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Abstract. Linear dimensionality reduction techniques, no- observers have suggested that this may represent a transition
tably principal component analysis, are widely used in cli- to a new regime of ENSO behaviou¢Phaden1999 Fe-
mate data analysis as a means to aid in the interpretatiodorov and Philande2000.

of datasets of high dimensionality. These linear methods e representation of ENSO in climate models is of inter-
may not be appropriate for the analysis of data arising fromggt hecause of the long-range effects of ENSO on the climate
nonlinear processes occurring in the climate system. Nugystem, hoth around the Pacific and further afield. Recent
merous techniques for nonlinear dimensionality reduction;qel intercomparison studies considering ENSO variabil-
have been developed recently that may provide a potentiallfy jn the current generation of coupled atmosphere-ocean
useful tool for the identification of low-dimensional mani- general circulation modelsAthutaRao and Sperhe2002
folds in climate data sets arising from nonlinear dynamics.zooa van Oldenborgh et 312005 Guilyardi, 2006 indicate
Here, we apply Isomap, one such technique, to the study of,5¢ some aspects of ENSO variability are represented bet-

El Niflo/Southern Oscillation variability in tropical Pacific ar in current models than in earlier generations of GCMs
sea surface temperatures, comparing observational data W"(‘Neelin et al, 1992 Latif et al, 200, including the over-

simulations from a number of current coupled atmosphere-y, frequency of El Niio events and enhanced temperature

ocean general circulation models. We use Isomap to examyayiability over the eastern Pacific. However, current mod-
ine El Nifio variability in the different datasets and assess theys still display significant deficiencies in the representation

suitability of the Isomap approgch for climate data analysis.qf the ocean-atmosphere coupling mechanisms important for
We conclude that, for the application presented here, analgngo variability — see particularlyan Oldenborgh et al.

ysis using Isomap does not provide gdditional information(zooa on this point, where the individual feedback mecha-
beyond that already provided by principal component analy-jsms relating wind stress, thermocline depth and sea surface

SIS. temperature are examined in detail in current models.

There has been considerable disagreement about the ex-
act source of ENSO variability. One point of view is that
ENSO arises from unstable modes of variability in the trop-
The EI Nifio/Southern Oscillation (ENSO) is the most im- ical oce_:an-atmosphere_ system,_W|_th_ _I|m|ts to pred|ctab|llt_y

determined by growth in errors in initial conditions associ-

pqrtant mode of interannual vgrlablllty in the Earth’s cllmate, ated with chaotic dynamics (e.gebiak and Cand.987 Jin
driven by atmosphere-ocean interactions in the equatorial Paét al, 1994 Tziperman et a).1994. The other possibility is
cific, but with effects reaching as far as north-eastern North : P ' ' b y

America and EuropeRnilander 1990 McPhaden et al, that ENSO is a damped linear oscillation excited by stochas-

2006. ENSO events (El Nio and La Niia) occur on an ir- gtcoiohrglsq% rt,gfulr?g? taoea:)igilﬁta?glg l:e;nrg iréréegre&g(l)r:ethe
regular basis at intervals of 2—7 years, and individual ENSO g (e.gurgers

. . . . and Kleeman1999 Thompson and Battist2000. One de-
events are variable in their evolution and effects. As a re-_ . . X
) o : ficiency of linear models is that they are not able to repro-
cent example, the 1997/1998 Eldi exhibited behaviour . -
: : . . duce the observed asymmetry between Eid\and La Nia
not previously seen, with westerly wind bursts linked to the

. - . . . events. This asymmetry has previously been investigated
Madden-Julian Oscillation playing an important role; some ~ . :
using measures based on sea surface temperature (SST) vari-
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340 I. Ross et al.: ENSO dynamics and nonlinear dimensionality reduction

SSTs during ENSO eventéi, 2004 An and Jin 2004 An uses an eigendecomposition of the input data covariance ma-
et al, 2005a Monahan and Da2004). These studies reveal trix. In the problem considered here, we analyse a time se-
wide variations in the representation of ENSO asymmetry inries ofn maps of sea surface temperature, each witicean
coupled ocean-atmosphere models. points. Discarding non-ocean points in each map, we use

Independent of the exact mechanism of variability, the SST measurements from the remaining ocean data points to
spatial coherence of ENSO in the Pacific leads us to ex-construct data vectors; € R™, with i=1,...,n. The co-
pect that there should be a low-dimensional model that capvariance matrix of this SST data is then
tures at least some of the variability in the tropical ocean-
atmosphere system. Here, we approach the assessment %f: (& = e = (N,
ENSO in coupled GCMs by attempting to identify such low- where () denotes time averaging. We write the
dimensional structures in the dynamics of the tropical Pacificeigenvector decomposition o€ as C=QAQ’, with
atmosphere and ocean. It should be noted that, in generafh=diag(r4, ..., A,,) a diagonal matrix of the eigenvalues
the mechanisms leading to ENSO and ENSO-like variabil-3; in descending order of magnitude, a@da matrix whose
ity in current coupled atmosphere-ocean GCMs show sigcolumns are the corresponding eigenvecigrs The eigen-
nificant differences compared to the mechanisms contributvectorsg; € R™ are spatial patterns of variation in the data,
ing to ENSO variability in the real atmosphere-ocean sys-often called empirical orthogonal functions (EOFs). The first
tem. For instancevan Oldenborgh et a[2009 report that  of these,q1, represents the direction in data space with the
most of the models that they examine show a response of thgreatest variance,, the direction orthogonal tg; with the
zonal wind field to equatorial SST anomalies that is weakemext greatest variance in the data, and so on. The time se-
and more confined to equatorial latitudes than seen in obries of SST mapsy;, can then be expanded in terms of the
servations. This weak wind response is compensated by arthogonal basis provided by the EOFs as
stronger direct response of SSTs to changes in the wind field
and a weaker damping of SST variations than observed. Thi§/ = Z %ijqj-
different balance of factors in the models compared to the J
observations should lead us to view conclusions drawn fromThe coefficientsy;; are called the principal component (PC)
models about ENSO variability in the real atmosphere andime series and give the temporal variation in the data in
ocean with some caution. However, it is still of interest to each of the orthogonal directions in data space spanned
examine how well we can characterise what low-dimensionaby the EOFs. The eigenvalue associated with each EOF
dynamics is seen in the models, and to see if this charactemeasures the proportion of the total variance of the in-
isation can provide any further insight into the behaviour of put data explained by that EOF. With the EOFs in de-
the models. For instance, earlier studies have indicated thatcending eigenvalue order, we may extract an EOF sub-
ENSO variability can be approximated as a two-dimensionalset explaining some pre-selected proportion of the total
oscillation, one degree of freedom being associated with thevariance, V,={q;|1<i<p} say, wherep is the number of
NINO3 SST index, the mean SST anomaly across the regioeOFs required to explain the required proportion of the to-
150 W=90° W, 5° S—5 N, and the other with the equatorial tal variance. By projecting the input data into the subspace
Pacific warm water volumeBurgers 1999 Kessler 2002 V,=spanV,), we arrive at a reduced dimensionality repre-
McPhaden2003. These two degrees of freedom vary in sentation of variability in the input data. Compared to the
approximate quadrature during Elidi events. One would original data this reduced representation has the minimum
hope that any analysis method aimed at characterising ENS®quared error totalled over all data points of any choice of
variability in observational or simulated data would be able projection basis of dimensiopn.
to identify these two degrees of freedom. The primary disadvantage of PCA for our purposes is that

Our question here is, given high-dimensional data fromit is only able to project into linear subspaces of the original
observations or model simulations, what is the best way tan-dimensional data space. If our data points, instead of lying
characterise low-dimensional behaviour? We are interesteth a linear subspace, lie in a curved low-dimensional sub-
in attempting to infer low-dimensional dynamics from rel- manifold of the data space, PCA will generally not detect the
atively limited amounts of data. Observational time seriesfull structure of the data manifold, instead approximating it
from the Pacific provide around 100 years of monthly SSTs.by the nearest linear subspace in a least squares sense.
Time series of several hundred years are available from cou- This limitation has led to the development of a wide range
pled GCM simulations. To facilitate inter-model compari- of nonlinear dimensionality reduction approaches. Of these
son, we wish to proceed in a “black box” fashion, adopting aschemes, only a small number have previously been applied
purely data-driven approach without using information aboutto ENSO data. These include both the method used in this
the internal features of the models we are studying. study (Tenenbaum et g200Q Gamez et a].2004 and meth-

The method most commonly used in climate data analysisods based on neural networks, either self-organising maps
for this type of dimensionality reduction is principal compo- (Leloup et al, 2007 or multilayer perceptronsMonahan
nent analysis (PCAon Storch and Zwiets2003, which 2007, An et al, 2005h Wu and Hsieh2003.
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The neural network approach that has seen most applicaion tracking (e.g.,Bishop et al. 1998 Roweis and Saul
tion to questions of ENSO variability is nonlinear princi- 2000 Broomhead and Kirby2005 Hinton and Salakhutdi-
pal component analysis (NLPCA), described Mpnahan  nov, 2006 Lin et al, 2006§. Many of these methods can be
(2007 and, including extensions to canonical correlation placed into a common framework along with PCA by con-
analysis and singular spectral analysisieh (2004. The  sidering them as seeking a transformation that preserves “in-
NLPCA method uses an autoassociative neural network havteresting” geometric information in the input data. In the
ing input and output layers with numbers of neurons cor-case of PCA, this “interesting” information is the Euclidean
responding to the number of dimensions of the input datadistances between data points; the required transformation
(a preliminary projection into the space spanned by the firsis thus a simple linear orthogonal transformation. A more
few EOFs is normally used to reduce the dimensionality ofcomplex example is the algorithm used in this study, Isomap
the input data without losing a significant amount of the data(Tenenbaum et gl2000. Isomap finds a nonlinear transfor-
variance), hidden layers attached to the input and output laymation that preserves not Euclidean distances between data
ers with as many neurons as required to give a good fit tgpoints, but an approximation to distances between data points
the input data, and a “bottleneck layer” between the two hid-as measured along geodesics in the data manifold. These
den layers, whose architecture determines the form of the regeodesic distances are an intrinsic feature of the dynamics of
duced dimensionality data produced. The neural network ighe system under study and are not dependent on the details
trained on the data set whose dimensionality is to be reducedyf the embedding in the observation space. Further elabora-
the weights in the network being varied so as to reduce thdions of this idea are possible. For instanci, et al. (20069
mean squared error between the input data (applied to the inntroduce a method they call Riemannian Manifold Learn-
put layer of the network) and the network outputs. The ideaing, which attempts to preserve not only an approximation to
is thus to produce a network reproducing the input data agieodesic distances in the data manifold, but also local curva-
faithfully as possible, with information passing through the ture information. We do not consider this method further in
bottleneck layer, which has a restricted number of neuronsthis study.
The outputs of the neurons in the bottleneck layer are then The only previous application of Isomap to climate data
taken to be a reduced dimensionality representation of theanalysis of which we are aware is the work Gamez
input data. A single neuron in the bottleneck layer produceset al. (2004, where Isomap was applied to observational
a one-dimensional reduced representation of the input dategSTs for the equatorial Pacific to examine ENSO variability.
two neurons in the bottleneck layer a two-dimensional re-Gamez et als results are substantially replicated by our raw
duced representation, and so on. Additional constraints casST analysis of the NOAA ERSST v2 observational dataset
be imposed on the structure of the bottleneck layer to yield(Sect.5.1) and we extend their analysis to consider results
reduced representations with required characteristics. Thé&om coupled atmosphere-ocean GCMs. As well as being of
most obvious example of this is a “circular” bottleneck node, intrinsic interest, ENSO variability provides a good test case
with two degrees of freedom whose values are constrained tfor nonlinear dimensionality reduction methods, primarily
define a point on the unit circle. This yields a bottleneck layerbecause the expected results are relatively easy to interpret.
representing a periodic one-dimensional system. ApplicatiorENSO is by far the strongest mode of climate variability after
of NLPCA with one- and two-dimensional bottleneck layers the annual cycle and has both a clear signature of temporal
to tropical Pacific observational SST data demonstrated thagariability and easily recognisable spatial patterns.
low-dimensional NLPCA approximations characterise vari-  The plan of the paper is as follows. In Se&twe describe
ability in the data better than the corresponding linear PCAthe datasets we use. In Se&;twe present some conventional
approximations, and that NLPCA approximations are ableanalyses of ENSO behaviour in the model simulations to set
to represent the asymmetry between Efidliand La Nila  the scene for interpretation of the Isomap results. In Sect.
seen in the observational datsignahan 2001). Applica-  we describe the Isomap algorithm and examine some issues
tion of NLPCA with a circular bottleneck layer to observa- relating to the sensitivity of Isomap to tunable parameters in
tional thermocline depth data from the equatorial Pacific sucthe algorithm. Sectio® presents results from performing
cessfully captured the oscillatory nature of thermocline depthisomap analyses on tropical Pacific SST datasets. Finally, in
variations through the ENSO cycle, and identified differ- Sect.6, we present conclusions and recommendations con-

ences in the behaviour of the recharge and discharge phasegrning the use of Isomap in climate data analysis.
of the oscillation An et al, 20058. Further applications of

NLPCA in the context of studies of ENSO include the use of

nonlinear canonical correlation analysis (NLCCA) to iden- 2 Data and models

tify nonlinear correlations between SST and wind stress vari-

ations in the equatorial PacifigMu and Hsieh2003. In this study, we examine ENSO variability in tropical Pa-
Many other nonlinear dimensionality reduction techniquescific SST data from a variety of observational and model

have been developed, mostly in the machine vision comsources. Since ENSO is a coupled ocean-atmosphere phe-

munity, to address issues of feature identification and mo-nomenon, it would be better to examine other variables in
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conjunction with SST, in particular thermocline depth and though most of the models show a cold bias across the Pacific
surface wind stress. However, our goal here is to performbasin, with SSTs up to°€ cooler than observed, they do
a simple inter-model comparison, so we initially restrict our simulate the gradient of mean SST from the Western Warm
analysis to SST. We include some analysis of thermoclinePool around Indonesia to the cooler waters of the eastern Pa-
depth variations later, mostly in the form of equatorial warm cific. However, most of the models do not show a monotonic
water volume. eastwards decline in SST across the basin, instead exhibit-
As observational SST data, we use the NOAA ERSST v2ing an upturn in mean SST from 100-22& to the east-
dataset$mith and Reynold2004). This is a global dataset ern edge of the basin. These warmer temperatures near the
running from 1854 to the present day &>2° resolution,  eastern basin boundary have been observed in previous inter-
constructed from SST observations using statistical reconmodel comparisons of tropical Pacific SST variabilibe-
structions in regions with sparse observations. Because ofhoso et al.1995 Latif et al., 2001, AchutaRao and Sperher
a lack of observations in the equatorial Pacific before abou2002 and have been ascribed to difficulties in modelling ma-
1900, most variability in this region in the early part of the rine stratus clouds in this region, the steep orography near
time series is due solely to the annual cycle. For the purthe coast of South America and the narrow coastal upwelling
poses of this study, we extract a 100-year subset from 1900zone in the eastern Pacific. It appears that relatively little
1999 of the full ERSST v2 time series in order to reduce progress has been made in correcting this deficiency in cur-
problems due to non-stationarity. There is still some resid-rent coupled GCMs.
ual non-stationarity in the SST observations associated with Figure 1b shows the annual standard deviation of SST
changes in ENSO behaviour over time, but this is small. Weacross the Pacific in the same latitude band. Here, observa-
also examined another observational SST dataset coveringtéons show low variability in the western Pacific and higher
comparable period, the UK Meteorological Office HadISST variability in the east, where conditions vacillate between
1.1 datasetlK Meteorological Office2006. Results were the normal cold tongue state and Elfidiconditions, char-
similar to those reported here. In Sedsl and5.2, we ex- acterised by the incursion of warmer water from the west-
amine correlations between Isomap results and equatorial P& Pacific into the east. Some of the models represent this
cific warm water volume (WWV) time series. For observa- pattern reasonably well, although the gradient in variabil-
tional WWYV data, we use the time series derivedvbginen ity is represented less well than the gradient in mean SST,
and McPhade2000. and again there are problems for all of the models at the far
Model simulations from a range of coupled ocean- eastern end of the Pacific basin, probably for the same rea-
atmosphere GCMs were used for this study, utilising resultssons as for the mean SST. The range of variability of the
from the World Climate Research Programme’s (WCRP)modelled SSTs is quite wide, with one model (FGOALS-
Coupled Model Intercomparison Project phase 3 (CMIP3)g1.0) showing variability as much as 2.5 times the observed
multi-model dataset (Tablé). In this study, we use data Vvalues. Some models (CGCM3.1(T47), CGCM3.1(T63),
from pre-industrial control simulationgicntrl ) in the ~ MIROC3.2(hires) and MIROC3.2(medres)) simulate essen-
CMIP3 database. We do not use all of the CMIP3 models tially no gradient in variability across the basin.
excluding from consideration simulations that show little or ~ The SST variability data displayed in Fifjo can be sum-
no interannual tropical Pacific atmosphere-ocean variabilitymarised using the NINO3 SST index. High values of this
either because of the model structure or due to other unidenndex reflect El Nito conditions and low values La i con-
tified problems (e.g., the GISS-AOM and GISS-ER models).ditions. The fifth column of Tablé shows the standard de-
For all model simulations, monthly SST time series are usedyiation of the NINO3 SST index for each of the models used
the length of the time series available for each model beinghere. For comparison, the standard deviation of NINO3 SST
shown in Tablel. Warm water volume time series were cal- for the ERSST v2 observational dataset is 1@€or the pe-
culated for all models where ocean body temperature dat&iod 1900-2000. The results in Tableindicate that most
was available by determining the depth of théQ@sotherm  of the models have a reasonable range of NINO3 SST vari-
by linear interpolation, then integrating the volume of water ability, with CGCM3.1(T47), CGCM3.1(T63) and UKMO-
above the 28C isotherm in the region 12E—-8C W, 5° S— HadGEMZ1 having too little variability and CNRM-CM3 and
5° N, as inMcPhader(2003. FGOALS-g1.0 too much. (As noted above, a number of other
models in the CMIP3 model inter-comparison were not used
in this study because of unrealistically low NINO3 SST vari-
3 Model ENSO behaviour ability. Only models with a NINO3 SST standard deviation
of 0.5°C or greater were included in this study.)
Before considering Isomap, we present some more con- The temporal variability of ENSO can be examined us-
ventional analyses of ENSO behaviour. First, we considering power spectra of the NINO3 SST anomaly time series.
the climatology and magnitude of interannual variability of Figure 2 shows such spectra calculated using a maximum
equatorial Pacific SSTs. Figul@ shows annual mean SST entropy methodRress et al1992 Sect 13.7). The observa-
in the equatorial Pacific, averaged betweeS2and 2 N. Al- tions show a broad and low peak for periods between about
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Table 1. Models used in this study, atmosphere and equatorial ocean spatial resolutions, lengths of simulation avgildlEO@ SST
index standard deviationsyjno3), hnumber of ocean grid points in the region 228-65 W, 20° S—20 N (m), line style used in later plots
and references to model documentation. Model horizontal resolution is expressed as degrees lerdgy@es latitude or a spectral grid
designation and vertical resolution ag,lwheren is the number of model levels.

Model Atmosphere Ocean L oNINO3 | egend Reference
resolution resolution (yr) C)
BCCR-BCM2.0 T63 L31 5°x0.5°L35 250 1.44 6133 (Furevik et al, 2003
CCSM3 T85L26 1125 x0.27°L40 500 1.06 19550 (Collins et al, 2009
CGCM3.1(T47) T47 L31 B5°x1.85°129 500 0.59 1742 —— (Kimetal, 2002
CGCM3.1(T63) T63 L31 ¥°x0.94°L29 400 0.64 4473 (Kim et al,, 2002
CNRM-CM3 T63 L45 2x0.5°L31 430 1.90 3049 (Salas-Melia et al, 2005
CSIRO-Mk3.0 T63 L18 B75°x0.84°L31 380 1.26 3395 (Gordon et al.2002
ECHO-G T30 L19 215° x0.5° L20 341 1.51 3418 — T (Minetal, 2005
FGOALS-g1.0 T42 L26 1x1°L33 350 1.98 6281 (Yu et al, 2009
GFDL-CM2.0 25°x2°L24 1°x1/3°L50 500 1.37 10073 — —  (Delworth et al, 2006
GFDL-CM2.1 25°x2°L24 1°x1/3°L50 500 1.52 10073 — —  (Delworth et al, 2006
GISS-EH 5 x4°L20 2 x2°L16 400 1.03 6172 (Schmidt et al.2006
INM-CM3.0 5°x4° 121 2°x25°L33 330 1.29 1276 (Volodin and Diansky2004)
IPSL-CM4 25°x3.75°L19 2 x1°L31 500 1.19 3078 "~ °° (Marti et al, 2005
MIROC3.2(hires) T106 L56 28°x0.187L47 100 1.20 9944 (K-1 model developer2004
MIROC3.2(medres) T42 L20 4° x0.5°L43 500 1.14 6527 ~°°°° (K-1 model developer2004
MRI-CGCM2.3.2 T42 L30 5°x0.5°L23 350 1.06 2583 "~ °° (Yukimoto et al, 2006
UKMO-HadCM3 375°x2.5°L19 125°L20 341 1.13 3926 (Gordon et al.2000
UKMO-HadGEM1 1875 x 1.25°L38 1°x1/3°L40 240 0.97 11337 (Johns et a).2006
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Fig. 1. Climatological mean SSf{a) and annual standard deviation of S@) across the equatorial Pacific from observations (thick black
line) and models (coloured lines — see Tabfer key). Values shown are averaged betwee82nd 2 N.
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] variance in the SST data. The second EOF (B).shows

10° 3 a northwest-southeast oriented dipole pattern centred around
] 120 W, 1 N, explaining about 9.5% of the total observed

variance, while the third EOF (Fi@c) explains 8.3% of the

data variance and shows an east-west dipole lying along the

equator with centres of action at around 180 and near the

coast of South America.

These patterns of observed spatial variability can be com-
pared to results from the model simulations. Some se-
lected results are shown in Fig3d—o. Here, we display
the first three EOFs for CCSM3 (Fig8d—f), FGOALS-

Power

] 2 years — ~—7 years . A . .
10° T \ 91.0 (Figs.3g—i), GFDL-CM2.1 (Figs.3j-1) and UKMO-
1 10 HadCM3 (Figs.3m-o0). The patterns seen represent a cross-
Period (years) section of the typical behaviour seen in the models. In each

case, the first EOF is of approximately the right shape, but
stretches too far to the west across the Pacific. In the ob-
served data, the region of greatest weight in the first EOF
lies well to the east of the date line, while in the model re-
sults it extends westwards to 1598 or further. Also, only

the pattern for GFDL-CM2.1 has a reasonable shape in the
far eastern sector of the Pacific, with the other models either
o : , having a pattern not properly connected to South America
2 and 7 years, indicating the temporal irregularity of ENSO. (CCSM3 and UKMO-HadCM3), or with too much spread of
Among the models, this pattern is replicated most clos_ely i”the EOF pattern near the western coast of South and Cen-
the GFDL-CM2.1, INM-CM3.0 and UKMO-HadCM3 sim- | America (FGOALS-g1.0). In addition, the range of total

ulations. Other models show either weaker variability in |, i1 ce explained by the first EOF differs quite widely be-
the ENSO band, or variability that is too strongly peaked .an the models. CCSM3 (explained variance of 46.7%)

around a single frequency. This is particularly evident for and GFDL-CM2.1 (explained variance of 60.2%) are closest
CCSM3, CNRM-CM3, ECHO-G and FGOALS-g.1.0. FOr 15 the range seen in the observational data, while FGOALS-
the more extreme 01_‘ these models, one can _q_uestpn wheth%{l_O (77.7%) and UKMO-HadCM3 (39.3%) lie outside the
these narrowband signals can really be identified with ENSO bserved range, reflecting the unrealistically high (FGOALS-
since they lack the characteristic broad power spectrum o 1.0) and low (UKMO-HadCM3) ENSO variability seen in
observed ENSO variability. the NINO3 SST index in these models (Tatle column

A common linear dimensionality reduction approach used5). The second and third EOFs from the model simula-
for geophysical and climate data analysis is principal com-tions present a less clear picture. Their spatial patterns are
ponent analysis (PCA)on Storch and Zwier2003, also  variable; CCSM3 and UKMO-HadCM3 both display a sec-
known as empirical orthogonal function (EOF) analysis. Theond EOF bearing some resemblance to that of the obser-
relationship between this linear method and the nonlineakational data, with a northwest-southeast dipole centred at
Isomap method will be explored in Seet, but here we  gpout 148 W, 5° N, but the second EOF pattern in FGOALS-
present some PCA results for our SST datasets. We calcugl_o is more complex, and that seen in GFDL-CM2.1 has a
lated area weighted EOFs and principal component time Segjstinct equatorial dipole pattern, more similar to the third

ries for SST anomalies from all datasets across the regioRQF of the observational data than to the second. There is
125 W-65"W, 20° S-20' N. For the observed ERSST V2 great variability in the pattern of the second EOF seen in the

SSTs, we used data for the period 1900-2000, while for thegther models (not shown).
mOdelS, we used all of the available OUtpUt, with simulation In principa| Component ana|ysiS, the EOFs represent the
lengths as listed in Table In each case, after computation, spatial patterns of different modes of variability (for real
the EOFs are normalised to have unit maximum amplitudeeQFs, actually standing oscillations), while temporal vari-
for ease of plotting. The corresponding principal componentapility is captured in the principal component (PC) time se-
time series are rescaled accordingly. ries. Each PC time series gives the projection of the input
The first three EOFs from the observations are shown indata time series onto its corresponding EOF, and because of
Figs.3a—c. The first EOF (Fig3a) shows a SST pattern sub- the orthogonality of the EOFs, the PC time series are all lin-
stantially similar to that of a fully developed EIl hb event, early uncorrelated by construction. Despite this lack of linear
with warmer temperatures stretching across the equatoriatorrelation, there are clear nonlinear relationships between
Pacific, replacing the normal tongue of cooler water lying in the PC time series in the Pacific SST datasets examined here.
the eastern Pacific. This first EOF explains 53.2% of the totalThis can be seen in Fig, which shows selected scatter plots

Fig. 2. Maximum entropy power spectra of NINO3 SST index vari-
ability from observations (thick black line) and models (coloured
lines — see Tabld for key). All spectra are calculated using 20
poles.
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Fig. 3. Sea surface temperature EOFs for the ERSST v2 observational datagetGCSM3 ¢—f), FGOALS-g1.0 ¢—i), GFDL-CM2.1
(i-1) and UKMO-HadCM3 (h—0). Each EOF is normalised to have unit maximum amplitude. Explained variance for each EOF is shown in
parentheses, with 95% confidence intervals calculated using the asymptotic results qtiatedanhi et al(2007).

of PC time series values. Figuda shows PC#1 plotted ver- most realistic ENSOvan Oldenborgh et gl2005. Here, the
sus PC#2 for the observational ERSST v2 dataset. Althouglyreater asymmetry in the PC scatter plot may be partially due
the two PC time series are not linearly correlated, the asymto the wide meridional spread of the spatial pattern of the first
metry in the PC scatter plot indicates that they may not beSST EOF and the very distinct zonal dipole pattern in the sec-
truly independent, and that there may be a nonlinear relaond SST EOF. Similarly nonlinear PC#1 versus PC#2 scat-
tionship between the values of PC#1 and PC#2, with largeer plots are seen for some other models with similar struc-
positive and negative values of PC#1 being associated wittiures in their first two EOFs (GFDL-CM2.0 and ECHO-G
larger positive values of PC#2. This is because, on averagegnd, to a lesser extent, MRI-CGCM2.3.2). Any mechanis-
warm anomalies along the equator east of°M0during El tic explanation of this nonlinearity would require a more de-
Nifio events are of greater magnitude than cold anomaliesailed analysis of the different ocean-atmosphere feedbacks
during La Nina events. This relationship has previously beenin the GFDL-CM2.1 model, along the lines ofan Olden-
discussed in the context of applying other nonlinear dimen-borgh et al. 2005.
sionality reduction methods to Pacific SST dd#ofiahan The analyses presented so far could be characterised as
2007). Similar, and in some cases, even stronger, nonlineafconventional” approaches to climate data analysis. Through
relationships are seen between the PC time series for modghese analyses, we see a wide range of behaviour in the mod-
SSTs. Figuredb shows a scatter plot of PC#1 and PC#2 els, corresponding more or less closely to the behaviour seen
from the UKMO-HadCM3 model. Here, there is a similar in observations. It appears that PCA may not be the most
asymmetric pattern to that seen in the observational data. Alappropriate tool to use here, primarily because of the strong
though it is difficult to ascribe this to any specific physical nonlinear relationships between the different PC time series
mechanism in the model, it seems likely that the root of thederived from the data.
asymmetry is similar to that seen in the observations. What-
ever the origin of the relationship, the scatter plot is not the
Gaussian cloud that would be expected if the PC time seried The Isomap algorithm
were derived from a simple linear process. Similar comments
can be made about the more extreme nonlinearity displayed.1 Algorithm description
in Fig. 4c, a scatter plot of PC#1 versus PC#2 for GFDL-
CM2.1. This is particularly striking because GFDL-CM2.1 The Isomap algorithm is a two-step process that simultane-
is one of the models from the CMIP3 ensemble that has theously attempts to find a low-dimensional manifold on which

a set of data points lies, and Euclidean coordinates giving
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Fig. 4. Scatter plots of SST PC #1 versus PC #2 for ERSST v2 observdtijnsKMO-HadCM3(b) and GFDL-CM2.1(c).

the locations of the data points in this low-dimensional man-nearest neighbours. The gra@his then defined as
ifold. The first step in the algorithm is to use a graph-based , _ .
approximation to the data manifold to calculate approxi- G = (V. B = (VA p) X,y € V. ic(y) < kD),

mate geodesic distances between the data points é5&dj. wherei, (y) is the index of pointy in a list of pointsV\x
These geodesic distances are then analysed using multidsorted in increasing order of distance fram This method
mensional scaling (MDS) to find a Euclidean embedding ofis simple to implement, but does display a greater degree of

the data manifold (Sect.1.2). sensitivity to variations in data point sampling density.
. o Once the distance-weighted nearest neighbour graph has
4.1.1 Geodesic approximation been constructed, using either thdsomap ork-lsomap

) ) , method, distances between arbitrary data poiftsx, y),
As will be explained below, PCA can be considered as MN3re defined by shortest paths in the graph. These shortest

appliqation of the same ml_JItidimens.ionaI sc;aling appro‘f"Chpaths can be determined using standard graph algorithms;
used in Isomap, but employing a Euclidean dlstancefunctlonhere’ we use Floyd's all-sources shortest paths algorithm

Isomap uses a distance function that approximates geodesb‘Aho et al, 1983. Although this algorithm has time com-

distances in the data manifold. The aim of thisis to determineplexity 0(n), it is good enough for our purposes since the
the intrinsic structure of the data manifold without the more number of da{ta points is not large<6000). More efficient

rlgg cc:jnst.raln.ts trr]latézome fror? lIstmg Euchdea_m d|stcjances, algorithms, for instance a Fibonacci heap-based implemen-
eo ei'_cs In t e akl‘taénanl Oh are approxwgateh IN WOtion of Dijkstra’s algorithm, give better performance for
stages. First, a weighted graph Is constructed whose Verl'arger datasets. Asymptotic convergence results exist show-

tices are the data points and whose edges connect each PO that the difference between the approximatierix, y)

to its nearest neighbours, as determined by Euclidean d'sénd the true geodesic distanedy (x, y), tends to zero in

tgnces bgtween the data points. The edge wglghts are the E%{'probabilistic sense as the density of data points increases

clldeap distances. There.are two ways of setting up this near(Bernstein et al. 2000. From these results, one can derive

est neighbour graph. A o_hstance thresheldzan be used, s a required data point density to achieve any desired accuracy

th?t edges are included in the graph fr_om a point to all Otherfor dg(x, y). Unfortunately, these results are of limited use

points clos_er than. If the ;et of points is denoted by, the in practice. One usually starts with a set of data with a given,

nearest neighbour gragh is then probably inhomogeneous, sampling density, and one would

Ge = (V,Es) = (V. {(x,y) | x,y € V,dg(x,y) < ¢}, like to choosek or ¢ so as to produce robust results from
Isomap. This is difficult, and the best approach seems to be

wheredg (x, y) is the Euclidean distance between points a brute force sensitivity analysis over reasonable rangés of

andy. The main benefit of this definition is that it is some- and/ore to probe different scales in the data.

what insensitive to inhomogeneities in data point sampling,

and can lead to more robust MDS results. Its primary disad4-.1.2 Multidimensional scaling

vantage is that it is difficult to establish a reasonable value ) o

for ¢ without some experimentation and it may be necessanfoNCc€ the approximate geodesic distance funcigu, y)

to select an inappropriately large value foin order to en- has been found, a multidimensional scaling (MDS) proce-

sure that the grapl. is connected. The second approach  1gemstein, M., de Silva, V., Langford, J. C., and Tenenbaum,
is to use a nearest neighbour couht,so that the nearest J. B.: Graph approximations to geodesics on embedded manifolds,
neighbour graph contains, for each data point, edges tb the http://isomap.stanford.edu/BdSLT.pgfe-print, 2000.
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dure is applied. This procedure results in an eigenvalue spec- o, VI e . oo,
trum that can be examined to determine the dimensionality PR AN i R PO
0% oo * e g

of the data manifold. It also calculates embeddings of the /"" . IR A
data points into low-dimensional Euclidean spaces. ljf ,‘::' R Tee ee 3'

MDS (Borg and Groeneril997) is a statistical technique % ((;- WO, e Cate.
that takes as input distance or dissimilarity measures for a set i’!ég': £ R SRR Xy
of data points and attempts to find points in Euclidean space | .%.."] ¢ ’. ':,-. . 3 ‘:,
such that the Euclidean distances between the output points ’.‘c';‘.':{ . S }':"'
correspond to the distance or dissimilarity values between the J
input points. Both PCA and Isomap can be considered within
this framework. For PCA, the input distances are Euclidean
distances in the input data, so that MDS leads to an orthogo-

nal transformation of the data. For an idealisation of Isomap
where the input distances are exact geodesic distances in ttrég. 5. The Swiss roll dataset.
data manifold, MDS leads to an isometric transformation of
the data. This procedure is essentially that followed in PCA, apart
The form of MDS used in Isomap is usually referred to asfrom possible differences in data normalisation, but there
classical scaling(Torgerson 1952 Gower, 1966 Borg and  are two problems, one common to all MDS algorithms and
Groenenl1997). As input, we require a distance or dissimi- one important only in the more general setting relevant to
larity measurel;j=d(x;, x ;) calculated between thedata  Isomap. First, there is no guarantee that there is a gap in
points,x; R™. The distance function must satisfy the usual the eigenvalue spectrum @@, making it difficult to de-
conditions for distancesl; =0, d;j=d;, dix <d;j+d jy. cide on a reduced dimensionality for the data. Second, the
From the distance function, we form a matrix of squared procedure described here is dependent on the non-negativity
distances(D@);;=d%. To this matrix we then apply a of the eigenvalues of the matr&®?. In the case of PCA,
double centring transformation, using a centring operatormositive semi-definiteness @@ is guaranteed by the use
J=1—n"1117, with | being then xn identity matrix andl of Euclidean distances between data points, but in the more
ann element vector of ones. The centring transformation is general case of Isomap, this is no longer the case. For an
exact calculation of geodesic distances in an intrinsically flat
7@ _ _}JD(Z)J' manifold, the distance metric is Euclidean afi@ is posi-
2 tive semi-definite. In Isomap, geodesics are calculated only
A simple calculation shows that, i is a Euclidean dis- approximately, and errors associated with the approximation
tance function, theZ @ is the matrix of scalar products be- are often enough to rend&® non-positive semi-definite,
tween the vectorg;}, i.e. (Z®?);;=x;-x ;. For centred data, Yielding negative eigenvalues in the MDS procedure. An-
i.e. data for which the mean of the is zero,Z® then corre-  other possible source of negative eigenvalues in Isomap is the
sponds to the covariance matrix normally used for PCA. Forstructure of the data manifold. Isomap assumes that the data
non-Euclidean distance functions, the matfi¥®’ encodes manifold is globally isometric to an open, connected, con-
comparable information about the distribution of distancesvex subset of Euclidean spad@gnoho and Grimg2005.
between the data points. Data manifolds that are not convex (i.e. that do not contain
Next, the eigenvector decomposition of the scalar prod-all geodesics connecting points lying in the manifold — an
uct matrix Z@ s calculated, asZ@=QAQ7, where example is a two-dimensional surface with a hole, which is
A=diagr1, ..., A,) is a diagonal matrix with the eigenval- then not simply connected) or that possess non-zero intrinsic
ues ofZ@ along its leading diagonal, ar@lis a matrix with ~ curvature do not satisfy these assumptions and have geodesic
the eigenvectors o @ as its columns. The usual hope is distance functions that lead @@ matrices with negative
that, if the eigenvalues; are sorted in order of decreasing eigenvalues.
magnitudej, > X1 for somep<m and we can approxi- Eigenvalues in MDS and, in particular, in PCA, are cus-
mate the matriZ ® by projection onto the subspace spannedtomarily interpreted as the proportion of the total data vari-
by the p leading eigenvectors. If we denote the matrix of the ance explained by a particular mode. Clearly, negative eigen-
first p eigenvalues byA . and the firstp columns ofQ by values cannot be interpreted as variances. One approach is to
Q.., then the matrix ofp-dimensional reduced coordinates ignore any negative eigenvalues, assuming them to be the re-
for the data points is given W:QJFA}F/? Equivalently, de- sult of _nois_e in the data or errors in the geodgsic distance
noting the eigenvectors &® by gy, thekth coordinate of ~@pproximation. A more satisfactory approach is to obser_ve
theth data point in gp-dimensional reduced representation that negative eigenvalues are always small and always paired

is with positive eigenvalues of similar magnitude, constituting
. the tail of the eigenvalue distribution. The presence of neg-
y{‘ =vigq, k=1,...,p. (1) ative eigenvalues can still be considered a form of noise, but
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the position in the eigenvalue spectrum of the first negativerepresenting a two-dimensional manifold embedde#$n
eigenvalue can be used as a cut-off point for considering thé-igure5 illustrates the essential features of this data — the
reduced dimensionality of the data. According to this view, manifold in which the data points lie is intrinsically flat, but
no positive eigenvalue appearing after a negative eigenvalueurled up so that points far apart according to the intrinsic
can correspond to a real dimension in the reduced dimensiorgeodesic metric in the manifold are close together as mea-
ality data. The justification for this interpretation is simply sured by the Euclidean metric in the embedding space. The
that negative eigenvalues cannot be interpreted as variancespplications of this for the construction of the Isomap near-
cannot be used in Eql) to calculate reduced coordinates est neighbour graph are clear: choosing too large a number
and so must be neglected. Some complication is entailed bpf nearest neighbourk or too large a radiug will cause

this viewpoint, since it is no longer possible to use a simplepoints on adjacent but separate leaves of the manifold to be
measure of explained variance suchcgs= Z{’zl Ai/TrA identified as nearest neighbours, leading to an incorrect iden-
because the trace of the eigenvalue matrix no longer meatification of the topology of the data manifold.

sures the total variance in the data due to the presence of the Figure6 shows results from Isomap sensitivity studies us-
negative eigenvalues. It is thus not possible to use an exing the Swiss roll data, one ferlsomap (Fig.6a) and one
plained variance threshold to infer the dimensionality of thefor k-Isomap (Fig.6b). Each plot shows MDS eigenvalue
data and to choose a set of modes on to which to projectspectra in contour form, as a function of eigenvalue number
Here, we use a different approach, finding a pair of straightand the nearest neighbour parameter(k).

lines with a “knee” that best fits the MDS eigenvalue spec- As previously mentioned, if negative eigenvalues are
trum in a least squares sense and taking the dimensionalitgresent in the MDS spectrum, they must be excluded from
of the data to lie at the knee. This approach, which is easy t@any dimensionality reduction, since they cannot be viewed as
understand and proves to be reasonably robust, is explainetieasures of explained variance, and cannot be interpreted in

in detail in Sect4.2 terms of a lower-dimensional real manifold. The areas filled
_ _ in grey in Fig.6 indicate regions of eigenvalue space that are
4.1.3 Computational complexity forbidden by this condition. No eigenvalues beyond the first

) ) ) negative eigenvalue can be part of a real lower-dimensional
The two main computational bottlenecks in the Isomap algo-epresentation of the data. Given this constraint, the dimen-
rithm are the computation of the nearest neighbour graph andjonajity of the data is estimated by looking for a “knee” in
the final MDS eigenvalue problem, which, ferdata points,  the eigenvalue spectrum, and is indicated in Bigy a thick
involves finding the leading eigenvalues and eigenvectors ofg( ine.
annxn matrix. A naive implementation using adense eigen- | poth plots in Fig.6, there is a change in behaviour of
value solver has a computational cost that scale9@s). the eigenvalue spectra as the nearest neighbour parameter is
Here, we have datasets with<6000, and use the Anasazi yaried: ate~3.6 ork=7, there is a distinct step change in the
iterative eigenvalue solver from the Trilinos project (Baker spectra. For neighbourhood sizes below the threshold, the
etal, 20_0§, Heroux et al.2003. The block Krylov-Schur  ¢onvergence of the eigenvalue spectra is quicker than for val-
scheme in Anasazi is able to find the first fifteen eigenvalues,es apove the threshold. Consequently, the dimensionality
and eigenvectors of a 608B000 matrix in a time entirely  estimates inferred are lower for neighbourhood sizes below
negligible compared to the time required for the all-sourcesyne threshold. For the-lsomap results, this effect reflects the
shortest. paths calculatlo.n used to ap'prOX|mate geodesic digact that, in the norm used here, the separation between ad-
tances in the data manifold. For still larger problems, anjacent leaves of the spiral in the Swiss roll data is about 3.6.

adaptation of Isomap exists using a smaller numbéared-  £or neighbourhood radii smaller than this, the nearest neigh-
markpoints @e Silva and Tenenbayr2003), but this refine- oy connections in the distance-weighted graph used to ap-
ment did not prove necessary here. proximate geodesics are confined to the surface of the man-

ifold. For larger neighbourhood radii, the neighbourhoods
spill over between adjacent leaves of the manifold. Varying
The Isomap algorithm has a single tunable parameter, théh;[anegggile”rh\?sgeza;miif;B{Z?ﬁ;gffg;?é 2?;'5; :gsthe
number of nearest neighbours used to construct the graph O%I’ld(.ﬂ tect th i npb tween the leaves of the manifold
which the approximate geodesic calculation is based. A nat® etectine separation between the ieaves ot the manitold.

ural issue to investigate is to what extent results inferred froml‘ha;g de;t;a;;e;noin?grnﬁgLessg:gﬁt;hé? f'gien :Strugtmu;e" i;]?u:eo f
Isomap depend on this parameter. P P :

To explore some of the implications of sensitivity to this ¢ thus givep=2, the true dimensionality of the embedded

. . e . manifold, while larger values give=3, the dimension of
parameter choice, we use a simple “Swiss roll” dataset .
the embedding space.

2Baker, C. G., Hetmaniuk, U. L., Lehoucg, R. B., and Thorn-  Similar conclusions can be drawn from thdsomap re-
quist, H. K.: Anasazi software for the numerical solution of large- Sults (Fig.6b), though here the value &fat which the tran-
scale eigenvalue problems, ACM T. Math. Software, in press, 2008sition from p=2 to p=3 occurs is harder to interpret. The

4.2 Isomap sensitivity
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Fig. 6. Isomap eigenvalue convergence and dimension estimates for the Swiss roll dataset, a two-dimensional manifold enibadded in
Black contours show MDS eigenvalue spectra normalised by the overall largest eigenvalue, as a function of eigenvalue number and neigh-
bourhood radius (&) or nearest neighbour couhtb) (logarithmic axis). The grey areas indicate regions of the eigenvalue spectra that are

not useful for dimensionality reduction because of the presence of negative eigenvalues. The thick red line shows the data dimensionality,
estimated from the eigenvalue spectra as described in the main text. The “true” dimensionality of the dataset is two.

transitional value=7 is the number of neighbours, on av-  The main conclusion to draw from this is that, at least in
erage, that a data point has within a radiussef3.6, but  the case of the simple dataset used here, Isomap can probe
this number is subject to large sampling variability, giving a the dimensionality of a lower-dimensional dataset embedded
slightly rougher transition fok-lsomap thare-Isomap. The nonlinearly in a higher-dimensional space quite well. In this
dataset used here has 1000 points, chosen to be comparaliase, there is relatively little dependence of the results on the
in size to the equatorial Pacific SST time series examined benearest neighbour parameteor k and what dependence is
low, and this relatively small number of points R® leads  seen is well understood in terms of known characteristics of
to a wide range of variability in the distance from a point to the dataset. The changes in MDS eigenvalue spectra seen
its nearest neighbour{0.02—-2.13). There is thus a range as one varies the nearest neighbour neighbourhood size indi-
of values ofk for which thek nearest neighbours of some cate how the method is probing the dataset at different scales.
points all lie on the same leaf of the manifold while the This dependence on the parameter k can be viewed as a
nearest neighbours of other points span more than one leaflisadvantage (some value bfor ¢ needs to be chosen and
Despite this, the dimensionality estimates are the same as fahere is no clear a priori method to do this) or an advantage
e-lsomap, i.ep=2 for k<7 andp=3 for k> 7. (by varyingk or ¢, we can probe different scales to get a bet-
It should be noted that the dimensionality inferred from ter idea of the underlymg strgcture of our data). The results
) o from e-Isomap are easier to interpret because of the propen-
Isomap depends to a certain extent on subjective factors,. : X
. . sity for k-Isomap results to be influenced by data sampling
Although there is no need to choose a total cumulative ex- 7. .. . ) ) .
: ; . : variability, althoughk-lsomap is easier to use since there is
plained variance to select the number of leading eigenvectors . ; L
no need to determine a suitable range forThe main im-

to conS|_der, as IS S,P_metlme_s done with PCA, the C(?nd'tlonpediment to performing the type of sensitivity analysis illus-
for locating a “knee” in the eigenvalue spectrum is quite del-

) S:rated here is computing resource, since Isomap decomposi-
. . . ions of th for a large number of neighbourh iz

with a kink at a selected eigenvalue, then choose the knee to0 s of the data for a la ge hu ber of neighbourhood s es

. . ; . are needed to form a clear picture of the structure of the vari-

be at that point whose fitted lines give the smallest RMS error_,.” . : i X

: : . ation in results with neighbourhood size.

when points on the lines are compared to the true eigenval-

ues. This approach substantially follows recommendations In the sections below showing Isomap results for Pacific

in Borg and Groene(lL997), but there are other methods that SST time series, sensitivity results are presented in paral-

could equally be used. lel with other Isomap results to give some feeling for the
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Table 2. Isomap dimensionality estimates for tropical Pacific SST lies are presented in Sebt2, allowing for direct comparison

data, for raw SSTs and SST anomalies. Values shown are the smalR€tween PCA and Isomap, but here, one of the things we
est and largest dimensionalities recovered by examining the Isomaj/ish to explore is the extent to which Isomap is able to de-
eigenvalue spectra as the neighbourhood size parametet is termine the coupling between ENSO and annual variability

varied. in the tropical Pacific. This coupling is one factor lost in the
customary anomaly-based PCA approach.

Raw SST  SST anomaly In this section we use SSTs and in the next, SST anoma-
Dataset & k € k lies, from the region 125W-65" W, 20° S—20 N, normal-
Observations 224 2.4 2.3 1-2 ising each dataset to zero mean and unit standard deviation
BCCR-BCM2.0 2-3 2-3 2-4 2-2 at each spatial point. This choice of normalisation is used
CCSM3 1-3 1-3 2-4 22 throughout to permit direct comparison with the earlier work
CGCM3.1(T47) 12 1-3 14 141 of Gamez et al(2004).
CGCM3.1(T63) 2-2 1-2 14 11 The leading modes of variability in tropical Pacific SSTs
CNRM-CM3 2-4 25 24 22 are the annual cycle and ENSO, and we expect Isomap to
CSIRO-Mk3.0 1-3 14 14 22 pick these out. As in the case of the Swiss roll data, it is
ECHO-G -4 45 14 22 useful to examine the sensitivity of Isomap results to varia-
FGOALS-g1.0 34 14 2-3 2-5 . . . . .
GFDL-CM2.0 03 2.3 1.1 12 t|pns in thes or k nelghpqurhood size parame_ters. Figare
GEDL-CM2 1 23 2.4 1-2 1-2 d|§plays Isomap sensitivity plots for observatlopal SST data
GISS-EH 2.3 1-3 1-4 1-2 (Figs. 7a and7d) and two selected models (Figéh, 7c,
INM-CM3.0 2-3 2.3 1-4 2-2 7e and7f). Compared to the Swiss roll results (Fif),
IPSL-CM4 2.2 1-3 2-4 2_2 the eigenvalue spectra and corresponding dimensionality es-
MIROC3.2(hires) 2-2 12 14 22 timates for the SST data show more variation with Isomap
MIROC3.2(medres) 2-3 1-3 1-3 1-2 neighbourhood size. The rangesiofnde used in Fig.7
MRI-CGCM2.3.2 2-4 34 1-2 12 are selected to correspond as far as possible, but it is difficult
UKMO-HadCM3 ~ 2-4 3-5 2-3  2-2 to relate results for any particular valuefofo those for any
UKMO-HadGEM1 2-3 2-3 14 1-2

particular value ok or vice versa because of the variability

in distances between data points. One common feature in the
e-lsomap plots in Fig7 is that the regions of negative eigen-
values in the Isomap spectra disappear as the neighbourhood
robustness of the method and the variability of the resultssize increases. This reflects the equivalence of Isomap with
with respect to the neighbourhood size. In general, the rey |3rge neighbourhood size to PCA under suitable conditions
sults are more dependent on neighbourhood size for the morgf gata normalisation: in the limit of infinite neighbourhood
complex tropical Pacific SST data, and the corresponding disjze, the geodesic distance approximation used in Isomap
mensionality estimates are less certain. collapses to the use of the original Euclidean distances be-
tween the data points, so is equivalent to PCA. The same ef-
fect would also be seen in thtelsomap results fok~1000,

the number of data points used.

All of the results reported here are based on the use of the Despite the high embedding dimension of the data (essen-
full length of the model SST time series available, as listedlia!ly the number of non-land points in the study regionin

in Table1. Isomap eigenvalue spectra were also calculated'@Plel), the dimensionality estimates inferred from Isomap
for sub-segments of each dataset, consisting of 50, 25 ani! Fig. 7 are rather low. This is true for all models exam-
10 year segments of the total available data, in order to detef€d and for the observational data. TaBlshows the range
mine the sensitivity of our results to time series length. The®f dimensionality estimates inferred for each dataset. For
results (data not shown) indicate that there is little variation/@W SSTs, across all datasets the dimensionality estimates
in the Isomap eigenvalue spectra we calculate, at least for 562N9€ from 1 to a maximum of about 5. The eigenvalue spec-
or 25 year sub-segments, leading us to conclude that our rd!@ here converge rapidly because the leading modes of vari-

sults are reasonably robust with respect to variations in théPbility are overwhelmingly larger in amplitude than the other
amount of data available. modes. The coherent variation of SST patterns in the tropi-

cal Pacific can easily be represented by a small set of modes.
5.1 Analysis for raw SSTs The convergence of the Isomap eigenvalue spectra is rather
quicker than the convergence of eigenvalue spectra for PCA
In this section, we present Isomap results for tropical Pacificperformed in a comparable setting, i.e. using raw SST data
SSTs from observational and model datasets. In performingather than SST anomalies, as showGamez et al(2004.
PCA, it is common to use SST anomalies, so removing theThis quicker convergence can be ascribed to better represen-
influence of the annual cycle. Isomap results for SST anomatation of the nonlinear ENSO variability by Isomap than by

5 Results and discussion
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Fig. 7. Isomap eigenvalue convergence and dimension estimates for tropical Pacific raw SSTs, from obsemaiba)s &nd two models,

CCSM3 p ande) and UKMO-HadCM3 ¢ andf). Black contours show MDS eigenvalue spectra normalised by the overall largest eigenvalue,

as a function of eigenvalue number and neighbourhood radjasc) or nearest neighbour coun¢d—f) (logarithmic axis). The grey areas

indicate regions of the eigenvalue spectra that are not useful for dimensionality reduction because of the presence of negative eigenvalues
The thick red line shows the data dimensionality, estimated from the eigenvalue spectra.

PCA. The PC scatter plots shown earlier (Mgdemonstrate  ing to changes in the equatorial Pacific warm water volume
that ENSO variability is probably not a linear Gaussian phe-(Burgers 1999 Kessler 2002 McPhaden2003.
nomenon, so this is expected. Some model results show lower dimensional behaviour
) ) ] ] than this, including CCSM3 and CGCM3.1 (both T47 and
The range of dimension estimates shown in Tébker  1g3) |n the case of CCSM3, the reason for this behaviour
SST observations (2-4) is what we would expect, includingis seen in the NINO3 power spectra in Figj. Here, the
two dimensions to describe the periodic annual cycle and ongpcaryational data show a broad peak in the ENSO power

or two for ENSO variability. Here, two degrees of freedom pnq (2-7 years). CCSM3, however, has a sharper peak
are expected for the annual cycle because of the geometry ofi 5imost exactly 2 years, displaying a mode of variabil-

manifolds that can be faithfully represented by Isomap. Thejyy rather different from observed ENSO variability. In the

globally isometric transformation used by Isomap permits it gomap analysis, this biannual variability is aliased with the
to represent only simple Euclidean coordinates and not peannya| cycle, and no distinct ENSO variability is detected.
riodic coordinates, meaning that any periodic phenomenorrhg sjtyation with the CGCM3.1 models is different. Here,

requires at least two degrees of freedom. There is no equivgpne NINO3 power spectrum shows essentially no peak in the
lent to the “circular” bottleneck layer NLPCA procedure de- NSO frequency band. Itis not clear what is happening here,
scribed inHsieh (2004 that allows periodic coordinates to  t t may be relevant that the equatorial SST climatology in

be extracted directly. For ENSO variability, as well as the poiq cGCM3.1 models is poor, showing little or no gradient
leading degree of freedom usually represented by the NINO3,,oss the Pacific basin (Fig).

SST index, previous studies have identified a second degree
of freedom, varying in quadrature with the first, correspond-
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(a) Observations (b) CCSM3
Comp. 3 ElINifio Comp. 3
La Nifia A
2 January ® 3
February ]

(c) FGOALS-g1.0 (d) GFDL-CM2.1

Comp. 3 Comp. 3

1 2
Comp. 1 3 474

Comp. 1

(e) MIROC3.2(medres) (f) UKMO-HadCM3

Comp. 3 Comp. 3
3 )

2
1

Fig. 8. Three-dimensional embeddings of Isomap raw SST results for observéjcarsd selected mode(s—f). Light grey lines join data

points representing adjacent months in the SST time series. The mean annual cycle is shown as a thicker line with January and February
highlighted in blue and green respectively. Points are identified as i) filack dots) or La Nia (red triangles) events based on the
corresponding NINO3 SST index time series for each dataset. For clarity, only 100 years of data is plotted here for each model.
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Table 3. Correlation coefficients between NINO3 SST index and _ 4 (@ Observations
warm water volume (WWV) and Isomap components frém g S ]
Isomap withk=7: for raw SSTs, the correlation between rotated 2 [ ]
Isomap component #3 and NINO3 and between rotated Isomap8 21 ]
component #4 and WWYV; for SST anomalies, the correlation be- % 3
tween Isomap component #1 and NINO3 and between Isomap com- 4
ponent #2 and WWV. Blank entries occur where the Isomap eigen- o g 7] (b) FGOALS51.0
value spectrum in a particular case does not have enough positive§ 21 i
eigenvalues to form an embedding of the required dimensionality. % 0 4 o
EE
Correlation z 37
Dataset Raw SST SST anomaly 4 | (o) GFDLCM2 1
NINO3 WWV NINO3 WwWV g g ]
Observations 0.822 0.031 0.841 0.242 58, (;:
BCCR-BCM2.0 0.835 0.820  0.153 Q 21 i
CCsSM3 0.047 0.284 0.901 0.245 = ;31 ]
CGCM3.1(T47) 0.223 0.824  0.021 4 @ WiRoCs 2imedres)
CGCM3.1(T63) 0.225  0.148 0.814 0.284 g 3
CNRM-CM3 0.824 0.225 0.776 0.228 5 21:
CSIRO-Mk3.0 0.746  0.227 0.717  0.407 2 0 -
ECHO-G 0.907 0.681 0.935 0.646 e 21 ]
FGOALS-g1.0 0.793 0.776  0.430 z jz 1
GFDL-CM2.0 0.857  0.435 4 | (e) UKMO HadoM3
GFDL-CM2.1 0.859 0.853 0.665 g 3 4
GISS-EH 0.652 0.665 0.116 § 21:
INM-CM3.0 0.730 0.744  0.446 5 9 e
IPSL-CM4 0.844 0.852  nfa S 2
MIROC3.2(hires) 0.236 0.171 0.686 0.070 z 12 4
MIROC3.2(medres)  0.646 0.785 0.087 L I B L B B B B
MRI-CGCM2.3.2 0.861 0.909 0.511 0123456 7 8 91011121314151617 181920
UKMO-HadCM3 0.804 0.093 0809 0.012 Time (years)
UKMO-HadGEM1 0.747 0.752 0.274

& Ocean temperature data required to calculate warm water vol- Fig. 9. Time series of NINO3 SST index (black) and rotated Isomap
ume for IPSL-CM4 is not available. component #3 (red) for observatiofsg and selected mode{b—e).
An arbitrary 20 year slice of data is shown in each case.

Once we select a dimensionality for embedding of Isomapsented by motion approximately in the direction of the axis
results, we can calculate reduced coordinates usinglq. ( of the cylindrical region). The clustering of El f\lb and La
Here, we initially select an embedding dimensionality of Nifia points indicates that this second mode of variability cor-
three, both because this lies in the range derived from the@esponds to ENSO and generally lies along the direction or-
Isomap eigenvalue spectra and because it is the highest dihogonal to the annual cycle in the embedding coordinates.
mensionality of data we can easily visualise. Fig8i#us- Following Gamez et al(2004), the role of the “axial” mode
trates three-dimensional embeddings for SST observationsan be clarified by rotating the Isomap embedding to bring
and a selection of models. The Isomap results shown ar¢he mean annual cycle into they coordinate plane. In this
all for k-Isomap withk=7. The plots show the data as a rotated coordinate system, variations in thdirection record
time series, with points adjacent in time connected by thinthe “axial” variability in the original embedding coordinates
grey lines. The mean annual cycle is shown as a thicke(see Appendix for details of this rotation procedure). Time
line with January and February highlighted for orientation. series plots of the rotated third Isomap component for ob-
Points identified as El Nio or La Niia events on the basis of servations and four of the models selected here are shown
the NINO3 SST index are picked out in colour. For clarity, in Fig. 9. The rotated Isomap component #3 time series are
only 100 years of the Isomap results are plotted in each caselotted in parallel with time series of the NINO3 SST in-
Concentrating on the observations first, it can be seen thatex, recording ENSO variability. For the observations, in
Isomap correctly identifies the annual cycle (represented byFig. 9a, it is clear that rotated Isomap component #3 quite
motion about the roughly cylindrical region occupied by the accurately captures ENSO variability in the input SST data.
data points) and at least one other form of variability (repre-In this case, Isomap has thus extracted the most important
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modes of variability in tropical Pacific SSTs, the annual cycle weaker ENSO variability, but still shows a reasonable corre-
and ENSO, starting from high-dimensional input data. Welation between rotated Isomap component #3 and the NINO3
can also go further and attempt to extract the second degre8ST index.

of freedom in ENSO variability, usually identified with the  For models with strongly degenerate three-dimensional
equatorial Pacific WWV Kessler 2002 McPhaden2003, Isomap embeddings, such as CCSM3 (F&p) and
by examining a four-dimensional embedding of the |50mapCGCM3.1(T47), CGCM3.1(T63) and MIROC3.2(hires) (not
results. The same sort of rotation procedure can be applied t8hown), the rotated Isomap component #3 time series show
remove the influence of the annual cycle variability on both|ittie coherent variability, and certainly none that correlates
Isomap components #3 and #4 (see Appendix for details)yith ENSO variability. Correlation coefficients between ro-
Correlation coefficients between Isomap rotated componenfated |somap component #3 and the NINO3 SST index are
#3 and the NINO3 SST index and between Isomap rotatehown in Table3 for all models along with observational
component #4 and WWV are shown in TaBBleFor the ob-  gata. The models showing good correlations are those mod-
Sel'vational data., the NINO3 Correlation iS h|gh, as Would bee|s for Wh|Ch the three_dimensiona| |Somap embedding dis_
expected from Fig9a, but the correlation between rotated pjays a similar structure to the observations, i.e. for which
Isomap component #4 and WWV is very low. It thus appearsisomap successfully extracts the annual cycle and an “or-
that rotated Isomap component #4 here does not capture thiogonal” ENSO mode. As for the observations, we can
second degree of ENSO variability. also attempt to identify a second degree of freedom of ENSO
Although the fact that Isomap appears to capture the anyariability by examining four-dimensional Isomap embed-
nual cycle variability and at least some aspects of ENSQqings. One problem here is that, for some of the models, the
varlablllty is UnSUrpriSing, the data-driven nature of |Somap|somap eigenva|ue Spectra do not have enough positive lead-
makes it useful for comparison of model results with ob- ing eigenvalues to provide a four-dimensional embedding —
servations and for inter-model comparison. We apply theat |east four positive leading eigenvalues are required. In the
same three-dimensional embedding to selected model resultggses where a four-dimensional embedding of the Isomap re-
in Figs. 8b—f. Results for a number of the models shown gyts is possible, we conduct the same four-dimensional rota-
(GFDL-CM2.1, MIROC3.2(medres) and UKMO-HadCM3) tion as for the observations, to remove the annual variability
are similar to observations, with a clear three-dimensionakom both rotated Isomap components #3 and #4, and then
structure to the data embedding, cleanly picking out the antajculate correlation coefficients between the rotated Isomap
nual cycle and ENSO, with distinct clustering of Elffiéiand components and the NINO3 SST index and simulated WWV
La Nina events. For the other two models illustrated, CCSM3time series, calculated as described in S&ctAs for the
and FGOALS-g1.0, the three-dimensional Isomap embedppservations, the correlations between rotated Isomap com-

d|ng reveals data manifolds of Significantly different form to ponent #4 and WWYV for the models are genera”y rather low.
that of the observations. As noted earlier, for CCSM3 this is

cFi’ue.]:[.o esxsc$sst|;]/eiy regular |tntebranr|1.ual \éar'atg'llﬁl N tropllcal applying Isomap to raw SST data, as opposed to SST anoma-
acihc s that appears o be aliased wi € annua Cyﬁes, was to determine the extent to which Isomap is able to

?E' Eg;;i?_gAliso?\ﬁl\?ot:?e situation ?ppegrsFto bﬁ.;'tm”ar'identify the coupling between annual and ENSO variabil-
€ “g1. power specirum in Figexhibits ity in the tropical Pacific. Other, more direct, analyses of

g na:jrow ?(ea;k ?tr? period of ?r:ogn(i 3.5 yEzla\Irg,orather tr:)an NSO/annual cycle interactions reveal a strong influence of
TLC.)a pea sbre g Ing a?r_oss € I_'k ){ea;r ltp_OV\IIer ANthe magnitude of the annual cycle in the equatorial Pacific on
IS narrowband signai IS again fikely 1o resuft In Iower- ensq yariability Guilyardi 2006. On the basis of the re-

d|m§n3|ona}l behaviour in the Isomap results. . sults presented here, it appears that our Isomap analysis does
Time series of rotated Isomap component #3 alongside th(?10t provide very much insight into this question

NINO3 SST index are plotted for a smaller selection of mod-
els in Figs9b—e. Two of these cases, GFDL-CM2.1 (Fg) ] )
and UKMO-HadCM3 (Fig.9e), are models whose three- 9-2 Analysis for SST anomalies

dimensional Isomap embeddings show similar structure to

observations. This is reflected in the rotated Isomap compotin climatological contexts, PCA is normally applied to cli-
nent #3 time series, which show good correlation with themate anomalies, i.e. to data from which the mean annual
NINO3 SST index. A good correlation is also seen for the cycle has been removed. This was the case for the equato-
results for FGOALS-g1.0 (Fighb), despite the apparent de- rial Pacific SST EOFs shown in Se&. We can also ap-
generacy of the 3-D Isomap embedding in FBg. Despite  ply Isomap to SST anomalies, thus providing results that are
the visual discrepancy between the FGOALS-g1.0 embedmore directly comparable with the results of PCA than the
ding results and the observations, it appears that the Isomafaw SST Isomap analysis presented in the previous section.
algorithm is still able to disentangle the annual and ENSOThese results may also be slightly easier to interpret because
variability in the modelled SST data. The other model illus- rotation to remove the influence of the annual cycle is not
trated in Fig.9 is MIROC3.2(medres) (Figod), which has  required.

As noted at the beginning of this section, one reason for
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Fig. 10. Isomap eigenvalue convergence and dimension estimates for tropical Pacific SST anomalies, from obsereatia)sdnd two

models: CCSM3I§ ande) and UKMO-HadCM3 € andf). Black contours show MDS eigenvalue spectra normalised by the overall largest
eigenvalue, as a function of eigenvalue number and neighbourhood ea@its) or nearest neighbour countd—f) (logarithmic axis). The

grey areas indicate regions of the eigenvalue spectra that are not useful for dimensionality reduction because of the presence of negativ
eigenvalues. The thick red line shows the data dimensionality, estimated from the eigenvalue spectra.

As for the raw SST Isomap results, the sensitivity of the series respectively. The strong correlations between Isomap
SST anomaly Isomap results to variations indlog k param- ~ component #1 and the NINO3 index here indicate that the
eters can be examined. Results for observations and selecteme-dimensional Isomap embedding does a good job of iden-
models are plotted in Fig.0and minimum and maximum di- tifying the leading mode of ENSO variability, where it exists.
mensionality estimates derived from these plots are shown ifFor most models, the degree of correlation between the SST
Table2. It can be seen that the dimensionality estimates foranomaly Isomap component #1 and the NINO3 SST index
the SST anomaly data are all rather low, with only one modelis similar to the degree of correlation between the raw SST
(FGOALS-g1.0) having a maximum dimensionality greater rotated Isomap component #3 and the NINO3 SST index.
than two. This indicates that only one- or two-dimensional For a small number of models though (primarily CCSMS3,
embeddings of the Isomap results are possible here. but also CGCM3.1(T47), CGCM3.1(T63) and to a lesser ex-

We thus examine one-dimensional and where availablet€nt: MIROC3.2(hires)), the correlation for the SST anomaly
two-dimensional, embeddings of the Isomap results. The/SOmap component #1 is much higher than for the raw SST
justification for this is that we expect ENSO to be the ma- results. A reasonaple explanation for_thls phen_omenon in
jor mode of variability in the SST anomalies, with the first (€ case of CCSM3 is that the ENSO signal in this model is
component of any embedding corresponding to the NINO3VETY régular, with a periodicity of almost exactly two years
SST index variability, and the second component to the warn{F19- 2), S0 is likely to be strongly aliased with the annual
water volume variation — looking at one- or two-dimensional €YCl€ in the raw SST results. Removing the annual cycle
embeddings should pick these features out. Ta@ows  2nd v_vorklngﬂwnh”SST anomalies may lift this degeneracy,
correlation coefficients between SST anomaly Isomap com@/lowing the “true” ENSO signal to be detected, leading to a
ponents #1 and #2 and the NINO3 SST index and WWV timeStronger correlation. This aliasing-based explanation is less
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applicable to the other models displaying large differences Equivalent plots for most of the models (not shown) show
between the raw SST and SST anomaly Isomap correlatiomo such coherent variation between the NINO3 SST index
coefficients, since they do not have the same sort of very regand the warm water volume. Some models show clear El
ular ENSO variability as CCSM3. Nifio events, often with some degree of locking to a consis-

As for the raw SST results, we can also seek a seci€ntphase of the annual cycle, but concomittant variations in

ond degree of freedom of ENSO variability by examining the warm water volume comparable to those seen in the ob-
correlations between the SST anomaly Isomap componeri€rvations are rare. The phenomenon of enhanced dwelling
#2 and the warm water volume time series from the mod-in the recharge phase is also not clearly seen in the major-
els. Here, some of the correlations between the Isomapy of the models. The notable exception to this pattern is
SST anomaly component #2 and WWV are somewhat betGFDL-CM2.1, which shows a pattern with a very strong re-
ter than in the raw SST case, but there is still large variabil-S€mblance to that of the observational data.

ity in the correlations, and there is no clear link between In the face of this lack of coherent NINO3/WWV varia-

a high correlation and a “good” ENSO. For instance, thetion, it seems unrealistic to expect Isomap to pick out any
CMIP3 models identified byan Oldenborgh et a(2005 degree of freedom in ENSO variability in most of the models
as having the best ENSO (GFDL-CM2.1, MIROC3.2(hires), that displays any coherence with WWV variations. In this
MIROC3.2(medres), UKMO-HadCM3) have correlations context, it is perhaps notable that the model with the greatest

ranging from 0.012 to 0.665. Again, it seems difficult to draw correlation coefficient between SST anomaly Isomap com-
any clear conclusions from these results. ponent #2 and WWV (0.665) is GFDL-CM2.1 (Tat3p

Scatter plots of the first two Isomap components display One possible reason for the lack of a _clear rela_tio_nship
similar patterns to the principal component scatter plots of?€tween model WWV and NINO3 SST index variations,

Fig. 4, which seems to indicate that the MDS eigenvectorspOif1ted outby a reviewer,.is our choice of methqd for com-
produced by Isomap are nonlinearly related, just as are th@Uting the WWV. Model biases in mean equatorial thermo-

EOFs produced by PCA. We believe that this may be a Sig_cline mean that the 2C isotherm may not be the best mea-

nal of intrinsic curvature in the data manifold. Isomap relies SUre Of thermocline depth, and that an index based on the
on isometric transformations of the data points and is therelocation of the maximum vertical temperature gradient may
fore only able to represent embeddings of intrinsically flat provide a more consistent representation of the thermocline

manifolds. Attempting to project a manifold with non-zero depth.
intrinsic curvature to a lower-dimensional space by an iso-
metric transformation necessarily leads to distortion of the

relationships between points in the manifold. 6 Conclusions

o We have examined the applicability of Isomap to climate

5.3 Model WWV variability data analysis in the context of an inter-model comparison of
ENSO variability. Our analysis indicates that Isomap is able

It is quite possible that the low correlations seen between theéo capture some of the low-dimensional dynamics of ENSO
WWYV and both the rotated Isomap component #4 for the rawvariability in the datasets that we have examined, picking
SST data and Isomap component #2 for the SST anomalyput the gross features in the data. In some cases, notably
data stem not from problems with the Isomap analysis itselffor CCSM3, but also for CGCM3.1(T47), CGCM3.1(T47)
but from deficiencies in the phasing of NINO3 SST index andand MIROC3.2(hires), examination of three-dimensional
WWYV variations in the models. These variations can be charembeddings of the raw SST Isomap results, both visually
acterised by examining plots of the NINO3 SST index time (e.g. Fig.8b) and via correlations between rotated Isomap
series versus the WWYV time series. For the observationscomponent #3 and the NINO3 SST index (TaB)ereveals
there is a relatively well-defined phase relationship betweeran anomalously low dimensionality of modelled ENSO vari-
variations in NINO3 SST and the warm water volume, par- ability, apparently caused by too regular interannual SST
ticularly during El Nilo events. This can be seen in Fid.  variability in the tropical Pacific, leading to aliasing of the
(after Fig. 2 ofKessler 2002, where the monthly observed ENSO signal to the annual cycle. Although this aspect of
NINO3 SST index is plotted versus the observed warm wa-the models can be identified via other analyses, it is en-
ter volume for the period 1980-1999. Large EfNievents, couraging that Isomap is able to detect the anomalous be-
phase locked to occur in boreal winter, are clearly identifiedhaviour without prompting. Less encouraging is the fact that
as loops in the plot, with large excursions to positive NINO3 Isomap is able to capture only these gross features of ENSO
SST index being associated with a corresponding coherentariability in the models. The Isomap results do not show
variation in WWV. Also visible is the “loitering” of the sys- much in the way of variations between models, at least not
tem during the recharge of the warm pool before the begindin an easily interpreted form. They also do not capture the
ning of the next El Niio event, where predictability is gener- sometimes significant differences between modelled and ob-
ally lower (Kessler 2002 McPhaden2003. served ENSO behaviour revealed by a simple comparison of
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model and observational SST EOFs. Calculation of corre-

lations between Isomap results and equatorial Pacific warm —~

water volume (WWYV) time series for both observations and .,,E 2.60 Nov a7

model simulations do not reveal any strong relationship be- ‘o

tween the degrees of freedom found by Isomap and the sec-%

ond degree of freedom of ENSO variability that is generally g 2.40

believed to be represented by variations in WWV. Better re- ‘9

sults from this point of view might be found by performing

an Isomap analysis directly on modelled thermocline depths, § 250

rather than simply trying to correlate WWYV derived fromthe g 19821987

thermocline depths with SST Isomap results, although the @  1992-1993

unrealistic thermocline depth variation in some of the mod- = . . —

els is likely to make this difficult. 200 , z , il
A more subtle illustration of differences between PCA and -1.0 0.0 1.0 2.0 3.0 4.0

Isomap is presented by a comparison of the sensitivity of NINO3 SST index (°C)

Isomap and conventional PCA to small changes in the struc-
ture of tropical Pacific SST variability around the shift in Fig. 11. Phasing of variations in observational NINO3 SST index
ENSO behaviour that occurred in the mid-1976gdorov  (from the ERSST v2 dataset) and equatorial Pacific warm water
and Philander2000 McPhaden et al.2006. If the obser-  volume (derived byMeinen and McPhade2000from sub-surface
vational dataset that we use is split into a pre-1976 com-{emperature data). Each point denotes a single month, ranging from
ponent and a post-1976 component, differences relating tdanuary 1980 to December 1999. (After Fig. Xefsler 2002)
this change in ENSO behaviour are clearly apparent in SST
EOFs, with a shift to stronger El R0 events. However, an
Isomap analysis shows no significant differences in eigendn fact, from this point of view, the sensitivity of Isomap to
value spectra between the pre-1976 and post-1976 data (dat@e neighbourhood size is a clear disadvantage, since com-
not shown). We speculate that this difference in sensitiv-putational requirements generally restrict us to choosing a
ity between PCA and Isomap is due to the fact that the or-particular value ofk or ¢ for our analyses, and there is no
thogonal transformations associated with PCA, being mored priori reason to select one value over another. The situa-
geometrically “rigid” than the isometric transformations of tion for NLPCA is somewhat more complex than for Isomap,
Isomap, are less able to conform to subtle changes in th&ince there are a larger number of parameters involved: not
data manifold, thus highlighting these relatively small dif- only is there a choice of the exact structure of the network
ferences. to be used (number of bottleneck nodes, special architectures
Although in some senses Isomap is a rather blunt tool, itfor the bottleneck layer, number of nodes in hidden layers),
appears that it may be useful for exploratory data analysisbut there are parameter choices involved in the protocol used
particularly if there is reason to believe that the data in questo train the network without overfitting.
tion really is nonlinear and not too high-dimensional. In such  Second, results from Isomap are not easy to interpret if the
cases, Isomap may serve a purpose alongside more convennderlying data manifold has a dimensionality higher than
tional techniques. two or three. One example is an attempt to apply Isomap to
There are four further issues with the Isomap algorithmmid-latitude tropospheric variability. Here, an Isomap anal-
that deserve comment, and that can provide a basis for comysis was performed for a monthly time series of 500 hPa
parison between Isomap and the NLPCA methbidi¢h geopotential height in the Atlantic sector. Isomidp sensi-
20049. First is the question of the sensitivity of the results of tivity studies (not shown) indicate a dimensionality of around
the nonlinear dimensionality reduction techniques to choices$ for the underlying data manifold. For manifolds of such
of parameters in the algorithms used. For Isomap, this meankigh dimensionality, it is not possible to visualise the Isomap
variations in thek or ¢ neighbourhood size parameter. The embeddings as we have done here for ENSO variability.
possibility of varying this parameter can be viewed as an ad-Two- or three-dimensional projections are not sufficient to
vantage, since it provides a mechanism to probe differentunfold” the variability in the data, and the data points appear
length scales in the data in a way that has no analogue ilas an amorphous cloud of points. This situation also arises
PCA. How useful this is depends on the complexity of the with PCA, if the eigenvalue spectrum converges slowly and
dataset: for the simple Swiss roll data, a two-dimensionalmany EOFs are required to explain a sufficient fraction of
manifold embedded ifR3, variation ink or ¢ probes the the data variance, but the linearity of PCA provides a partial
structure of the data quite successfully. For the more complexsolution. Linearity permits us to take single modes, EOFs,
ENSO datasets, it is not at all clear what sort of structures arand treat them independently, one at a time. No such de-
being probed as the neighbourhood size is varied, and there momposition is possible for Isomap. This problem is not an
little consistency between the results from different models.inherent limitation of all nonlinear dimensionality reduction
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techniques. For instance, NLPCA permits advance selectiolknow, there are no corresponding results for Isomap, or in-
of the dimensionality to which the input data is to be reduced.deed any other nonlinear dimensionality reduction technique.
Choosing a one-dimensional reduction gives the best nonlinThere have been applications of Isomap to simple dynamical
ear fit of a one-dimensional function to the input data, in- systems, where features observed in the Isomap results can
dependent of the true dimensionality of the underlying databe related to the dynamics of the systéBolft, 2007), but no
manifold, which the method makes no direct effort to ascer-such studies exist for larger systems approaching the com-
tain. This approach allows for a “modal” analysis of the data, plexity of current climate models. Another approach to gain-
where nonlinear modes are stripped out of the input data onéng analytical understanding is to explicitly construct data
at a time. This type of analysis is not possible using Isomapmanifolds that can be exactly embedded by Isonzynoho
because there is no way to control the dimensionality of theand Grimeg2005 did this for an analytic representation of
data reduction. simple black-and-white images and developed several useful

The third issue is shared with other nonlinear dimension-criteria for recognising classes of images whose data man-
ality reduction methods and is that it is generally difficult to ifolds could be treated exactly by Isomap. It is not clear
produce plots showing spatial patterns of variability for non- whether a similar approach to dimensionality reduction of
linear dimensionality reduction in the way that is done for dynamical systems would be fruitful.
PCA, where map plots of the leading EOFs are an impor- Isomap is one of a large range of nonlinear dimensional-
tant analytical tool. Such maps can be produced for PCAity reduction techniques that have been developed in recent
because real-valued EOFs essentially represent standing ogears (e.g.Roweis and Say200Q Belkin and Niyogj 2003
cillations in the data, so a snapshot at any point in the osDonoho and Grime2003 Weinberger and Sau2006 Lin
cillation from a positive pattern to a negative pattern recordset al, 2006. There is little a priori reason to choose one
all the information about the spatial variability in the mode. method over another for the analysis of any particular prob-
For nonlinear methods, more general temporal variability islem. For all of these methods, in order to assess which might
possible, and generally one needs to provide a set of spase applicable in the analysis of climate data, it would be use-
tial patterns corresponding to selected points on the reduceflil to have both the type of theoretical results mentioned
data manifold. Monahan(2001) and Hsieh (2004 demon-  above, and comparative studies applying the various meth-
strate this approach for one-dimensional reduced manifoldseds to real problems. The results reported here are just one
but for two-dimensional or larger manifolds, the number of example, using one of the older, better-tested nonlinear di-
spatial patterns needed becomes prohibitive. mensionality reduction techniques.

The fourth point to note has been mentioned earlier when
discussing the Isomap Pacific SST results, and this is the
question of just what data manifolds a particular dime”SiO”'Appendix A Rotation of Isomap components
ality reduction technique is capable of representing. As noted
above, Isomap relies on a global isometric transformation OfAs described in Sec6.1, interpretation of three- and four-

the original data space to derive a reduced Euclidean repregimensional embeddings of raw SST Isomap results is clar-
;entathn, meaning that only data man!folds that are globallyfieq by rotating the components of the embeddings to sepa-
isometric to Euclidean space can be faithfully represented byaye the influence of annual variations (represented by rotated
a reduced representation derived from Isomap. For NLPCAisomap components #1 and #2) from the record of ENSO
the manifolds representable by the reduced representatloq;ariabi”ty (as represented by rotated Isomap components #3
depend on the structure of the bottleneck layer in the neural,q #4) "1 this appendix, we explain the details of this rota-

network. For a single bottleneck neuron, NLPCA can faith- o hrocedure, first for the three-dimensional case, then for
fully represent any open one-dimensional curve, for a “circu-tha more complex four-dimensional case.

lar” bottleneck layer (two neurons, with values constrained

to lie on the unit circle), closed one-dimensional curves cany;  Three-dimensional case

be represented faithfully, for two bottleneck neurons, general

open two-dimens_ionall surface; can be represented, and Ponsider a three-dimensional Isomap embedding of a
on. The complexity of interpreting the results of NLPCA in- monthly time series oN data items, resulting in a time se-
creases quickly with the number of neurons in the bottleneck o ¢ 3-vectorsy;, i=1 N, with components calcu-

X TRy e ey ’

layer. lated from Eq. {) of Sect.4.1.2 Assuming that the time

The essential problem with nonlinear methods such aeries covers a whole number of years, so thas a multi-

Isomap is that there exist few theoretical results underpinningb|e of 12, then the mean annual cycle for the embedding can
the numerical algorithms. For PCA, there are results identi—be define;d a§;, j=1 12 where
]1 Ty e ey )

fying EOFs for at least some systems with normal modes
of the system forced by random noiddofth, 1984). These

findings tie the numerical results of PCA directly to dynam- - _ 1
ical characteristics of the system under study. As faraswe ’/ N/12

N/12-1
Yi2i+j-
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In general, the point§; of the mean annual cycle will not Normal to best_fit plane(h) App_rotximate IotCL:sdof
L . . . . . t-tit

lie in a single plane and, in particular, will not lie in tey ormalto bestiit planein p}”efn'geﬁzﬁzg“
coordinate plane. This means that each of the three compo-

'
>< ‘ s
nents of they; will vary over the course of the annual cy- “g“'

NS — q ~of "ENSO" variation
cle, i.e. annual variability is “mixed into” each of the three ‘VA‘_\$
components, even though only two Cartesian coordinates are ‘v ‘“‘“\ Approximate
strictly needed to represent the periodic annual variation. ‘ “\ sense of
: : __ ‘ | variat
In order to “unmix” the annual cycle from the third nnua vaneen

N

Approximate sense

z

Isomap component, we may rotate the whole of the three- A
dimensional Isomap embedding to bring the mean annual cy- Mean ahnual cycle
cle into thex-y coordinate plane, the hope then being that X Best-fit plane to

variations in the rotated Isomap component orthogonal to the mean annual cycle

x-y plane, i.e. variations along theaxis, will represent in-

terannual variability, specifically ENSO variability. As noted Fig. AL. Geometry of 3-D Isomap component rotation. The over-

L . all view is of an unrotated 3-D Isomap embedding. The thick red
f’:lbove, the mean annual _Cycle_ pomrtjsdo r_\ot gene_rally lie curve shows the mean annual cycle, the blue grid shows the best-
in a plane, but we may identify a best-fit plane in a least-f pjane to the mean annual cycle and the black arrow the normal
squares sense, and rotate this into.the plane. Although g this plane, which we seek to rotate into the direction of the
not perfect, this will lead to the most effective unmixing of coordinate axis. Also illustrated is the approximate locus of points
annual variability from Isomap component #3. Figusg in the unrotated Isomap embedding (cf. R8g, for instance) and
provides a schematic illustration of some of the details of thethe approximate directions of annual (about the cylindrical locus)
arrangement to complement the description here. and ENSO variability (along the axis of the cylinder, orthogonal to
We write the equation of the best-fit planera8=d, with ~ the annual variation).
r=xi+yj+zk being the vector position of a point in the

plane, using the usual notation for the unit vectors in the’" *" e o
Cartesian component directiorissli +m j+nk being aunit %/l x k|, and the angle of rotation #=cos (@ - k) —
this rotation will taken into k by rotating about a direction

normal to the plane, and being the distance of the plane - ) :
from the origin. The equation of the plane then becomesP'thogonal to boti andk. Some simple algebra yields ex-

Ix-+my-+nz=d, which can be written as=(d—lx—my)/n pressions for the individual rotated components:

In the case here, we define a suitable rotation axis=ams x

orz=a — Bx — yy, witha=d/n, B=Il/n, y=m/n. A least- , mx —ly
squares fit of this model to the mean annual cycle pgipts ~ * ="~ lz+ T+a "
allows us to determine values fer g8 andy . A little analysis ) mx — ly
shows that this corresponds to solving the equations y =ny—mz— Wl’

12 -8, =S, o 7 =nz+my+Ix.

Sz
Sx =Sxx =Sy | | B | = | Sxz Note that the rotation determined by Rodrigues’ formula
Sy =Sxy =Syy) \¥ Syz is not unique. There remains an arbitrary phase to the an-
nual cycle associated with rotations about thaxis. For
our purposes, this non-uniqueness is of no consequence — all
we require is some rotation that will, as far as possible, un-
mix variations associated with the annual cycle from Isomap
component #3 to reveal the interannual variability.

To see that the procedure we describe does indeed achieve
this goal, see FigA2, where we display power spectra for
Isomap components #1-#3 follsomap resultsk=7) using
the ERSST v2 observational SST dataset. Fig\ite shows
and/=pBn, m=yn, d=an, and can then construct the unit spectra for the raw Isomap components as calculated using
normal to the best-fit plandi=li+m j+nk. We now wish  EQ. (1) of Sect4.1.2 Here, there is a strong component at the
to find a rotation takingi into k (the unit vector in the-  annual frequency in all three components. Fighieé shows
direction), thus rotating the best-fit plane into the plane. ~ spectra for the rotated Isomap components. The suppression

The required rotation may be determined using Rodrigues©f the annual signal in the spectrum of rotated Isomap com-

rotation formula, which states that the result of rotating a vec-Ponent #3 is clear. Along with the high correlation between
tor v through an angl@ about the axis defined by another the rotated Isomap component #3 and the NINO3 SST index,

for @, B andy, where theS, values are sums of components
ofthey;, i.e.Sy, Sy, S; are the sums of the, y andz com-
ponents,S,,, Sy, are the sums of the squaredandy com-
ponents and,, S, andS,, are the sums of the appropriate
component products.

Given the valueg, 8 andy, we can calculate

n=1+p*+y> Y2

vectoru is this indicates that the Isomap algorithm successfully sepa-
rates the annual cycle and ENSO variability out of the origi-
v =vCcosh +u x vsind + u(u - v)(1 — cosh). nal SST field.
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(a) 10* 3 representing an element of SO(3), i.e.

Component #1

] Component #2
1 03 E Component #3

mi1 mip mi3
M = | mo1 mpp mo3
m31 m3p m33

Power

with MTM=I and detM =1, then we can construct inclusion
maps from SO(3) into SO(4) as

m11 miz miz 0 mi1miz2 0 mi3
| mo1mopmp30 | mo1m22 0 mog
o M3 = g maamaz0 | 319Ma=["9" 0" 1 0
03 05 07 1 2 3 4 567 0 0 01 m3y m3z 0 ms3
©) 10° - Period (years) These four-dimensional rotations represent rotations in
] Gomponent #2 the three-dimensional spaces spanned{dy e. es} and
10° 4 Component #3 {e1, e, e4} respectively.
. ] ‘ Secondly, since rotations by 3 do not affect thee, com-
10 ﬁ ponent of any points and rotations by do not affect thes
5 10" - ‘ components, we can compose rotations of these two types
H to unmix the annual variability from Isomap components
o 10° 3 #3 and #4 independently. Our approach is thus to use the
1o three-dimensional rotation procedure described in SEtt.
ST = for each of Isomap components #3 and #4 in turn, so as to
10% 3 unmix annual variability from both of these components.
, 3 There is a caveat that should be applied to this procedure.
10 T T T T T T T T

As in the three-dimensional case, the rotations we use to un-
mix the annual variability from Isomap components #3 and
#4 are not unique, and there is still a phase ambiguity present
in both of the rotated components. Specifically, rotations
leaving theei1—e> plane invariant will not affect the unmix-
Fig. A2. Power spectra for Isomap components #1—3 from a rawing of the annual variability from the rotated Isomap compo-

SSTk-Isomap analysis of the ERSST v2 observational SST datasethents. Such rotations, represented by rotation matrices of the
showing the original Isomap outp(g) and the rotated components 5,

(b).

g
o
o -
~N -

0.3 05 07 1 2 3
Period (years)

10 O 0
M/ — 01 O 0
_ _ “|100cosp —sing
A2 Four-dimensional case 00 sing cosg

where¢ is the rotation angle, do not alter the relationship

Igr?ﬂ;'%itr'gnc;?;;ﬁ:;;gémﬁ]gﬂot?]ael ;Tet:aeg?rhngssign:\:gggls_ebetween the rotated components #3 and #4 and the annual
- i tycl ts (#1 #2), but th lter the relati
This is due both to the more complex structure of the four-CyC e components (1 and #2), but they do alter the relative

) . . hasing between the rotated components #3 and #4. In prac-
dimensional rotation group, SO(4), C(_)mp_are(_j_to 8.0(3)’ an(ﬁce, what this means is that, if one wishes to identify rotated
to the absence of any easy geometrical intuition in four di-

mensions Isomap components #3 an_d #4 as the “l\_lINOS" and “Wwv”
' components of ENSO variability, there is no guarantee that
However, for the purposes of unmixing annual cycle vari- either of the rotated components is purely one form of ENSO
ations from components #3 and #4 of a four-dimensionalvariability or the other. This makes interpretation of the cor-
Isomap embedding, there are two observations that simrelation results rather difficult. We have explored a number
plify matters considerably. (In the following, we denote the of approaches to unmixing the variability of these different
unit vectors in the coordinate directions for four-dimensional degrees of freedom in this context, but there does not ap-
Euclidean space byes, e, e3, e4).) The first observation pear to be an easy a priori way to determine the arpgie
is that any three-dimensional rotation is also a valid four-completely unmix the components. One possibility would
dimensional rotation, i.e. there are proper subgroups obe to rotate so as to maximise the correlations between ro-
SO(4) that are isomorphic to SO(3). If we have a malix tated Isomap component #3 and the NINO3 SST index and
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between rotated Isomap component #4 and the WWYV time J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna,
series, but this seems to be a rather unsatisfactorily ad hoc D. S., Santer, B. D., and Smith, R. D.: The Community Climate
approach. These difficulties clearly have some bearing on System Model version 3 (CCSM3), J. Climate, 19, 2122-2143,

interpretation of the results on correlations between the ro- 2006.

tated component #4 and WWYV reported in SécL
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