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Abstract. Understanding and describing the spatial charac-1 Introduction

teristics of soil surface microrelief are required for modelling

overland flow and erosion. We employed the multifractal ap- The surface of agricultural soils is built up from clods and ag-
proach to characterize topographical point elevation data set§regates arranged in a complex system of successive macro
acquired by high resolution laser scanning for assessing th@nd/or microstructures. Soil surface roughness (SSR) is de-
effect of simulated rainfall on microrelief decay. Three soil fined as the configuration of soil microrelief at small scales,
surfaces with different initial states or composition and ratherof less than one meter (Allmaras et al., 1966; Linden and
smooth were prepared on microplots and subjected to succe¥an Doren, 1986; Huang and Bradford, 1990; Merril et al.,
sive events of simulated rainfall. Soil roughness was mea2001). Soil surface roughness, taken on a scale ranging from
sured on a 22 mn¥ grid, initially, i.e. before rain, and after cm to mm, plays a very important role in increasing water
each simulated storm, yielding a total of thirteen data sets fofnfiltration and the amount of crop water available and reduc-
three rainfall sequences. The vertical microrelief componening runoff on cultivated lands (Podmore and Huggins, 1981;
as described by the statistical index random roughness (RRHjrmstrong, 1986; Kamphorst et al., 2000). Besides, SSR
exhibited minor changes under rainfall in two out of three has been demonstrated to influence water infiltration, splash
study cases, which was due to the imposed wet initial stat@mount, overland flow and runoff routing (Govers et al.,
constraining aggregate breakdown. The effect of cumulative2000; Fomkens et al., 2001; @nez and Nearing, 2005), to
rainfall on microrelief decay was also assessed by multifracreduce runoff velocity and, thus, to decrease soil detachment
tal analysis performed with the box-count algorithm. Gen-and transport (Cogo et al., 1983) caused by water erosion.
eralized dimensionD,;, spectra allowed characterization of ~ In agricultural fields, tillage implements break-up soil and
the spatial variation of soil surface microrelief measured atProduce abrupt roughness increases. Subsequently, rainfall
the microplot scale. ThesB, spectra were also sensitive gradually decreases roughnessintkens and Wang (1986)

to temporal changes in soil surface microrelief, so that in allidentified four different components of soil roughness. Type
the three study rain sequences, the initial soil surface and thé is microrelief variations due to the size of individual grains
surfaces disturbed by successive storms displayed great difr aggregates. Type 2 is due to cloudiness, as a result from
ferences in their degree of multifractality. Therefore, Multi- tillage break-up. Type 3 consists of systematic differences
fractal parameters best discriminate between successive sdit elevation produced by farm implements, such as furrows.
stages under a given rain sequence. Decline of RR and muilype 4 represents topographic variations at the plot scale and

tifractal parameters showed little or no association. at higher scales, such as slope at field or basin scale. Rough-
ness of types 1 and 2 are referred to as random roughness,

whereas roughness of types 3 and 4 are called oriented rough-
ness. Notice that rills and gullies may also create oriented

} roughness when concentrated erosion occurs.
Correspondence tcE. Vidal Vazquez
BY (evidal@udc.es)

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.



http://creativecommons.org/licenses/by/3.0/

458 E. Vidal Vazquez et al.: Multifractal analysis of soil surface roughness

Oriented roughness due to tillage tools exhibit periodic detachment and deposition decreases, so that deposition ends
patterns and is easy to quantify by geometric models. How-as the soil surface becomes smooth. Although detachment is
ever, random roughness assessment implies a quantificaot selective, entrainment and specially deposition are highly
tion of the spatial distribution of microrelief elements with selective, resulting in coarse particles being left behind at the
various that are randomly oriented, which has been moresoil surface and fine particles being deposited in depressions,
challenging (Huang 1998a). This notwithstanding randomwhich may cause severe topography changes at small scales.
roughness (RR) is calculated as the standard error (Allmara$herefore, the total flow energy is unavailable to transport
et al., 1966) or as the standard deviation (Kamphorst et al.sediments (Foster, 1982; Abrahams and Parsons, 1991). In
2000) of point elevations relative to a reference plane. Thereaddition, the resistance of soil to detachment affects erosion
fore, this index represents a statistical measure of verticaby raindrop impact due to the modification of the clod size
topographic variations, implicitly assuming that there is no distribution (Romkens and Wang, 1986; Moldenhauer and
spatial variation in surface roughness (Eltz and Norton, 1997Kemper, 1969).

Kamphorst et al., 2000). All of the former effects tend to cause erosion on rough

The relationship between rainfall energy and microtopo-soil surfaces to be less than that on a corresponding smoother
graphic features controls many transfer processes on andne, for a given slope. Nevertheless, these effects are mainly
across the soil surface, including overland flow and erosionactive during the early stages of rainfall, although they are
The effects of soil roughness are mainly evident during thealso perceptible until runoff fills and interconnects the soil
early stages of erosion processes, when soil detachment kgepressions, and a complete drainage network is developed.
raindrop impact, seal development and runoff generation arélost studies on the effect of the roughness induced by tillage
major factors and surface flow and concentrated flow are abhave been focused on these early stages of rainfall and have
sent or limited (Mitchell and Jones, 1978; Helming et al., been conducted on small laboratory or field plots, where a
1998). In these stages, depressional storage affects incigull drainage network can hardly build up. However, when
ient runoff and soil detachment by raindrop impact due tothe effect of the initial roughness on runoff and soil losses
the presence of pounded water. One important effect is thevas studied at a scale large enough for the overland flow to
higher infiltration rate of the soil with greater roughness, reach a natural velocity, the experimental results have chal-
although the influence of microrelief tends to decrease odenged the conventional view previously commented, show-
even disappear due to surface sealing as rainfall progressesg little effect of roughness on runoff and overall higher sed-
(Moore and Singer, 1990). Depressional storage also reiment yield on the rougher surface at steep slopes (Helming
duces runoff, and the importance of this effect also decreasest al., 1998; &mez and Nearing, 2005). Moreover, these
with cumulative rainfall. Therefore, the usual observationsexperiments showed that during the initial stages of rain-
reported in the literature and the common manner that modfall, runoff and erosion were delayed on the rougher surfaced
els account for roughness effects on erosion indicate that aoils. But, as the experiment progressed, both runoff and ero-
smooth surface generally yields more runoff and sedimension were less affected by the roughness treatments. At the
than does a rough one (Zobeck and Onstad, 1987; Renard end, the total runoff amounts did not vary as a function of
al., 1997; Hairsine and Rose, 1992). On the other hand, soithe roughness treatment, and the total erosion rates were ac-
erosion may be lessened under conditions of greater roughtually greater for the rougher soil surface treatments. This
ness not only from the reduction of runoff but also due to themay be explained in terms of the surface features being of
greater level of hydraulic resistance that dissipates the flonthe same order of magnitude or larger in size than the flow
energy (Einstein et al., 1951). Spatial configuration of soil depth, which affected the spatial distribution of the overland
microrelief is decisive for a description of depressional stor-flow (Abrahams and Parsons, 1990) and induced a higher de-
age areas filled with water and for assessing the connectivitgree of flow concentration on the rough surfaceér(iRens
of runoff pathways (Onstad, 1984). etal., 2001).

Erosion processes, i.e. sediment detachment, transport and On the other hand, the near-surface hydraulic gradient, that
deposition interact on both the micro- and macroscales (Fosis, drainage and seepage, has been shown to significantly af-
ter, 1982). On the microscale feedback and interaction mayect erosion (Bryan and Rockwell, 1998; Huang and Laflen,
occur with the structural units responsible for random and1996; Huang, 1998b; Owoputi and Stolte, 2001). Darboux
oriented roughness. On a soil surface with random roughnesand Huang (2005) conducted a laboratory experiment to as-
features, detachment on the peaks of the largest clods argkss effects of soil surface depressions on runoff initiation,
aggregates produces a local sediment load that exceeds theter runoff, and soil loss under different subsurface mois-
local transport capacity causing deposition in small depresture regimes (seepage and drainage) and upstream flow con-
sions. Detachment reduces clod height and deposition fillglitions (with or without runoff). During the experiment, de-
local hollows, decreasing both the vertical roughness comypressions delayed runoff initiation by storing water in pud-
ponent and the depressional storage through time (Helminglles and enhancing infiltration. Once an apparent steady
et al., 1998; Kamphorst et al., 2000). As clods and aggre-state was reached, surfaces with initial depressions slightly
gates are eroded and depressions are filled the gap betweércreased water flux compared with initially smooth surfaces.
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This effect occurred for both drainage and seepage condi- The aim of this study is to describe the characteristics of
tions and persisted even after the surface storage capacigoil surface microrelief decay under simulated rainfall em-
became low. Then, the authors concluded that the resultploying multifractal concepts and to compare the widely used
showed that roughness had no significant effect on particlestatistical index RR with the multifractal quantification.
flux and concentration both under drainage and seepage con-
ditions.

The above literature review indicates that the roughnes€ Material and methods
effect on erosion can be further compounded by surfac .

. X .1 Soils

and subsurface factors and processes occurring at differen

scales. Surface microtopography influence surface processe$,, medium textured soils were selected from Mabegondo

like erosion, deposition, infiltration, etc. and many of these(CorLﬁa province) and Pastoriza (Lugo province), both lo-
surface processes also causes a change in surface morphglieq in Northern Spain, on the basis of differences in clay

ogy (Huang, 1998a). It follows that microreliefis the product 5 gjjt fractions, organic matter content and structural sta-
of several feedbacks and multiscale interactions involving ility. Next, these soils will be referred to as MA for

complex spatial and temporal variability. _ Mabegondo and LU for Pastoriza. The soils were Umbrisols
Soil surface roughness has been the subject of an increag-p0) equivalent with Inceptisols (Umbrepts) according to

ing number of studies since the pioneering.work of Burwell {he Us. Soil Taxonomy (Table 1). Briefly, the Mabegondo
et al. (1963) and Allmaras et al. (1966). Soil surface rough-44i| had been continuously cropped to corred maysL.)

ness has also been described using fractal models (ArMy symmer and left fallow in winter for several decades,
strong, 1986; Huang and Bradford, 1992; Gallant et al.,;hereas the Pastoriza soil had been under corn and winter
1994; Eltz and Norton, 1997; Huang, 1998; Davis and Hall, ;e re4)  olium multiflorum L.) rotation. Organic matter con-
1999; Vidal Vazquez et al., 2005, 2006, 2007). In general, ont of the later soil was much higher than that of the former.

for natural surfaces correlation distance has been found to bg;j; 3nd sand content differences were also remarkable. with
equal or smaller than the size of the greatest structural unitshigher silt values and lower sand values for the Mabegondo

aggregates or clods on the soil surface, i.e. in the range fromjj - Aggregate stability was significantly greater in the soil
a few centimetres to a few decimetres (Huang and Bradfords. o pastoriza than in the soil from Mabegondo.

1992; Helming, 1993; Vidal ¥zquez et al., 2005). Never-
theless, the effects of short-distance correlation on overlang 2  Microrelief data sets
flow generation are thought to be negligible at the plot or mi-
crotopography (Darboux and Huang, 2005). Actually, mostRoughness measurements were performed in laboratory con-
depression storage models assume a completely uncorrelatelitions. Soil surfaces were prepared using air dry aggregates
soil surface (Mitchell and Jones, 1978; Moore and Larson,from the top layer of the studied soils and packing them in
1979, 1978; Kamphorst et al., 2000). This may be the reasomsmall containers or trays horizontally disposed. The largest
why, in soil microrelief studies, fractals have been relegatedaggregates were 20—40 mm in diameter. The depth of the soil
to a narrow range of scales and to specialized technical apin the containers was 0.05m. A sand layer below the artifi-
plications (Vidal Vazquez et al., 2005). cial soil layer allowed free drainage. Aggregates with the
A fractal model refers to a set and can be characterized byargest diameters were randomly located on the soil surface,
a single parameter, such as the fractal dimensionwhile avoiding sorting. The initial soil surface was gentle leveled
a multifractal model refers to a measure and can be charadefore starting laser scanning.
terized by a continuous spectrum of fractal dimensions usu- These initial conditions were reconstructed to simulate a
ally referred to as the generalized dimensid@h,. Multi- natural seedbed so that random roughness was rather low.
fractals are spatially intertwined fractals. Basic information Disturbed situations were obtained by simulated rain. Two
on the multifractal concept and on procedures to characterdifferent rainfall simulators were used. The Mabegondo soil
ize multifractals can be found in several books (Everstz andMA4 and MAG) was subjected to simulated rainfall under a
Mandelbrot, 1992; Falconer, 1997). Multifractal analysis drop-forming device at intensity of 30 mnth The Pastor-
has been recently used in many fields including soil sciencefza soil (LU1) was subjected to simulated rainfall produced
(Folorunso et al., 1994; Caniego et al., 2005; Bird et al.,by a nozzle system at intensity of 65 mmth
2006; Dathe et al., 2006; Grau et al., 2006afiez et al., The soil surface was scanned periodically, before starting
2006; Roisin, 2007). However, very little information has simulated rain and after successive cumulative rainfall appli-
been reported about the possible application of multifractalcations. Elevations were measured with an automated laser
concepts for characterizing soil microrelief (Gardloreno,  relief meter. Sample spacing, or distance between points
2006; Garea Moreno et al., 2008). along a transect and between transects was 2 mm and vertical
resolution was 0.1 mm.
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Table 1. Composition and main characteristics of the soil surfaces used in this study.

Surface OM Clay Silt Sand Initial Plot Cells Rain Rain Scanned

code (%) (%) (%) (%) state  size per simulator intensity surfaces
(m?) surface

MA4 1.2 19.8 56.0 242  wet 0.21 52900 dropper 30mmhh 4

MA6 1.2 198 560 242 dry 021 52900  dropper 30nmh 5

LU1 57 223 470 30.7  wet 0.30 75625 nozzle 65mmh 4

The configuration of soil topography was described by ascaling down. Thus, the intervals for downscaling are loga-
set of points of known-, y- andz-coordinates. The eleva- rithmically spaced.
tion values given as a function of the horizontal coordinate Multifractal methods can resolve highly complex patterns
system provide a numerical representation of the surface andf arrangement of the point elevation measurements defin-
constitute a digital elevation model (DEM). From each ex- ing soil surface microrelief. This complexity is character-
perimental data set of soil surface microtopography a DEMized by using a mesh of square boxes of side lergto
was obtained after trend removal, representing the randonthat to each region of the space the corresponding quantity

roughness condition. 1(8) can be assigned. In practice, to implement the multi-
_ _ _ fractal analysis of a distribution supported on a plane, a set of
2.3 Generalized fractal dimension different meshes with cells or subintervals with equal length

) is required. The measune; (8) distributed over an inter-
The concepts of fractals (Mandelbrot, 1983) and multifrac-y5| of sizes was computed from the experimental point el-

tals (Everstz and Mandelbrot, 1992; Falconer, 1997) ancbyation datap;. First H; are normalizedH;=(h;/ 3_; hi),
its application to soil science (Pachepsky et al., 2000) and_q 2, with >, H;=1, and then the measuze (5)
e . . 9 Sy eees Tl = ’
more specifically microtopography (Eltz and Norton, 1997; assigned to those blocks was calculated by adding all contri-
Huang, 1998a; Vidal ¥zquez et al., 2005, 2006; G&C pytionsh; inside a box.
Moreno, 2006; Gaiie Moreno et al., 2008) has been well | gur case the study regions were square areas of initial

described in the literature, so we shall not reiterate it heregjzes 460 mm for MA data sets and 550 mm for LU data sets
In our work the scaling of point elevation measurements isang the size of each cell was 2mm. Thus, depending on the

directly assessed to obtain multifractal parameters. data set the range of scales in the available data varied from
If a profile of point heights measurements in a two dimen- { g 230 cells and from 1 to 275 cells, respectively.

sional space is covered by boxes of side lerdgthe number For each boxth the probability distribution is:

of such boxes, né) needed to cover the experimental tran-

sect whers— 0 varies as: pi(8) = pi(8) = 8% (2

n(s) o 8P (1) whereq; is the Holder exponentharacterizing density in

theith box. For multifractal measures, the numbgi«) of

The fractal dimension), can be obtained by counting the hoxes of size here the probability has values in the interval
numbern of boxes required to cover the object under inves- obeys a power law:

tigation for increasing box sizesand fitting the slope of a
log-log plot. N(a) oc 577 ()

Using the box-counting technique for estimation of a sin- . . : !
le fractal dimension implies that each box employed form pract|ce,_95|ng the bo.x F:ountmg method, for every box,.
9 the probability of “containing object”, also called the parti-

covering a transect Is goun.ted regardlgss of Fhe proporthion function, is obtained for different momentsvhich can
of the area occupied with pixels of a given height class. In

. vary from —oo to +co. For multifractal distributed measures,
other words, monofractal calculation does not account for th . . . . i
; . he partition function scales with the block size as follows:

mass contained in each box, so that all of them have the same

weight. n(8) n(8)
However, the generalized dimension calculated using thex (¢, §) = Z pl) = Zu? )] 4)
box-counting (BC) method essentially reflects the mass con- i=1 i=1

tained in each box. Let us consider that a domain ofRi%g A log-log plot of the quantityy (¢,8) versuss for different
as the support of the measuse,To assess the heterogeneity |51 ,es ofy yields:

of the measurej, the unit initial squard. x L is partitioned
into n boxes of sizé x3, by successive divisions in dyadic x (g, 8) o< 8 @ (5)
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wheret (¢) is the mass scaling function of ordgr Also tg 7
can be written as: 6
. log x(q,d) =5

@) = fim logs © é 4
x 3

Multifractal measures are primarily characterized by their & ,
spectrum of dimensions. The concept of generalized dimen-
sion, D, corresponds to the scaling exponent forgktemo- 0

ment of the measure. Based on the work @nig (1955) 0 50 100 150 200
generalized dimensions are defined as:

D — tim L 109lx(.d)] @
4 s—»0qg —1 logs Fig. 1. Random roughness (RR) versus cumulative rainfall for three
different initial soil surfaces, under given rain sequences.

Cumulative rain (mm)

Thereforer andD, are related as:

7@ =g~ 1D, ® are close to monofractals. Thus, in homogeneous structures
For a monofractalD, is a constant function of, sono addi- D, are close, whereas in a monofractal they are equal. Notice
tional information is obtained by examining higher moments. that, for a monofractal distribution, values Bp, D1 and D2
However, for multifractal measures, the relationship betweerbecome similar. Therefore, if a distribution has a tendency to
D, andgq is not constant. In this case, the most frequently multifractality it will be observed thabDo> D3> D>. On the
used generalized dimensions abg for ¢=0, D; for g=1 other hand, also the properties of the functiag), specially
and D, for g=2 termed, respectively, capacity, information the local properties of (¢) aroundg=1, have been found to
(Shannon entropy) and correlation dimension. be useful for describing multifractality (Cheng, 1997, 1999).
The capacity or box-counting dimensiaRyg, is indepen-  Following Cheng's work from the mass exponent function
dent of the quantity of mass in each box; it is the scalingt(g) the main properties of the multifractality of the measure
exponent of the number of non-empty boxes and takes int@wan be characterized by the parametéd)-2r+t, named
account the fact that the boxes are occupied or not. here the multifractality index (Ml). If MkO the measure cor-
The information dimensionD1, gives the probability of responds to a multifractal, whereas MI=0 indicates a single
occupation of theth box of sizes, without taking into ac-  fractal or a non-fractal. Other general indices derived from
count the way in which the measure is distributed within 7(g) as At(g)—2t(0)+t(—g) are usually proportional to
each box. ThuspD; provides a physical characterization in- the MI (Cheng, 1999).
dicating how heterogeneity changes across a certain range of
scales and it is also related to Shannon entropy indey.
and D, take the same value if all the boxes have equal prob-3 Results and discussion
ability. Note that using Eq. (7D1 becomes indeterminate
because the value of denominator is zero. Therefore, for th
particular case that=1, the following equation is used:

3-1 Evolution of the vertical roughness component

The evolution of random roughness (RR) with cumulative

n(s) rainfall is shown in Fig. 1. This statistical parameter var-
;I-Xi(l’ 8)log[xi (1, )] ied from 3.39 to 4.09 mm in the MA4 sequence, from 3.00
Dy = (slimo = l0gs 9) to 2.13 in the MA6 sequence and from 4.72 to 5.10 mm in

the LU1 sequence. In natural conditions RR may vary ap-
The correlation dimension),, describes the uniformity of proximately between 1 and 40 mm (Kamphorst et al., 2000).
the measure values among intervals. The generalized dimerGonsequently, the studied soil surfaces were rather smooth,
sion, D,, is more useful for the comprehensive study of mul- as it is expected for seedbeds.
tifractals. Differences betweeR, allow comparison of the The decay of roughness as a function of cumulative rain-
complexity between measured soil microrelief data sets.  fall exhibits noticeable differences between the soil surface
Commonly the degree of multifractality is assessed frominitially dry (MAG) and the two surfaces initially wet (MA4
the curvature of functions involved in multifractal analysis, and LU1). In the MA6 sequence random roughness after
i.e. singularity spectrg («), mass exponent function(q) 50 mm cumulative rain was 71% of the initial value. How-
or generalized dimensior), (e.g. Cheng, 1999). In this ever, in the MA4 and LU1 sequences roughness decay as a
work the main properties of the multifractality will be de- function of rain was negligible and final values were even
scribed by a few parameters taken from the functibpsand ~ somewhat higher than initial ones. The soil susceptibility
7(q). A sigma shaped, spectra is taken as an indication again roughness breakdown depends mainly on kinetic en-
that the measure is multifractal, whereas quasi-linear spectrargy of rain and on air entrapment or differential swelling
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Fig. 2. Plots on a log-log diagram of the partition functign(g,s), o
versus measurement scabepf two soil surfaces from the MA6
sequence. Fig. 3. Plots on a log-log diagram of the partition functigrtg,
§8), versus measurement scalegf two soil surfaces from the LU1
sequence.

after sudden wetting. In the wet surfaces MA4 and LUL1 air

entrapment was avoided and therefore the main driving force

of microrelief decay was raindrop kinetic energy. Moreover, 3.2 Multifractal parameters of soil surface microrelief
during the experiment with simulated rainfall the soil sur-

faces were partly covered by a water layer acting as mulct8.2.1  Partition function

that protected the artificial seedbed from the drop impact.

Therefore, in our study cases, slaking by air entrapmenivalues of the partition functior (¢,6) have been estimated
caused a faster roughness breakdown of the initially dry surfor the whole available box size range in steps’qf®<k <7.
face MAG. Notice also that the small increase in randomThe log-log plots of the normalized measupeg,s) versus
roughness with increasing rain may be the result of surfacéneasurement scales, calculated with Eq. (5) were exam-
consolidation effects and aggregate rearrangements inducetded to find out whether the spatial pattern of soil surface
by rainfall, which have been reported before (Eltz and Nor-microrelief obeys power low scaling. Figure 2 shows two se-
ton, 1997). These effects have been also observed in MA&ected plots for the MAG surface, those of the dry initial stage

surface when comparing the initial dry stage and the stag@nd the subsequent stage after 5mm rain. Figure 3 shows two
after 5.0 mm rain. more plots that correspond to the LU1 surface at the wet ini-

tial state and after cumulative 195 mm rain, respectively.
Forg >0 the partition functions of all investigated data sets
showed a positive slope with a distinct linear behaviour. In
general, foig <0 the partition functions exhibited a negative
slope and also a clear linear behaviour. However, in some
cases, a deviation from linearity was observed aalues
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close to unity and for momentisequal or close to —10. Vi-
sually, the most noticeable departure from the straight-line

25 o 0mm
o0 10 mm

model was detected fgr=—10 até values close to unity on 24 »55mm
the initial stage of the MAG surface, as illustrated in Fig. 2. 23t s
In other words, the largest grid length deviates most from o |l

the straight line, although there is also some curvature at the s
opposite end, i.e. the smallest grid length. Estimation®@f
using 8 regression points resulted in values higherthan 2.000,  *°|

& 8 6 6 5 6 o

with no physical meaning. Therefore, the point correspond-
ing at the largest grid length in Figs. 2 and 3 was excluded
from the regression analysis. Thus, all the calculations were
done choosing 7 regression points, so that the last point on
the left was discarded.

One of the most important steps in multifractal analysis
is to determine the range @éf and g exhibiting linear be-
haviour. Particularly foy <0, D, values may vary depend-
ing on whether all the regression points or only the points of
the straight line region are used in the analysis. This issue §
is recurrent ever since multifractal analysis was first applied
and a careful study of coefficients of determination is re-
quired (e.g. Evertsz and Mandelbrot, 1992; Bird et al., 2006;
Grau et al., 2006, among others). Coefficients of determina-
tion, R2, of the straight line log (¢,8) versus logs, standard
errors of the slope, together with the corresponding D values
for selected; moments, are listed in Table 2. All the calcu-
lations were done choosing 7 regression points as explained
above. Foy=-10, values oR? were higher than 0.999. For
¢=10, values olR? were higher than 0.992. It follows that for
all the studied microrelief conditions and statistical moments
(¢=—10 to 10) the logarithm of the normalized measures ver-

sus the logarithm of the measurement scales fit a straight line =22 |

with R?2>0.992.
The distribution of a measure is considered as a mono-
or multifractal when the moments obey power laws, i.e. the
double log plots of (¢,8) against log varies linearly. There
were, however, differences in the degree of power law scal-
ing between and within the three artificial surfaces submit-
ted to simulated rain sequences. Moreover, for a given data
set the linear fittings for momentss>1 and forg <1 often
showed divergences. For instance, the coefficients of dete
mination of the generalized dimension valu&g,ax, calcu-
lated forg=10 were greater in all the surfaces of the LU1 se-
guence, than in those of the MA4 and MA6 sequences. How-
ever Dpin Values calculated faj=—10 showed lower coeffi-
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rlfig. 4. Generalized dimensions and standard errors as a function of
q for MA4, MA6 and LU1 sequences.

the 13 studied data sets computed for <4610 together

cients of determination in the surfaces of the LU1 sequenceith their standard errors are shown in Fig. 4. Thégge
Consequently, analysis of the partition function indicates byCUrves are grouped according with the three different rain
now different degrees of multifractality, which will be next Seguences. In general, is larger for low values of and
addressed by analyzing the generalized dimension functiorfi€creases with increasing This, notwithstanding, a wide

Dy, and some derived parameters.

rain sequences.

3.3 Generalized dimensions

variety of Renyi spectra was found within each of the three

Most of the Renyi spectra in Fig. 4 are sigma-shaped

curves with a clear asymmetry with respect to the cut point

Generalized dimensions, were calculated with Egs. 7 and
9 from the slopes of the partition functign(q, §), versus
distance,s, on a log-log plot. The obtainef), curves of

www.nonlin-processes-geophys.net/15/457/2008/

(¢=0) with the vertical axis and much more curvature for
negative values of than for positive ones where they are
quasi linear. Their left part is concave down and it changes
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Table 2. Cumulative rain and multifractal parameters for three soil surfaces with different initial state conditions subjected to simulated rain.
Multifractal parameters are: generalized dimensiongferl0 and;=+10, and for the three positive momenjs0, 1 and 2, respectively.

rain (mm)  gmin  gmax Dmin R? Dmax R2 Dqg R? Dy R? Dy R?

MAA4, initially wet, dropper rain simulator

0.0 -10 10 2.18%0.039 0.998 1.9040.013 1.000 2.0080 1.000 1.9880.002 1.000 1.97#0.004 1.000
10.0 -10 10 2.0180.003 1.000 1.9760.004 1.000 2.0080 1.000 1.9980.000 1.000 1.9960.001 1.000
55.0 -10 10 2.02#0.004 1.000 1.96#0.007 1.000 2.0080 1.000 1.99#0.001 1.000 1.9980.001 1.000
85.0 -10 10 2.2040.033 0.999 1.8680.021 0.999 2.0080 1.000 1.9850.003 1.000 1.9780.005 1.000

MAB, initially dry, dropper rain simulator

0.0 -10 10 2.22#0.052 0.997 1.9080.014 1.000 2.0080 1.000 1.9820.002 1.000 1.9780.003 1.000
5.0 -10 10 2.1720.032 0.999 1.9020.013 1.000 2.0080 1.000 1.9830.002 1.000 1.9780.003 1.000
125 -10 10 2.4360.099 0.992 1.8680.016 1.000 2.0080 1.000 1.9850.002 1.000 1.9740.003 1.000
27.5 -10 10 2.3640.097 0.992 1.8520.017 1.000 2.0080 1.000 1.9840.001 1.000 1.9680.003 1.000
50.0 -10 10 2.1480.015 1.000 1.87#0.015 1.000 2.0080 1.000 1.98#0.001 1.000 1.9740.003 1.000

LU1, initially wet, nozzle rain simulator

0.0 -10 10 2.4630.083 0.994 1.83#0.022 0.999 2.0080 1.000 1.98%0.002 1.000 1.96%0.005 1.000
65.0 -10 10 2.0580.014 1.000 1.9220.010 1.000 2.0080 1.000 1.9940.001 1.000 1.9880.001 1.000
130.0 -10 10 2.0H0.001 1.000 1.9780.004 1.000 2.0080 1.000 1.9980.000 1.000 1.99¥0.000 1.000
195.0 -10 10 2.0180.001 1.000 1.9780.003 1.000 2.0080 1.000 1.9980.000 1.000 1.99¥0.000 1.000

to slightly concave up on the right. Consequently, the largestvhile regions with a small degree of concentration are mag-
variation in Aq was observed in the range of negativeal- nified for g<«1. Values of D forg=—10 andy=10, i.e. Dnin

ues. Moreover, for negative values @f different rates of and Dnay, respectively also are shown in Table 2. Coeffi-
D, decrease are clearly observecerii spectra were quasi cients of determination foDmin and Dmax Were lower than
linear in 3 out of 13 microrelief data sets, namely MA4 with those for the three first moments, as quoted above DEgp

10 and 55 mm cumulative rain and LU1 with 195 mm of cu- the highest standard error was 0.099, which corresponded to
mulative rain. Again these results indicate different degreegshe MAG, surface with cumulative 55 mm of rain. Likewise
of heterogeneity in the point height measurements. As befor D1g the highest standard error was 0.022 in the LU1 ini-
fore stated a sigma shapéy) is taken as an indication that tial soil surface.

the measure is multifractal, whereas quasi-linear spectra are The value of the information dimensiony, has been also

close to monofractals. considered as a good index of the heterogeneity in spatial dis-
Results forDg, D1, and D, are listed in Table 2. Val- tribution of a measure. The closer the value to the capac-
ues for the capacity dimensiohy, were always 2.0 for the ity dimension,Dg, the more homogeneous is the distribution
two soils, Mabegondo (MA) and Pastoriza (LU), indicating of the measure. In general, the width of the multifractal spec-
that the support of the measure is the Euclidean plane. Th&um could be a practical parameter for characterizing and
information dimensionpDy, ranged from 1.998 to 1.984 and comparing soil surface roughness in microplots. However,
from 1.998 to 1.981 in the MA and the LU soils, respectively. the width parameter may be assessed in different ways. Fre-
The correlation dimensiom),, oscillated between 1.996 and quently, either it has been referred to as the deviation of the
1.968 in the MA soil and between 1.997 and 1.961 in the LUD (g >0) from the Dg values, as given by the ratmin/ Do,
soil. Coefficients of determination fdpg, D1, and D, were or it has been considered as the amplitude of the maximum
equal to 1.000 both, for the Mabegondo and Pastoriza soilsand minimum dimensionsp (gmin) — D (gmax), and, in this
Standard errors given in Table 2 are the standard errors ofase, positive or negative=10 are commonly retained. No-
the slope obtained with linear regression. The errordfgr  tice also that uncertainties in estimatifg values forg <0
were equal to 0.0 in both, Mabegondo (MA) and Pastorizalead to errors in the width parameter when estimated both by
(LU) soils. In the MA surfaces the- deviation ranged from  the Dyin/ Do ratio or by the amplitude of positive and neg-
0.000 to 0.003 and from 0.001 to 0.005 b and D, re- ative gmax=10, i.e. Omin—DPmax) as discussed by Tarquis et
spectively. In the LU surface th& deviation forD; and  al. (2003). Therefore, the degree of multifractality depends
D, oscillated from 0.000 to 0.002 and from 0.000 to 0.005, also on the uncertainty, i.et errors of these parameters.

respectively. Standard errors are additive, and from Table 3 it follows that
Statistical momentg, acts as a scanning tool scrutiniz- o A(D-10—D10) they range between from 0.004 to 0.115.
ing the denser and rarer regions of the measure.¢Bst, In general for assessing multifractal parameters it should

regions with a high degree of concentration are amplified,be taken into account that the higher the absofutelue
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the worse the I|near|ty of plotg(q, 8) versus3, and also the Table 3. Cumulative rain, random roughness (RR), and roughness

higher the uncertainty as measured by the standard errorg,yeyes derived from multifractal parameters for three soil surfaces

Consequently, in retrospective, the uncertainty of the widthyth different initial state conditions subjected to simulated rain.

parameter when calculated by the amplitude of positive andrhese indices areA (Dmin — Dmax). differences between gener-

negativegmax=10, i.e. (O_10—D+10), would be greater than alized dimensions fog=—10 andg=+10, Din/Dg. Or ratio be-

the A(Do— D2) counterpart had been used. However, whentweenD_1g and Dg, and MI or multifractality index calculated as

extreme values are of interest indices defined on the basis of—2t+r.

higher order statistical momentg, may be advantageous.
On the other hand it has been reported (Cheng, 1997, rain(mm) RR(mm) A(Dmin—Dmad Dmin/Do Ml

1999) that the MI index, earlier defined as2r+t charac- MAA4, initially wet, dropper rain simulator
terizes the main property _of the_multlfractallty qf a measure. 00 339 0281 1092 —0.0230
Ml usually gives the best index in terms of minimum errors, 10.0 4.09 0.042 1.009  -0.0043
because of the uncertainty increase as moment of graer 55.0 3.82 0.065 1.013  —0.0068
creases. Notice also that from Eq. (8) it follows théd)=— 85.0 3.70 0.336 1102 -0.0301
Do andt=Dy, butt<>D1. For conservative multifractals, MAS, initially dry, dropper rain simulator
as in the caie of the measure defined in our work, the Ml 0.0 3.00 0327 1114 —0.0219
becomes MI=A (Do—D2). . 5.0 3.13 0.277 1.089  -0.0216
As indicators of soil surface heterogeneity, and mul- 12.5 2.73 0.568 1.218  —0.0292
tifractal behavior Table 3 lists three roughness indices: 27.5 2.34 0.512 1182  -0.0315
A(Dmin—Dmax), Dmin/Do and the MI index. First, both, 50.0 213 0.272 1071 -0.0259
A(D_10—D10) and Dmin/ Dg are positive for all the studied LU1, initially wet, nozzle rain simulator
dgta sets. Secon_d, the M has negative values in accordance g 4.72 0.039 1232  -0.0386
with the above discussion and with the convex property of 65.0 4.70 0.012 1.029 -0.0121
7(q) function atg=1. 130.0 5.11 0.003 1.005  -0.0035
The degree of multifractality in the LU1 sequence clearly 1950 510 0.003 1.005  -0.0032

decreased with increasing cumulative rain, as indicated by

the four multifractal indices analysed (Table 3). In the MA4

sequence, with the soil surface initially wet(Do—D2),

A(D_10—D10), and Dmin/ Do displayed and decreased trend ever, when erosion starts to overtake the deposition process,

during the first rainfall events and then further increased withsome of the previously deposited materials are removed and

cumulative rain, whereagXp—2D1+D>) approached zero. In  small micro-rilling may start, causing increasing heterogene-

the MAG sequence with the soil surface initially dry, param- ity at small scales. The trend to first decrease and then in-

eters,A(Do—D3), A(D_10—D10), and Dmin/ Do showed no  crease the degree of multifractality with increasing rain ob-

a definite trend by increased rainfall whereas Ml wasfor ~ served in the MA4 sequence as well as the rather opposite

the two last rainfall events. trend in the MA6 sequence may correspond to changes in
A larger width of theD,, spectra is associated with a higher the relative intensity of erosion and deposition processes by

heterogeneity of the soil microrelief features, whereas a deincreased cumulative rainfall.

creasing trend irD, width could be regarded as a measure

of homogenization. Similarly Ml values closer to cero are 3.4 Vertical roughness decay and multifractal parameter

indicative of a relatively low degree of multifractality. Ini- evolution

tial soil surfaces are constituted by aggregates with a range

of sizes relatively heterogeneous. All the three initial soil The importance of taking into account, not only the com-

surfaces are characterised by quite large values of the panonly used fractal dimension parameter, D, but also a

rametersA(D_10—D1o) and Dmin/Do. Likewise, these three  crossover length parametéy, which gives insight into the

initial soil surfaces exhibit Ml values that are somewhat dis- vertical scale, when using the fractal approach, for charac-

tant from cero. During the first rain events the transportterizing differences in soil surface roughness between mi-

capacity at the microscale is limited and the dominant pro-croplots, was emphasized by Huang (1998a). Besides, ad-

cesses causing soil surface disturbance are crusting and depeantages of the joint use of these two parameters to quantify

sition. Crusting leads to vanishing of small-sized aggregatessoil microtopography have been illustrated (Eltz and Norton,

whereas deposition of sediments produced by raindrop im1997; Vidal Vazquez et al., 2006, 2007).

pact or eventually other mechanisms such as air entrapment, Figure 5 shows the evolution of multifractal parameters

will reduce microrelief differences. Consequently, a more A(Dmin—Dmax), Dmin/Do as well as the multifractality in-

spatially homogeneous soil surface microrelief is observeddex, Ml, defined byr—2r+7 as a function of random rough-

The lower degree of multifractality in the LU1 sequence with ness, RR, for the three studied rain sequences. The two ini-

increased simulated rain matches these observations. Howial wet surfaces LUL1 and MA4, display minor changes in
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The LUl sequence was the only where the values
of A(Dmin—Dmax), Dmin/Do decreased whereas MI ap-
proached to cero as a function of cumulative rain (Table 3).
In this case study, however, changes in RR were negligible.
A(Dmin—Dmax) andDpin/ Do varied from 0.632 to 0.032 and
from 1.232 to 1.005 respectively, whereas Ml changed be-
tween —0.0386 and —0.0032 when the initial (0 mm rain) and
final (195 mm rain) soil surfaces were compared. These in-
dices exhibits great differences between data sets measured
at 0, 65 and 130 mm rain, but they were virtually equal at
130 and 195 mm rain. These results imply that, with increas-
ing rain, the soil surface becomes more homogeneous as the
parameters accounting for width of tiliespectrum decrease
and as the multifractality index comes close to cero.

The MA4 sequence also goes through minor changes in
RR when submitted to successive storms. Parameters de-
scribing spatial heterogeneit¥,( Dmin—Dmax) and Dmin/ Do
decrease and the Ml varies from —0.0230 to —0.0043 with the
first rain event of 10 mm at 30 mmh intensity. The sec-
ond event raises cumulative rain to 55 mm, but this results in
rather slight changes in the value of the above parameters.
However, increasing rainfall from 55 to 85 mm dramatically
increases the heterogeneity of the soil surface, as shown by
differences in the values oA (Dmin—Dmax), Pmin/Do and
MI. This may be indicative of dominant erosion processes at
the small scale during the last event of this rain sequence.

Finally, in the initially dry MA6 sequence, both RR and
multifractal parameters change with increasing rainfall, but
these fluctuations are unalike. The initial RR slightly in-
creases after 5mm rain due to consolidation at the soil sur-
face and them steadily decreases wit cumulative rain. After-
wards values ofA(Dg— D2), A(Dmin—Dmax) @and Dmin/ Do
exhibit a slight decrease by 5 mm rain and then they enlarge
by 12.5 and 27.5mm rain. Again, values of these parame-
ters decrease by 50 mm rainfall. The MI parameter follows a
comparable trend. This means that the spatial heterogeneity
may be increasing or decreasing whereas the vertical compo-
nent of roughness is decreasing. Imbalances, between ero-
sion and deposition, dominant processes may be the cause of
this type of soil surface evolution.

The above case studies indicate that there is hardly any
correspondence between multifractal parameters, describing

Fig. 5. Width of the generalized dimension spectra as measuredsPatial heterogeneity or the degree of multifractality, and the

by A(Dmin—Dmax), Dmin/Dg, and multifractality index, Ml, as a

function of random roughness, RR.

statistical parameter random roughness, RR, which charac-
terizes the vertical component of soil microrelief. These re-
sults are pointing out that the information registered at the
horizontal and vertical scales by multifractal and statistical

RR following successive rainstorms. However, the corre-analysis, respectively, is complementary. For that reason,
sponding changes in width of the D spectrum, as assességbth RR and multifractal parameters should be taken into ac-

by A(Dmin—Dmax) O Dmin/ Do, as well as multifractality in-

count when describing and modelling soil surface microre-

dex MI, allow to discriminate between data sets of a given|ief.
rain sequence. In general, all of these three indices show a
similar behaviour when plotted against RR, even if they are

not proportional.
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tifractal scaling of soil spatial variability, Ecological Modelling,
Multifractal formalism was appropriated for analyzing the 182, 291-303, 2005.
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