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Abstract. Linear dimensionality reduction techniques, no-
tably principal component analysis, are widely used in cli-
mate data analysis as a means to aid in the interpretation
of datasets of high dimensionality. These linear methods
may not be appropriate for the analysis of data arising from
nonlinear processes occurring in the climate system. Nu-
merous techniques for nonlinear dimensionality reduction
have been developed recently that may provide a potentially
useful tool for the identification of low-dimensional mani-
folds in climate data sets arising from nonlinear dynamics.
Here, we apply Isomap, one such technique, to the study of
El Niño/Southern Oscillation variability in tropical Pacific
sea surface temperatures, comparing observational data with
simulations from a number of current coupled atmosphere-
ocean general circulation models. We use Isomap to exam-
ine El Niño variability in the different datasets and assess the
suitability of the Isomap approach for climate data analysis.
We conclude that, for the application presented here, anal-
ysis using Isomap does not provide additional information
beyond that already provided by principal component analy-
sis.

1 Introduction

The El Niño/Southern Oscillation (ENSO) is the most im-
portant mode of interannual variability in the Earth’s climate,
driven by atmosphere-ocean interactions in the equatorial Pa-
cific, but with effects reaching as far as north-eastern North
America and Europe (Philander, 1990; McPhaden et al.,
2006). ENSO events (El Nĩno and La Nĩna) occur on an ir-
regular basis at intervals of 2–7 years, and individual ENSO
events are variable in their evolution and effects. As a re-
cent example, the 1997/1998 El Niño exhibited behaviour
not previously seen, with westerly wind bursts linked to the
Madden-Julian Oscillation playing an important role; some
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observers have suggested that this may represent a transition
to a new regime of ENSO behaviour (McPhaden, 1999; Fe-
dorov and Philander, 2000).

The representation of ENSO in climate models is of inter-
est because of the long-range effects of ENSO on the climate
system, both around the Pacific and further afield. Recent
model intercomparison studies considering ENSO variabil-
ity in the current generation of coupled atmosphere-ocean
general circulation models (AchutaRao and Sperber, 2002,
2006; van Oldenborgh et al., 2005; Guilyardi, 2006) indicate
that some aspects of ENSO variability are represented bet-
ter in current models than in earlier generations of GCMs
(Neelin et al., 1992; Latif et al., 2001), including the over-
all frequency of El Nĩno events and enhanced temperature
variability over the eastern Pacific. However, current mod-
els still display significant deficiencies in the representation
of the ocean-atmosphere coupling mechanisms important for
ENSO variability – see particularlyvan Oldenborgh et al.
(2005) on this point, where the individual feedback mecha-
nisms relating wind stress, thermocline depth and sea surface
temperature are examined in detail in current models.

There has been considerable disagreement about the ex-
act source of ENSO variability. One point of view is that
ENSO arises from unstable modes of variability in the trop-
ical ocean-atmosphere system, with limits to predictability
determined by growth in errors in initial conditions associ-
ated with chaotic dynamics (e.g.,Zebiak and Cane, 1987; Jin
et al., 1994; Tziperman et al., 1994). The other possibility is
that ENSO is a damped linear oscillation excited by stochas-
tic forcing, the limits to predictability being inherent in the
stochastic nature of the forcing (e.g.,Burgers, 1999; Moore
and Kleeman, 1999; Thompson and Battisti, 2000). One de-
ficiency of linear models is that they are not able to repro-
duce the observed asymmetry between El Niño and La Nĩna
events. This asymmetry has previously been investigated
using measures based on sea surface temperature (SST) vari-
ance and skewness, nonlinear dynamical heating and explicit
characterisation of symmetric and asymmetric structures in
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SSTs during ENSO events (An, 2004; An and Jin, 2004; An
et al., 2005a; Monahan and Dai, 2004). These studies reveal
wide variations in the representation of ENSO asymmetry in
coupled ocean-atmosphere models.

Independent of the exact mechanism of variability, the
spatial coherence of ENSO in the Pacific leads us to ex-
pect that there should be a low-dimensional model that cap-
tures at least some of the variability in the tropical ocean-
atmosphere system. Here, we approach the assessment of
ENSO in coupled GCMs by attempting to identify such low-
dimensional structures in the dynamics of the tropical Pacific
atmosphere and ocean. It should be noted that, in general,
the mechanisms leading to ENSO and ENSO-like variabil-
ity in current coupled atmosphere-ocean GCMs show sig-
nificant differences compared to the mechanisms contribut-
ing to ENSO variability in the real atmosphere-ocean sys-
tem. For instance,van Oldenborgh et al.(2005) report that
most of the models that they examine show a response of the
zonal wind field to equatorial SST anomalies that is weaker
and more confined to equatorial latitudes than seen in ob-
servations. This weak wind response is compensated by a
stronger direct response of SSTs to changes in the wind field
and a weaker damping of SST variations than observed. This
different balance of factors in the models compared to the
observations should lead us to view conclusions drawn from
models about ENSO variability in the real atmosphere and
ocean with some caution. However, it is still of interest to
examine how well we can characterise what low-dimensional
dynamics is seen in the models, and to see if this character-
isation can provide any further insight into the behaviour of
the models. For instance, earlier studies have indicated that
ENSO variability can be approximated as a two-dimensional
oscillation, one degree of freedom being associated with the
NINO3 SST index, the mean SST anomaly across the region
150◦ W–90◦ W, 5◦ S–5◦ N, and the other with the equatorial
Pacific warm water volume (Burgers, 1999; Kessler, 2002;
McPhaden, 2003). These two degrees of freedom vary in
approximate quadrature during El Niño events. One would
hope that any analysis method aimed at characterising ENSO
variability in observational or simulated data would be able
to identify these two degrees of freedom.

Our question here is, given high-dimensional data from
observations or model simulations, what is the best way to
characterise low-dimensional behaviour? We are interested
in attempting to infer low-dimensional dynamics from rel-
atively limited amounts of data. Observational time series
from the Pacific provide around 100 years of monthly SSTs.
Time series of several hundred years are available from cou-
pled GCM simulations. To facilitate inter-model compari-
son, we wish to proceed in a “black box” fashion, adopting a
purely data-driven approach without using information about
the internal features of the models we are studying.

The method most commonly used in climate data analysis
for this type of dimensionality reduction is principal compo-
nent analysis (PCA) (von Storch and Zwiers, 2003), which

uses an eigendecomposition of the input data covariance ma-
trix. In the problem considered here, we analyse a time se-
ries ofn maps of sea surface temperature, each withm ocean
points. Discarding non-ocean points in each map, we use
SST measurements from the remaining ocean data points to
construct data vectorsxi ∈ Rm, with i=1, . . ., n. The co-
variance matrix of this SST data is then

C = 〈(x − 〈x〉)(x − 〈x〉)T 〉,

where 〈·〉 denotes time averaging. We write the
eigenvector decomposition ofC as C=Q3QT , with
3= diag(λ1, . . . , λm) a diagonal matrix of the eigenvalues
λi in descending order of magnitude, andQ a matrix whose
columns are the corresponding eigenvectorsqi . The eigen-
vectorsqi ∈ Rm are spatial patterns of variation in the data,
often called empirical orthogonal functions (EOFs). The first
of these,q1, represents the direction in data space with the
greatest variance,q2 the direction orthogonal toq1 with the
next greatest variance in the data, and so on. The time se-
ries of SST maps,xi , can then be expanded in terms of the
orthogonal basis provided by the EOFs as

xi =

∑
j

αijqj .

The coefficientsαij are called the principal component (PC)
time series and give the temporal variation in the data in
each of the orthogonal directions in data space spanned
by the EOFs. The eigenvalue associated with each EOF
measures the proportion of the total variance of the in-
put data explained by that EOF. With the EOFs in de-
scending eigenvalue order, we may extract an EOF sub-
set explaining some pre-selected proportion of the total
variance,Vp={qi |1≤i≤p} say, wherep is the number of
EOFs required to explain the required proportion of the to-
tal variance. By projecting the input data into the subspace
Vp= span(Vp), we arrive at a reduced dimensionality repre-
sentation of variability in the input data. Compared to the
original data this reduced representation has the minimum
squared error totalled over all data points of any choice of
projection basis of dimensionp.

The primary disadvantage of PCA for our purposes is that
it is only able to project into linear subspaces of the original
m-dimensional data space. If our data points, instead of lying
in a linear subspace, lie in a curved low-dimensional sub-
manifold of the data space, PCA will generally not detect the
full structure of the data manifold, instead approximating it
by the nearest linear subspace in a least squares sense.

This limitation has led to the development of a wide range
of nonlinear dimensionality reduction approaches. Of these
schemes, only a small number have previously been applied
to ENSO data. These include both the method used in this
study (Tenenbaum et al., 2000; Gámez et al., 2004) and meth-
ods based on neural networks, either self-organising maps
(Leloup et al., 2007) or multilayer perceptrons (Monahan,
2001; An et al., 2005b; Wu and Hsieh, 2003).
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The neural network approach that has seen most applica-
tion to questions of ENSO variability is nonlinear princi-
pal component analysis (NLPCA), described byMonahan
(2001) and, including extensions to canonical correlation
analysis and singular spectral analysis,Hsieh (2004). The
NLPCA method uses an autoassociative neural network hav-
ing input and output layers with numbers of neurons cor-
responding to the number of dimensions of the input data
(a preliminary projection into the space spanned by the first
few EOFs is normally used to reduce the dimensionality of
the input data without losing a significant amount of the data
variance), hidden layers attached to the input and output lay-
ers with as many neurons as required to give a good fit to
the input data, and a “bottleneck layer” between the two hid-
den layers, whose architecture determines the form of the re-
duced dimensionality data produced. The neural network is
trained on the data set whose dimensionality is to be reduced,
the weights in the network being varied so as to reduce the
mean squared error between the input data (applied to the in-
put layer of the network) and the network outputs. The idea
is thus to produce a network reproducing the input data as
faithfully as possible, with information passing through the
bottleneck layer, which has a restricted number of neurons.
The outputs of the neurons in the bottleneck layer are then
taken to be a reduced dimensionality representation of the
input data. A single neuron in the bottleneck layer produces
a one-dimensional reduced representation of the input data,
two neurons in the bottleneck layer a two-dimensional re-
duced representation, and so on. Additional constraints can
be imposed on the structure of the bottleneck layer to yield
reduced representations with required characteristics. The
most obvious example of this is a “circular” bottleneck node,
with two degrees of freedom whose values are constrained to
define a point on the unit circle. This yields a bottleneck layer
representing a periodic one-dimensional system. Application
of NLPCA with one- and two-dimensional bottleneck layers
to tropical Pacific observational SST data demonstrated that
low-dimensional NLPCA approximations characterise vari-
ability in the data better than the corresponding linear PCA
approximations, and that NLPCA approximations are able
to represent the asymmetry between El Niño and La Nĩna
seen in the observational data (Monahan, 2001). Applica-
tion of NLPCA with a circular bottleneck layer to observa-
tional thermocline depth data from the equatorial Pacific suc-
cessfully captured the oscillatory nature of thermocline depth
variations through the ENSO cycle, and identified differ-
ences in the behaviour of the recharge and discharge phases
of the oscillation (An et al., 2005b). Further applications of
NLPCA in the context of studies of ENSO include the use of
nonlinear canonical correlation analysis (NLCCA) to iden-
tify nonlinear correlations between SST and wind stress vari-
ations in the equatorial Pacific (Wu and Hsieh, 2003).

Many other nonlinear dimensionality reduction techniques
have been developed, mostly in the machine vision com-
munity, to address issues of feature identification and mo-

tion tracking (e.g.,Bishop et al., 1998; Roweis and Saul,
2000; Broomhead and Kirby, 2005; Hinton and Salakhutdi-
nov, 2006; Lin et al., 2006). Many of these methods can be
placed into a common framework along with PCA by con-
sidering them as seeking a transformation that preserves “in-
teresting” geometric information in the input data. In the
case of PCA, this “interesting” information is the Euclidean
distances between data points; the required transformation
is thus a simple linear orthogonal transformation. A more
complex example is the algorithm used in this study, Isomap
(Tenenbaum et al., 2000). Isomap finds a nonlinear transfor-
mation that preserves not Euclidean distances between data
points, but an approximation to distances between data points
as measured along geodesics in the data manifold. These
geodesic distances are an intrinsic feature of the dynamics of
the system under study and are not dependent on the details
of the embedding in the observation space. Further elabora-
tions of this idea are possible. For instance,Lin et al. (2006)
introduce a method they call Riemannian Manifold Learn-
ing, which attempts to preserve not only an approximation to
geodesic distances in the data manifold, but also local curva-
ture information. We do not consider this method further in
this study.

The only previous application of Isomap to climate data
analysis of which we are aware is the work ofGámez
et al. (2004), where Isomap was applied to observational
SSTs for the equatorial Pacific to examine ENSO variability.
Gámez et al.’s results are substantially replicated by our raw
SST analysis of the NOAA ERSST v2 observational dataset
(Sect.5.1) and we extend their analysis to consider results
from coupled atmosphere-ocean GCMs. As well as being of
intrinsic interest, ENSO variability provides a good test case
for nonlinear dimensionality reduction methods, primarily
because the expected results are relatively easy to interpret.
ENSO is by far the strongest mode of climate variability after
the annual cycle and has both a clear signature of temporal
variability and easily recognisable spatial patterns.

The plan of the paper is as follows. In Sect.2, we describe
the datasets we use. In Sect.3, we present some conventional
analyses of ENSO behaviour in the model simulations to set
the scene for interpretation of the Isomap results. In Sect.4,
we describe the Isomap algorithm and examine some issues
relating to the sensitivity of Isomap to tunable parameters in
the algorithm. Section5 presents results from performing
Isomap analyses on tropical Pacific SST datasets. Finally, in
Sect.6, we present conclusions and recommendations con-
cerning the use of Isomap in climate data analysis.

2 Data and models

In this study, we examine ENSO variability in tropical Pa-
cific SST data from a variety of observational and model
sources. Since ENSO is a coupled ocean-atmosphere phe-
nomenon, it would be better to examine other variables in
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conjunction with SST, in particular thermocline depth and
surface wind stress. However, our goal here is to perform
a simple inter-model comparison, so we initially restrict our
analysis to SST. We include some analysis of thermocline
depth variations later, mostly in the form of equatorial warm
water volume.

As observational SST data, we use the NOAA ERSST v2
dataset (Smith and Reynolds, 2004). This is a global dataset
running from 1854 to the present day at 2◦

×2◦ resolution,
constructed from SST observations using statistical recon-
structions in regions with sparse observations. Because of
a lack of observations in the equatorial Pacific before about
1900, most variability in this region in the early part of the
time series is due solely to the annual cycle. For the pur-
poses of this study, we extract a 100-year subset from 1900–
1999 of the full ERSST v2 time series in order to reduce
problems due to non-stationarity. There is still some resid-
ual non-stationarity in the SST observations associated with
changes in ENSO behaviour over time, but this is small. We
also examined another observational SST dataset covering a
comparable period, the UK Meteorological Office HadISST
1.1 dataset (UK Meteorological Office, 2006). Results were
similar to those reported here. In Sects.5.1 and5.2, we ex-
amine correlations between Isomap results and equatorial Pa-
cific warm water volume (WWV) time series. For observa-
tional WWV data, we use the time series derived byMeinen
and McPhaden(2000).

Model simulations from a range of coupled ocean-
atmosphere GCMs were used for this study, utilising results
from the World Climate Research Programme’s (WCRP)
Coupled Model Intercomparison Project phase 3 (CMIP3)
multi-model dataset (Table1). In this study, we use data
from pre-industrial control simulations (picntrl ) in the
CMIP3 database. We do not use all of the CMIP3 models,
excluding from consideration simulations that show little or
no interannual tropical Pacific atmosphere-ocean variability,
either because of the model structure or due to other uniden-
tified problems (e.g., the GISS-AOM and GISS-ER models).
For all model simulations, monthly SST time series are used,
the length of the time series available for each model being
shown in Table1. Warm water volume time series were cal-
culated for all models where ocean body temperature data
was available by determining the depth of the 20◦C isotherm
by linear interpolation, then integrating the volume of water
above the 20◦C isotherm in the region 120◦ E–80◦ W, 5◦ S–
5◦ N, as inMcPhaden(2003).

3 Model ENSO behaviour

Before considering Isomap, we present some more con-
ventional analyses of ENSO behaviour. First, we consider
the climatology and magnitude of interannual variability of
equatorial Pacific SSTs. Figure1a shows annual mean SST
in the equatorial Pacific, averaged between 2◦ S and 2◦ N. Al-

though most of the models show a cold bias across the Pacific
basin, with SSTs up to 4◦C cooler than observed, they do
simulate the gradient of mean SST from the Western Warm
Pool around Indonesia to the cooler waters of the eastern Pa-
cific. However, most of the models do not show a monotonic
eastwards decline in SST across the basin, instead exhibit-
ing an upturn in mean SST from 100–120◦ W to the east-
ern edge of the basin. These warmer temperatures near the
eastern basin boundary have been observed in previous inter-
model comparisons of tropical Pacific SST variability (Me-
choso et al., 1995; Latif et al., 2001; AchutaRao and Sperber,
2002) and have been ascribed to difficulties in modelling ma-
rine stratus clouds in this region, the steep orography near
the coast of South America and the narrow coastal upwelling
zone in the eastern Pacific. It appears that relatively little
progress has been made in correcting this deficiency in cur-
rent coupled GCMs.

Figure 1b shows the annual standard deviation of SST
across the Pacific in the same latitude band. Here, observa-
tions show low variability in the western Pacific and higher
variability in the east, where conditions vacillate between
the normal cold tongue state and El Niño conditions, char-
acterised by the incursion of warmer water from the west-
ern Pacific into the east. Some of the models represent this
pattern reasonably well, although the gradient in variabil-
ity is represented less well than the gradient in mean SST,
and again there are problems for all of the models at the far
eastern end of the Pacific basin, probably for the same rea-
sons as for the mean SST. The range of variability of the
modelled SSTs is quite wide, with one model (FGOALS-
g1.0) showing variability as much as 2.5 times the observed
values. Some models (CGCM3.1(T47), CGCM3.1(T63),
MIROC3.2(hires) and MIROC3.2(medres)) simulate essen-
tially no gradient in variability across the basin.

The SST variability data displayed in Fig.1b can be sum-
marised using the NINO3 SST index. High values of this
index reflect El Nĩno conditions and low values La Niña con-
ditions. The fifth column of Table1 shows the standard de-
viation of the NINO3 SST index for each of the models used
here. For comparison, the standard deviation of NINO3 SST
for the ERSST v2 observational dataset is 1.26◦C for the pe-
riod 1900–2000. The results in Table1 indicate that most
of the models have a reasonable range of NINO3 SST vari-
ability, with CGCM3.1(T47), CGCM3.1(T63) and UKMO-
HadGEM1 having too little variability and CNRM-CM3 and
FGOALS-g1.0 too much. (As noted above, a number of other
models in the CMIP3 model inter-comparison were not used
in this study because of unrealistically low NINO3 SST vari-
ability. Only models with a NINO3 SST standard deviation
of 0.5◦C or greater were included in this study.)

The temporal variability of ENSO can be examined us-
ing power spectra of the NINO3 SST anomaly time series.
Figure 2 shows such spectra calculated using a maximum
entropy method (Press et al., 1992, Sect 13.7). The observa-
tions show a broad and low peak for periods between about
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Table 1. Models used in this study, atmosphere and equatorial ocean spatial resolutions, lengths of simulation available (L), NINO3 SST
index standard deviations (σNINO3), number of ocean grid points in the region 125◦ W–65◦ W, 20◦ S–20◦ N (m), line style used in later plots
and references to model documentation. Model horizontal resolution is expressed as degrees longitude× degrees latitude or a spectral grid
designation and vertical resolution as Ln, wheren is the number of model levels.

Model
Atmosphere Ocean L σNINO3 m Legend Reference
resolution resolution (yr) (◦C)

BCCR-BCM2.0 T63 L31 1.5◦
×0.5◦ L35 250 1.44 6133 (Furevik et al., 2003)

CCSM3 T85 L26 1.125◦×0.27◦ L40 500 1.06 19550 (Collins et al., 2006)

CGCM3.1(T47) T47 L31 1.85◦
×1.85◦ L29 500 0.59 1742 (Kim et al., 2002)

CGCM3.1(T63) T63 L31 1.4◦
×0.94◦ L29 400 0.64 4473 (Kim et al., 2002)

CNRM-CM3 T63 L45 2◦×0.5◦ L31 430 1.90 3049 (Salas-Ḿelia et al., 2005)

CSIRO-Mk3.0 T63 L18 1.875◦×0.84◦ L31 380 1.26 3395 (Gordon et al., 2002)

ECHO-G T30 L19 2.75◦
×0.5◦ L20 341 1.51 3418 (Min et al., 2005)

FGOALS-g1.0 T42 L26 1◦×1◦ L33 350 1.98 6281 (Yu et al., 2004)

GFDL-CM2.0 2.5◦
×2◦ L24 1◦

×1/3◦ L50 500 1.37 10073 (Delworth et al., 2006)

GFDL-CM2.1 2.5◦
×2◦ L24 1◦

×1/3◦ L50 500 1.52 10073 (Delworth et al., 2006)

GISS-EH 5◦×4◦ L20 2◦
×2◦ L16 400 1.03 6172 (Schmidt et al., 2006)

INM-CM3.0 5◦
×4◦ L21 2◦

×2.5◦ L33 330 1.29 1276 (Volodin and Diansky, 2004)

IPSL-CM4 2.5◦
×3.75◦ L19 2◦

×1◦ L31 500 1.19 3078 (Marti et al., 2005)

MIROC3.2(hires) T106 L56 0.28◦
×0.187◦ L47 100 1.20 9944 (K-1 model developers, 2004)

MIROC3.2(medres) T42 L20 1.4◦
×0.5◦ L43 500 1.14 6527 (K-1 model developers, 2004)

MRI-CGCM2.3.2 T42 L30 2.5◦
×0.5◦ L23 350 1.06 2583 (Yukimoto et al., 2006)

UKMO-HadCM3 3.75◦
×2.5◦ L19 1.25◦ L20 341 1.13 3926 (Gordon et al., 2000)

UKMO-HadGEM1 1.875◦×1.25◦ L38 1◦
×1/3◦ L40 240 0.97 11337 (Johns et al., 2006)

Fig. 1. Climatological mean SST(a) and annual standard deviation of SST(b) across the equatorial Pacific from observations (thick black
line) and models (coloured lines – see Table1 for key). Values shown are averaged between 2◦ S and 2◦ N.
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Fig. 2. Maximum entropy power spectra of NINO3 SST index vari-
ability from observations (thick black line) and models (coloured
lines – see Table1 for key). All spectra are calculated using 20
poles.

2 and 7 years, indicating the temporal irregularity of ENSO.
Among the models, this pattern is replicated most closely in
the GFDL-CM2.1, INM-CM3.0 and UKMO-HadCM3 sim-
ulations. Other models show either weaker variability in
the ENSO band, or variability that is too strongly peaked
around a single frequency. This is particularly evident for
CCSM3, CNRM-CM3, ECHO-G and FGOALS-g1.0. For
the more extreme of these models, one can question whether
these narrowband signals can really be identified with ENSO,
since they lack the characteristic broad power spectrum of
observed ENSO variability.

A common linear dimensionality reduction approach used
for geophysical and climate data analysis is principal com-
ponent analysis (PCA) (von Storch and Zwiers, 2003), also
known as empirical orthogonal function (EOF) analysis. The
relationship between this linear method and the nonlinear
Isomap method will be explored in Sect.4, but here we
present some PCA results for our SST datasets. We calcu-
lated area weighted EOFs and principal component time se-
ries for SST anomalies from all datasets across the region
125◦ W–65◦ W, 20◦ S–20◦ N. For the observed ERSST v2
SSTs, we used data for the period 1900-2000, while for the
models, we used all of the available output, with simulation
lengths as listed in Table1. In each case, after computation,
the EOFs are normalised to have unit maximum amplitude
for ease of plotting. The corresponding principal component
time series are rescaled accordingly.

The first three EOFs from the observations are shown in
Figs.3a–c. The first EOF (Fig.3a) shows a SST pattern sub-
stantially similar to that of a fully developed El Niño event,
with warmer temperatures stretching across the equatorial
Pacific, replacing the normal tongue of cooler water lying in
the eastern Pacific. This first EOF explains 53.2% of the total

variance in the SST data. The second EOF (Fig.3b) shows
a northwest-southeast oriented dipole pattern centred around
120◦ W, 10◦ N, explaining about 9.5% of the total observed
variance, while the third EOF (Fig.3c) explains 8.3% of the
data variance and shows an east-west dipole lying along the
equator with centres of action at around 160◦ W and near the
coast of South America.

These patterns of observed spatial variability can be com-
pared to results from the model simulations. Some se-
lected results are shown in Figs.3d–o. Here, we display
the first three EOFs for CCSM3 (Figs.3d–f), FGOALS-
g1.0 (Figs.3g–i), GFDL-CM2.1 (Figs.3j–l) and UKMO-
HadCM3 (Figs.3m–o). The patterns seen represent a cross-
section of the typical behaviour seen in the models. In each
case, the first EOF is of approximately the right shape, but
stretches too far to the west across the Pacific. In the ob-
served data, the region of greatest weight in the first EOF
lies well to the east of the date line, while in the model re-
sults it extends westwards to 150◦ E or further. Also, only
the pattern for GFDL-CM2.1 has a reasonable shape in the
far eastern sector of the Pacific, with the other models either
having a pattern not properly connected to South America
(CCSM3 and UKMO-HadCM3), or with too much spread of
the EOF pattern near the western coast of South and Cen-
tral America (FGOALS-g1.0). In addition, the range of total
variance explained by the first EOF differs quite widely be-
tween the models. CCSM3 (explained variance of 46.7%)
and GFDL-CM2.1 (explained variance of 60.2%) are closest
to the range seen in the observational data, while FGOALS-
g1.0 (77.7%) and UKMO-HadCM3 (39.3%) lie outside the
observed range, reflecting the unrealistically high (FGOALS-
g1.0) and low (UKMO-HadCM3) ENSO variability seen in
the NINO3 SST index in these models (Table1, column
5). The second and third EOFs from the model simula-
tions present a less clear picture. Their spatial patterns are
variable; CCSM3 and UKMO-HadCM3 both display a sec-
ond EOF bearing some resemblance to that of the obser-
vational data, with a northwest-southeast dipole centred at
about 145◦ W, 5◦ N, but the second EOF pattern in FGOALS-
g1.0 is more complex, and that seen in GFDL-CM2.1 has a
distinct equatorial dipole pattern, more similar to the third
EOF of the observational data than to the second. There is
great variability in the pattern of the second EOF seen in the
other models (not shown).

In principal component analysis, the EOFs represent the
spatial patterns of different modes of variability (for real
EOFs, actually standing oscillations), while temporal vari-
ability is captured in the principal component (PC) time se-
ries. Each PC time series gives the projection of the input
data time series onto its corresponding EOF, and because of
the orthogonality of the EOFs, the PC time series are all lin-
early uncorrelated by construction. Despite this lack of linear
correlation, there are clear nonlinear relationships between
the PC time series in the Pacific SST datasets examined here.
This can be seen in Fig.4, which shows selected scatter plots
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Fig. 3. Sea surface temperature EOFs for the ERSST v2 observational dataset (a–c), CCSM3 (d–f), FGOALS-g1.0 (g–i), GFDL-CM2.1
(j–l ) and UKMO-HadCM3 (m–o). Each EOF is normalised to have unit maximum amplitude. Explained variance for each EOF is shown in
parentheses, with 95% confidence intervals calculated using the asymptotic results quoted inHannachi et al.(2007).

of PC time series values. Figure4a shows PC#1 plotted ver-
sus PC#2 for the observational ERSST v2 dataset. Although
the two PC time series are not linearly correlated, the asym-
metry in the PC scatter plot indicates that they may not be
truly independent, and that there may be a nonlinear rela-
tionship between the values of PC#1 and PC#2, with large
positive and negative values of PC#1 being associated with
larger positive values of PC#2. This is because, on average,
warm anomalies along the equator east of 150◦ W during El
Niño events are of greater magnitude than cold anomalies
during La Nĩna events. This relationship has previously been
discussed in the context of applying other nonlinear dimen-
sionality reduction methods to Pacific SST data (Monahan,
2001). Similar, and in some cases, even stronger, nonlinear
relationships are seen between the PC time series for model
SSTs. Figure4b shows a scatter plot of PC#1 and PC#2
from the UKMO-HadCM3 model. Here, there is a similar
asymmetric pattern to that seen in the observational data. Al-
though it is difficult to ascribe this to any specific physical
mechanism in the model, it seems likely that the root of the
asymmetry is similar to that seen in the observations. What-
ever the origin of the relationship, the scatter plot is not the
Gaussian cloud that would be expected if the PC time series
were derived from a simple linear process. Similar comments
can be made about the more extreme nonlinearity displayed
in Fig. 4c, a scatter plot of PC#1 versus PC#2 for GFDL-
CM2.1. This is particularly striking because GFDL-CM2.1
is one of the models from the CMIP3 ensemble that has the

most realistic ENSO (van Oldenborgh et al., 2005). Here, the
greater asymmetry in the PC scatter plot may be partially due
to the wide meridional spread of the spatial pattern of the first
SST EOF and the very distinct zonal dipole pattern in the sec-
ond SST EOF. Similarly nonlinear PC#1 versus PC#2 scat-
ter plots are seen for some other models with similar struc-
tures in their first two EOFs (GFDL-CM2.0 and ECHO-G
and, to a lesser extent, MRI-CGCM2.3.2). Any mechanis-
tic explanation of this nonlinearity would require a more de-
tailed analysis of the different ocean-atmosphere feedbacks
in the GFDL-CM2.1 model, along the lines of (van Olden-
borgh et al., 2005).

The analyses presented so far could be characterised as
“conventional” approaches to climate data analysis. Through
these analyses, we see a wide range of behaviour in the mod-
els, corresponding more or less closely to the behaviour seen
in observations. It appears that PCA may not be the most
appropriate tool to use here, primarily because of the strong
nonlinear relationships between the different PC time series
derived from the data.

4 The Isomap algorithm

4.1 Algorithm description

The Isomap algorithm is a two-step process that simultane-
ously attempts to find a low-dimensional manifold on which
a set of data points lies, and Euclidean coordinates giving
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Fig. 4. Scatter plots of SST PC #1 versus PC #2 for ERSST v2 observations(a), UKMO-HadCM3(b) and GFDL-CM2.1(c).

the locations of the data points in this low-dimensional man-
ifold. The first step in the algorithm is to use a graph-based
approximation to the data manifold to calculate approxi-
mate geodesic distances between the data points (Sect.4.1.1).
These geodesic distances are then analysed using multidi-
mensional scaling (MDS) to find a Euclidean embedding of
the data manifold (Sect.4.1.2).

4.1.1 Geodesic approximation

As will be explained below, PCA can be considered as an
application of the same multidimensional scaling approach
used in Isomap, but employing a Euclidean distance function.
Isomap uses a distance function that approximates geodesic
distances in the data manifold. The aim of this is to determine
the intrinsic structure of the data manifold without the more
rigid constraints that come from using Euclidean distances.

Geodesics in the data manifold are approximated in two
stages. First, a weighted graph is constructed whose ver-
tices are the data points and whose edges connect each point
to its nearest neighbours, as determined by Euclidean dis-
tances between the data points. The edge weights are the Eu-
clidean distances. There are two ways of setting up this near-
est neighbour graph. A distance threshold,ε, can be used, so
that edges are included in the graph from a point to all other
points closer thanε. If the set of points is denoted byV , the
nearest neighbour graphGε is then

Gε = (V , Eε) = (V , {(x, y) | x, y ∈ V, dE(x, y) < ε}),

wheredE(x, y) is the Euclidean distance between pointsx

andy. The main benefit of this definition is that it is some-
what insensitive to inhomogeneities in data point sampling,
and can lead to more robust MDS results. Its primary disad-
vantage is that it is difficult to establish a reasonable value
for ε without some experimentation and it may be necessary
to select an inappropriately large value forε in order to en-
sure that the graphGε is connected. The second approach
is to use a nearest neighbour count,k, so that the nearest
neighbour graph contains, for each data point, edges to thek

nearest neighbours. The graphGk is then defined as

Gk = (V , Ek) = (V , {(x, y) | x, y ∈ V, ix(y) ≤ k}),

whereix(y) is the index of pointy in a list of pointsV \x

sorted in increasing order of distance fromx. This method
is simple to implement, but does display a greater degree of
sensitivity to variations in data point sampling density.

Once the distance-weighted nearest neighbour graph has
been constructed, using either theε-Isomap ork-Isomap
method, distances between arbitrary data points,dG(x, y),
are defined by shortest paths in the graph. These shortest
paths can be determined using standard graph algorithms;
here, we use Floyd’s all-sources shortest paths algorithm
(Aho et al., 1983). Although this algorithm has time com-
plexity O(n3), it is good enough for our purposes since the
number of data points is not large (n≤6000). More efficient
algorithms, for instance a Fibonacci heap-based implemen-
tation of Dijkstra’s algorithm, give better performance for
larger datasets. Asymptotic convergence results exist show-
ing that the difference between the approximationdG(x, y)

and the true geodesic distance,dM(x, y), tends to zero in
a probabilistic sense as the density of data points increases
(Bernstein et al. 20001). From these results, one can derive
a required data point density to achieve any desired accuracy
for dG(x, y). Unfortunately, these results are of limited use
in practice. One usually starts with a set of data with a given,
probably inhomogeneous, sampling density, and one would
like to choosek or ε so as to produce robust results from
Isomap. This is difficult, and the best approach seems to be
a brute force sensitivity analysis over reasonable ranges ofk

and/orε to probe different scales in the data.

4.1.2 Multidimensional scaling

Once the approximate geodesic distance functiondG(x, y)

has been found, a multidimensional scaling (MDS) proce-

1Bernstein, M., de Silva, V., Langford, J. C., and Tenenbaum,
J. B.: Graph approximations to geodesics on embedded manifolds,
http://isomap.stanford.edu/BdSLT.pdf, pre-print, 2000.
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dure is applied. This procedure results in an eigenvalue spec-
trum that can be examined to determine the dimensionality
of the data manifold. It also calculates embeddings of the
data points into low-dimensional Euclidean spaces.

MDS (Borg and Groenen, 1997) is a statistical technique
that takes as input distance or dissimilarity measures for a set
of data points and attempts to find points in Euclidean space
such that the Euclidean distances between the output points
correspond to the distance or dissimilarity values between the
input points. Both PCA and Isomap can be considered within
this framework. For PCA, the input distances are Euclidean
distances in the input data, so that MDS leads to an orthogo-
nal transformation of the data. For an idealisation of Isomap
where the input distances are exact geodesic distances in the
data manifold, MDS leads to an isometric transformation of
the data.

The form of MDS used in Isomap is usually referred to as
classical scaling(Torgerson, 1952; Gower, 1966; Borg and
Groenen, 1997). As input, we require a distance or dissimi-
larity measuredij=d(xi, xj ) calculated between then data
points,xi∈Rm. The distance function must satisfy the usual
conditions for distances:dii=0, dij=dji , dik≤dij+djk.

From the distance function, we form a matrix of squared
distances(D(2))ij=d2

ij . To this matrix we then apply a
double centring transformation, using a centring operator
J=I−n−111T , with I being then×n identity matrix and1
ann element vector of ones. The centring transformation is

Z(2)
= −

1

2
JD(2)J.

A simple calculation shows that, ifdij is a Euclidean dis-
tance function, thenZ(2) is the matrix of scalar products be-
tween the vectors{xi}, i.e. (Z(2))ij =xi ·xj . For centred data,
i.e. data for which the mean of thexi is zero,Z(2) then corre-
sponds to the covariance matrix normally used for PCA. For
non-Euclidean distance functions, the matrixZ(2) encodes
comparable information about the distribution of distances
between the data points.

Next, the eigenvector decomposition of the scalar prod-
uct matrix Z(2) is calculated, asZ(2)

=Q3QT , where
3= diag(λ1, . . . , λn) is a diagonal matrix with the eigenval-
ues ofZ(2) along its leading diagonal, andQ is a matrix with
the eigenvectors ofZ(2) as its columns. The usual hope is
that, if the eigenvaluesλi are sorted in order of decreasing
magnitude,λp � λp+1 for somep<m and we can approxi-
mate the matrixZ(2) by projection onto the subspace spanned
by thep leading eigenvectors. If we denote the matrix of the
first p eigenvalues by3+ and the firstp columns ofQ by
Q+, then the matrix ofp-dimensional reduced coordinates
for the data points is given byX=Q+3

1/2
+ . Equivalently, de-

noting the eigenvectors ofZ(2) by qk, thekth coordinate of
the ith data point in ap-dimensional reduced representation
is

yk
i =

√
λkq

i
k, k = 1, . . . , p. (1)

Fig. 5. The Swiss roll dataset.

This procedure is essentially that followed in PCA, apart
from possible differences in data normalisation, but there
are two problems, one common to all MDS algorithms and
one important only in the more general setting relevant to
Isomap. First, there is no guarantee that there is a gap in
the eigenvalue spectrum ofZ(2), making it difficult to de-
cide on a reduced dimensionality for the data. Second, the
procedure described here is dependent on the non-negativity
of the eigenvalues of the matrixZ(2). In the case of PCA,
positive semi-definiteness ofZ(2) is guaranteed by the use
of Euclidean distances between data points, but in the more
general case of Isomap, this is no longer the case. For an
exact calculation of geodesic distances in an intrinsically flat
manifold, the distance metric is Euclidean andZ(2) is posi-
tive semi-definite. In Isomap, geodesics are calculated only
approximately, and errors associated with the approximation
are often enough to renderZ(2) non-positive semi-definite,
yielding negative eigenvalues in the MDS procedure. An-
other possible source of negative eigenvalues in Isomap is the
structure of the data manifold. Isomap assumes that the data
manifold is globally isometric to an open, connected, con-
vex subset of Euclidean space (Donoho and Grimes, 2005).
Data manifolds that are not convex (i.e. that do not contain
all geodesics connecting points lying in the manifold – an
example is a two-dimensional surface with a hole, which is
then not simply connected) or that possess non-zero intrinsic
curvature do not satisfy these assumptions and have geodesic
distance functions that lead toZ(2) matrices with negative
eigenvalues.

Eigenvalues in MDS and, in particular, in PCA, are cus-
tomarily interpreted as the proportion of the total data vari-
ance explained by a particular mode. Clearly, negative eigen-
values cannot be interpreted as variances. One approach is to
ignore any negative eigenvalues, assuming them to be the re-
sult of noise in the data or errors in the geodesic distance
approximation. A more satisfactory approach is to observe
that negative eigenvalues are always small and always paired
with positive eigenvalues of similar magnitude, constituting
the tail of the eigenvalue distribution. The presence of neg-
ative eigenvalues can still be considered a form of noise, but
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the position in the eigenvalue spectrum of the first negative
eigenvalue can be used as a cut-off point for considering the
reduced dimensionality of the data. According to this view,
no positive eigenvalue appearing after a negative eigenvalue
can correspond to a real dimension in the reduced dimension-
ality data. The justification for this interpretation is simply
that negative eigenvalues cannot be interpreted as variances,
cannot be used in Eq. (1) to calculate reduced coordinates
and so must be neglected. Some complication is entailed by
this viewpoint, since it is no longer possible to use a simple
measure of explained variance such ascp=

∑p

i=1 λi/Tr 3

because the trace of the eigenvalue matrix no longer mea-
sures the total variance in the data due to the presence of the
negative eigenvalues. It is thus not possible to use an ex-
plained variance threshold to infer the dimensionality of the
data and to choose a set of modes on to which to project.
Here, we use a different approach, finding a pair of straight
lines with a “knee” that best fits the MDS eigenvalue spec-
trum in a least squares sense and taking the dimensionality
of the data to lie at the knee. This approach, which is easy to
understand and proves to be reasonably robust, is explained
in detail in Sect.4.2.

4.1.3 Computational complexity

The two main computational bottlenecks in the Isomap algo-
rithm are the computation of the nearest neighbour graph and
the final MDS eigenvalue problem, which, forn data points,
involves finding the leading eigenvalues and eigenvectors of
ann×n matrix. A naive implementation using a dense eigen-
value solver has a computational cost that scales asO(n3).
Here, we have datasets withn≤6000, and use the Anasazi
iterative eigenvalue solver from the Trilinos project (Baker
et al., 20082, Heroux et al., 2005). The block Krylov-Schur
scheme in Anasazi is able to find the first fifteen eigenvalues
and eigenvectors of a 6000×6000 matrix in a time entirely
negligible compared to the time required for the all-sources
shortest paths calculation used to approximate geodesic dis-
tances in the data manifold. For still larger problems, an
adaptation of Isomap exists using a smaller number ofland-
markpoints (de Silva and Tenenbaum, 2002), but this refine-
ment did not prove necessary here.

4.2 Isomap sensitivity

The Isomap algorithm has a single tunable parameter, the
number of nearest neighbours used to construct the graph on
which the approximate geodesic calculation is based. A nat-
ural issue to investigate is to what extent results inferred from
Isomap depend on this parameter.

To explore some of the implications of sensitivity to this
parameter choice, we use a simple “Swiss roll” dataset,

2Baker, C. G., Hetmaniuk, U. L., Lehoucq, R. B., and Thorn-
quist, H. K.: Anasazi software for the numerical solution of large-
scale eigenvalue problems, ACM T. Math. Software, in press, 2008.

representing a two-dimensional manifold embedded inR3.
Figure5 illustrates the essential features of this data – the
manifold in which the data points lie is intrinsically flat, but
curled up so that points far apart according to the intrinsic
geodesic metric in the manifold are close together as mea-
sured by the Euclidean metric in the embedding space. The
implications of this for the construction of the Isomap near-
est neighbour graph are clear: choosing too large a number
of nearest neighboursk or too large a radiusε will cause
points on adjacent but separate leaves of the manifold to be
identified as nearest neighbours, leading to an incorrect iden-
tification of the topology of the data manifold.

Figure6 shows results from Isomap sensitivity studies us-
ing the Swiss roll data, one forε-Isomap (Fig.6a) and one
for k-Isomap (Fig.6b). Each plot shows MDS eigenvalue
spectra in contour form, as a function of eigenvalue number
and the nearest neighbour parameter (ε or k).

As previously mentioned, if negative eigenvalues are
present in the MDS spectrum, they must be excluded from
any dimensionality reduction, since they cannot be viewed as
measures of explained variance, and cannot be interpreted in
terms of a lower-dimensional real manifold. The areas filled
in grey in Fig.6 indicate regions of eigenvalue space that are
forbidden by this condition. No eigenvalues beyond the first
negative eigenvalue can be part of a real lower-dimensional
representation of the data. Given this constraint, the dimen-
sionality of the data is estimated by looking for a “knee” in
the eigenvalue spectrum, and is indicated in Fig.6 by a thick
red line.

In both plots in Fig.6, there is a change in behaviour of
the eigenvalue spectra as the nearest neighbour parameter is
varied: atε≈3.6 ork=7, there is a distinct step change in the
spectra. For neighbourhood sizes below the threshold, the
convergence of the eigenvalue spectra is quicker than for val-
ues above the threshold. Consequently, the dimensionality
estimates inferred are lower for neighbourhood sizes below
the threshold. For theε-Isomap results, this effect reflects the
fact that, in the norm used here, the separation between ad-
jacent leaves of the spiral in the Swiss roll data is about 3.6.
For neighbourhood radii smaller than this, the nearest neigh-
bour connections in the distance-weighted graph used to ap-
proximate geodesics are confined to the surface of the man-
ifold. For larger neighbourhood radii, the neighbourhoods
spill over between adjacent leaves of the manifold. Varying
the neighbourhood parameter probes different scales in the
data. Smaller values ofε pick out smaller scale structures
and detect the separation between the leaves of the manifold.
Larger values ofε do not resolve this fine structure and see
the data as an amorphous cloud of points. Small values of
ε thus givep=2, the true dimensionality of the embedded
manifold, while larger values givep=3, the dimension of
the embedding space.

Similar conclusions can be drawn from thek-Isomap re-
sults (Fig.6b), though here the value ofk at which the tran-
sition from p=2 to p=3 occurs is harder to interpret. The
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Fig. 6. Isomap eigenvalue convergence and dimension estimates for the Swiss roll dataset, a two-dimensional manifold embedded inR3.
Black contours show MDS eigenvalue spectra normalised by the overall largest eigenvalue, as a function of eigenvalue number and neigh-
bourhood radiusε (a) or nearest neighbour countk (b) (logarithmic axis). The grey areas indicate regions of the eigenvalue spectra that are
not useful for dimensionality reduction because of the presence of negative eigenvalues. The thick red line shows the data dimensionality,
estimated from the eigenvalue spectra as described in the main text. The “true” dimensionality of the dataset is two.

transitional valuek=7 is the number of neighbours, on av-
erage, that a data point has within a radius ofε≈3.6, but
this number is subject to large sampling variability, giving a
slightly rougher transition fork-Isomap thanε-Isomap. The
dataset used here has 1000 points, chosen to be comparable
in size to the equatorial Pacific SST time series examined be-
low, and this relatively small number of points inR3 leads
to a wide range of variability in the distance from a point to
its nearest neighbour (∼0.02–2.13). There is thus a range
of values ofk for which thek nearest neighbours of some
points all lie on the same leaf of the manifold while thek

nearest neighbours of other points span more than one leaf.
Despite this, the dimensionality estimates are the same as for
ε-Isomap, i.e.p=2 for k≤7 andp=3 for k>7.

It should be noted that the dimensionality inferred from
Isomap depends to a certain extent on subjective factors.
Although there is no need to choose a total cumulative ex-
plained variance to select the number of leading eigenvectors
to consider, as is sometimes done with PCA, the condition
for locating a “knee” in the eigenvalue spectrum is quite del-
icate. Here, we approximate the spectrum with a pair of lines
with a kink at a selected eigenvalue, then choose the knee to
be at that point whose fitted lines give the smallest RMS error
when points on the lines are compared to the true eigenval-
ues. This approach substantially follows recommendations
in Borg and Groenen(1997), but there are other methods that
could equally be used.

The main conclusion to draw from this is that, at least in
the case of the simple dataset used here, Isomap can probe
the dimensionality of a lower-dimensional dataset embedded
nonlinearly in a higher-dimensional space quite well. In this
case, there is relatively little dependence of the results on the
nearest neighbour parameterε or k and what dependence is
seen is well understood in terms of known characteristics of
the dataset. The changes in MDS eigenvalue spectra seen
as one varies the nearest neighbour neighbourhood size indi-
cate how the method is probing the dataset at different scales.
This dependence on the parameterε or k can be viewed as a
disadvantage (some value ofk or ε needs to be chosen and
there is no clear a priori method to do this) or an advantage
(by varyingk or ε, we can probe different scales to get a bet-
ter idea of the underlying structure of our data). The results
from ε-Isomap are easier to interpret because of the propen-
sity for k-Isomap results to be influenced by data sampling
variability, althoughk-Isomap is easier to use since there is
no need to determine a suitable range forε. The main im-
pediment to performing the type of sensitivity analysis illus-
trated here is computing resource, since Isomap decomposi-
tions of the data for a large number of neighbourhood sizes
are needed to form a clear picture of the structure of the vari-
ation in results with neighbourhood size.

In the sections below showing Isomap results for Pacific
SST time series, sensitivity results are presented in paral-
lel with other Isomap results to give some feeling for the
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Table 2. Isomap dimensionality estimates for tropical Pacific SST
data, for raw SSTs and SST anomalies. Values shown are the small-
est and largest dimensionalities recovered by examining the Isomap
eigenvalue spectra as the neighbourhood size parameterk or ε is
varied.

Raw SST SST anomaly
Dataset ε k ε k

Observations 2–4 2–4 2–3 1–2
BCCR-BCM2.0 2–3 2–3 2–4 2–2
CCSM3 1–3 1–3 2–4 2–2
CGCM3.1(T47) 1–2 1–3 1–4 1–1
CGCM3.1(T63) 2–2 1–2 1–4 1–1
CNRM-CM3 2–4 2–5 2–4 2–2
CSIRO-Mk3.0 1–3 1–4 1–4 2–2
ECHO-G 2–4 4–5 1–4 2–2
FGOALS-g1.0 3–4 1–4 2–3 2–5
GFDL-CM2.0 2–3 2–3 1–1 1–2
GFDL-CM2.1 2–3 2–4 1–2 1–2
GISS-EH 2–3 1–3 1–4 1–2
INM-CM3.0 2–3 2–3 1–4 2–2
IPSL-CM4 2–2 1–3 2–4 2–2
MIROC3.2(hires) 2–2 1–2 1–4 2–2
MIROC3.2(medres) 2–3 1–3 1–3 1–2
MRI-CGCM2.3.2 2–4 3–4 1–2 1–2
UKMO-HadCM3 2–4 3–5 2–3 2–2
UKMO-HadGEM1 2–3 2–3 1–4 1–2

robustness of the method and the variability of the results
with respect to the neighbourhood size. In general, the re-
sults are more dependent on neighbourhood size for the more
complex tropical Pacific SST data, and the corresponding di-
mensionality estimates are less certain.

5 Results and discussion

All of the results reported here are based on the use of the
full length of the model SST time series available, as listed
in Table1. Isomap eigenvalue spectra were also calculated
for sub-segments of each dataset, consisting of 50, 25 and
10 year segments of the total available data, in order to deter-
mine the sensitivity of our results to time series length. The
results (data not shown) indicate that there is little variation
in the Isomap eigenvalue spectra we calculate, at least for 50
or 25 year sub-segments, leading us to conclude that our re-
sults are reasonably robust with respect to variations in the
amount of data available.

5.1 Analysis for raw SSTs

In this section, we present Isomap results for tropical Pacific
SSTs from observational and model datasets. In performing
PCA, it is common to use SST anomalies, so removing the
influence of the annual cycle. Isomap results for SST anoma-

lies are presented in Sect.5.2, allowing for direct comparison
between PCA and Isomap, but here, one of the things we
wish to explore is the extent to which Isomap is able to de-
termine the coupling between ENSO and annual variability
in the tropical Pacific. This coupling is one factor lost in the
customary anomaly-based PCA approach.

In this section we use SSTs and in the next, SST anoma-
lies, from the region 125◦ W–65◦ W, 20◦ S–20◦ N, normal-
ising each dataset to zero mean and unit standard deviation
at each spatial point. This choice of normalisation is used
throughout to permit direct comparison with the earlier work
of Gámez et al.(2004).

The leading modes of variability in tropical Pacific SSTs
are the annual cycle and ENSO, and we expect Isomap to
pick these out. As in the case of the Swiss roll data, it is
useful to examine the sensitivity of Isomap results to varia-
tions in theε or k neighbourhood size parameters. Figure7
displays Isomap sensitivity plots for observational SST data
(Figs. 7a and7d) and two selected models (Figs.7b, 7c,
7e and7f). Compared to the Swiss roll results (Fig.6),
the eigenvalue spectra and corresponding dimensionality es-
timates for the SST data show more variation with Isomap
neighbourhood size. The ranges ofk andε used in Fig.7
are selected to correspond as far as possible, but it is difficult
to relate results for any particular value ofk to those for any
particular value ofε or vice versa because of the variability
in distances between data points. One common feature in the
ε-Isomap plots in Fig.7 is that the regions of negative eigen-
values in the Isomap spectra disappear as the neighbourhood
size increases. This reflects the equivalence of Isomap with
a large neighbourhood size to PCA under suitable conditions
of data normalisation: in the limit of infinite neighbourhood
size, the geodesic distance approximation used in Isomap
collapses to the use of the original Euclidean distances be-
tween the data points, so is equivalent to PCA. The same ef-
fect would also be seen in thek-Isomap results fork≈1000,
the number of data points used.

Despite the high embedding dimension of the data (essen-
tially the number of non-land points in the study region,m in
Table1), the dimensionality estimates inferred from Isomap
in Fig. 7 are rather low. This is true for all models exam-
ined and for the observational data. Table2 shows the range
of dimensionality estimates inferred for each dataset. For
raw SSTs, across all datasets the dimensionality estimates
range from 1 to a maximum of about 5. The eigenvalue spec-
tra here converge rapidly because the leading modes of vari-
ability are overwhelmingly larger in amplitude than the other
modes. The coherent variation of SST patterns in the tropi-
cal Pacific can easily be represented by a small set of modes.
The convergence of the Isomap eigenvalue spectra is rather
quicker than the convergence of eigenvalue spectra for PCA
performed in a comparable setting, i.e. using raw SST data
rather than SST anomalies, as shown inGámez et al.(2004).
This quicker convergence can be ascribed to better represen-
tation of the nonlinear ENSO variability by Isomap than by
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Fig. 7. Isomap eigenvalue convergence and dimension estimates for tropical Pacific raw SSTs, from observations (a andd), and two models,
CCSM3 (b ande) and UKMO-HadCM3 (c andf). Black contours show MDS eigenvalue spectra normalised by the overall largest eigenvalue,
as a function of eigenvalue number and neighbourhood radiusε (a–c) or nearest neighbour countk (d–f) (logarithmic axis). The grey areas
indicate regions of the eigenvalue spectra that are not useful for dimensionality reduction because of the presence of negative eigenvalues.
The thick red line shows the data dimensionality, estimated from the eigenvalue spectra.

PCA. The PC scatter plots shown earlier (Fig.4) demonstrate
that ENSO variability is probably not a linear Gaussian phe-
nomenon, so this is expected.

The range of dimension estimates shown in Table2 for
SST observations (2–4) is what we would expect, including
two dimensions to describe the periodic annual cycle and one
or two for ENSO variability. Here, two degrees of freedom
are expected for the annual cycle because of the geometry of
manifolds that can be faithfully represented by Isomap. The
globally isometric transformation used by Isomap permits it
to represent only simple Euclidean coordinates and not pe-
riodic coordinates, meaning that any periodic phenomenon
requires at least two degrees of freedom. There is no equiva-
lent to the “circular” bottleneck layer NLPCA procedure de-
scribed inHsieh(2004) that allows periodic coordinates to
be extracted directly. For ENSO variability, as well as the
leading degree of freedom usually represented by the NINO3
SST index, previous studies have identified a second degree
of freedom, varying in quadrature with the first, correspond-

ing to changes in the equatorial Pacific warm water volume
(Burgers, 1999; Kessler, 2002; McPhaden, 2003).

Some model results show lower dimensional behaviour
than this, including CCSM3 and CGCM3.1 (both T47 and
T63). In the case of CCSM3, the reason for this behaviour
is seen in the NINO3 power spectra in Fig.2. Here, the
observational data show a broad peak in the ENSO power
band (2–7 years). CCSM3, however, has a sharper peak
at almost exactly 2 years, displaying a mode of variabil-
ity rather different from observed ENSO variability. In the
Isomap analysis, this biannual variability is aliased with the
annual cycle, and no distinct ENSO variability is detected.
The situation with the CGCM3.1 models is different. Here,
the NINO3 power spectrum shows essentially no peak in the
ENSO frequency band. It is not clear what is happening here,
but it may be relevant that the equatorial SST climatology in
both CGCM3.1 models is poor, showing little or no gradient
across the Pacific basin (Fig.1).
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Fig. 8. Three-dimensional embeddings of Isomap raw SST results for observations(a) and selected models(b–f). Light grey lines join data
points representing adjacent months in the SST time series. The mean annual cycle is shown as a thicker line with January and February
highlighted in blue and green respectively. Points are identified as El Niño (black dots) or La Nĩna (red triangles) events based on the
corresponding NINO3 SST index time series for each dataset. For clarity, only 100 years of data is plotted here for each model.
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Table 3. Correlation coefficients between NINO3 SST index and
warm water volume (WWV) and Isomap components fromk-
Isomap withk=7: for raw SSTs, the correlation between rotated
Isomap component #3 and NINO3 and between rotated Isomap
component #4 and WWV; for SST anomalies, the correlation be-
tween Isomap component #1 and NINO3 and between Isomap com-
ponent #2 and WWV. Blank entries occur where the Isomap eigen-
value spectrum in a particular case does not have enough positive
eigenvalues to form an embedding of the required dimensionality.

Dataset
Correlation

Raw SST SST anomaly
NINO3 WWV NINO3 WWV

Observations 0.822 0.031 0.841 0.242
BCCR-BCM2.0 0.835 0.820 0.153
CCSM3 0.047 0.284 0.901 0.245
CGCM3.1(T47) 0.223 0.824 0.021
CGCM3.1(T63) 0.225 0.148 0.814 0.284
CNRM-CM3 0.824 0.225 0.776 0.228
CSIRO-Mk3.0 0.746 0.227 0.717 0.407
ECHO-G 0.907 0.681 0.935 0.646
FGOALS-g1.0 0.793 0.776 0.430
GFDL-CM2.0 0.857 0.435
GFDL-CM2.1 0.859 0.853 0.665
GISS-EH 0.652 0.665 0.116
INM-CM3.0 0.730 0.744 0.446
IPSL-CM4 0.844 0.852 n/aa

MIROC3.2(hires) 0.236 0.171 0.686 0.070
MIROC3.2(medres) 0.646 0.785 0.087
MRI-CGCM2.3.2 0.861 0.909 0.511
UKMO-HadCM3 0.804 0.093 0.809 0.012
UKMO-HadGEM1 0.747 0.752 0.274

a Ocean temperature data required to calculate warm water vol-
ume for IPSL-CM4 is not available.

Once we select a dimensionality for embedding of Isomap
results, we can calculate reduced coordinates using Eq. (1).
Here, we initially select an embedding dimensionality of
three, both because this lies in the range derived from the
Isomap eigenvalue spectra and because it is the highest di-
mensionality of data we can easily visualise. Figure8 illus-
trates three-dimensional embeddings for SST observations
and a selection of models. The Isomap results shown are
all for k-Isomap withk=7. The plots show the data as a
time series, with points adjacent in time connected by thin
grey lines. The mean annual cycle is shown as a thicker
line with January and February highlighted for orientation.
Points identified as El Niño or La Nĩna events on the basis of
the NINO3 SST index are picked out in colour. For clarity,
only 100 years of the Isomap results are plotted in each case.
Concentrating on the observations first, it can be seen that
Isomap correctly identifies the annual cycle (represented by
motion about the roughly cylindrical region occupied by the
data points) and at least one other form of variability (repre-

Fig. 9. Time series of NINO3 SST index (black) and rotated Isomap
component #3 (red) for observations(a) and selected models(b–e).
An arbitrary 20 year slice of data is shown in each case.

sented by motion approximately in the direction of the axis
of the cylindrical region). The clustering of El Niño and La
Niña points indicates that this second mode of variability cor-
responds to ENSO and generally lies along the direction or-
thogonal to the annual cycle in the embedding coordinates.
Following Gámez et al.(2004), the role of the “axial” mode
can be clarified by rotating the Isomap embedding to bring
the mean annual cycle into thex-y coordinate plane. In this
rotated coordinate system, variations in thez-direction record
the “axial” variability in the original embedding coordinates
(see Appendix for details of this rotation procedure). Time
series plots of the rotated third Isomap component for ob-
servations and four of the models selected here are shown
in Fig. 9. The rotated Isomap component #3 time series are
plotted in parallel with time series of the NINO3 SST in-
dex, recording ENSO variability. For the observations, in
Fig. 9a, it is clear that rotated Isomap component #3 quite
accurately captures ENSO variability in the input SST data.
In this case, Isomap has thus extracted the most important

www.nonlin-processes-geophys.net/15/339/2008/ Nonlin. Processes Geophys., 15, 339–363, 2008



354 I. Ross et al.: ENSO dynamics and nonlinear dimensionality reduction

modes of variability in tropical Pacific SSTs, the annual cycle
and ENSO, starting from high-dimensional input data. We
can also go further and attempt to extract the second degree
of freedom in ENSO variability, usually identified with the
equatorial Pacific WWV (Kessler, 2002; McPhaden, 2003),
by examining a four-dimensional embedding of the Isomap
results. The same sort of rotation procedure can be applied to
remove the influence of the annual cycle variability on both
Isomap components #3 and #4 (see Appendix for details).
Correlation coefficients between Isomap rotated component
#3 and the NINO3 SST index and between Isomap rotated
component #4 and WWV are shown in Table3. For the ob-
servational data, the NINO3 correlation is high, as would be
expected from Fig.9a, but the correlation between rotated
Isomap component #4 and WWV is very low. It thus appears
that rotated Isomap component #4 here does not capture this
second degree of ENSO variability.

Although the fact that Isomap appears to capture the an-
nual cycle variability and at least some aspects of ENSO
variability is unsurprising, the data-driven nature of Isomap
makes it useful for comparison of model results with ob-
servations and for inter-model comparison. We apply the
same three-dimensional embedding to selected model results
in Figs. 8b–f. Results for a number of the models shown
(GFDL-CM2.1, MIROC3.2(medres) and UKMO-HadCM3)
are similar to observations, with a clear three-dimensional
structure to the data embedding, cleanly picking out the an-
nual cycle and ENSO, with distinct clustering of El Niño and
La Niña events. For the other two models illustrated, CCSM3
and FGOALS-g1.0, the three-dimensional Isomap embed-
ding reveals data manifolds of significantly different form to
that of the observations. As noted earlier, for CCSM3 this is
due to excessively regular interannual variability in tropical
Pacific SSTs that appears to be aliased with the annual cy-
cle. For FGOALS-g1.0, the situation appears to be similar.
The FGOALS-g1.0 NINO3 power spectrum in Fig.2exhibits
a narrow peak at a period of around 3.5 years, rather than a
broad peak stretching across the 2–7 year ENSO power band.
This narrowband signal is again likely to result in lower-
dimensional behaviour in the Isomap results.

Time series of rotated Isomap component #3 alongside the
NINO3 SST index are plotted for a smaller selection of mod-
els in Figs.9b–e. Two of these cases, GFDL-CM2.1 (Fig.9c)
and UKMO-HadCM3 (Fig.9e), are models whose three-
dimensional Isomap embeddings show similar structure to
observations. This is reflected in the rotated Isomap compo-
nent #3 time series, which show good correlation with the
NINO3 SST index. A good correlation is also seen for the
results for FGOALS-g1.0 (Fig.9b), despite the apparent de-
generacy of the 3-D Isomap embedding in Fig.8c. Despite
the visual discrepancy between the FGOALS-g1.0 embed-
ding results and the observations, it appears that the Isomap
algorithm is still able to disentangle the annual and ENSO
variability in the modelled SST data. The other model illus-
trated in Fig.9 is MIROC3.2(medres) (Fig.9d), which has

weaker ENSO variability, but still shows a reasonable corre-
lation between rotated Isomap component #3 and the NINO3
SST index.

For models with strongly degenerate three-dimensional
Isomap embeddings, such as CCSM3 (Fig.8b) and
CGCM3.1(T47), CGCM3.1(T63) and MIROC3.2(hires) (not
shown), the rotated Isomap component #3 time series show
little coherent variability, and certainly none that correlates
with ENSO variability. Correlation coefficients between ro-
tated Isomap component #3 and the NINO3 SST index are
shown in Table3 for all models along with observational
data. The models showing good correlations are those mod-
els for which the three-dimensional Isomap embedding dis-
plays a similar structure to the observations, i.e. for which
Isomap successfully extracts the annual cycle and an “or-
thogonal” ENSO mode. As for the observations, we can
also attempt to identify a second degree of freedom of ENSO
variability by examining four-dimensional Isomap embed-
dings. One problem here is that, for some of the models, the
Isomap eigenvalue spectra do not have enough positive lead-
ing eigenvalues to provide a four-dimensional embedding –
at least four positive leading eigenvalues are required. In the
cases where a four-dimensional embedding of the Isomap re-
sults is possible, we conduct the same four-dimensional rota-
tion as for the observations, to remove the annual variability
from both rotated Isomap components #3 and #4, and then
calculate correlation coefficients between the rotated Isomap
components and the NINO3 SST index and simulated WWV
time series, calculated as described in Sect.2. As for the
observations, the correlations between rotated Isomap com-
ponent #4 and WWV for the models are generally rather low.

As noted at the beginning of this section, one reason for
applying Isomap to raw SST data, as opposed to SST anoma-
lies, was to determine the extent to which Isomap is able to
identify the coupling between annual and ENSO variabil-
ity in the tropical Pacific. Other, more direct, analyses of
ENSO/annual cycle interactions reveal a strong influence of
the magnitude of the annual cycle in the equatorial Pacific on
ENSO variability (Guilyardi, 2006). On the basis of the re-
sults presented here, it appears that our Isomap analysis does
not provide very much insight into this question.

5.2 Analysis for SST anomalies

In climatological contexts, PCA is normally applied to cli-
mate anomalies, i.e. to data from which the mean annual
cycle has been removed. This was the case for the equato-
rial Pacific SST EOFs shown in Sect.3. We can also ap-
ply Isomap to SST anomalies, thus providing results that are
more directly comparable with the results of PCA than the
raw SST Isomap analysis presented in the previous section.
These results may also be slightly easier to interpret because
rotation to remove the influence of the annual cycle is not
required.
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Fig. 10. Isomap eigenvalue convergence and dimension estimates for tropical Pacific SST anomalies, from observations (a andd), and two
models: CCSM3 (b ande) and UKMO-HadCM3 (c andf). Black contours show MDS eigenvalue spectra normalised by the overall largest
eigenvalue, as a function of eigenvalue number and neighbourhood radiusε (a–c) or nearest neighbour countk (d–f) (logarithmic axis). The
grey areas indicate regions of the eigenvalue spectra that are not useful for dimensionality reduction because of the presence of negative
eigenvalues. The thick red line shows the data dimensionality, estimated from the eigenvalue spectra.

As for the raw SST Isomap results, the sensitivity of the
SST anomaly Isomap results to variations in theε ork param-
eters can be examined. Results for observations and selected
models are plotted in Fig.10and minimum and maximum di-
mensionality estimates derived from these plots are shown in
Table2. It can be seen that the dimensionality estimates for
the SST anomaly data are all rather low, with only one model
(FGOALS-g1.0) having a maximum dimensionality greater
than two. This indicates that only one- or two-dimensional
embeddings of the Isomap results are possible here.

We thus examine one-dimensional and where available,
two-dimensional, embeddings of the Isomap results. The
justification for this is that we expect ENSO to be the ma-
jor mode of variability in the SST anomalies, with the first
component of any embedding corresponding to the NINO3
SST index variability, and the second component to the warm
water volume variation – looking at one- or two-dimensional
embeddings should pick these features out. Table3 shows
correlation coefficients between SST anomaly Isomap com-
ponents #1 and #2 and the NINO3 SST index and WWV time

series respectively. The strong correlations between Isomap
component #1 and the NINO3 index here indicate that the
one-dimensional Isomap embedding does a good job of iden-
tifying the leading mode of ENSO variability, where it exists.
For most models, the degree of correlation between the SST
anomaly Isomap component #1 and the NINO3 SST index
is similar to the degree of correlation between the raw SST
rotated Isomap component #3 and the NINO3 SST index.
For a small number of models though (primarily CCSM3,
but also CGCM3.1(T47), CGCM3.1(T63) and to a lesser ex-
tent, MIROC3.2(hires)), the correlation for the SST anomaly
Isomap component #1 is much higher than for the raw SST
results. A reasonable explanation for this phenomenon in
the case of CCSM3 is that the ENSO signal in this model is
very regular, with a periodicity of almost exactly two years
(Fig. 2), so is likely to be strongly aliased with the annual
cycle in the raw SST results. Removing the annual cycle
and working with SST anomalies may lift this degeneracy,
allowing the “true” ENSO signal to be detected, leading to a
stronger correlation. This aliasing-based explanation is less
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applicable to the other models displaying large differences
between the raw SST and SST anomaly Isomap correlation
coefficients, since they do not have the same sort of very reg-
ular ENSO variability as CCSM3.

As for the raw SST results, we can also seek a sec-
ond degree of freedom of ENSO variability by examining
correlations between the SST anomaly Isomap component
#2 and the warm water volume time series from the mod-
els. Here, some of the correlations between the Isomap
SST anomaly component #2 and WWV are somewhat bet-
ter than in the raw SST case, but there is still large variabil-
ity in the correlations, and there is no clear link between
a high correlation and a “good” ENSO. For instance, the
CMIP3 models identified byvan Oldenborgh et al.(2005)
as having the best ENSO (GFDL-CM2.1, MIROC3.2(hires),
MIROC3.2(medres), UKMO-HadCM3) have correlations
ranging from 0.012 to 0.665. Again, it seems difficult to draw
any clear conclusions from these results.

Scatter plots of the first two Isomap components display
similar patterns to the principal component scatter plots of
Fig. 4, which seems to indicate that the MDS eigenvectors
produced by Isomap are nonlinearly related, just as are the
EOFs produced by PCA. We believe that this may be a sig-
nal of intrinsic curvature in the data manifold. Isomap relies
on isometric transformations of the data points and is there-
fore only able to represent embeddings of intrinsically flat
manifolds. Attempting to project a manifold with non-zero
intrinsic curvature to a lower-dimensional space by an iso-
metric transformation necessarily leads to distortion of the
relationships between points in the manifold.

5.3 Model WWV variability

It is quite possible that the low correlations seen between the
WWV and both the rotated Isomap component #4 for the raw
SST data and Isomap component #2 for the SST anomaly
data stem not from problems with the Isomap analysis itself,
but from deficiencies in the phasing of NINO3 SST index and
WWV variations in the models. These variations can be char-
acterised by examining plots of the NINO3 SST index time
series versus the WWV time series. For the observations,
there is a relatively well-defined phase relationship between
variations in NINO3 SST and the warm water volume, par-
ticularly during El Nĩno events. This can be seen in Fig.11
(after Fig. 2 ofKessler, 2002), where the monthly observed
NINO3 SST index is plotted versus the observed warm wa-
ter volume for the period 1980–1999. Large El Niño events,
phase locked to occur in boreal winter, are clearly identified
as loops in the plot, with large excursions to positive NINO3
SST index being associated with a corresponding coherent
variation in WWV. Also visible is the “loitering” of the sys-
tem during the recharge of the warm pool before the begin-
ning of the next El Nĩno event, where predictability is gener-
ally lower (Kessler, 2002; McPhaden, 2003).

Equivalent plots for most of the models (not shown) show
no such coherent variation between the NINO3 SST index
and the warm water volume. Some models show clear El
Niño events, often with some degree of locking to a consis-
tent phase of the annual cycle, but concomittant variations in
the warm water volume comparable to those seen in the ob-
servations are rare. The phenomenon of enhanced dwelling
in the recharge phase is also not clearly seen in the major-
ity of the models. The notable exception to this pattern is
GFDL-CM2.1, which shows a pattern with a very strong re-
semblance to that of the observational data.

In the face of this lack of coherent NINO3/WWV varia-
tion, it seems unrealistic to expect Isomap to pick out any
degree of freedom in ENSO variability in most of the models
that displays any coherence with WWV variations. In this
context, it is perhaps notable that the model with the greatest
correlation coefficient between SST anomaly Isomap com-
ponent #2 and WWV (0.665) is GFDL-CM2.1 (Table3).

One possible reason for the lack of a clear relationship
between model WWV and NINO3 SST index variations,
pointed out by a reviewer, is our choice of method for com-
puting the WWV. Model biases in mean equatorial thermo-
cline mean that the 20◦C isotherm may not be the best mea-
sure of thermocline depth, and that an index based on the
location of the maximum vertical temperature gradient may
provide a more consistent representation of the thermocline
depth.

6 Conclusions

We have examined the applicability of Isomap to climate
data analysis in the context of an inter-model comparison of
ENSO variability. Our analysis indicates that Isomap is able
to capture some of the low-dimensional dynamics of ENSO
variability in the datasets that we have examined, picking
out the gross features in the data. In some cases, notably
for CCSM3, but also for CGCM3.1(T47), CGCM3.1(T47)
and MIROC3.2(hires), examination of three-dimensional
embeddings of the raw SST Isomap results, both visually
(e.g. Fig.8b) and via correlations between rotated Isomap
component #3 and the NINO3 SST index (Table3) reveals
an anomalously low dimensionality of modelled ENSO vari-
ability, apparently caused by too regular interannual SST
variability in the tropical Pacific, leading to aliasing of the
ENSO signal to the annual cycle. Although this aspect of
the models can be identified via other analyses, it is en-
couraging that Isomap is able to detect the anomalous be-
haviour without prompting. Less encouraging is the fact that
Isomap is able to capture only these gross features of ENSO
variability in the models. The Isomap results do not show
much in the way of variations between models, at least not
in an easily interpreted form. They also do not capture the
sometimes significant differences between modelled and ob-
served ENSO behaviour revealed by a simple comparison of
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model and observational SST EOFs. Calculation of corre-
lations between Isomap results and equatorial Pacific warm
water volume (WWV) time series for both observations and
model simulations do not reveal any strong relationship be-
tween the degrees of freedom found by Isomap and the sec-
ond degree of freedom of ENSO variability that is generally
believed to be represented by variations in WWV. Better re-
sults from this point of view might be found by performing
an Isomap analysis directly on modelled thermocline depths,
rather than simply trying to correlate WWV derived from the
thermocline depths with SST Isomap results, although the
unrealistic thermocline depth variation in some of the mod-
els is likely to make this difficult.

A more subtle illustration of differences between PCA and
Isomap is presented by a comparison of the sensitivity of
Isomap and conventional PCA to small changes in the struc-
ture of tropical Pacific SST variability around the shift in
ENSO behaviour that occurred in the mid-1970s (Fedorov
and Philander, 2000; McPhaden et al., 2006). If the obser-
vational dataset that we use is split into a pre-1976 com-
ponent and a post-1976 component, differences relating to
this change in ENSO behaviour are clearly apparent in SST
EOFs, with a shift to stronger El Niño events. However, an
Isomap analysis shows no significant differences in eigen-
value spectra between the pre-1976 and post-1976 data (data
not shown). We speculate that this difference in sensitiv-
ity between PCA and Isomap is due to the fact that the or-
thogonal transformations associated with PCA, being more
geometrically “rigid” than the isometric transformations of
Isomap, are less able to conform to subtle changes in the
data manifold, thus highlighting these relatively small dif-
ferences.

Although in some senses Isomap is a rather blunt tool, it
appears that it may be useful for exploratory data analysis,
particularly if there is reason to believe that the data in ques-
tion really is nonlinear and not too high-dimensional. In such
cases, Isomap may serve a purpose alongside more conven-
tional techniques.

There are four further issues with the Isomap algorithm
that deserve comment, and that can provide a basis for com-
parison between Isomap and the NLPCA method (Hsieh,
2004). First is the question of the sensitivity of the results of
the nonlinear dimensionality reduction techniques to choices
of parameters in the algorithms used. For Isomap, this means
variations in thek or ε neighbourhood size parameter. The
possibility of varying this parameter can be viewed as an ad-
vantage, since it provides a mechanism to probe different
length scales in the data in a way that has no analogue in
PCA. How useful this is depends on the complexity of the
dataset: for the simple Swiss roll data, a two-dimensional
manifold embedded inR3, variation in k or ε probes the
structure of the data quite successfully. For the more complex
ENSO datasets, it is not at all clear what sort of structures are
being probed as the neighbourhood size is varied, and there is
little consistency between the results from different models.

Fig. 11. Phasing of variations in observational NINO3 SST index
(from the ERSST v2 dataset) and equatorial Pacific warm water
volume (derived byMeinen and McPhaden, 2000from sub-surface
temperature data). Each point denotes a single month, ranging from
January 1980 to December 1999. (After Fig. 2 ofKessler, 2002.)

In fact, from this point of view, the sensitivity of Isomap to
the neighbourhood size is a clear disadvantage, since com-
putational requirements generally restrict us to choosing a
particular value ofk or ε for our analyses, and there is no
a priori reason to select one value over another. The situa-
tion for NLPCA is somewhat more complex than for Isomap,
since there are a larger number of parameters involved: not
only is there a choice of the exact structure of the network
to be used (number of bottleneck nodes, special architectures
for the bottleneck layer, number of nodes in hidden layers),
but there are parameter choices involved in the protocol used
to train the network without overfitting.

Second, results from Isomap are not easy to interpret if the
underlying data manifold has a dimensionality higher than
two or three. One example is an attempt to apply Isomap to
mid-latitude tropospheric variability. Here, an Isomap anal-
ysis was performed for a monthly time series of 500 hPa
geopotential height in the Atlantic sector. Isomapk/ε sensi-
tivity studies (not shown) indicate a dimensionality of around
6 for the underlying data manifold. For manifolds of such
high dimensionality, it is not possible to visualise the Isomap
embeddings as we have done here for ENSO variability.
Two- or three-dimensional projections are not sufficient to
“unfold” the variability in the data, and the data points appear
as an amorphous cloud of points. This situation also arises
with PCA, if the eigenvalue spectrum converges slowly and
many EOFs are required to explain a sufficient fraction of
the data variance, but the linearity of PCA provides a partial
solution. Linearity permits us to take single modes, EOFs,
and treat them independently, one at a time. No such de-
composition is possible for Isomap. This problem is not an
inherent limitation of all nonlinear dimensionality reduction
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techniques. For instance, NLPCA permits advance selection
of the dimensionality to which the input data is to be reduced.
Choosing a one-dimensional reduction gives the best nonlin-
ear fit of a one-dimensional function to the input data, in-
dependent of the true dimensionality of the underlying data
manifold, which the method makes no direct effort to ascer-
tain. This approach allows for a “modal” analysis of the data,
where nonlinear modes are stripped out of the input data one
at a time. This type of analysis is not possible using Isomap
because there is no way to control the dimensionality of the
data reduction.

The third issue is shared with other nonlinear dimension-
ality reduction methods and is that it is generally difficult to
produce plots showing spatial patterns of variability for non-
linear dimensionality reduction in the way that is done for
PCA, where map plots of the leading EOFs are an impor-
tant analytical tool. Such maps can be produced for PCA
because real-valued EOFs essentially represent standing os-
cillations in the data, so a snapshot at any point in the os-
cillation from a positive pattern to a negative pattern records
all the information about the spatial variability in the mode.
For nonlinear methods, more general temporal variability is
possible, and generally one needs to provide a set of spa-
tial patterns corresponding to selected points on the reduced
data manifold.Monahan(2001) andHsieh(2004) demon-
strate this approach for one-dimensional reduced manifolds,
but for two-dimensional or larger manifolds, the number of
spatial patterns needed becomes prohibitive.

The fourth point to note has been mentioned earlier when
discussing the Isomap Pacific SST results, and this is the
question of just what data manifolds a particular dimension-
ality reduction technique is capable of representing. As noted
above, Isomap relies on a global isometric transformation of
the original data space to derive a reduced Euclidean repre-
sentation, meaning that only data manifolds that are globally
isometric to Euclidean space can be faithfully represented by
a reduced representation derived from Isomap. For NLPCA,
the manifolds representable by the reduced representations
depend on the structure of the bottleneck layer in the neural
network. For a single bottleneck neuron, NLPCA can faith-
fully represent any open one-dimensional curve, for a “circu-
lar” bottleneck layer (two neurons, with values constrained
to lie on the unit circle), closed one-dimensional curves can
be represented faithfully, for two bottleneck neurons, general
open two-dimensional surfaces can be represented, and so
on. The complexity of interpreting the results of NLPCA in-
creases quickly with the number of neurons in the bottleneck
layer.

The essential problem with nonlinear methods such as
Isomap is that there exist few theoretical results underpinning
the numerical algorithms. For PCA, there are results identi-
fying EOFs for at least some systems with normal modes
of the system forced by random noise (North, 1984). These
findings tie the numerical results of PCA directly to dynam-
ical characteristics of the system under study. As far as we

know, there are no corresponding results for Isomap, or in-
deed any other nonlinear dimensionality reduction technique.
There have been applications of Isomap to simple dynamical
systems, where features observed in the Isomap results can
be related to the dynamics of the system (Bollt, 2007), but no
such studies exist for larger systems approaching the com-
plexity of current climate models. Another approach to gain-
ing analytical understanding is to explicitly construct data
manifolds that can be exactly embedded by Isomap.Donoho
and Grimes(2005) did this for an analytic representation of
simple black-and-white images and developed several useful
criteria for recognising classes of images whose data man-
ifolds could be treated exactly by Isomap. It is not clear
whether a similar approach to dimensionality reduction of
dynamical systems would be fruitful.

Isomap is one of a large range of nonlinear dimensional-
ity reduction techniques that have been developed in recent
years (e.g.,Roweis and Saul, 2000; Belkin and Niyogi, 2003;
Donoho and Grimes, 2003; Weinberger and Saul, 2006; Lin
et al., 2006). There is little a priori reason to choose one
method over another for the analysis of any particular prob-
lem. For all of these methods, in order to assess which might
be applicable in the analysis of climate data, it would be use-
ful to have both the type of theoretical results mentioned
above, and comparative studies applying the various meth-
ods to real problems. The results reported here are just one
example, using one of the older, better-tested nonlinear di-
mensionality reduction techniques.

Appendix A Rotation of Isomap components

As described in Sect.5.1, interpretation of three- and four-
dimensional embeddings of raw SST Isomap results is clar-
ified by rotating the components of the embeddings to sepa-
rate the influence of annual variations (represented by rotated
Isomap components #1 and #2) from the record of ENSO
variability (as represented by rotated Isomap components #3
and #4). In this appendix, we explain the details of this rota-
tion procedure, first for the three-dimensional case, then for
the more complex four-dimensional case.

A1 Three-dimensional case

Consider a three-dimensional Isomap embedding of a
monthly time series ofN data items, resulting in a time se-
ries of 3-vectorsyi , i=1, . . . , N , with components calcu-
lated from Eq. (1) of Sect.4.1.2. Assuming that the time
series covers a whole number of years, so thatN is a multi-
ple of 12, then the mean annual cycle for the embedding can
be defined as̄yj , j=1, . . . , 12, where

ȳj =
1

N/12

N/12−1∑
i=0

y12i+j .
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In general, the points̄yj of the mean annual cycle will not
lie in a single plane and, in particular, will not lie in thex-y
coordinate plane. This means that each of the three compo-
nents of theȳj will vary over the course of the annual cy-
cle, i.e. annual variability is “mixed into” each of the three
components, even though only two Cartesian coordinates are
strictly needed to represent the periodic annual variation.

In order to “unmix” the annual cycle from the third
Isomap component, we may rotate the whole of the three-
dimensional Isomap embedding to bring the mean annual cy-
cle into thex-y coordinate plane, the hope then being that
variations in the rotated Isomap component orthogonal to the
x-y plane, i.e. variations along thez-axis, will represent in-
terannual variability, specifically ENSO variability. As noted
above, the mean annual cycle pointsȳj do not generally lie
in a plane, but we may identify a best-fit plane in a least-
squares sense, and rotate this into thex-y plane. Although
not perfect, this will lead to the most effective unmixing of
annual variability from Isomap component #3. FigureA1
provides a schematic illustration of some of the details of the
arrangement to complement the description here.

We write the equation of the best-fit plane asr·n̂=d, with
r=xi+yj+zk being the vector position of a point in the
plane, using the usual notation for the unit vectors in the
Cartesian component directions,n̂=li+mj+nk being a unit
normal to the plane, andd being the distance of the plane
from the origin. The equation of the plane then becomes
lx+my+nz=d, which can be written asz=(d−lx−my)/n,
or z=α − βx − γy, with α=d/n, β=l/n, γ=m/n. A least-
squares fit of this model to the mean annual cycle pointsȳj

allows us to determine values forα, β andγ . A little analysis
shows that this corresponds to solving the equations12 −Sx −Sy

Sx −Sxx −Sxy

Sy −Sxy −Syy

 α

β

γ

 =

 Sz

Sxz

Syz


for α, β andγ , where theS• values are sums of components
of the ȳj , i.e.Sx , Sy , Sz are the sums of thex, y andz com-
ponents,Sxx , Syy are the sums of the squaredx andy com-
ponents andSxy , Sxz andSyz are the sums of the appropriate
component products.

Given the valuesα, β andγ , we can calculate

n = (1 + β2
+ γ 2)−1/2,

and l=βn, m=γ n, d=αn, and can then construct the unit
normal to the best-fit plane,̂n=li+mj+nk. We now wish
to find a rotation takinĝn into k (the unit vector in thez-
direction), thus rotating the best-fit plane into thex-y plane.

The required rotation may be determined using Rodrigues’
rotation formula, which states that the result of rotating a vec-
tor v through an angleθ about the axis defined by another
vectoru is

v′
= v cosθ + u × v sinθ + u(u · v)(1 − cosθ).

x

y

z

Mean annual cycle

Best−fit plane to
mean annual cycle

Normal to best−fit plane (n)^
Approximate locus of
points in unrotated

embedding

Approximate
sense of

annual variation

Approximate sense
of "ENSO" variation

Fig. A1. Geometry of 3-D Isomap component rotation. The over-
all view is of an unrotated 3-D Isomap embedding. The thick red
curve shows the mean annual cycle, the blue grid shows the best-
fit plane to the mean annual cycle and the black arrow the normal
to this plane, which we seek to rotate into the direction of thez-
coordinate axis. Also illustrated is the approximate locus of points
in the unrotated Isomap embedding (cf. Fig.8a, for instance) and
the approximate directions of annual (about the cylindrical locus)
and ENSO variability (along the axis of the cylinder, orthogonal to
the annual variation).

In the case here, we define a suitable rotation axis asu=n̂ ×

k/|n̂ × k|, and the angle of rotation isθ= cos−1(n̂ · k) –
this rotation will taken̂ into k by rotating about a direction
orthogonal to botĥn andk. Some simple algebra yields ex-
pressions for the individual rotated components:

x′
= nx − lz +

mx − ly

1 + n
m,

y′
= ny − mz −

mx − ly

1 + n
l,

z′
= nz + my + lx.

Note that the rotation determined by Rodrigues’ formula
is not unique. There remains an arbitrary phase to the an-
nual cycle associated with rotations about thez-axis. For
our purposes, this non-uniqueness is of no consequence – all
we require is some rotation that will, as far as possible, un-
mix variations associated with the annual cycle from Isomap
component #3 to reveal the interannual variability.

To see that the procedure we describe does indeed achieve
this goal, see Fig.A2, where we display power spectra for
Isomap components #1–#3 fork-Isomap results (k=7) using
the ERSST v2 observational SST dataset. FigureA2a shows
spectra for the raw Isomap components as calculated using
Eq. (1) of Sect.4.1.2. Here, there is a strong component at the
annual frequency in all three components. FigureA2b shows
spectra for the rotated Isomap components. The suppression
of the annual signal in the spectrum of rotated Isomap com-
ponent #3 is clear. Along with the high correlation between
the rotated Isomap component #3 and the NINO3 SST index,
this indicates that the Isomap algorithm successfully sepa-
rates the annual cycle and ENSO variability out of the origi-
nal SST field.
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Fig. A2. Power spectra for Isomap components #1—3 from a raw
SSTk-Isomap analysis of the ERSST v2 observational SST dataset,
showing the original Isomap output(a) and the rotated components
(b).

A2 Four-dimensional case

The situation for four-dimensional embeddings is signifi-
cantly more complicated than the three-dimensional case.
This is due both to the more complex structure of the four-
dimensional rotation group, SO(4), compared to SO(3), and
to the absence of any easy geometrical intuition in four di-
mensions.

However, for the purposes of unmixing annual cycle vari-
ations from components #3 and #4 of a four-dimensional
Isomap embedding, there are two observations that sim-
plify matters considerably. (In the following, we denote the
unit vectors in the coordinate directions for four-dimensional
Euclidean space by(e1, e2, e3, e4).) The first observation
is that any three-dimensional rotation is also a valid four-
dimensional rotation, i.e. there are proper subgroups of
SO(4) that are isomorphic to SO(3). If we have a matrixM

representing an element of SO(3), i.e.

M =

m11 m12 m13
m21 m22 m23
m31 m32 m33


with MT M=I and detM=1, then we can construct inclusion
maps from SO(3) into SO(4) as

M3 =


m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
0 0 0 1

 andM4 =


m11 m12 0 m13
m21 m22 0 m23
0 0 1 0

m31 m32 0 m33

 .

These four-dimensional rotations represent rotations in
the three-dimensional spaces spanned by{e1, e2, e3} and
{e1, e2, e4} respectively.

Secondly, since rotations byM3 do not affect thee4 com-
ponent of any points and rotations byM4 do not affect thee3
components, we can compose rotations of these two types
to unmix the annual variability from Isomap components
#3 and #4 independently. Our approach is thus to use the
three-dimensional rotation procedure described in Sect.A1
for each of Isomap components #3 and #4 in turn, so as to
unmix annual variability from both of these components.

There is a caveat that should be applied to this procedure.
As in the three-dimensional case, the rotations we use to un-
mix the annual variability from Isomap components #3 and
#4 are not unique, and there is still a phase ambiguity present
in both of the rotated components. Specifically, rotations
leaving thee1–e2 plane invariant will not affect the unmix-
ing of the annual variability from the rotated Isomap compo-
nents. Such rotations, represented by rotation matrices of the
form

M ′
=


1 0 0 0
0 1 0 0
0 0 cosφ − sinφ

0 0 sinφ cosφ


whereφ is the rotation angle, do not alter the relationship
between the rotated components #3 and #4 and the annual
cycle components (#1 and #2), but they do alter the relative
phasing between the rotated components #3 and #4. In prac-
tice, what this means is that, if one wishes to identify rotated
Isomap components #3 and #4 as the “NINO3” and “WWV”
components of ENSO variability, there is no guarantee that
either of the rotated components is purely one form of ENSO
variability or the other. This makes interpretation of the cor-
relation results rather difficult. We have explored a number
of approaches to unmixing the variability of these different
degrees of freedom in this context, but there does not ap-
pear to be an easy a priori way to determine the angleφ to
completely unmix the components. One possibility would
be to rotate so as to maximise the correlations between ro-
tated Isomap component #3 and the NINO3 SST index and
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between rotated Isomap component #4 and the WWV time
series, but this seems to be a rather unsatisfactorily ad hoc
approach. These difficulties clearly have some bearing on
interpretation of the results on correlations between the ro-
tated component #4 and WWV reported in Sect.5.1.
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the 1997-98 El Nĩno, Science, 283, 950–954, 1999.

McPhaden, M. J.: Tropical Pacific Ocean heat content variations
and ENSO persistence barriers, Geophys. Res. Lett., 30, 719–
730, 2003.

McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an
integrating concept in Earth science, Science, 314, 1740–1745,
2006.

Mechoso, C. R., Robertson, A. W., Barth, N., Davey, M. K.,
Delecluse, P., Gent, P. R., Ineson, S., Kirtman, B., Latif, M., Le
Treut, H., Nagai, T., Neelin, J. D., Philander, S. G. H., Polcher,
J., Schopf, P. S., Stockdale, T., Suarez, M. J., Terray, L., Thual,
O., and Tribbia, J. J.: The seasonal cycle over the tropical Pacific

in coupled ocean-atmosphere general-circulation models, Mon.
Weather Rev., 123, 2825–2838, 1995.

Meinen, C. S. and McPhaden, M. J.: Observations of warm water
volume changes in the equatorial Pacific and their relationship to
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