty, i.e.± errors of these parameters.
Standard errors are additive, and from Table 3 it follows that
for 1(D−10−D10) they range between from 0.004 to 0.115.

In general for assessing multifractal parameters it should
be taken into account that the higher the absoluteq value
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the worse the linearity of plotsχ(q, δ) versusδ, and also the
higher the uncertainty as measured by the standard errors.
Consequently, in retrospective, the uncertainty of the width
parameter when calculated by the amplitude of positive and
negativeqmax=10, i.e. (D−10−D+10), would be greater than
the1(D0−D2) counterpart had been used. However, when
extreme values are of interest indices defined on the basis of
higher order statistical moments,q, may be advantageous.

On the other hand it has been reported (Cheng, 1997,
1999) that the MI index, earlier defined asτ–2τ+τ charac-
terizes the main property of the multifractality of a measure.
MI usually gives the best index in terms of minimum errors,
because of the uncertainty increase as moment of orderq in-
creases. Notice also that from Eq. (8) it follows thatτ (0)=–
D0 andτ=D2, but τ<>D1. For conservative multifractals,
as in the case of the measure defined in our work, the MI
becomes MI=–1 (D0−D2).

As indicators of soil surface heterogeneity, and mul-
tifractal behavior Table 3 lists three roughness indices:
1(Dmin−Dmax), Dmin/D0 and the MI index. First, both,
1(D−10−D10) andDmin/D0 are positive for all the studied
data sets. Second, the MI has negative values in accordance
with the above discussion and with the convex property of
τ(q) function atq=1.

The degree of multifractality in the LU1 sequence clearly
decreased with increasing cumulative rain, as indicated by
the four multifractal indices analysed (Table 3). In the MA4
sequence, with the soil surface initially wet,1(D0−D2),
1(D−10−D10), andDmin/D0 displayed and decreased trend
during the first rainfall events and then further increased with
cumulative rain, whereas (D0–2D1+D2) approached zero. In
the MA6 sequence with the soil surface initially dry, param-
eters,1(D0−D2), 1(D−10−D10), andDmin/D0 showed no
a definite trend by increased rainfall whereas MI was<0 for
the two last rainfall events.

A larger width of theDq spectra is associated with a higher
heterogeneity of the soil microrelief features, whereas a de-
creasing trend inDq width could be regarded as a measure
of homogenization. Similarly MI values closer to cero are
indicative of a relatively low degree of multifractality. Ini-
tial soil surfaces are constituted by aggregates with a range
of sizes relatively heterogeneous. All the three initial soil
surfaces are characterised by quite large values of the pa-
rameters1(D−10−D10) andDmin/D0. Likewise, these three
initial soil surfaces exhibit MI values that are somewhat dis-
tant from cero. During the first rain events the transport
capacity at the microscale is limited and the dominant pro-
cesses causing soil surface disturbance are crusting and depo-
sition. Crusting leads to vanishing of small-sized aggregates,
whereas deposition of sediments produced by raindrop im-
pact or eventually other mechanisms such as air entrapment,
will reduce microrelief differences. Consequently, a more
spatially homogeneous soil surface microrelief is observed.
The lower degree of multifractality in the LU1 sequence with
increased simulated rain matches these observations. How-

Table 3. Cumulative rain, random roughness (RR), and roughness
indexes derived from multifractal parameters for three soil surfaces
with different initial state conditions subjected to simulated rain.
These indices are:1(Dmin − Dmax), differences between gener-
alized dimensions forq=–10 andq=+10, Dmin/D0, or ratio be-
tweenD−10 andD0, and MI or multifractality index calculated as
τ−2τ+τ .

rain (mm) RR (mm) 1(Dmin − Dmax) Dmin/D0 MI

MA4, initially wet, dropper rain simulator

0.0 3.39 0.281 1.092 –0.0230
10.0 4.09 0.042 1.009 –0.0043
55.0 3.82 0.065 1.013 –0.0068
85.0 3.70 0.336 1.102 –0.0301

MA6, initially dry, dropper rain simulator

0.0 3.00 0.327 1.114 –0.0219
5.0 3.13 0.277 1.089 –0.0216
12.5 2.73 0.568 1.218 –0.0292
27.5 2.34 0.512 1.182 –0.0315
50.0 2.13 0.272 1.071 –0.0259

LU1, initially wet, nozzle rain simulator

0.0 4.72 0.039 1.232 –0.0386
65.0 4.70 0.012 1.029 –0.0121
130.0 5.11 0.003 1.005 –0.0035
195.0 5.10 0.003 1.005 –0.0032

ever, when erosion starts to overtake the deposition process,
some of the previously deposited materials are removed and
small micro-rilling may start, causing increasing heterogene-
ity at small scales. The trend to first decrease and then in-
crease the degree of multifractality with increasing rain ob-
served in the MA4 sequence as well as the rather opposite
trend in the MA6 sequence may correspond to changes in
the relative intensity of erosion and deposition processes by
increased cumulative rainfall.

3.4 Vertical roughness decay and multifractal parameter
evolution

The importance of taking into account, not only the com-
monly used fractal dimension parameter, D, but also a
crossover length parameter,l, which gives insight into the
vertical scale, when using the fractal approach, for charac-
terizing differences in soil surface roughness between mi-
croplots, was emphasized by Huang (1998a). Besides, ad-
vantages of the joint use of these two parameters to quantify
soil microtopography have been illustrated (Eltz and Norton,
1997; Vidal V́azquez et al., 2006, 2007).

Figure 5 shows the evolution of multifractal parameters
1(Dmin−Dmax), Dmin/D0 as well as the multifractality in-
dex, MI, defined byτ–2τ+τ as a function of random rough-
ness, RR, for the three studied rain sequences. The two ini-
tial wet surfaces LU1 and MA4, display minor changes in
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Figure 5. Width of the generalized dimension spectra as measured by ∆(Dmin-Dmax), 

Dmin/D0 multifractality index, MI, as a function of random roughness, RR. 
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Fig. 5. Width of the generalized dimension spectra as measured
by 1(Dmin−Dmax), Dmin/D0, and multifractality index, MI, as a
function of random roughness, RR.

RR following successive rainstorms. However, the corre-
sponding changes in width of the D spectrum, as assessed
by 1(Dmin−Dmax) or Dmin/D0, as well as multifractality in-
dex MI, allow to discriminate between data sets of a given
rain sequence. In general, all of these three indices show a
similar behaviour when plotted against RR, even if they are
not proportional.

The LU1 sequence was the only where the values
of 1(Dmin−Dmax), Dmin/D0 decreased whereas MI ap-
proached to cero as a function of cumulative rain (Table 3).
In this case study, however, changes in RR were negligible.
1(Dmin−Dmax) andDmin/D0 varied from 0.632 to 0.032 and
from 1.232 to 1.005 respectively, whereas MI changed be-
tween –0.0386 and –0.0032 when the initial (0 mm rain) and
final (195 mm rain) soil surfaces were compared. These in-
dices exhibits great differences between data sets measured
at 0, 65 and 130 mm rain, but they were virtually equal at
130 and 195 mm rain. These results imply that, with increas-
ing rain, the soil surface becomes more homogeneous as the
parameters accounting for width of theD spectrum decrease
and as the multifractality index comes close to cero.

The MA4 sequence also goes through minor changes in
RR when submitted to successive storms. Parameters de-
scribing spatial heterogeneity,1(Dmin−Dmax) andDmin/D0
decrease and the MI varies from –0.0230 to –0.0043 with the
first rain event of 10 mm at 30 mmh−1 intensity. The sec-
ond event raises cumulative rain to 55 mm, but this results in
rather slight changes in the value of the above parameters.
However, increasing rainfall from 55 to 85 mm dramatically
increases the heterogeneity of the soil surface, as shown by
differences in the values of1(Dmin−Dmax), Dmin/D0 and
MI. This may be indicative of dominant erosion processes at
the small scale during the last event of this rain sequence.

Finally, in the initially dry MA6 sequence, both RR and
multifractal parameters change with increasing rainfall, but
these fluctuations are unalike. The initial RR slightly in-
creases after 5 mm rain due to consolidation at the soil sur-
face and them steadily decreases wit cumulative rain. After-
wards values of1(D0−D2), 1(Dmin−Dmax) andDmin/D0
exhibit a slight decrease by 5 mm rain and then they enlarge
by 12.5 and 27.5 mm rain. Again, values of these parame-
ters decrease by 50 mm rainfall. The MI parameter follows a
comparable trend. This means that the spatial heterogeneity
may be increasing or decreasing whereas the vertical compo-
nent of roughness is decreasing. Imbalances, between ero-
sion and deposition, dominant processes may be the cause of
this type of soil surface evolution.

The above case studies indicate that there is hardly any
correspondence between multifractal parameters, describing
spatial heterogeneity or the degree of multifractality, and the
statistical parameter random roughness, RR, which charac-
terizes the vertical component of soil microrelief. These re-
sults are pointing out that the information registered at the
horizontal and vertical scales by multifractal and statistical
analysis, respectively, is complementary. For that reason,
both RR and multifractal parameters should be taken into ac-
count when describing and modelling soil surface microre-
lief.
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4 Conclusions

Multifractal formalism was appropriated for analyzing the
variability of point heights measurements on a 2×2 mm2 grid
and could be a practical way of assessing the spatial hetero-
geneity of soil surface microrelief. Several multifractal pa-
rameters, such as1(Dmin−Dmax), Dmin/D0, and the multi-
fractal index MI defined asτ–2τ may be useful for express-
ing the microrelief irregularities of the soil surface. The val-
ues of these indices were consistent with experimental obser-
vations and reflected different degrees of multifractality of
the soil surface microrelief data sets. All of the three indices
have been found to be sensitive to assess soil spatial hetero-
geneities, but the MI was the best index in term of errors in
the calculations.

In general, changes in multifractal parameters obtained
from the generalized dimension,Dq for the mass exponent
function, τ(q) under simulated rainfall showed no or little
correspondence with the evolution of the statistical parame-
ter random roughness, RR, which explains the vertical decay
of soil microrelief. Multifractals were able to discriminate
soil microrelief data sets with similar values of vertical com-
ponent of roughness, thus accounting for the spatial configu-
ration of microtopography.
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