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Abstract. A set of evolution equations is derived for the  Although the essential ingredients of the process thus seem
modal coefficients in a weakly nonlinear nonhydrostatic to have been clarified, we should emphasize the idealized
internal-tide generation problem. The equations allow for thesetting of the study byGerkema(2001), as it involves a
presence of large-amplitude topography, e.g. a continentatchematic stratification (a mixed layer, an interface repre-
slope, which is formally assumed to have a length scale muclsenting the thermocline, and a layer of constant stratifica-
larger than that of the internal tide. However, comparisontion beneath it), and infinitesimal topography. In reality,
with results from more sophisticated numerical models showof course, the stratification varies throughout the water col-
that this restriction can in practice be relaxed. Itis shown thatumn, and, more importantly, the internal tidal beams are
a topographically induced coupling between modes occurgenerated over the continental slope, in other words, over
that is distinct from nonlinear coupling. Nonlinear effects in- large-amplitude topography. In principle, all these elements
clude the generation of higher harmonics by reflection fromcould be included in fully nonlinear nonhydrostatic numer-
boundaries, i.e. steeper tidal beams at frequencies that aieal models, such as employed in other contexts_bynb
multiples of the basic tidal frequency. With a seasonal ther-(1994), Vlasenko and Morozoy{1993, or the MIT-model
mocline included, the model is capable of reproducing the(e.g.Khatiwalg 2003. These models are however compu-
phenomenon of local generation of internal solitary wavestationally demanding, and technical problems like numeri-
by a tidal beam impinging on the seasonal thermocline. cal instabilities may occur when one attempts to include a
seasonal thermocline. By contrast, weakly nonhydrostatic
models — such us the Korteweg-de Vries equation (see, e.g.,
Helfrich and Melville 2006 or extensions thereof involv-
1 Introduction ing internal-tide generation — can be solved numerically in
an efficient way. However, they are based on separation of
In the central Bay of Biscay, internal solitary waves (ISWs) variables and decomposition into vertical modes, and hence
have been observed that are generated by an upward propkequire small (infinitesimal, strictly) topography.
gating internal tidal beam as it meets the seasonal thermo- In this paper we present a way to circumvent this prob-
cline (New and Pingree199Q 1992 New and Da Silva lem: we apply vertical modes despite the presence of large-
2002. This local generation of ISWs was studied theoret- amplitude topography. We are able to do so by assuming that
ically and numerically bycerkema2001), who showed that the horizontal scale of topography is much larger than the
it involves two steps. First, the impinging beam generates ghorizontal) wavelength of the internal tide. In a perturbative
depression of the thermocline — an essentially linear processipproach, we thus find at the lowest order that topography
This depression then propagates away, steepens, and splits apters the problem merely in a parametric way, whereas at
into solitary waves; in these later stages, both nonlinear andhe next order, interaction (i.e. exchange of energy) between
nonhydrostatic effects are essential. It was moreover showtthe modes occurs over topography, even if nonlinear terms
that this local generation occurs only if the seasonal thermowere neglected. At this same order, the other supposedly

cline is of moderate strength. weak effects appear (nonlinearity, nonhydrostaticity).

It may seem as if the assumption on the lengthscale of to-
Correspondence tdR. Mauge pography poses a severe restriction on the range of applica-
(rudy.mauge@hocer.com) tions of this model; indeed, in the ocean it is typically of the
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234 R. Maug and T. Gerkema: Internal tides over large topography

same order as the wavelength of the internal tide, instead o¥Ve impose a barotropic forcing in the simple form of a time-
being much larger. However, it is not unusual to find in stud- oscillating but horizontally uniform flux, by using the fol-
ies using WKB-type approximations that the formal restric- lowing boundary conditions:

tion can in practice be relaxed, even to the point where the

“small parameter” comes close to one (examples are given i = 0 atz =0 (surface)

Bender and Orszad978. This will be confirmed here by ¥ = Q sin(wt) atz = h(x) (bottom) (9)

comparisons with fully numerical models involving no such where 0 is the amplitude of the barotropic flux, andthe

restriction (Sect. 3b). The resulting set of model equations.(iolal frequency. FollowingSarrett and Gerkem@007, we
allows us to study, in a fairly realistic setting, the generation]make the transformation '

of higher harmonics (Sect. 4a), and the local generation o
ISWs (Sect. 4b). The latter process has not been previouslyr = Yo + ', with Wg = L QO sin(wt) .
modelled in such a realistic setting. h(x)

With this, 6)—(8) become

2 Derivation of a weakly nonlinear nonhydrostatic ~ V2, + UV?y, + J(V2Y', ¢') — ful + by =S1  (10)
model v+ UV, + T Y+ fY. =52 (11)

/ 2.4/ 2
In this section we outline the derivation of the model equa-?r T Ubx + J (b, ¥') = N, = —N"W + S5, (12)
tions. We consider uniformity in one of the horizontal direc- \ynere we introduced =W, , andW=—Wo_,, which we will
tions, i.e.0/3y=0. On thef-plane, the momentum equations loosely refer to as “barotropic’, the primed field being
then read “baroclinic”. This interpretation is correct in the absence of
1) topography, but over the slopg’ actually contains a non-

u uu wu, — Jv = — . . . . .
iy wuz = f P hydrostatic correction to the barotropic field, as pointed out

U uvy + wv, + fu=0 ) by Garrgtt and Gerkem@OO?). The transverse veIocihyis
also split, av=V+v’, with V,=— fU. The buoyancy field
w; + uwy + ww, = —p; — Pg/ P« (3) b, on the other hand, is retained in its full form. On the right-

hand sides, we find the tern§s 2 3, which stand for
whereu, v, w are the velocity components in they, z di- 5, , ,
rections,o density,p, a constant reference value of density, 51 = W« - WV, "‘/(U + Y ) Wex — (W — ¥ )Usx (13)
andp pressure (divided by,.). Here the Boussinesq approx- $2 = —Wv, — (U + ¥;) Vx (14)
imation is applied. These equations are to be supplementeg; = —Wb, . (15)

by the equations expressing mass and energy conservation ) o
which under the assumptions of incompressibility and adia_l\fote that each term contains a barotropic field. In later sec-
batic motion become, respectively tions, we show thafy » 3 can be neglected under the assump-

tions that we will adopt. The barotropic effects explicitly
uy +w, =0 (4) included in L0)—(12), which cannot be neglected, are the ad-
vective termsU (-),, and, most important of all, the body-
pr +upx +wp; =0. (5)  force term on the right-hand side df2): — N2W; this is the
generator of internal tides.

The momentum Eq.1j and @) can be combined into an The poundary condition®) are now to be replaced by
equation for the streamfunctiof, with u=vy,, andw=—1,

5 X ¥’ =0 atz =0 (surface)
VY + J(VA, ¥) — fo, + by =0, (6)

¥ =0 atz = h(x) (bottom) (16)
where b=—g(p—po)/p+ denotes buoyancypo(z) being
the static density field. The Jacobiah is defined as

J(p, 9)=pxq:—pzqx. In terms ofyr andb, (2) and 6) be- 2.1 Scaling and first approximations
come

Hereafter we drop the primes.

We cast the equations in dimensionless form by introducing

v+ JW. ¥)+ f; =0 (") the following scalings:

by + J (b, ) = N?y =0, ® =o' XI=L; [z,hl=H;
where N°=—(g/p4)dpo/dz is the buoyancy frequency, a (U] = g; (W] = 2;

measure of the background stratification. The $3t(B) H L

forms the starting point for further analysis. As yet, the equa- fo QwL
tions describe the full, i.e. barotropic plus baroclinic, fields. [V]1= Q; [v] = i (6] = TR
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R. Mauge and T. Gerkema: Internal tides over large topography 235

HereH is a typical deep-ocean depth, ahdhe lengthscale The first term on the right-hand side df3) containsw,,
of the internal tide. (The scale oéffollows from assuming  which equals, in terms of the slow coordinateezlllo,xx,
a primary balance betweef;, andb, in (10).) With this, and hence is negligible. All the remaining terms By
(10)—(12) become (15) are nonlinear terms and thus have the small parameter

2 2 2 y. Moreover, each of them contains a derivativeXinvia
VAU +yUVSA +y (VYY) —po +0e =51 (A7) gy U, or V), which produces an additional facter All
v+ yUuc+yJ, ¥)+y; =5 (18)  in all, they are of ordeD (y¢), or smaller, and hence negli-
by +yUby +yJ(b,¥) — N2y, = —N?W + S5, (19)  gible.

i i Moreover, in the nonlinear and nonhydrostatic terms on

where we use the same symbols, for convenience, which NoW,e |eft-hand sides ofl()—(19), which are by themselves al-
denote dimensionless quantities. To avoid confusion, hOW'ready of ordery, derivativesed/3X can be ignored since

ever, we have introduced a new symbg=H N/(Lw). The  they produce terms of ordete. The resulting equations thus

operatorV now stands for become
2 2

V2=58_2+8_2. 8Wxxt + Ve + YUY+

0x% 0 | ¥ (e, W) — v, + by + ebx =0 (22)
Thre_e parameters appear, pemg a measure of the strength 9;f+ yUve +yJ(,¥) + ¥, =0 (23)
nonlinearity, nonhydrostaticity, and Coriolis effects, respec-
tively: by +yUby +yJ (b, ¥)—

’ z .

0 . _ (R /Y2 I @9

YT HLo _(L)’ “_(a)>‘

where J stands forJ (p, ¢)=pxq.—p.q» and involves no
In line with KdV-type equations, we will assume nonlinear derivative inX, for the abovementioned reason.
and nonhydrostatic effects to be weak, and of the same order

of magnitude: 2.3 Transformation to terrain following coordinates
y=0(0)«1. We now transform the vertical such that the bottom becomes
purely horizontal in the new coordinate system:

Hereafter we will neglect all terms of orde®; in the non-

linear terms on the left-hand side dff) we can thus replace - __*
V2yr with .., since the other term is of ordes. At this h(X)
stage, we do not make any assumptiornuon So, while the surface remains g0, the bottom now lies
] atn=—1. Correspondingly, we introduce new variables, for
2.2 Slowly varying topography example

The crux of this derivation lies in the assumption that the W (¢, x, X, n(X, z2)) = ¥ (¢, x, X, 2) ,

topogrgphy varies slowly with respect to th“e hor'|,zont.al SCaIeand v andb are similarly replaced by the new variablas
of the internal tide. Thus, we introduce a “slow” horizontal

coordinateX—ex, with andB. In rep_lacmg the derivatives iX andz, we have to
apply the chain rule, so

internal-tide length scale
(1) yx =Wy +BY,; Y =aV,,

€ =
topographic length scale

This coordinateX is used as an independent variable in its Where
own right, along withx. Specifically, it acts as the indepen- o — _}. B =ny— _n,
dent variable inh(X), and in the barotropic fields and W, == =X =T

whose only horizontal dependence isXﬁnOth(_-:-r fields, like ~ Note that theV, (z) now depends on both horizontal and ver-
v, depend on both “slow” and “normal” horizontal coordi- tjca| coordinates, since in the new coordinates it becomes
nates §, x, respectively). Correspondingly, derivativesrin Ny (—nh(X)). With this transformation,22)—(24) become

now take the form X

SWoxr + (W + YUV )+

d d d

T ax ya?J (U, W) — pah, + B, + €[Bx + BB,] =0  (25)
We will furthermore assume thatis of the same order gs At T YUAx +yJ(A, V) +a¥, =0 (26)
(ands); thus, in line with earlier assumptions, we can neglect, + yUB, + y J(B, ¥) — Nf(wx+

terms of ordee?, or smaller.
It is now clear that the expressiosg 2 3, given in un-
scaled form in {3)—(15), can be neglected in their entirety.  The Jacobian is now defined &$p, g)=a (pxgy—pngx)-

€[Wyx + BY,]) = —eN2Bsint. (27)
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236 R.

2.4 \Vertical modes

At lowest order, we neglect all terms of ordein (25)—(27),
i.e. terms involvingy, § or ¢; this removes all the nonlinear
and nonhydrostatic terms, as well as the barotropic forcing:

052\1',,,,, —uaA, + B, =0 (28)
B, — N2, =0. (30)

Here the “slowly varying” topographic coordinate enters
the problem only viax=—1/h(X) and Ny, and acts at this
order merely as parametey since there are no derivatives
in X. Reducing the set to an equation férand assuming
W=¢(n, X) expi (kx—t) gives

0% K*N?

a2 T 21— p) 1)

¢=0

Herek is a dimensionless wavenumber, depending paramet-

rically on X. Together with the boundary conditiogs=0

at n=—1, 0, this poses a Sturm-Liouville problem, whose
solutions are given by orthogonal functiops(n, X) with
eigenvalues,. The structure of the eigenfunctions varies
parametrically withX. Furthermore, the usual othogonality
properties hold, i.e. fot £m

(32)

0
/1d77 std’n(bm =0.

For later usage, we defirg=(1—un)Y2/k,, a dimensionless
guantity, which in the rotationless cage=0) can be inter-
preted as the phase speed. Wjac, depends orX, as one

Mau@ and T. Gerkema: Internal tides over large topography

sections, the outcome of the model equations is overall satis-
factory even in situations that mildly violate the restrictions
imposed by the underlying assumptions.

We substitute33)—(35) into (25)—(27), and multiply them
by ¢x, ¢r., andgy, respectively. Next we take the vertical
integral and use the orthogonality properties of the mddes.
This results in a set of coupled equations for the baroclinic
modal coefficientsy, vy and by, representing the stream-
function, transverse velocity, and buoyancy, respectively:

2
ag,; + }/Uak,x - 56‘k Z Lnkan,xxl

n

1 1 Nk
+Vaclgzan,xam{<_2 - T)ank - n12n }
n,m Cn Cm Cm
m
— o= cElbitebexl—ecf 3 bu(Ru+Tw)=0  (36)
n
M, M
Vit +yUvpx + Vaclé Zamvn,x<n—2mk rr;nk) (37)
n.m Cin Ch
N, M, M,
_Vaclgzan,xvm< mnk+ Cn2mk+ mnk>+aak=0 (38)
n,m m

bt + yUby «

+yo Z {(ambn,x - an,xbm)ank - an,xmemnk}
n,m

—lak x +e€ar x] — € Zan(Rnk + Twi) = —e Dy sint . (39)
n

The coefficients denoted by capitals,f etc.) stand for in-
tegral expressions, and are given in the appendix; note that
they all depend on the topographic coordinzte

One final simplification is to be made. 188), the non-

would expect since the phase speed depends on the local waydrostatic term (i.e. the term with) provides a coupling
terdepth and thus must vary with the topographic coordinateyetween modes. This is an undesirable effect, both from

X.
2.5 Resulting model equations

We now reduce the higher-order s@b(—(27) by means of
an expansion in the orthogonal eigenfunctigns thus, we
write U, B andA as

Nmax

\Il(t’xaxv 77)2 Zan(taxvx)(bn(nax) (33)
n=1
A, Xom) =Y (8, X, X)u (0, X) (34)

n=1
B(t,x, X, n) = N2(—=nh(X)) D ba(t, x, X)¢u (1, X) . (35)

n=1

Since the resulting equations will be solved numerically, we
anticipate a truncation at a certain modenumbgg. Notice
that B is developed in terms a@f, and hence vanishes at the
bottom; this is in line with the assumption of a slowly vary-
ing topography. Over steep slopes, of course, a vanisBing
would become unphysical; still, as we show in the following

Nonlin. Processes Geophys., 15, 2384 2008

a physical and a numerical point of view (the set is solved
much more efficiently if the coupling is absent). The un-
derlying reason for the presence of this mode-coupling is as
follows. We are using the modes derived from the hydro-
static limit (Sect. 2.4). Conveniently, in that case the vertical
structure of the modes shows no dependence on the wave fre-
guency. However, as we enter the nonhydrostatic regime, as
in (36), a dependence on the wave frequency arises, leading
to a modification of the modal structure, and this is precisely
what the mode-coupling accomplishes. Note also that in the
special case of constant stratificatia¥ &const), the verti-

cal structure never depends on the wave frequency, not even
in the non-hydrostatic case; this is confirmed by the fact that
L, vanishes fon=#£k if Ny=const. For generaV,, the cou-
pling terms can be removed by introducing explicitly a non-
hydrostatic correction to the modes. This procedure was
discussed in Appendix C @erkemg2007) and will not be

INote that derivatives o, cancel whengdb) is substituted into
(25), since substitution in the termBx+8B,, yields the combi-
nation(Nl?)x+ﬂ(NS2),,, which is zero because of the dependence
N (—nh) and the definition ofs.

www.nonlin-processes-geophys.net/15/233/2008/



R. Mauge and T. Gerkema: Internal tides over large topography 237

repeated here. However, in the presence of Coriolis effectsis already well represented if one uses ten modes. We always
the correction is not straightforward, and one actually needsstart from a system at rest.
to neglect terms of ordeiu to solve the problem (the state-  To facilitate the interpretation of the results in the oceano-
ment of the contrary irtGerkema(2001), namely that these graphic context, they will be presented in the figures in di-
terms would cancel automatically, is erroneous.) This for-mensional form, with the original horizontal coordinate be-
mally necessitates assumipgto be small as well. At the ing restored.
same time it is clear thaB6) and @7) still contain the two
Coriolis terms that were originally present i8) @nd (7), so
in that sense no approximation has been made.
Neglecting, thenL,; for n£k, we arrive at the set of equa-
tions used hereafter; they contain the following effects:

3 Solutions for linear hydrostatic case

We first look into the coupling between modes due to to-

pography, and momentarily ignore the complicating factors

— the forcing by the barotropic tidal flow over topography, ©f nonlinearity, nonhydrostaticity, and barotropic advection;
represented by the term on the right-hand sidesef;(  thus we take/=5=0, and 86)—(39) become

nw
— barotropic advection, represented byy ., and simi- k. Uk

larly for v andby; ~ by + ebrxl—ec? Y by(Rutt Toi)=0 (40)
— Coriolis effects; our assumptialy dy=0 implies thatv ves +aag =0 (41)

is present merely as a result of Coriolis effects, &84 (
would get decoupled from the rest if we tgke-0; br.s

— — n (R Tnwi) = —e Dy sint . (42
— coupling terms due tpographyi.e. the terms withR Lak.x + €ar.x] EXH:G’( nk + Tnk) = €Dy (42)

and7’; Despite the linear nature of this set, there are still terms rep-
— coupling terms due taonlinear interaction i.e. the  résenting mode-mode coupling, namely those &itandT';
terms involvingM andN; they are due tdopography They reflect the fact that separa-
tion of horizontal and vertical variables fails over the slope,
— nonhydrostatic effects, represented by the term Wijth ~ implying that vertical modes cannot be regarded as mutually
in (36). independent.

Note that we did not impose any restriction on theight 3.1 Inter-modal exchange of energy

of the topography, so36)—(39) can be used to model the

generation of internal tides over the continental slope (examin these experiments, we illustrate how topographically in-

ples are shown in the following sections). We have thus re-duced coupling engenders a transfer of energy between

laxed the assumption on (small) topography useBlérkema ~ modes in a freely propagating depression that passes a

(2001); still, the set of equations is just as easy to solve nu-seamount, given by a gaussian profile. Here we ignore the

merically, although there are of course some extra terms (toforcing term on the right-hand side o042). The topogra-

pographic mode coupling, barotropic advection, horizontallyphy is supercritical and the stratification is taken constant.

varying coefficientsr andcy). We first need to derive the expression of energy-density in
The set 86)—(39) is solved numerically using 4th-order terms of the modal coefficients; it can be obtained by return-

centered differences in and 3rd-order Adams-Bashforth in ing to the original, scaled set)—(19), ignoring nonlinear

time (Durran 1999; the presence of the nonhydrostatic term and nonhydrostatic terms, and barotropic fields. After multi-

(with L) leads to a tridiagonal matrix which is solved with plication by —v, uv andb/NZ, respectively, adding up the

the Thomas algorithm. We use a 4th-order spatial biharmonidesulting equations, and integrating over the vertical, we ob-

filter to prevent instabilities on the grid scale. At the hor- tain the (dimensionless) energy equation

izontal outer ends of the domain, we use sponge layers byl ) 5 2, o

including Rayleigh friction, whose thickness is 150km and dz{(wz) + nv® + b7/ N; }, - /ddbw)x =0. (43)

50 km over the plain and the shelf, respectively (except in

Sect. 3.1, where no sponge layers are used; here the dom

was chosen large enough for the waves never to arrive at the

boundaries). This sufficc_as to absorb the i_ncoming barocl_inicE _ }/dz{(wz)z +uv? + bz/st} .

waves and avoid reflection from the horizontal boundaries. 2

The number of modes is specified below for each experimentTransformation to terrain following coordinateg=fuz)

but we typically use between 10 and 30 modes. The numerturns it into

ical experiments show that the amplitude converges rapidly 1, 2 2 2,02

(the lowest modes being the most energetic), so that the bearh = 5 /d"{(“‘l’n) + 1A”+ B7/N; } :

Here we used the fact that vanishes at the boundaries.)
is implies that the expression for energy density is

www.nonlin-processes-geophys.net/15/233/2008/ Nonlin. Processes Geophys., 244233663
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Fig. 1. The time-development of energy-density for one mode without interadipone mode with self-couplingp), three modegc) and
ten modegd). The red line represents the total energy.

Finally, substituting modes38)—(35), and using the orthog- For these experiments, no sponge layers are used; the domain

onality properties, gives is chosen large enough to ensure that no wave reaches the
1 22 V2 boundary during the 8-period runs.

E— _aflz Fk{—k + M—kz + b,f} ) The results, shown in Fid., clearly bring out the role of
2 X Cr (acy) the topography in the interaction between modes. In fact,

0 5.2 ) ) the interaction needs to be taken into account to avoid in-
where Fi= |~, dn Ng¢. This expression could also have cqnsistencies: in Figla, where all higher modes are ex-
been obtained directly from#0)—(42), but in that case there .| ded, the coupling terms are ignored, leading to a stark
would have been no way of establishing the correct coeffi~;g|ation of conservation of energy as the depression passes
cient (Fy etc.). Also, the tppographmally induced interaction ine seamount. By contrast, in Fitp (still for only the first
then thwarts an appropriate flux form; the terms witland  1\54e), the (self-)coupling is included, and the energy is well
I seemingly act as a source or sink in the energy equationgonserved. The inclusion of higher modes engenders en-
This is merely a result of the transformation to terrain fol- g4y transfer from the first to higher modes as the depression
IOW|ng c_oordlnate_s. In the physically relevan_t system, i.e. iN 1 oves over the seamount (Fiz,d). The slight decrease of
the original coordinates, no .such sources/sinks are presen[the total energy observed for ten modes is due to the bihar-
see 43). Indeed, from 43 it is clear that a transformation o e filter used to dampen oscillations on the grid scale. Its
of the type()x— (-)x+B(-), spoils the flux form since the  jnfiyence is stronger on the higher modes which have shorter
coefficientf is not a constant but depends itselfn — \yayelengths and which moreover stay longer over the shal-

We study the development of a rightward propagating first-|o\, region (where the damping is stronger, for it includes the

mode depressioby, whose initial profile we prescribe along  5t0r4). Notice also that the higher modes are subject to
with a;=—c1 b1 (With u=a¥, in the transformed system).

Nonlin. Processes Geophys., 15, 2384 2008 www.nonlin-processes-geophys.net/15/233/2008/



R. Mauge and T. Gerkema: Internal tides over large topography

u, baroclinic cross—slope current (amplitude, m/sec)
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Fig. 3. Profile of the Brunt-\aisala frequencyN observed in the
Bay of Biscay (left panel). First five baroclinic modeg (right
panel).

u(t,x,z) = A(x, z) sin(wt — ®(x, z)) (44)
whereA and® are the amplitude and phase, respectively.
The internal tide manifests itself as a beam, propa-
gating away from the shelf break (Fi@a). The beam
has a slope that corresponds to the analytical expression
for internal-wave characteristics, here in hydrostatic form:
s=(w?—f%)1/2/N. We compare the outcome of our modal
model with that of a fully numerical internal-tide generation
model, described b§erkema et al(2004), which too is lin-
ear and hydrostatic; the result from this model, for the same
parameter values, is shown in Fgh. We see that the an-

Fig. 2. Comparison of the amplitude of the cross-slope baroclinic gle of propagation as well as the intensity of the cross slope
velocity component (in msl) from the modal model for 30 modes ~ baroclinic current are in good agreement. This means that the
at the 60th tidal period (upper panel) and a fully numerical modelmodal model performs well even if the topographic scale is

(lower panel). Both are linear and hydrostatic.

fairly short, since here it is even shorter than the internal-tide
wavelength (the wavelength of the first mode being equal to

interaction over a longer period of time (as is clearly visible the distance between two consecutive surface reflections of
in Fig. 1d), because they propagate slower and therefore stashe beam). This confirms the expectation expressed in the In-
longer over the seamount. We emphasize that the “interactroduction, that the WKB-type derivation in practice remains

tion” illustrated here is a purely linear process!

3.2 Comparison with fully numerical model

We now turn to the forced version ofi§)—(42), and look

at internal-tide generation over a continental slope. For thi
slope we use a cubic profile; its length is taken as 50 km, an
the depths of the continental shelf and the abyssal plain are er the topography,
200 m and 4000 m, respectively. The flux of the tidal forcing '
(M3 frequency) isQ=100n?s~1. Coriolis effects are here
ignored. The stratification is uniform withi=0.002 s°1. We
present the results in terms of the baroclinic cross-slope C“rforcing flux is 100 s1.

rentu, decomposed as follow:

www.nonlin-processes-geophys.net/15/233/2008/

valid well beyond its formal range of validity.

We now consider a more realistic setting, using observed
stratification and topograpy profiles typical of the Bay of Bis-
cay. This (summer) stratification is characterised by the pres-
ence of a strong seasonal thermocline at 60 m depth and a

%ermanent pycnocline centered at 900 m depth @&y. The

ertical modes are derived fron31); their structure varies
via the dependenceXorThe first five
modes, over the plain, are shown in Fafy.

In this experiment Coriolis effects are included
(f=1.070x10"%s 1 at 4P10N). The barotropic tidal
The major generation region
is located near the shelf break where the slope is critical,
approximately atz=—400m, see Fig4a. The slope of

Nonlin. Processes Geophys., 23423368



240 R. Maug and T. Gerkema: Internal tides over large topography

u, baroclinic cross-slope current (amplitude, m/sec) by Gerkema et a|(2004) Moreover| the Dath of the beam
o1 | 0.2 correponds well with the observations Byngree and New
0.18 (1997 (i.e. the depth of maximum excursions derived from

=500+
_1000” CTD yoyoing), shown as circles in Fida.

-1500+

2000 012 4 Solutions for nonlinear nonhydrostatic case

£

5750 0.1 We now consider the full set36)—(39), thus including

= ~30001 0.08 weakly nonlinear and nonhydrostatic effects. Nonlinear-

ity has two principal effects on internal-tide propagation:
the generation of higher harmonics during reflection from
boundaries (due to interaction between incident and reflected

—-3500+

-4000+

-4500 0.02 beams), and the local generation of internal solitary waves.
5000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ o For the latter to happen, a seasonal thermocline is needed,
S AR A A ey B but the former occurs already for constant stratification. We

look into these effects in the next two sections.

u, baroclinic cross—slope current (phase, degr.)

4.1 Higher harmonics

120 The degree of nonlinearity depends on the strength of the
barotropic tidal forcing. Figur® shows a shapshot of the

60 cross-slope baroclinic current after 30 tidal periods for in-
creasingly strong forcing. As in the earlier idealized experi-

o ment (Fig.2), we use ten modes and have switched off rota-

depth (m)

tion. Stratification is taken constany&0.002s1). In pan-
elsa andb, the forcing is weak, and we are effectively in the
linear regime. The transition toward the nonlinear regime
is observed in paned; here higher harmonics (i.e. waves
at frequencies that are multiples &f,) appear, faintly vis-
ible as steeper beams originating from the first bottom re-
00 T re 125 100 75 50 25 o 25 X0 flection. They are steeper because the steepnedsthe
distance (m) beam, given by?=(w?— f?)/(N?—w?), is a monotonically
_ ) ) ) increasing function ob. There is now a spatial redistribution
Fig. 4. The amplitude (in m§1, upper panel) and phase (in de- 4t internal-tide energy, as is increasingly clear in subsequent
grees, lower panel) of the horizontal cross-slope baroclinic veIocntypan els.

component at the 30th tidal period for 10 modes. The white circles To illustrate the appearance of higher harmonics more ex-
indicate the location of the downward and reflected beam observed . . PP w . " 9 .
: plicitly, we place three “moorings” over the abyssal plain,
by Pingree and NewW1991). . /
one before and two after the first bottom reflection. The en-
ergy spectrum for the cross-slope baroclinic current, aver-
o ] . ) aged over total depth, shows a strong enhancement toward
the beam varies in the vertical becausé;) varies. Itis  pigher harmonics in the moorings after the point of reflec-
steeper in the weakly stratified abyss; here it reflects from;qn (Fig. 6a,b), compared to the mooring before reflection
the slope, and becomes wider and less intense as a resyftig 6c). This confirms the theoretical finding of genera-
(defocusing). After this reflection, energy moves upward, tion of higher harmonics by nonlinear internal-wave reflec-

and the beam finally meets the seasonal thermocline, neajy, from boundariesTabaei et al.2005 Gerkema2006).
x=-—125km. Here it undergoes a severe distortion; the

strong variation inN causes internal reflections, and gives 4.2 Local generation of internal solitary waves

rise to a quasi interfacial tide, visible by strong currents

in the upper mixed layer. This mixture of beam-like and We now show model results in which a realistic configura-
interfacial-like behaviour is typical for this stratification tion was chosen for topography and stratification. Our goal
(Gerkema2001); the appearance of interfacial tides, during is to show that the scattering of the beam in the seasonal ther-
the passage of the beam through the seasonal thermoclinmocline may produce internal solitary waves. For reasons of
stands at the origin of the “local generation” of internal numerical stability, we choose an intermediate strength of
solitary waves, discussed below. The results from Big. the seasonal thermocline, typical of early June (Fig. 7), and a
are overall similar to those from a fully numerical model moderate tidal forcing@=60n?s-1). In general, Coriolis

-120
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u, baroclinic cross—slope current (amplitude, m/sec) >§510’3
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Fig. 5. Snapshot of the horizontal cross-slope baroclinic velocity component (intjrfsr a barotropic tidal forcing increasing from 5 to
100n?s L.

effects tend to suppress the generation of solit@siishaw  shelf break, which attenuates over the deep ocean. However,
et al, 1998, and for this reason we exclude these effectsthere is a resurgence of such activity over the abyssal plain,
here. It is understood that the suppressive effect by Coriolimmearx=—100 km, which is precisely at the point where the
dispersion could be compensated by an enhanced forcing, itidal beam encounters the seasonal thermocline. Here a de-
which case internal solitary waves may still appear. pression forms, which gradually steepens and splits up into
shorter peaks, the internal solitary waves. Their wavelength

Figure 8 shows that there is an intense internal-wave ac- - X ' : -
is about 2 km, which is consistent with the SAR imagery in

tivity near the thermocline in the immediate vicinity of the

www.nonlin-processes-geophys.net/15/233/2008/ Nonlin. Processes Geophys., 244233663
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Fig. 7. The profile ofN for the Bay of Biscay.
Fig. 6. Energy spectrum for the horizontal cross-slope baroclinic
velocity component, averaged over total depth, at three differ-
ent “moorings”, before and after the reflection of the downward ()=1.4x10~%s~1, barotropic fluxQ=100n? s~1) yield the
tidal beam: at-50 km (right panel)—90 km (middle panel), and following “small” parameters: y=0.0036 (nonlinearity),
—110km (left panel). §=0.0064 (nonhydrostaticity), which are roughly of the same
order of magnitude, as assumed in the derivation. For soli-

) , tary waves, which are much shorter than the internal tide, say
the Bay of Biscay New and Da Silva2002) where the ob- a few km, the parametémwould seem to be of order one, vio-

ser_ved sohto_ns hf';\ve a wgvelength between 0'9_ a_nd _2'7kn]ating the initial assumptions. However, since solitary waves
This comparison is meaningful even though Coriolis d|sper-are trapped at the thermocline, a more appropriate measure
sion was not included here, bepause Coriolis effects do noj¢ waterdepth becomes the thickness of the mixed layer

act significantly on the short solitary-wave lengthscale. as is seen for example in the expression for the linear phase
speed,(g’h1)Y/2. Still, the derivation presented here fits in
the KdV framework and thus supposes both upper and lower
layers to be “shallow”. For realistic parameters, a different

The novel aspect of this paper is that we derived a couplec?“:)proach (e.g. like in the Benjamin-Ono equation) may seem

) - . hecessary, but it is a fact of experience that the KdV equa-

set of equations for the modal coefficients for weakly nonlin- .. . :
o . . . tion often outperformes alternative equations even when the
ear nonhydrostatic internal-tide generation. We applied ver-

. . . arameter regime suggests the latter to be more appropriate
tical modes despite the presence of a large-amplitude topog{2 g g9 bprop

. . . . e.g.,Koop and Butler 1981). Regarding Coriolis effects,
raphy (continental slope), and this results in coupling terms i
: . : we do not suppose the parameteto be of the order of;
between the modes over the slope which persist even if non- .
: . indeed, the two Coriolis terms are fully present36)}-(37),
linear term are neglected. In other words, there are two kinds

o So in that sense no smallness ofs assumed. It is only in
of coupling in the model, one due to topography, the Otherthe eliminiation of the mode-coupling due to nonhydrostatic
due to nonlinear effects. Recentlgriffiths and Grimshaw ping Y

(2007 derived a set of equations for internal-tide eneratione‘cfeCtS (see Sect. 2.5) thathas to be assumed to be small.
. q : g However, nonhydrostatic effects become important only at
over large-amplitude topography, also using vertical modes, o
. . “short scales, and at these scales Coriolis effects are automat-
They did not assume a separation of length scales, and in-

cluded all the topographically induced coupling terms. In ically weak (this could be formally expressed by introducing

: . . . a second frequency, appropriate for the short scales, with
:glihS: Tifligr]er:r rdnrg(ifaluliier);a‘i:rg;gu'['trhhiy ;iSt;IrC;teigr:h;rgiil\;es‘%»w’ yielding a smaliz). In short, no real restriction on
ydrost gme. 1 P is imposed. Finally, we assume the topography to be slowly

we adopt here facilitates an ordering of small parameters _ . -
. . -varying, as expressed by the smallness.oThis is, at face

and hence an extension to a weakly nonlinear nonhydrostatic . . .
regime value, a questionable assumption, but, as noted in the Intro-

A short di . h . dina th @iuction, the practical range of validity of WKB-like assump-
short discussion on the assumpt|ons regarding t 1€ SMaA¥ons often stretches far beyond the formal limitations.
parameters, and the range of validity thus imposed, is in or-

der. Typical parameters (waterdegth= 4km, internal-tide
wavelengthL=50km, f=1.0x10"*s"1, wave frequency

5 Discussion
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This is confirmed by a comparison with more sophisticated )
numerical models, which shows that the formal assumption ‘
of “slowly varying” topography does not in practice pose se- O’WNMMW’
rious restrictions (Sect. 3b). In the nonlinear, nonhydrostatic _menwmwf
regime, we showed that higher harmonics are generated, sim

ilar to what fully numerical models (like MIT-gcm) showed

before Gerkema et al.2006. Compared to these models, -6
the present model is less exact as it involves a few approxi- _g | i
mations; on the other hand, it is computationally much less \WW/\WV«/W\W
demanding than fully nonhydrostatic models, and is concep- ‘lo’WﬂW\wMW’
tually linked to the Korteweg-deVries type soliton equations.  -12 :
(We note that numerical instabilities occur for strong forcing,
possibly requiring a modification of the numerical scheme in
that case.) As we showed in Sect. 4b, the model can be use( -16- ‘ r
to describe the process of local generation of internal soli- _ls,ﬁWWMW,
tary waves by an internal-tide beam impinging on the sea- ‘ ‘ ‘

sonal thermocline. This phenomenon has been observed it ~*% %0 10 -0 0
the Bay of Biscay Nlew and Pingreel99Q 1992 New and

Da Silvg 2002, and some theoretical studies have been de- ¢
voted to it Gerkema2001 Akylas et al, 200§. However, gL
the latter studies adopted a somewhat idealized setting, antg 3
we think the results in Sect. 4b show the phenomenon for the 8 -4
first time in a model based on a realistic setting of topogra- ‘_520 180 —160 —140 —120 -100 -80 —60 —40 —20 0 20
phy, stratification, and tidal forcing.

‘ ‘ ‘ ‘ ‘distance km
| |

. I
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

-14

u, baroclinic cross—slope current (amplitude, m/sec)

—
)

Appendix A Integral expressions Fig. 8. Elevation of the interface (represented by minus buoyancy

b) at 50 m for each tidal hour (time progresses by stepg b2 tidal
period), and the amplitude (in nT$) of the horizontal cross-slope
baroclinic velocity component.

The evolution equations for the modal coefficier86)¢(39)
contain the following integral expressions, serving as coeffi-
cients. First, the topographically induced mode-coupling:

f?l N2¢, xpxdn
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