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Abstract. A set of evolution equations is derived for the
modal coefficients in a weakly nonlinear nonhydrostatic
internal-tide generation problem. The equations allow for the
presence of large-amplitude topography, e.g. a continental
slope, which is formally assumed to have a length scale much
larger than that of the internal tide. However, comparison
with results from more sophisticated numerical models show
that this restriction can in practice be relaxed. It is shown that
a topographically induced coupling between modes occurs
that is distinct from nonlinear coupling. Nonlinear effects in-
clude the generation of higher harmonics by reflection from
boundaries, i.e. steeper tidal beams at frequencies that are
multiples of the basic tidal frequency. With a seasonal ther-
mocline included, the model is capable of reproducing the
phenomenon of local generation of internal solitary waves
by a tidal beam impinging on the seasonal thermocline.

1 Introduction

In the central Bay of Biscay, internal solitary waves (ISWs)
have been observed that are generated by an upward propa-
gating internal tidal beam as it meets the seasonal thermo-
cline (New and Pingree, 1990, 1992; New and Da Silva,
2002). This local generation of ISWs was studied theoret-
ically and numerically byGerkema(2001), who showed that
it involves two steps. First, the impinging beam generates a
depression of the thermocline – an essentially linear process.
This depression then propagates away, steepens, and splits up
into solitary waves; in these later stages, both nonlinear and
nonhydrostatic effects are essential. It was moreover shown
that this local generation occurs only if the seasonal thermo-
cline is of moderate strength.
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Although the essential ingredients of the process thus seem
to have been clarified, we should emphasize the idealized
setting of the study byGerkema(2001), as it involves a
schematic stratification (a mixed layer, an interface repre-
senting the thermocline, and a layer of constant stratifica-
tion beneath it), and infinitesimal topography. In reality,
of course, the stratification varies throughout the water col-
umn, and, more importantly, the internal tidal beams are
generated over the continental slope, in other words, over
large-amplitude topography. In principle, all these elements
could be included in fully nonlinear nonhydrostatic numer-
ical models, such as employed in other contexts byLamb
(1994), Vlasenko and Morozov(1993), or the MIT-model
(e.g.Khatiwala, 2003). These models are however compu-
tationally demanding, and technical problems like numeri-
cal instabilities may occur when one attempts to include a
seasonal thermocline. By contrast, weakly nonhydrostatic
models – such us the Korteweg-de Vries equation (see, e.g.,
Helfrich and Melville, 2006) or extensions thereof involv-
ing internal-tide generation – can be solved numerically in
an efficient way. However, they are based on separation of
variables and decomposition into vertical modes, and hence
require small (infinitesimal, strictly) topography.

In this paper we present a way to circumvent this prob-
lem: we apply vertical modes despite the presence of large-
amplitude topography. We are able to do so by assuming that
the horizontal scale of topography is much larger than the
(horizontal) wavelength of the internal tide. In a perturbative
approach, we thus find at the lowest order that topography
enters the problem merely in a parametric way, whereas at
the next order, interaction (i.e. exchange of energy) between
the modes occurs over topography, even if nonlinear terms
were neglected. At this same order, the other supposedly
weak effects appear (nonlinearity, nonhydrostaticity).

It may seem as if the assumption on the lengthscale of to-
pography poses a severe restriction on the range of applica-
tions of this model; indeed, in the ocean it is typically of the
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same order as the wavelength of the internal tide, instead of
being much larger. However, it is not unusual to find in stud-
ies using WKB-type approximations that the formal restric-
tion can in practice be relaxed, even to the point where the
“small parameter” comes close to one (examples are given in
Bender and Orszag, 1978). This will be confirmed here by
comparisons with fully numerical models involving no such
restriction (Sect. 3b). The resulting set of model equations
allows us to study, in a fairly realistic setting, the generation
of higher harmonics (Sect. 4a), and the local generation of
ISWs (Sect. 4b). The latter process has not been previously
modelled in such a realistic setting.

2 Derivation of a weakly nonlinear nonhydrostatic
model

In this section we outline the derivation of the model equa-
tions. We consider uniformity in one of the horizontal direc-
tions, i.e.∂/∂y=0. On thef -plane, the momentum equations
then read

ut + uux + wuz − f v = −px (1)

vt + uvx + wvz + f u = 0 (2)

wt + uwx + wwz = −pz − ρg/ρ∗ (3)

whereu, v,w are the velocity components in thex, y, z di-
rections,ρ density,ρ∗ a constant reference value of density,
andp pressure (divided byρ∗). Here the Boussinesq approx-
imation is applied. These equations are to be supplemented
by the equations expressing mass and energy conservation,
which under the assumptions of incompressibility and adia-
batic motion become, respectively,

ux + wz = 0 (4)

ρt + uρx + wρz = 0 . (5)

The momentum Eq. (1) and (3) can be combined into an
equation for the streamfunctionψ , with u=ψz andw=−ψx ,

∇
2ψt + J (∇2ψ,ψ)− f vz + bx = 0 , (6)

where b=−g(ρ−ρ0)/ρ∗ denotes buoyancy,ρ0(z) being
the static density field. The JacobianJ is defined as
J (p, q)=pxqz−pzqx . In terms ofψ andb, (2) and (5) be-
come

vt + J (v, ψ)+ fψz = 0 (7)

bt + J (b, ψ)−N2ψx = 0 , (8)

whereN2
=−(g/ρ∗)dρ0/dz is the buoyancy frequency, a

measure of the background stratification. The set (6)–(8)
forms the starting point for further analysis. As yet, the equa-
tions describe the full, i.e. barotropic plus baroclinic, fields.

We impose a barotropic forcing in the simple form of a time-
oscillating but horizontally uniform flux, by using the fol-
lowing boundary conditions:

ψ = 0 atz = 0 (surface)

ψ = Q sin(ωt) at z = h(x) (bottom), (9)

whereQ is the amplitude of the barotropic flux, andω the
tidal frequency. FollowingGarrett and Gerkema(2007), we
make the transformation

ψ = 90 + ψ ′ , with 90 =
z

h(x)
Q sin(ωt) .

With this, (6)–(8) become

∇
2ψ ′

t + U∇
2ψ ′

x + J (∇2ψ ′, ψ ′)− f v′
z + bx = S1 (10)

v′
t + Uv′

x + J (v′, ψ ′)+ fψ ′
z = S2 (11)

bt + Ubx + J (b, ψ ′)−N2ψ ′
x = −N2W + S3, (12)

where we introducedU=90,z andW=−90,x , which we will
loosely refer to as “barotropic”, the primed fieldψ ′ being
“baroclinic”. This interpretation is correct in the absence of
topography, but over the slopeψ ′ actually contains a non-
hydrostatic correction to the barotropic field, as pointed out
by Garrett and Gerkema(2007). The transverse velocityv is
also split, asv=V+v′, with Vt=−fU . The buoyancy field
b, on the other hand, is retained in its full form. On the right-
hand sides, we find the termsS1,2,3, which stand for

S1 = Wxt −W∇
2ψ ′

z + (U + ψ ′
z)Wxx − (W − ψ ′

x)Uxx (13)

S2 = −Wv′
z − (U + ψ ′

z)Vx (14)

S3 = −Wbz . (15)

Note that each term contains a barotropic field. In later sec-
tions, we show thatS1,2,3 can be neglected under the assump-
tions that we will adopt. The barotropic effects explicitly
included in (10)–(12), which cannot be neglected, are the ad-
vective termsU(·)x , and, most important of all, the body-
force term on the right-hand side of (12): −N2W ; this is the
generator of internal tides.

The boundary conditions (9) are now to be replaced by

ψ ′
= 0 atz = 0 (surface);

ψ ′
= 0 atz = h(x) (bottom). (16)

Hereafter we drop the primes.

2.1 Scaling and first approximations

We cast the equations in dimensionless form by introducing
the following scalings:

[t] = ω−1
; [x] = L ; [z, h] = H ;

[U ] =
Q

H
; [W ] =

Q

L
;

[ψ] = Q; [v] =
fQ

ωH
; [b] =

QωL

H 2
.
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HereH is a typical deep-ocean depth, andL the lengthscale
of the internal tide. (The scale ofb follows from assuming
a primary balance betweenψzzt andbx in (10).) With this,
(10)–(12) become

∇
2ψt + γU∇

2ψx + γ J (∇2ψ,ψ)− µvz + bx = S1 (17)

vt + γUvx + γ J (v, ψ)+ ψz = S2 (18)

bt + γUbx + γ J (b, ψ)−N2
s ψx = −N2

sW + S3 , (19)

where we use the same symbols, for convenience, which now
denote dimensionless quantities. To avoid confusion, how-
ever, we have introduced a new symbolNs=HN/(Lω). The
operator∇ now stands for

∇
2

= δ
∂2

∂x2
+
∂2

∂z2
.

Three parameters appear, being a measure of the strength of
nonlinearity, nonhydrostaticity, and Coriolis effects, respec-
tively:

γ =
Q

HLω
; δ =

(H
L

)2
; µ =

(f
ω

)2
. (20)

In line with KdV-type equations, we will assume nonlinear
and nonhydrostatic effects to be weak, and of the same order
of magnitude:

γ = O(δ) � 1 .

Hereafter we will neglect all terms of orderγ δ; in the non-
linear terms on the left-hand side of (17) we can thus replace
∇

2ψ with ψzz, since the other term is of orderγ δ. At this
stage, we do not make any assumption onµ.

2.2 Slowly varying topography

The crux of this derivation lies in the assumption that the
topography varies slowly with respect to the horizontal scale
of the internal tide. Thus, we introduce a “slow” horizontal
coordinateX=εx, with

ε =
internal-tide length scale

topographic length scale
� 1 . (21)

This coordinateX is used as an independent variable in its
own right, along withx. Specifically, it acts as the indepen-
dent variable inh(X), and in the barotropic fieldsU andW ,
whose only horizontal dependence is onX. Other fields, like
ψ , depend on both “slow” and “normal” horizontal coordi-
nates (X, x, respectively). Correspondingly, derivatives inx
now take the form

∂

∂x
→

∂

∂x
+ ε

∂

∂X
.

We will furthermore assume thatε is of the same order asγ
(andδ); thus, in line with earlier assumptions, we can neglect
terms of orderε2, or smaller.

It is now clear that the expressionsS1,2,3, given in un-
scaled form in (13)–(15), can be neglected in their entirety.

The first term on the right-hand side of (13) containsWx ,
which equals, in terms of the slow coordinate,−ε290,XX,
and hence is negligible. All the remaining terms in (13)–
(15) are nonlinear terms and thus have the small parameter
γ . Moreover, each of them contains a derivative inX (via
W , Uxx , or Vx), which produces an additional factorε. All
in all, they are of orderO(γ ε), or smaller, and hence negli-
gible.

Moreover, in the nonlinear and nonhydrostatic terms on
the left-hand sides of (17)–(19), which are by themselves al-
ready of orderγ , derivativesε∂/∂X can be ignored since
they produce terms of orderγ ε. The resulting equations thus
become

δψxxt + ψzzt + γUψzzx+

γ J (ψzz, ψ)− µvz + bx + εbX = 0 (22)

vt + γUvx + γ J (v, ψ)+ ψz = 0 (23)

bt + γUbx + γ J (b, ψ)−

N2
s (ψx + εψX) = −εN2

s

z

h2
hX sint , (24)

whereJ stands forJ (p, q)=pxqz−pzqx and involves no
derivative inX, for the abovementioned reason.

2.3 Transformation to terrain following coordinates

We now transform the vertical such that the bottom becomes
purely horizontal in the new coordinate system:

η = −
z

h(X)
.

So, while the surface remains atη=0, the bottom now lies
at η=−1. Correspondingly, we introduce new variables, for
example

9(t, x,X, η(X, z)) = ψ(t, x,X, z) ,

andv andb are similarly replaced by the new variables3
andB. In replacing the derivatives inX andz, we have to
apply the chain rule, so

ψX = 9X + β9η ; ψz = α9η ,

where

α = ηz = −
1

h
; β = ηX = −

η

h
hX .

Note that theNs(z) now depends on both horizontal and ver-
tical coordinates, since in the new coordinates it becomes
Ns(−ηh(X)). With this transformation, (22)–(24) become

δ9xxt + α2(9ηηt + γU9ηηx)+

γα2J (9ηη, 9)− µα3η + Bx + ε[BX + βBη] = 0 (25)

3t + γU3x + γ J (3,9)+ α9η = 0 (26)

Bt + γUBx + γ J (B,9)−N2
s (9x+

ε[9X + β9η]) = −εN2
s β sint . (27)

The Jacobian is now defined asJ (p, q)=α(pxqη−pηqx).
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2.4 Vertical modes

At lowest order, we neglect all terms of orderε in (25)–(27),
i.e. terms involvingγ, δ or ε; this removes all the nonlinear
and nonhydrostatic terms, as well as the barotropic forcing:

α29ηηt − µα3η + Bx = 0 (28)

3t + α9η = 0 (29)

Bt −N2
s 9x = 0 . (30)

Here the “slowly varying” topographic coordinateX enters
the problem only viaα=−1/h(X) andNs , and acts at this
order merely as aparameter, since there are no derivatives
in X. Reducing the set to an equation for9 and assuming
9=φ(η,X)expi(kx−t) gives

∂2φ

∂η2
+

k2N2
s

α2(1 − µ)
φ = 0 . (31)

Herek is a dimensionless wavenumber, depending paramet-
rically on X. Together with the boundary conditionsφ=0
at η=−1,0, this poses a Sturm-Liouville problem, whose
solutions are given by orthogonal functionsφn(η,X) with
eigenvalueskn. The structure of the eigenfunctions varies
parametrically withX. Furthermore, the usual othogonality
properties hold, i.e. forn6=m∫ 0

−1
dηN2

s φnφm = 0 . (32)

For later usage, we definecn=(1−µ)1/2/kn, a dimensionless
quantity, which in the rotationless case (µ=0) can be inter-
preted as the phase speed. Viakn, cn depends onX, as one
would expect since the phase speed depends on the local wa-
terdepth and thus must vary with the topographic coordinate
X.

2.5 Resulting model equations

We now reduce the higher-order set (25)–(27) by means of
an expansion in the orthogonal eigenfunctionsφn; thus, we
write9, B and3 as

9(t, x,X, η) =

nmax∑
n=1

an(t, x,X)φn(η,X) (33)

3(t, x,X, η) =

nmax∑
n=1

vn(t, x,X)φn,η(η,X) (34)

B(t, x,X, η) = N2
s (−ηh(X))

nmax∑
n=1

bn(t, x,X)φn(η,X) . (35)

Since the resulting equations will be solved numerically, we
anticipate a truncation at a certain modenumbernmax. Notice
thatB is developed in terms ofφn and hence vanishes at the
bottom; this is in line with the assumption of a slowly vary-
ing topography. Over steep slopes, of course, a vanishingB

would become unphysical; still, as we show in the following

sections, the outcome of the model equations is overall satis-
factory even in situations that mildly violate the restrictions
imposed by the underlying assumptions.

We substitute (33)–(35) into (25)–(27), and multiply them
by φk, φk,η andφk, respectively. Next we take the vertical
integral and use the orthogonality properties of the modes.1

This results in a set of coupled equations for the baroclinic
modal coefficientsak, vk and bk, representing the stream-
function, transverse velocity, and buoyancy, respectively:

ak,t + γUak,x − δc2
k

∑
n

Lnkan,xxt

+γαc2
k

∑
n,m

an,xam

{( 1

c2
n

−
1

c2
m

)
Mmnk −

Nmnk

c2
m

}
−
µ

α
vk−c

2
k[bk,x+εbk,X]−εc2

k

∑
n

bn(Rnk+Tnk)=0 (36)

vk,t + γUvk,x + γαc2
k

∑
n,m

amvn,x

(Mnmk

c2
m

+
Mmnk

c2
n

)
(37)

−γαc2
k

∑
n,m

an,xvm

(Nmnk+Mnmk+Mmnk

c2
m

)
+αak=0 (38)

bk,t + γUbk,x

+γα
∑
n,m

{
(ambn,x − an,xbm)Mmnk − an,xbmNmnk

}
−[ak,x + εak,X] − ε

∑
n

an(Rnk + Tnk) = −εDk sint . (39)

The coefficients denoted by capitals (Lnk etc.) stand for in-
tegral expressions, and are given in the appendix; note that
they all depend on the topographic coordinateX.

One final simplification is to be made. In (36), the non-
hydrostatic term (i.e. the term withδ) provides a coupling
between modes. This is an undesirable effect, both from
a physical and a numerical point of view (the set is solved
much more efficiently if the coupling is absent). The un-
derlying reason for the presence of this mode-coupling is as
follows. We are using the modes derived from the hydro-
static limit (Sect. 2.4). Conveniently, in that case the vertical
structure of the modes shows no dependence on the wave fre-
quency. However, as we enter the nonhydrostatic regime, as
in (36), a dependence on the wave frequency arises, leading
to a modification of the modal structure, and this is precisely
what the mode-coupling accomplishes. Note also that in the
special case of constant stratification (Ns=const), the verti-
cal structure never depends on the wave frequency, not even
in the non-hydrostatic case; this is confirmed by the fact that
Lnk vanishes forn6=k if Ns=const. For generalNs , the cou-
pling terms can be removed by introducing explicitly a non-
hydrostatic correction to the modesφn. This procedure was
discussed in Appendix C ofGerkema(2001) and will not be

1Note that derivatives ofNs cancel when (35) is substituted into
(25), since substitution in the termsBX+βBη yields the combi-
nation(N2

s )X+β(N2
s )η, which is zero because of the dependence

Ns(−ηh) and the definition ofβ.
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R. Mauǵe and T. Gerkema: Internal tides over large topography 237

repeated here. However, in the presence of Coriolis effects,
the correction is not straightforward, and one actually needs
to neglect terms of orderδµ to solve the problem (the state-
ment of the contrary inGerkema(2001), namely that these
terms would cancel automatically, is erroneous.) This for-
mally necessitates assumingµ to be small as well. At the
same time it is clear that (36) and (37) still contain the two
Coriolis terms that were originally present in (6) and (7), so
in that sense no approximation has been made.

Neglecting, then,Lnk for n 6=k, we arrive at the set of equa-
tions used hereafter; they contain the following effects:

– the forcing by the barotropic tidal flow over topography,
represented by the term on the right-hand side of (39);

– barotropic advection, represented byUak,x , and simi-
larly for vk andbk;

– Coriolis effects; our assumption∂/∂y=0 implies thatv
is present merely as a result of Coriolis effects, and (37)
would get decoupled from the rest if we takeµ=0;

– coupling terms due totopography, i.e. the terms withR
andT ;

– coupling terms due tononlinear interaction, i.e. the
terms involvingM andN ;

– nonhydrostatic effects, represented by the term withLkk
in (36).

Note that we did not impose any restriction on theheight
of the topography, so (36)–(39) can be used to model the
generation of internal tides over the continental slope (exam-
ples are shown in the following sections). We have thus re-
laxed the assumption on (small) topography used inGerkema
(2001); still, the set of equations is just as easy to solve nu-
merically, although there are of course some extra terms (to-
pographic mode coupling, barotropic advection, horizontally
varying coefficientsα andck).

The set (36)–(39) is solved numerically using 4th-order
centered differences inx and 3rd-order Adams-Bashforth in
time (Durran, 1999); the presence of the nonhydrostatic term
(with Lkk) leads to a tridiagonal matrix which is solved with
the Thomas algorithm. We use a 4th-order spatial biharmonic
filter to prevent instabilities on the grid scale. At the hor-
izontal outer ends of the domain, we use sponge layers by
including Rayleigh friction, whose thickness is 150 km and
50 km over the plain and the shelf, respectively (except in
Sect. 3.1, where no sponge layers are used; here the domain
was chosen large enough for the waves never to arrive at the
boundaries). This suffices to absorb the incoming baroclinic
waves and avoid reflection from the horizontal boundaries.
The number of modes is specified below for each experiment,
but we typically use between 10 and 30 modes. The numer-
ical experiments show that the amplitude converges rapidly
(the lowest modes being the most energetic), so that the beam

is already well represented if one uses ten modes. We always
start from a system at rest.

To facilitate the interpretation of the results in the oceano-
graphic context, they will be presented in the figures in di-
mensional form, with the original horizontal coordinate be-
ing restored.

3 Solutions for linear hydrostatic case

We first look into the coupling between modes due to to-
pography, and momentarily ignore the complicating factors
of nonlinearity, nonhydrostaticity, and barotropic advection;
thus we takeγ=δ=0, and (36)–(39) become

ak,t−
µ

α
vk

−c2
k[bk,x + εbk,X]−εc2

k

∑
n

bn(Rnk+Tnk)=0 (40)

vk,t + αak = 0 (41)

bk,t

−[ak,x + εak,X] − ε
∑
n

an(Rnk + Tnk) = −εDk sint . (42)

Despite the linear nature of this set, there are still terms rep-
resenting mode-mode coupling, namely those withR andT ;
they are due totopography. They reflect the fact that separa-
tion of horizontal and vertical variables fails over the slope,
implying that vertical modes cannot be regarded as mutually
independent.

3.1 Inter-modal exchange of energy

In these experiments, we illustrate how topographically in-
duced coupling engenders a transfer of energy between
modes in a freely propagating depression that passes a
seamount, given by a gaussian profile. Here we ignore the
forcing term on the right-hand side of (42). The topogra-
phy is supercritical and the stratification is taken constant.
We first need to derive the expression of energy-density in
terms of the modal coefficients; it can be obtained by return-
ing to the original, scaled set (17)–(19), ignoring nonlinear
and nonhydrostatic terms, and barotropic fields. After multi-
plication by−ψ , µv andb/N2

s , respectively, adding up the
resulting equations, and integrating over the vertical, we ob-
tain the (dimensionless) energy equation

1

2

∫
dz

{
(ψz)

2
+ µv2

+ b2/N2
s

}
t
−

∫
dz(bψ)x = 0 . (43)

(Here we used the fact thatψ vanishes at the boundaries.)
This implies that the expression for energy density is

E =
1

2

∫
dz

{
(ψz)

2
+ µv2

+ b2/N2
s

}
.

Transformation to terrain following coordinates (η=αz)
turns it into

E =
1

2
α−1

∫
dη

{
(α9η)

2
+ µ32

+ B2/N2
s

}
.
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Fig. 1. The time-development of energy-density for one mode without interaction(a), one mode with self-coupling(b), three modes(c) and
ten modes(d). The red line represents the total energy.

Finally, substituting modes, (33)–(35), and using the orthog-
onality properties, gives

E =
1

2
α−1

∑
k

Fk

{a2
k

c2
k

+ µ
v2
k

(αck)2
+ b2

k

}
.

whereFk=
∫ 0
−1 dηN

2
s φ

2
k . This expression could also have

been obtained directly from (40)–(42), but in that case there
would have been no way of establishing the correct coeffi-
cient (Fk etc.). Also, the topographically induced interaction
then thwarts an appropriate flux form; the terms withR and
T seemingly act as a source or sink in the energy equation.
This is merely a result of the transformation to terrain fol-
lowing coordinates. In the physically relevant system, i.e. in
the original coordinates, no such sources/sinks are present,
see (43). Indeed, from (43) it is clear that a transformation
of the type(·)x→(·)x+β(·)η spoils the flux form since the
coefficientβ is not a constant but depends itself onη.

We study the development of a rightward propagating first-
mode depressionb1, whose initial profile we prescribe along
with a1=−c1 b1 (with u=α9η in the transformed system).

For these experiments, no sponge layers are used; the domain
is chosen large enough to ensure that no wave reaches the
boundary during the 8-period runs.

The results, shown in Fig.1, clearly bring out the role of
the topography in the interaction between modes. In fact,
the interaction needs to be taken into account to avoid in-
consistencies: in Fig.1a, where all higher modes are ex-
cluded, the coupling terms are ignored, leading to a stark
violation of conservation of energy as the depression passes
the seamount. By contrast, in Fig.1b (still for only the first
mode), the (self-)coupling is included, and the energy is well
conserved. The inclusion of higher modes engenders en-
ergy transfer from the first to higher modes as the depression
moves over the seamount (Fig.1c,d). The slight decrease of
the total energy observed for ten modes is due to the bihar-
monic filter used to dampen oscillations on the grid scale. Its
influence is stronger on the higher modes which have shorter
wavelengths and which moreover stay longer over the shal-
low region (where the damping is stronger, for it includes the
factorα). Notice also that the higher modes are subject to
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Fig. 2. Comparison of the amplitude of the cross-slope baroclinic
velocity component (in m s−1) from the modal model for 30 modes
at the 60th tidal period (upper panel) and a fully numerical model
(lower panel). Both are linear and hydrostatic.

interaction over a longer period of time (as is clearly visible
in Fig. 1d), because they propagate slower and therefore stay
longer over the seamount. We emphasize that the “interac-
tion” illustrated here is a purely linear process!

3.2 Comparison with fully numerical model

We now turn to the forced version of (40)–(42), and look
at internal-tide generation over a continental slope. For this
slope we use a cubic profile; its length is taken as 50 km, and
the depths of the continental shelf and the abyssal plain are
200 m and 4000 m, respectively. The flux of the tidal forcing
(M2 frequency) isQ=100m2 s−1. Coriolis effects are here
ignored. The stratification is uniform withN=0.002 s−1. We
present the results in terms of the baroclinic cross-slope cur-
rentu, decomposed as follow:
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Fig. 3. Profile of the Brunt-V̈ais̈alä frequencyN observed in the
Bay of Biscay (left panel). First five baroclinic modesφn (right
panel).

u(t, x, z) = A(x, z) sin(ωt −8(x, z)) (44)

whereA and8 are the amplitude and phase, respectively.
The internal tide manifests itself as a beam, propa-

gating away from the shelf break (Fig.2a). The beam
has a slope that corresponds to the analytical expression
for internal-wave characteristics, here in hydrostatic form:
s=(ω2

−f 2)1/2/N . We compare the outcome of our modal
model with that of a fully numerical internal-tide generation
model, described byGerkema et al.(2004), which too is lin-
ear and hydrostatic; the result from this model, for the same
parameter values, is shown in Fig.2b. We see that the an-
gle of propagation as well as the intensity of the cross slope
baroclinic current are in good agreement. This means that the
modal model performs well even if the topographic scale is
fairly short, since here it is even shorter than the internal-tide
wavelength (the wavelength of the first mode being equal to
the distance between two consecutive surface reflections of
the beam). This confirms the expectation expressed in the In-
troduction, that the WKB-type derivation in practice remains
valid well beyond its formal range of validity.

We now consider a more realistic setting, using observed
stratification and topograpy profiles typical of the Bay of Bis-
cay. This (summer) stratification is characterised by the pres-
ence of a strong seasonal thermocline at 60 m depth and a
permanent pycnocline centered at 900 m depth (Fig.3a). The
vertical modes are derived from (31); their structure varies
over the topography, via the dependence onX. The first five
modes, over the plain, are shown in Fig.3b.

In this experiment Coriolis effects are included
(f=1.070×10−4 s−1 at 47◦10′ N). The barotropic tidal
forcing flux is 100 m2 s−1. The major generation region
is located near the shelf break where the slope is critical,
approximately atz=−400m, see Fig.4a. The slope of
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Fig. 4. The amplitude (in m s−1, upper panel) and phase (in de-
grees, lower panel) of the horizontal cross-slope baroclinic velocity
component at the 30th tidal period for 10 modes. The white circles
indicate the location of the downward and reflected beam observed
by Pingree and New(1991).

the beam varies in the vertical becauseN(z) varies. It is
steeper in the weakly stratified abyss; here it reflects from
the slope, and becomes wider and less intense as a result
(defocusing). After this reflection, energy moves upward,
and the beam finally meets the seasonal thermocline, near
x=−125 km. Here it undergoes a severe distortion; the
strong variation inN causes internal reflections, and gives
rise to a quasi interfacial tide, visible by strong currents
in the upper mixed layer. This mixture of beam-like and
interfacial-like behaviour is typical for this stratification
(Gerkema, 2001); the appearance of interfacial tides, during
the passage of the beam through the seasonal thermocline,
stands at the origin of the “local generation” of internal
solitary waves, discussed below. The results from Fig.4
are overall similar to those from a fully numerical model

by Gerkema et al.(2004). Moreover, the path of the beam
correponds well with the observations byPingree and New
(1991) (i.e. the depth of maximum excursions derived from
CTD yoyoing), shown as circles in Fig.4a.

4 Solutions for nonlinear nonhydrostatic case

We now consider the full set (36)–(39), thus including
weakly nonlinear and nonhydrostatic effects. Nonlinear-
ity has two principal effects on internal-tide propagation:
the generation of higher harmonics during reflection from
boundaries (due to interaction between incident and reflected
beams), and the local generation of internal solitary waves.
For the latter to happen, a seasonal thermocline is needed,
but the former occurs already for constant stratification. We
look into these effects in the next two sections.

4.1 Higher harmonics

The degree of nonlinearity depends on the strength of the
barotropic tidal forcing. Figure5 shows a snapshot of the
cross-slope baroclinic current after 30 tidal periods for in-
creasingly strong forcing. As in the earlier idealized experi-
ment (Fig.2), we use ten modes and have switched off rota-
tion. Stratification is taken constant (N=0.002 s−1). In pan-
elsa andb, the forcing is weak, and we are effectively in the
linear regime. The transition toward the nonlinear regime
is observed in panelc; here higher harmonics (i.e. waves
at frequencies that are multiples ofM2) appear, faintly vis-
ible as steeper beams originating from the first bottom re-
flection. They are steeper because the steepnesss of the
beam, given bys2

=(ω2
−f 2)/(N2

−ω2), is a monotonically
increasing function ofω. There is now a spatial redistribution
of internal-tide energy, as is increasingly clear in subsequent
panels.

To illustrate the appearance of higher harmonics more ex-
plicitly, we place three “moorings” over the abyssal plain,
one before and two after the first bottom reflection. The en-
ergy spectrum for the cross-slope baroclinic current, aver-
aged over total depth, shows a strong enhancement toward
higher harmonics in the moorings after the point of reflec-
tion (Fig. 6a,b), compared to the mooring before reflection
(Fig. 6c). This confirms the theoretical finding of genera-
tion of higher harmonics by nonlinear internal-wave reflec-
tion from boundaries (Tabaei et al., 2005; Gerkema, 2006).

4.2 Local generation of internal solitary waves

We now show model results in which a realistic configura-
tion was chosen for topography and stratification. Our goal
is to show that the scattering of the beam in the seasonal ther-
mocline may produce internal solitary waves. For reasons of
numerical stability, we choose an intermediate strength of
the seasonal thermocline, typical of early June (Fig. 7), and a
moderate tidal forcing (Q=60 m2 s−1). In general, Coriolis
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R. Mauǵe and T. Gerkema: Internal tides over large topography 241

u, baroclinic cross−slope current (amplitude, m/sec)

distance (km)

de
pt

h 
(k

m
)

 

 

Q=5m2.s−1

−250 −200 −150 −100 −50 0 50
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

(a)

u, baroclinic cross−slope current (amplitude, m/sec)

distance (km)

de
pt

h 
(k

m
)

 

 

Q=60m2.s−1

−250 −200 −150 −100 −50 0 50
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

−0.06

−0.048

−0.036

−0.024

−0.012

0

0.012

0.024

0.036

0.048

0.06

(d)

u, baroclinic cross−slope current (amplitude, m/sec)

distance (km)

de
pt

h 
(k

m
)

 

 

Q=20m2.s−1

−250 −200 −150 −100 −50 0 50
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

−0.02

−0.016

−0.012

−0.008

−0.004

0

0.004

0.008

0.012

0.016

0.02

(b)

u, baroclinic cross−slope current (amplitude, m/sec)

distance (km)

de
pt

h 
(k

m
)

 

 

Q=80m2.s−1

−250 −200 −150 −100 −50 0 50
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

−0.08

−0.064

−0.048

−0.032

−0.016

0

0.016

0.032

0.048

0.064

0.08

(e)

u, baroclinic cross−slope current (amplitude, m/sec)

distance (km)

de
pt

h 
(k

m
)

 

 

Q=40m2.s−1

−250 −200 −150 −100 −50 0 50
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

−0.04

−0.032

−0.024

−0.016

−0.008

0

0.008

0.016

0.024

0.032

0.04

(c)

u, baroclinic cross−slope current (amplitude, m/sec)

distance (km)

de
pt

h 
(k

m
)

 

 

Q=100m2.s−1

−250 −200 −150 −100 −50 0 50
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

−0.08

−0.064

−0.048

−0.032

−0.016

0

0.016

0.032

0.048

0.064

0.08

(f)

Fig. 5. Snapshot of the horizontal cross-slope baroclinic velocity component (in m s−1) for a barotropic tidal forcing increasing from 5 to
100 m2 s−1.

effects tend to suppress the generation of solitons (Grimshaw
et al., 1998), and for this reason we exclude these effects
here. It is understood that the suppressive effect by Coriolis
dispersion could be compensated by an enhanced forcing, in
which case internal solitary waves may still appear.

Figure8 shows that there is an intense internal-wave ac-
tivity near the thermocline in the immediate vicinity of the

shelf break, which attenuates over the deep ocean. However,
there is a resurgence of such activity over the abyssal plain,
nearx=−100 km, which is precisely at the point where the
tidal beam encounters the seasonal thermocline. Here a de-
pression forms, which gradually steepens and splits up into
shorter peaks, the internal solitary waves. Their wavelength
is about 2 km, which is consistent with the SAR imagery in
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Fig. 6. Energy spectrum for the horizontal cross-slope baroclinic
velocity component, averaged over total depth, at three differ-
ent “moorings”, before and after the reflection of the downward
tidal beam: at−50 km (right panel),−90 km (middle panel), and
−110 km (left panel).

the Bay of Biscay (New and Da Silva, 2002) where the ob-
served solitons have a wavelength between 0.9 and 2.7 km.
This comparison is meaningful even though Coriolis disper-
sion was not included here, because Coriolis effects do not
act significantly on the short solitary-wave lengthscale.

5 Discussion

The novel aspect of this paper is that we derived a coupled
set of equations for the modal coefficients for weakly nonlin-
ear nonhydrostatic internal-tide generation. We applied ver-
tical modes despite the presence of a large-amplitude topog-
raphy (continental slope), and this results in coupling terms
between the modes over the slope which persist even if non-
linear term are neglected. In other words, there are two kinds
of coupling in the model, one due to topography, the other
due to nonlinear effects. Recently,Griffiths and Grimshaw
(2007) derived a set of equations for internal-tide generation
over large-amplitude topography, also using vertical modes.
They did not assume a separation of length scales, and in-
cluded all the topographically induced coupling terms. In
this sense their model is exact, but they restricted themselves
to the linear hydrostatic regime. The separation of scales
we adopt here facilitates an ordering of small parameters
and hence an extension to a weakly nonlinear nonhydrostatic
regime.

A short discussion on the assumptions regarding the small
parameters, and the range of validity thus imposed, is in or-
der. Typical parameters (waterdepthH = 4km, internal-tide
wavelengthL=50 km, f=1.0×10−4 s−1, wave frequency
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Fig. 7. The profile ofN for the Bay of Biscay.

ω=1.4×10−4 s−1, barotropic fluxQ=100 m2 s−1) yield the
following “small” parameters: γ=0.0036 (nonlinearity),
δ=0.0064 (nonhydrostaticity), which are roughly of the same
order of magnitude, as assumed in the derivation. For soli-
tary waves, which are much shorter than the internal tide, say
a few km, the parameterδ would seem to be of order one, vio-
lating the initial assumptions. However, since solitary waves
are trapped at the thermocline, a more appropriate measure
of waterdepth becomes the thickness of the mixed layerh1,
as is seen for example in the expression for the linear phase
speed,(g′h1)

1/2. Still, the derivation presented here fits in
the KdV framework and thus supposes both upper and lower
layers to be “shallow”. For realistic parameters, a different
approach (e.g. like in the Benjamin-Ono equation) may seem
necessary, but it is a fact of experience that the KdV equa-
tion often outperformes alternative equations even when the
parameter regime suggests the latter to be more appropriate
(e.g.,Koop and Butler, 1981). Regarding Coriolis effects,
we do not suppose the parameterµ to be of the order ofγ ;
indeed, the two Coriolis terms are fully present in (36)–(37),
so in that sense no smallness ofµ is assumed. It is only in
the eliminiation of the mode-coupling due to nonhydrostatic
effects (see Sect. 2.5) thatµ has to be assumed to be small.
However, nonhydrostatic effects become important only at
short scales, and at these scales Coriolis effects are automat-
ically weak (this could be formally expressed by introducing
a second frequency,̂ω, appropriate for the short scales, with
ω̂�ω, yielding a smallµ̂). In short, no real restriction onµ
is imposed. Finally, we assume the topography to be slowly
varying, as expressed by the smallness ofε. This is, at face
value, a questionable assumption, but, as noted in the Intro-
duction, the practical range of validity of WKB-like assump-
tions often stretches far beyond the formal limitations.
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This is confirmed by a comparison with more sophisticated
numerical models, which shows that the formal assumption
of “slowly varying” topography does not in practice pose se-
rious restrictions (Sect. 3b). In the nonlinear, nonhydrostatic
regime, we showed that higher harmonics are generated, sim-
ilar to what fully numerical models (like MIT-gcm) showed
before (Gerkema et al., 2006). Compared to these models,
the present model is less exact as it involves a few approxi-
mations; on the other hand, it is computationally much less
demanding than fully nonhydrostatic models, and is concep-
tually linked to the Korteweg-deVries type soliton equations.
(We note that numerical instabilities occur for strong forcing,
possibly requiring a modification of the numerical scheme in
that case.) As we showed in Sect. 4b, the model can be used
to describe the process of local generation of internal soli-
tary waves by an internal-tide beam impinging on the sea-
sonal thermocline. This phenomenon has been observed in
the Bay of Biscay (New and Pingree, 1990, 1992; New and
Da Silva, 2002), and some theoretical studies have been de-
voted to it (Gerkema, 2001; Akylas et al., 2006). However,
the latter studies adopted a somewhat idealized setting, and
we think the results in Sect. 4b show the phenomenon for the
first time in a model based on a realistic setting of topogra-
phy, stratification, and tidal forcing.

Appendix A Integral expressions

The evolution equations for the modal coefficients (36)–(39)
contain the following integral expressions, serving as coeffi-
cients. First, the topographically induced mode-coupling:

Rnk =

∫ 0
−1N

2
s φn,Xφkdη∫ 0

−1N
2
s φ

2
kdη

(A1)

Tnk =

∫ 0
−1 βN

2
s φn,ηφkdη∫ 0

−1N
2
s φ

2
kdη

. (A2)

Second, the one associated with the barotropic tidal forcing
term:

Dk =

∫ 0
−1 βN

2
s φkdη∫ 0

−1N
2
s φ

2
kdη

. (A3)

Third, the nonlinear terms

Mmnk =

∫ 0
−1N

2
s φm,ηφnφkdη∫ 0

−1N
2
s φ

2
kdη

(A4)

Nmnk =

∫ 0
−1(N

2
s )ηφmφnφkdη∫ 0

−1N
2
s φ

2
kdη

. (A5)

(Note that the latter vanishes for constant stratification.) Fi-
nally, the nonhydrostatic term

Lnk =

∫ 0
−1 φnφkdη∫ 0
−1N

2
s φ

2
kdη

. (A6)
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2006). Detailed comments from two reviewers greatly helped us
to improve the manuscript. R. Maugé was financially supported
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