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Abstract. Alongshore sandbars are often present in the
nearshore zones of storm-dominated micro- to mesotidal
coasts. Sandbar migration is the result of a large num-
ber of small-scale physical processes that are generated by
the incoming waves and the interaction between the wave-
generated processes and the morphology. The presence of
nonlinearity in a sandbar system is an important factor de-
termining its predictability. However, not all nonlineari-
ties in the underlying system are equally expressed in the
time-series of sandbar observations. Detecting the presence
of nonlinearity in sandbar data is complicated by the de-
pendence of sandbar migration on the external wave forc-
ings. Here, a method for detecting nonlinearity in multi-
variate time-series data is introduced that can reveal the non-
linear nature of the dependencies between system state and
forcing variables. First, this method is applied to four syn-
thetic datasets to demonstrate its ability to qualify nonlin-
earity for all possible combinations of linear and nonlinear
relations between two variables. Next, the method is applied
to three sandbar datasets consisting of daily-observed cross-
shore sandbar positions and hydrodynamic forcings, span-
ning between 5 and 9 years. Our analysis reveals the presence
of nonlinearity in the time-series of sandbar and wave data,
and the relative importance of nonlinearity for each variable.
The relation between the results of each sandbar case and pat-
terns in bar behavior are discussed, together with the effects
of noise. The small effect of nonlinearity implies that long-
term prediction of sandbar positions based on wave forcings
might not require sophisticated nonlinear models.

1 Introduction

Sandbars are alongshore ridges of sand in up to 10 m water
depth along micro- to mesotidal, storm-dominated coasts and
strongly affect the nearshore flow field and sediment trans-
port processes. They continuously change their position in

Correspondence to:L. Pape
(l.pape@geo.uu.nl)

response to temporal variability in the offshore wave forcing.
During storms intense wave breaking drives strong offshore-
directed currents that force the sandbar offshore (e.g. Gal-
lagher et al., 1998). Wave nonlinearity (preponderance of
high crests and steep front faces) drives onshore migration
during intermediate and low-energy conditions (Hoefel and
Elgar, 2003). Until recently, sandbar evolution was often
modeled using models based on small-scale physics forced
by waves and currents (Roelvink and Brøker, 1993; van Rijn
et al., 2003; Ruessink et al., 2007), which we will refer to
as process-based models. The increasing amount of remote-
sensed sandbar data, for example in the Argus program (Hol-
man and Stanley, 2007), now allows for the use of data-driven
models as an additional means for studying sandbar behavior.
Data-driven models use limited or no physical knowledge.
Instead they extract the relations that describe the charac-
teristics of data from the data itself. Although data-driven
models are based on the internal structure found in observa-
tions, it is important to understand the nature of the under-
lying processes and how these processes are reflected in the
behavior of the observed variables. Nonlinearity is one of
the features of a sandbar system that is clearly present in the
underlying physical processes such as wave-induced currents
and sediment transport, but it is unclear how this nonlinear-
ity is expressed in the observations made from this system.
To increase the understanding of the temporal evolution of
sandbars a method is needed that can identify nonlinearity in
the time-series of observations from a sandbar system.

The predictability of a variable that is measured from a
system depends at least partially on the nonlinearity of the
processes governing the system’s behavior. When linear
models are used to describe a system, irregular behavior can
only be attributed to unknown random inputs. However, non-
linearity in the system can be a source of irregularity in itself.
Depending on the dynamics of the system and the scale on
which it is studied, nonlinearity can lead to behavior that is
very difficult to predict, or it can be the source of very reg-
ular behavior when the system is studied at the level of a
possible attractor it evolves into. Although it might seem
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obvious that a system in which the underlying physical pro-
cesses are inherently nonlinear requires a data-driven model
that is also nonlinear, it might not be true that every variable
that is measured from the system reflects this nonlinearity
(Schreiber and Schmitz, 2000). For example, the nonlineari-
ties at small-scale physical processes (described by sediment
flux equations) can together cause a system to move towards
a simple attractor state that reveals itself only at larger scales
(sandbar behavior). There are also reasons that nonlinear-
ities acting in a system at the same scale as the measured
variables might not reveal themselves in observations, such
as nonlinearities that act in opposite directions and cancel out
each other, or nonlinearities that are small compared to mea-
surement or model noise. Together these effects can have
considerable consequences for the predictability of the evo-
lution of a system. Although not yet successfully demon-
strated, Southgate and Möller (2000) conjecture that process-
based models might not be able to make accurate predictions
of time-sequences of morphology beyond certain prediction
horizons, while it may be possible to make accurate predic-
tions of the evolution of a system based on stable statistical
properties of attractor states. It is therefore not only impor-
tant to know that there is nonlinearity in the physical pro-
cesses that govern the behavior of a system, but also to rec-
ognize whether there is nonlinearity present in the data that
are measured from that system.

Detecting nonlinearity can be achieved by comparing the
prediction accuracy of different data-driven models that can
or cannot cope with nonlinearity. This approach is used in
the Deterministic versus Stochastic (DVS) method (Casdagli
and Weigend, 1993). In this method the entire continuum
between highly local piece-wise linear models and a global
linear model is analyzed. The course of the prediction error
between the two types of models yields qualitative insights in
the dynamics of the underlying system. The DVS method is
based on projections of observations in state space. Just like
other state space-based methods, the DVS method can only
be used for univariate data, or multivariate data with the same
physical units. For data with the same physical interpretation
a distance measure that is the same in all regions of the state
space can easily be defined. However, if the state space of
a system contains variables with different physical meanings
or no physical interpretation at all, the relative contribution
of each variable to the distance measure remains unidenti-
fied. The problem of using multivariate data in which dif-
ferent variables might be mutually dependent, can be solved
in different ways (Sugihara and May, 1990). One method is
to study only a single variable, and consider all other vari-
ables as noise, and the relation between the studied variable
and other variables as noise processes. A second method is
to study a single variable in the parts of the data in which
the other variables are constant, or are within a certain range.
The third option is to study the effects of other variables on
the studied variable in terms of individual events. In this
fashion the different modes of behavior of a system or the

time it takes for a system to return to a certain mode can be
studied in relation to the changes or values in other variables.
What all these methods have in common is that they cannot
deal with systems that are driven by continuously changing
forcing, such as the nearshore system, which is mainly driven
by incoming waves with continuously changing properties.
A method that does take into account the response of a sys-
tem to continuously changing variables is input-output mod-
eling (Casdagli, 1992; Rubin, 1995; Jaffe and Rubin, 1996),
in which one (input) variable is used to model another (out-
put) variable. Input-output modeling does however not en-
able the detection of nonlinearity for the contribution of each
variable in the relations between combined variables. Other
methods exist that try to find the optimal contribution of each
variable as a weight in a weighted distance function (Abra-
ham, 1997; Cao et al., 1998; Garcia and Almeida, 2005).
However, such methods are only practical solutions aimed at
improving model performance and do not provide additional
insights into the relations between observed variables.

In the present work a method is proposed to investigate
the contribution of different variables in multivariate embed-
dings to nonlinearity and determinism. As an extension to
the DVS method, not only the continuum between piecewise
linear and global linear models is investigated, but also the
continuum between the relative contribution of each variable
to the distance measure in state space. This method, the Mul-
tivariate DVS (MDVS) method, is then applied to three sand-
bar datasets to determine the amount of nonlinearity in the re-
lations between different observables. Although the method
we describe here stems from sandbar research, we anticipate
our method to be applicable to time-series of other systems
as well.

2 Models

A model of the evolution of a system over time involves a
method that describes how the system evolves from one state
to the next. A single observation almost never holds com-
plete information of the true underlying system state. Nev-
ertheless, it is possible to reconstruct the system state by
using sequences of observations instead of a single obser-
vation. In such a representation, sequences of observations
are projected in a state space that preservers the properties
of the transitions between the states of the system that do
not change under smooth coordinate changes (Takens, 1981;
Sauer et al., 1991). Although the entire state of a system can
be fixed given sequences of sufficient length, it is not always
desirable to model each relation between every aspect of the
system state. Processes that are important for the behavior
under study are often modeled as deterministic rules, while
the remaining processes are represented by their correspond-
ing distributions. Together these distributions are referred to
as noise.
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Methods for detecting nonlinearity in time-series data of-
ten rely on embedding the measured variables in state space.
The evolution of such a system is given by a rule that spec-
ifies what state follows from the current state. In case the
observations are made from a system that is to some extent
driven by external forcings, the part of the state space corre-
sponding to the external forcing factors cannot be predicted
given the current state. The external forcings are not con-
sidered as part of the system and behave independent of the
dynamics of the system. The sandbar system studied in the
present work is an example of a system that is forced by ex-
ternal factors. Sandbar migration is the result of gradients in
the transport of sediment caused by the motion of water due
to incoming waves or wave-generated processes. Time-series
of sandbar positions can be extracted from Argus images or
from measured profiles, while wave forcings are measured
outside the system using offshore located buoys. Because the
wave data are expressed in terms of offshore wave character-
istics it is difficult to implement the feedback from the mor-
phology on the waves in a data-driven model. In the present
work the wave forcing is therefore not included in the system,
but acts on the system from the outside. However, although
we cannot measure it, the feedback of the morphology on
the waves might be an important factor in sandbar behavior.
The importance of the interaction between the morphology
and the incoming waves might even be different for different
parts of the nearshore. In multiple-barred sandbar systems
the outer sandbar responds more directly to incoming waves,
while the relation between the offshore wave characteristics
and the behavior of inner sandbars is less obvious because
of wave breaking on the outer bar. Some mention patterns
in sandbar behavior that cannot be directly related to forc-
ings (e.g. Southgate and M̈oller, 2000; Plant et al., 2006),
but identifying such behavior from observations remains dif-
ficult (Elgar, 2001). It is therefore unclear if the evolution
of a multiple-barred sandbar system can best be described in
terms of trajectories of sandbar positions in state space, or as
primarily forced by external factors. Time-series data driven
by external forcing factors are usually modeled using Box-
Jenkins type models (Box and Jenkins, 1970), or nonlinear
versions of such models (for an application to sandbar mod-
eling, see Pape et al., 2007). However, methods for detecting
nonlinearity are based on the evolution of a system in state
space. To detect nonlinearity in time-series of sandbar obser-
vations and forcings a method is needed that combines both
approaches.

A key assumption in modeling is that a system behaves
the same under similar conditions. To use this assumption
the terms in the previous sentence need to be further speci-
fied. In the models used in the present work the term “con-
dition” comprises the system state and the external forcing.
The system state can be represented as a vector in a state
space, and the concept of similarity by some distance mea-
sure between two vectors. A very simple way to model be-
havior is to search for a number of neighboring vectors in

state space, and predict the average value following these
neighbors. This might work for neighbors that are very close
in state space, but for increasing numbers of neighbors, the
predicted values converge to the mean of the data. It is possi-
ble to do better than that by establishing a notion of behavior
that involves the underlyingstructureof the relation between
two system states. For example, instead of predicting sys-
tem states, the change in system state could be used, or even
better, a parametric model established by linear regression.
Linear methods assume that a shift in state space means a
proportionally large change in the predicted value. However,
for nonlinear relations this is not the case. If the behavior of
a system varies in different regions of the state space it is not
possible to construct a single accurate global linear model.
The DVS method (Casdagli and Weigend, 1993) uses this
fact to detect nonlinearity by testing the performance of lin-
ear regression models based on increasing numbers of neigh-
boring states. Increasing the number of neighbors on which
a model is based will first cause an increase in model per-
formance, because including more samples in the process
of model building will reduce noise. Increasing the num-
ber of neighbors even further causes samples in more remote
parts of the state space to be included in the process of model
building as well. A linear model will only benefit from this
increase if the behavior of the system is the same in all parts
of the state space. For nonlinear systems this is not the case,
and the performance of a linear model starts to decrease again
when the number of neighbors is increased beyond a certain
amount because noise reduction becomes less important than
modeling nonlinearity. Therefore, the change in the course of
the prediction error for models based on increasing numbers
of neighbors can be used as an indication of nonlinearity.

Based on this conceptual simplicity, the DVS method can
easily be extended for detecting nonlinearity in multivariate
data. In this method, which we call the Multivariate DVS
(MDVS) method, the entire multivariate time-series (includ-
ing the external forcings) are projected as vectors in state
space. Models are now based on multivariate neighbors in
state space. Instead of predicting all variables, only the vari-
ables that represent the system state are predicted. Predict-
ing the external forcings from the internal system dynamics
would make no sense, so the external forcings are included in
state space, but they are not predicted. When neighbors have
to be found in a state space that contains multiple variables, it
is not immediately clear what the contribution of each vari-
able to the distance function should be. Although the opti-
mal weight setting for each variable might not be known, the
importance of each variable to the nonlinearity can be inves-
tigated by testing several weight values. Just as in the DVS
method, a linear regression model is established based on the
selected neighbors and the values following them. This pro-
cess is repeated for increasing numbers of neighboring sam-
ples and several values of the weights. If the behavior of the
system depends linearly on a certain variable, then the be-
havior of the system is constant in the dimensions related to
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this variable. In that case it does not matter whether neigh-
bors are used that are nearby in the dimensions of that vari-
able, so changing the value of the corresponding weight will
not cause an increase in performance. On the other hand, if
the behavior of the system depends nonlinearly on a certain
variable, it should be possible to improve the performance
of the model by using neighbors that are close in terms of
this variable. Testing the performance of models for different
weight values in the distance function gives an indication of
the amount of nonlinearity in the system associated with each
variable. Because the different variables might have differ-
ent physical meanings, the exact values of the weights might
have no physical interpretation either. Therefore, it is not the
exact value of each weight, but theratio between the weights
that is important in expressing the contribution of each vari-
able to nonlinearity. To allow for an equal spread of weight
ratios, all variables are scaled to unity variance for use with
the nearest neighbor function.

Investigating the performance of different models based
on different parts of the state space requires the time-series
of observations to be represented in terms of the system state
and the forcings, such that similar conditions can be distin-
guished based on a distance function. At the same time it
should be possible to use this representation as the basis of a
linear regression model that can deal with external forcings.
In order to create such a representation, the state of the sys-
tem and the external forcings are projected into a combined
time-delay vectors[t] as:

s[t] = (1, x[t], . . . , x[t − m],

f [t + 1], . . . , f [(t − o) + 1]),
(1)

wherex are the system state variables,f the forcing vari-
ables,t is the time,m is the embedding dimension of the
system state variables, ando the embedding dimension of the
forcing variables. The first element of the vector is always a
1 to allow for the inclusion of a constant in models that are
based on this vector. For the matter of simplicity each el-
ement of the system state variables and forcing variables is
given the same embedding dimension. The time between be-
tween subsequent elements inx andf , or lag time, is set to 1
time unit for the same reason, but Eq. (1) can of course eas-
ily be adjusted to implement different embedding dimensions
for different variables or different lag times.

A linear model that can deal with external forcings is the
auto-regressive model with external forcings (ARX). In this
model, the next state of the system in terms of the model
parameters ands is

x[t + 1] = s[t] · 9, (2)

where9 is the weight matrix of the linear model, with a col-
umn for each variable ins. Note that in this equation the next
state of the systemx[t+1], depends partially on the forcings
f [t+1], which corresponds to the time-indexing used for the
sandbar dataset. The weights9 of the linear model can be

established by performing a linear regression on a number
of nearest neighbors and their subsequent system states. To
select those neighbors, weighted distances between a vector
and all other time-delay vectors are computed by element-
wise multiplication of a weight vectorw with the difference
betweens[t] ands[v]:

d(t, v) = w × (s[t] − s[v]), (3)

where the elements inw that correspond to an element inx

or f have the same value for each time-index (no time-decay
is used because it will obfuscate the performance differences
between different numbers of neighbors). Whend(t, v) is
computed for eachv 6=t , the k nearest neighbors with the
smallest Euclidian distances

e =

√
d(t, v) · dT(t, v), (4)

can be selected and used for model building.
To get an indication how the performance of the linear

models changes with increasing numbers of neighbors and
different weight ratios, a number of experiments were per-
formed on synthetic time-series with different relations be-
tween the forcings and subsequent system states. To create
the surrogate time-series, forcings were drawn from a stan-
dard normal distribution. Next, the forcings were used to
create four different AR(1) time-series: (a) the next system
state depends on a linear combination of the forcing and the
previous system state; (b) the next system state depends non-
linearly on the forcings but linearly on the previous system
state; (c) the next system state depends nonlinearly on the
previous state but linearly on the forcings; (d) the next sys-
tem state depends nonlinearly on both the forcings and the
previous system state. The time-series were embedded in
state space according to Eq. (1) withm=o=1. Consequently,
models were built based on different numbers of neighbors
k, and 1-step-ahead out-of-sample predictions were obtained
for those models. This process was repeated for several dif-
ferent ratios of the weights in the nearest neighbor function.
The weight vectorsw, containing the system state weightwx ,
and the forcing weightwf , were taken from the set:
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with q=4, resulting in a total of 9 weight ratios.
For each of the four datasets, the absolute error of the 1-

step-ahead predictions is plotted against the number of neigh-
bors k, and the weight ratios in Fig. 1. As becomes clear
from the four graphs, the error first decreases with increas-
ing numbers of neighbors. If all variables act linearly on the
system the error will converge to its minimum regardless of
the weight ratio (Fig. 1a). When one or both variables act on
the system in a nonlinear fashion, the error gets larger when
the number of neighbors is increased further (Fig. 1b–d). For
the three nonlinear systems, the location of the minimum er-
ror with respect to the ratio of the weights can be used to
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Fig. 1. Course of the error for different numbers of neighborsk and weight ratioswf : wx, for: (a) linear forcing and linear system state
dependencies;(b) nonlinear forcing and linear system state dependencies;(c) linear forcing and nonlinear system state dependencies;(d)
nonlinear forcing and nonlinear system state dependencies. Errors increase from blue to red.

infer which variable acts nonlinearly on the system. The best
performance for a single nonlinear variable is achieved when
only the weight corresponding to that variable has a nonzero
value (Fig. 1b, c). Consequently, if both variables act nonlin-
early on the system the error will reach its minimum when
both weights have nonzero values (Fig. 1d).

3 Experiments

3.1 Sandbar data

In the present work three sandbar datasets from different
sources were used. One set consists of in-situ profile mea-
surements, and the other two were obtained using Argus
imaging stations (Holman and Stanley, 2007). An Argus
station consists of one or more cameras pointed obliquely
along the beach, providing an uninterrupted view of the
nearshore zone. Each daylight hour, all cameras acquire a
time-exposure image (e.g. Fig. 2a) created by averaging over
1200 consecutive images collected at 2 Hz. This averages
the individual breaking waves to reveal one or more smooth
white bands of breaking waves. The oblique images of the in-
dividual cameras can be merged and rectified (Holland et al.,
1997) to yield a single planview image (e.g. Fig. 2b). The
continuous high-intensity bands that are manifested in the
planview images serve as a reasonable estimate for the sub-
merged sandbars (Lippmann and Holman, 1989), and can
be extracted from the images by the alongshore tracking
of intensity maxima (van Enckevort and Ruessink, 2001)
(e.g. Fig. 2b). Since sandbar migration over a single hour is
insignificant relative to the accuracy of the rectification and
extraction processes, barline extraction is usually performed
on a single image at the lowest tide of each day, when the
breaking patterns are most pronounced.

The first dataset was gathered by the Argus station at
Surfers Paradise, northern Gold Coast, Queensland, Aus-
tralia (Turner et al., 2004), in the period between 15
July 1999 and 10 April 2007. The second dataset was
acquired from the Argus station situated near Egmond,
the Netherlands. This dataset starts at 31 May 1999 and con-
tinues to 26 April 2007, but data from the years 2000 and
2005 are almost entirely missing due to technical problems.

Barlines were extracted over a stretch of coast of 3 km for the
Gold Coast images and 4 km for the Egmond images. Oc-
casionally, sandbar positions could not be computed due to
poor image quality (fog or rain droplets on one of the cam-
era lenses), conditions when waves were too low to break,
or the malfunctioning of the video acquisition system. To
create a continuous time-series dataset, gaps smaller than
2 days were filled by linear interpolation between adjacent
breaking-based observations. The majority of the gaps in the
data were caused by images that revealed no clear breaker
pattern because they were collected during low-energy con-
ditions. Because bar migration is very small under these con-
ditions, we expect that the linear interpolation will have lit-
tle effect on the results of the nonlinearity detection method.
After the extraction process the barlines were averaged in the
alongshore direction to yield a single cross-shore position per
sandbar each day. From this dataset the periods and sandbars
with the best barline accuracy and the most natural sandbar
behavior were selected (e.g. the seamost positioned sandbar
at Egmond was discarded because waves were seldom high
enough to reveal its position; the first part of the inner sand-
bar at the Gold Coast was left out of the analysis because
a beach nourishment was carried out during that period; the
decay phases of the outer sandbar at the Gold Coast were not
taken into account because the process of extracting barlines
from the images was less accurate for these periods). The
resulting Gold Coast dataset containing 2143 days of outer
sandbar positions and 1914 days of inner sandbar positions is
shown in Fig. 3a. The Egmond dataset containing 1865 days
of both inner and outer sandbar measurements is depicted in
Fig. 3b.

As shown by van Enckevort and Ruessink (2001), the
variation in water level is the main cause of the temporal
variability in the difference between the video-observed and
the actual sandbar position. Sandbar positions that are ex-
tracted from images taken at different tidal levels exhibit
artificial migration (i.e. migration due to varying tidal lev-
els rather than due to actual sandbar migration). This ar-
tificial migration rate depends linearly on the water level
difference between two observations (van Enckevort and
Ruessink, 2001), and can therefore easily be removed. Each
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video-observed sandbar position was projected on a fixed
water level (≈0.5 m below mean sea level) using in-situ mea-
surements of tidal water levels at Egmond, and the astronom-
ical tide at the Gold Coast, because data on the actual tide
(which can differ due to local conditions) was not available
for that station.

The third dataset consists of measured water depths ob-
tained from the Hazaki Oceanographical Research Station
(HORS), located on the Hazaki coast of Japan facing the
Pacific Ocean. At HORS, profile measurements were per-
formed along a 427 m long pier, daily from 1 January 1987
to 1 August 1999, except for weekends and holidays. The
profile measurements with a resolution of 5 m, can be used to
infer the cross-shore sandbar position. Most of the time there
was only a single sandbar, so the position of the sandbar crest
was defined as the local maximum elevation of at least 0.3 m
at the seamost side of each profile. Although a second, inner
sandbar could sometimes be distinguished, the total amount
of inner sandbar positions was too small to be considered in
the analysis. The parts of the data in which variations in pro-
file height were below the threshold of the local maximum
for more than three consecutive days were left out of the anal-
ysis. Gaps in the cross-shore sandbar positions time-series
smaller than four days were filled using a LOESS interpola-
tion filter (Cleveland and Devlin, 1988). The resulting time-
series of 3861 sandbar positions is depicted in Fig. 3c. Note
that the gray lines in Figs. 3a–c indicate bad-quality data that
were left out of the analysis. Extensive reviews of the HORS
dataset are given in Kuriyama (2002) and in Kuriyama and
Yanagishima (2006).

Data on the predominant external inputs for driving sand-
bar variability, the offshore waves, were acquired from sev-
eral sources. The offshore waves can be represented by
their root-mean-squared wave heightHrms, peak wave pe-
riod Tpeakand wave direction relative to the shore normalφ.
For the Gold Coast dataset, the variablesHrms andTpeakwere
obtained each thirty minutes from the Gold Coast waverider
buoy, located about 2 km offshore of the study area, in 16 m
water depth. Directional informationφ was collected hourly
by the Brisbane waverider buoy located some 10 km offshore
in 70 m water depth, about 100 km north of the study area.
The wave climate at Egmond was measured hourly by the
IJmuiden06 waverider buoy, located some 40 km offshore in
21 m water depth. At HORS, data on the day-averaged wave
heights and periods were available from an ultrasonic wave
gage located 5 km offshore in 24 m water depth. Because no
directional information was available, the predominant direc-
tion of incoming waves at HORS (30◦) was used when nec-
essary.

The three variables expressing the properties of the incom-
ing waves were combined into the wave height at breaking
(Plant et al., 1999)

Hb =

(
γ

g

) 1
5 (

H 2
rms · cg · cos(φ)

) 2
5
, (6)

where the offshore group velocitycg was computed using
linear wave theory involvingTpeak and the water depth at
the location of the offshore wave measurement, the gravi-
tational accelerationg is 9.81 m s−2, and the wave height to
water depth ratio at breakingγ was set to 0.4, a typical field
value (Thornton and Guza, 1983). If multiple observations
of Hrms, Tpeak andφ were available during a day,Hb was
computed from each 3-tuple and then averaged to yield a sin-
gle value between two subsequent sandbar observations. The
time-averagedHb value was given the time index of the sec-
ond observation, which explains the formulation in Eq. (1).
Missing Hb values were filled by linear interpolation. The
time-series of the hydrodynamic data are depicted in Fig. 3d–
f.

As noted in Sect. 2, the incoming waves have to be consid-
ered as an external forcing factor because they are measured
offshore. Moreover, the actual wave forcing at different lo-
cations in the cross-shore direction might be only weakly re-
lated to the offshore-measured forcing. For the outer sandbar
this is not very problematic, because the properties of the
waves do not change much between the offshore location of
the buoy and the location of the outer sandbar. Waves that
break on the inner sandbar however, have undergone a com-
plex transformation before their arrival. If the waves are high
enough, they break on the outer sandbar first. The waves then
reform in the trough between the outer and the inner sandbar,
and break again on the inner sandbar. Although no surfzone
wave measurements are available, it is still possible to obtain
information on changing wave properties in the nearshore by
using a wave-transformation model. Such models compute
the various changing properties of the waves over a cross-
shore profile, based on offshore-measured wave properties.
Whereas computing surfzone wave properties for the HORS
profile dataset would not make much sense because there is
only a single sandbar, very few profile data for the locations
in the Argus datasets were available. For the Gold Coast
a single profile measurement was performed in June, 2002
and at Egmond five profiles measured annually in 1999–2003
were available.

While it is not possible to compute accurate wave proper-
ties at different cross-shore locations for the Argus datasets,
the available profiles can still be used to get at least
some indication of wave properties in the nearshore zone.
The Battjes-Janssen (e.g. Reniers and Battjes, 1997) wave-
transformation model with default parameters (Battjes and
Janssen, 1978; Battjes and Stive, 1985) was evaluated for
each hourly-averaged offshore wave measurement and the
profile at the closest profile-measurement date. The root-
mean-squared wave heightHrms at ≈50 m offshore of the
outer sandbar, and within the trough between the outer and
inner sandbar were then averaged over the time between two
subsequent sandbar observations, just as in the computation
of Hb. The outcome of the Battjes-Janssen model for the two
Argus datasets is given in Fig. 3g, h. For completeness, the
offshoreHrms at HORS is also given in Fig. 3i. The result of
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the Battjes-Janssen model, based on a only a few measured
profiles, is by no means an accurate representation of the ac-
tual wave heights. However, given the available models and
information this is the only way to infer at least some prop-
erties of the waves at different positions in the profile. This
information can then be used to investigate the importance of
the external forcing and where it is measured.

As can be inferred from Fig. 3 the most pronounced fea-
ture of sandbar behavior is the rapid offshore movement un-
der high wave energy conditions (storms), and the relatively
slow onshore return under relatively quiescent wave condi-
tions. There is however a large difference between the sites
in the sensitivity of sandbar migration to the height of the
wave forcing. The sandbars at the Gold Coast, showing a
maximum migration of 75 m d−1, are the most responsive to
high energy conditions. Whereas the wave height at breaking
at HORS can be much larger during the depressions in winter
and the typhoons in autumn, the maximum observed sandbar
migration at HORS is 50 m d−1. At Egmond the sandbars
are even less-responsive to high energy conditions, showing
a maximum of 30 m d−1. Patterns of alternating directions
of sandbar migration are linked to the external forcing and
might reflect the seasonal weather patterns as well. How-
ever, the resulting net migration of each sandbar crest posi-
tion is always offshore. When a sandbar continues to move
offshore, the water depth above the sandbar increases (due to
the beach slope) until finally the depth becomes too large for
incoming waves to break. At that point the driving force that
maintains the sandbar ceases, and the sandbar disintegrates.
In the first part of the HORS dataset in Fig. 3c this happens
almost every year near the end of the typhoon season, after
which a new sandbar is formed close to the shore. This 1-
year period cyclic behavior changes after 1993, probably due
to changing wave conditions (Kuriyama and Yanagishima,
2006). At the Gold Coast the outer sandbar also decays after
one or more major storms (e.g. early 2006 in Fig. 3a). After
such an event the existing inner sandbar moves seaward and
becomes the new outer sandbar, while a new inner sandbar is
formed at the shore. In the period shown in Fig. 3a the to-
tal lifespan of a sandbar, from its formation at the shoreline
to its decay seaward of the breaker zone, is≈4 years, giving
rise to a periodicity with an interval of≈2 years. Although at
Egmond no sandbar decay event takes place during the stud-
ied period, it is known from earlier studies of the Dutch coast
that the same pattern of formation and disintegration of sand-
bars is also present at Egmond, be it at a much slower pace
of ≈15 years (Wijnberg and Terwindt, 1995).

As mentioned before, at Egmond there is a third sandbar
at the seamost edge of the breaker zone which could not ac-
curately be analyzed from the images. Although here we
call the second sandbar counted from the shore the outer
sandbar, it is occasionally sheltered from very high waves
by the actual outer sandbar, as becomes clear from a com-
parison between Fig. 3e and h. This means that the sec-
ond sandbar at Egmond may show behavior that is more

intermediate between inner and outer sandbars. Together, all
these different sandbars at locations with various boundary
conditions are a good representation of the entire spectrum
of sandbar behavior and comprise a broad basis for general-
izing the results of the nonlinearity analysis.

3.2 Setup

To investigate the nonlinearity related to cross-shore sandbar
positions and wave forcing, the MDVS method was applied
to the Gold Coast, Egmond and HORS datasets. The system
state variable was the cross-shore sandbar position, andHb
andHrms computed at different locations were used as forc-
ing variables. Inner and outer sandbars were studied in sep-
arate experiments. The effect of using offshore and locally
computed forcings was also studied by usingHrms computed
at the outer sandbar as forcing for the outer sandbar, andHrms
computed in the trough between the outer and inner sandbars
as forcing for the inner sandbar. For comparison,Hb was
also used as forcing variable in additional experiments.

First, the variables were embedded in state space. Al-
though several methods exist to find optimal values for
the lag time and embedding dimension of univariate data
(e.g. first zero of autocorrelation, mutual information), find-
ing these values for interdependent multivariate data is not
straightforward. The dataset consists of one low-tide image
or one profile measurement per day, so a lag time shorter
than 1 day could not easily be achieved. A lag time that
is too small relative to the timescale of the studied char-
acteristics becomes only a problem when the embedding
dimension is very small too (Kantz and Schreiber, 1997).
Since several embedding dimensions were tested here, no
detailed investigation into the optimal lag time needs to be
performed, so the lag time was set to 1 day. Embedding
dimensionsm=o=1, . . . , 10 were tested in separate exper-
iments. The capacity of linear models to simulate nonlinear
dynamics increases for larger embedding dimensions. As a
result, no noticeable performance difference between linear
and nonlinear models was achieved for embedding dimen-
sions larger than 6, so the presentation of the results is limited
to m=o=1, . . . , 6.

For each sandbar, errors were computed as the mean out-
of-sample absolute prediction error over all but the firstm

samples. Absolute errors were used because they are less
sensitive to outliers than methods based on squared differ-
ences between forecasts and observations. The prediction er-
ror for a model was computed usingn-step-ahead prediction.
This process starts by running the model with observed sys-
tem state variables at the first timestep, while model predic-
tions of the system state are used during the nextn timesteps.
After that, eachn timesteps observed system states instead
of previously predicted states are used as input. The forc-
ing values are not predicted, so the observed forcing val-
ues are provided to the model each timestep. It is expected
that the performance difference between linear and nonlinear
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Fig. 2. Argus camera images, merged plan view and tracked barlines.
(a) Time-exposure Argus images of all cameras; the high-intensity bands in each image are due to persistent wave breaking on the sandbars.
(b) Tracked outer (solid) and inner (dashed) barlines in plan view.

models becomes more pronounced with increasing predic-
tion horizons (e.g. Sugihara and May, 1990). Therefore not
only the one-lag (day) ahead prediction (n=1) was used, as
is usual in the DVS method, but also larger prediction hori-
zons up ton=14 were tested. An example of observations
and actual linear and nonlinear model outputs for even longer
prediction horizons is given in Pape et al. (2007). Since we
are primarily interested in differences between models based
on different numbers of neighbors, the error is represented as
the percentage of the error of an ARX model that is based
on all samples. The local models and the full ARX model
to which they are compared are based on the same lag time,
embedding dimension and prediction horizon, ensuring a fair
comparison between the local and global models.

Results were obtained for different weight values of the
system state weightwx, and the forcing weightwf . Weight
ratios were taken from the set defined in Eq. (5) withq=8,
resulting in a total of 17 weight ratios. Figure 4 shows the
results of the MDVS method for all sandbars in the three
datasets with different forcings. In each image the horizon-
tal axis represents the number of neighbors that was used
to build a model for each sample, and the vertical axis the
weight ratio between the forcing and system state variable
that was used in the nearest neighbor distance function. In
this fashion, the course of the error and the location of the
minimum error can easily be observed in the pictures. For
most embedding dimensions the location of the optimum and

the course of the error were very similar (although the ac-
tual values could differ). Therefore, the results were aver-
aged overm=o=1, . . . , 6. As a result, any difference in the
location of the optimum among different embedding dimen-
sions becomes visible as a scattered pattern (e.g. Fig. 4f). For
shorter prediction horizons the results of different embedding
dimensions were reasonably close, but for prediction hori-
zons larger than≈7 days, often no clear optimum or other
meaningful patterns were visible. To give an indication how
the results of the MDVS method change with increasing pre-
diction horizons, the results for bothn=1 andn=7 are shown
in Fig. 4.

3.3 Interpretation of MDVS results

As explained in Sect. 2, increasing the number of samples on
which a model is based improves its prediction accuracy due
to noise reduction. All images in Fig. 4 exhibit a decrease
in error when the number of neighbors is increased to sev-
eral tens or hundreds. However, when the number of neigh-
bors is increased even further, the errors start to increase
again. Piece-wise linear models based on a smaller neigh-
borhood yield more accurate predictions than models based
on a large number of neighbors, which is evidence for non-
linearity. As can be inferred from the scales of the colorbars
in Fig. 4, the MDVS results of the different sandbars vary in
the improvement of nonlinear models with respect to a full
linear model. The largest improvement (≈15%) is obtained
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for the outer sandbar at the Gold Coast (Fig. 4c). The dif-
ferences are smaller for the other sandbars, ranging from 6%
for the inner sandbar at the Gold Coast (Fig. 4d) to only 1.2%
for the sandbar at HORS (Fig. 4i). While nonlinear models
outperform linear models for all cases considered, the effects
of nonlinearity are generally small.

Not only the value of the optimum error percentage varies
among different sandbars, also the location of the optimum
relative to the weight ratios differs in the images in Fig. 4.
In most images the error decreases when the weight of the
forcing variablewf increases (from bottom to top), but starts
to decrease again when this weight increases beyond a cer-
tain value. It can be deduced from a comparison with Fig. 1d
that this is caused by nonlinearity that is related to both the
forcing and system state variable. For some results how-
ever (e.g. Fig. 4a, d and c), the error does not start to in-
crease again when thewf : wx ratio becomes large. In
these cases the optimum performance is achieved forwx=0,
which means that similarities in the system state are totally
discarded in the process of neighbor selection. This situa-
tion is the same as the outcome of Fig. 1b, in which only
the forcing factor acts nonlinearly on the system. Unlike
Fig. 1b, the course of the error in the images in Fig. 4 some-
times also reaches an optimum for a certaink whenwf =0
(e.g. Fig. 4d), but that does not necessarily mean that the re-
lation between subsequent system states is nonlinear. The
reason this is not taken as an indication for nonlinearity in
the system state variable, is that the dependency between the
system state and the forcing works in both ways. Although
this cannot be true in a strict sense, this can be explained
by a further analysis of the lag time in relation to the nature
of sandbar behavior. During the onset of a storm, a sand-
bar moves offshore rapidly and stays there during the rest
of the storm. When after the storm the energy of the waves
becomes smaller, the sandbar starts to move onshore. Since
most storms last for several days, seaward located sandbar
positions often coincide with high-energy conditions. When
neighbors are chosen for a seaward located sandbar based on
sandbar location only, the nearest neighbor algorithm will
unintendedly also select high-energy conditions. In other
words, the duration of the important events is large compared
to the resolution of the data. However, it is still possible to in-
fer something about the importance of each variable to non-
linearity because the results for several embedding dimen-
sions are given. Although the error might show an optimum
value over the transectwf =0, the location of the optimum
with respect to the weight ratiowf : wx indicates the nonlin-
earity related to that variable. Only when both variables act
nonlinearly on the system the error will reach its minimum
when both weights have nonzero values. For some of the re-
sults (e.g. Fig. 4g, i) this is clearly the case, while for other
results the optimum is reached whenwx=0 (e.g. Fig. 4a, c).

Figure 4 also shows the results for different forcing
variables:Hb; Hrms computed at the outer sandbar, which
was used as forcing for the outer sandbar; andHrms

computed in the trough between the outer and inner sandbar,
used as forcing for the inner sandbar. WhenHrms was used
for the outer sandbar instead ofHb, the location of the opti-
mum with respect to the number of neighbors or the weight
ratios did not change much (see Fig. 4a, c, e, g). This was as
expected, because the wave height at breakingHb andHrms
computed at the outer sandbar are very well correlated (see
Fig. 3). The most noticeable difference between usingHb
andHrms as forcings for the inner sandbars (Fig. 4b, d, f, h)
is the shift of the minimum error with respect to the weight
ratio on the vertical axes. WhenHb is used as forcing, the
optimum is reached when bothwf andwx have nonzero val-
ues, indicating nonlinearity associated with both variables.
Models that useHrms as forcing factor reach their optimum
performance whenwx=0, so selecting neighbors based on
similarity in locally computed forcings only, gave optimal re-
sults. In other words, also considering similar system states
in the process of model building did not result in a reduction
of the prediction error. This indicates that given the locally
computed forcing, a linear relation between subsequent sand-
bar positions suffices.

When nonlinearity is present, the performance difference
between linear and nonlinear models will become more
pronounced with increasing prediction horizon. For most
MDVS results this was indeed the case up to at leastn=10.
Surprisingly, this trend was not found in the results of the
outer sandbar at Egmond (Fig. 4e and g), up to at leastn=14.
This can partially be attributed to the fact that the minima of
different embedding dimensions become spread out for in-
creasingn, and do not overlap. In other results with scattered
minimum error values (e.g. Fig. 4f and i) the performance
difference also started to diminish forn>10. Using iter-
ative prediction based on previous model outcomes allows
the nonlinear models to wander further away from the ob-
served system state. For linear models this happens more
slowly. Given the small differences between linear and non-
linear models, and the scattered locations and values of the
minimum errors among the different embedding dimensions,
this is another possible cause for the decreasing difference
between both types of models for largen.

3.4 Discussion of the MDVS results

The MDVS method is meant to detect nonlinearity in the re-
lations between sandbar crest positions and wave forcings.
It is however conceivable that some of the detected nonlin-
earity is actually caused by processes we refer to as noise.
During the data accumulation procedure several steps are
carried out that might introduce additional nonlinearity in
the data. For example, the difference between the posi-
tion of the highest intensity, which is used as indication for
the sandbar crest position, and the in-situ crest position is
known to depend nonlinearly on the offshore wave height
(van Enckevort and Ruessink, 2001). A change in the wave
height between two subsequent image-based observations
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Fig. 3. Overview of the variables in the datasets:(a) sandbar positions at the Gold Coast;(b) sandbar positions at Egmond;(c) sandbar
positions at HORS;(d) hydrodynamic data at the Gold Coast;(e)hydrodynamic data at Egmond;(f) hydrodynamic data at HORS;(g) Hrms
over profile at the Gold Coast;(h) Hrms over profile at Egmond;(i) offshoreHrms at HORS.

causes a change in both the location of the highest break-
ing intensity relative to the sandbar crest, and possibly also
in the actual sandbar position. The linear part of the migra-
tion induced by the change of the highest breaker intensity
can be represented by linear models for embedding dimen-
sions larger than one. Still, it might be that the nonlinear part
of this relation affects the results of the MDVS outcome.

Another step in the data accumulation procedure involv-
ing Argus images, is the averaging process that is applied to
find the mean cross-shore sandbar position. As can be seen
in Fig. 2, the cross-shore position can vary in the alongshore
direction. If the migration of a sandbar depends nonlinearly
on its cross-shore position, the different alongshore parts of
the sandbar might migrate different distances or even in dif-
ferent directions under the same forcing conditions. Some
of this potential nonlinearity is averaged out by taking the
mean cross-shore sandbar position. On the other hand, two
sandbars with the same mean cross-shore position but differ-
ent alongshore variability might react different to the same
forcing conditions. Part of the nonlinearity found in the
observed mean cross-shore position might thus be due to
discarding alongshore variability in the models. For exam-
ple, the outer bar at the Gold Coast often contains a lot of
alongshore variability (e.g. Fig. 2), while the difference be-
tween linear and nonlinear models also is the largest. How-
ever, site-specific issues during data-collection might have
introduced additional noise, thus obscuring the differences
between sites. At the Gold Coast, breaker patterns are well-
pronounced, light and atmospheric conditions are excellent,

and the cameras are steady and almost never malfunction.
The images in the Egmond dataset are much more difficult
to interpret due to less perfect conditions, especially the vi-
bration of the 50 m high tower in the wind. Sandbar crest po-
sitions in the HORS dataset are defined as the most seaward
located optimum in the profile, which might not always be
well-pronounced. For the outer sandbar at the Gold Coast the
effects of nonlinearity are most pronounced, but it might well
be that at other sites the effects of nonlinearity are reduced by
larger amounts of noise introduced during data gathering.

Together, all these different processes and varying condi-
tions might introduce additional nonlinearity in the obser-
vations, but might also cause the system to become more
noise-dominated. Since we are dealing with multiple depen-
dencies in multivariate data, existing methods (e.g. Sugihara
and May, 1990; Sugihara, 1994) cannot easily be used or ad-
justed to determine or reduce the effects of noise. However, if
the detected nonlinearity was partially caused by nonlinearity
in the processes that we refer to as noise, the importance of
nonlinearity in the relations between actual sandbar positions
and wave forcing is even smaller. At HORS the sandbar loca-
tion are inferred from actual profiles, which probably intro-
duces less nonlinearities in the data than the extraction proce-
dure for the Argus images. The finding that the importance
of nonlinearity at HORS is the smallest supports this. On
the other hand, the sandbar positions at HORS, which are
only measured at a single alongshore location, might be more
noise-dominated than the sandbar positions derived from av-
eraging over 3 km alongshore or more in the Argus images.
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Fig. 4. MDVS results for all sandbars with different forcings (Hb andHrms) and prediction horizonsn. Error values are computed as the
mean out-of-sample absolute error, averaged overm=o=1, . . . , 6. The images contain the error percentages relative to a full linear model, at
each number of neighborsk, and weight ratiowf : wx. (a) Gold Coast, outer sandbar, forcing:Hb. (b) Gold Coast, inner sandbar, forcing:
Hb. (c) Gold Coast, outer sandbar, forcing:Hrms at outer sandbar.(d) Gold Coast, inner sandbar, forcing:Hrms at trough.(e)Egmond, outer
sandbar, forcing:Hb. (f) Egmond, inner sandbar, forcing:Hb. (g) Egmond, outer sandbar, forcing:Hrms at outer sandbar.(h) Egmond,
inner sandbar, forcing:Hrms at trough.(i) HORS, forcing:Hb.

An additional reason for the variations in the importance
of nonlinearity among different sandbars might be found in
the available amount of similar states. In the MDVS re-
sults of all sandbars, the optimum number of neighbors is
reached within the available amount of samples. However,

the location of this optimum is not the same for each sand-
bar. The different periods of cyclic behavior cause differ-
ences in the availability of similar states for each sample.
For example, at Egmond the locations of the sandbars do
not change much within the dataset (Fig. 3b), implying that
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many similar states in terms of sandbar position can be found
by the nearest neighbor algorithm. Only when models are
based on several hundreds of samples, the neighborhood con-
tains enough different samples for the effect of nonlinearity
in the system state to become more important than noise re-
duction (e.g. Fig. 4e, g). On the other hand, a comparison
with the HORS dataset in Fig. 3c and its MDVS results in
Fig. 4i reveals that differences in optimumk and the relation
to sandbar behavior cannot immediately be inferred from the
MDVS results. Apart from the differences that arise from
data-gathering methods, the available amount of data relative
to the length of the cyclic patterns in the sandbar’s behavior
determines the location of the optimal number of neighbors.
While in all datasets used here the available amount of sam-
ples is only two or three times as large as the optimal number
of neighbors, the true effect of availability of similar states
can only be investigated in detail when the amount of cycles
in sandbar behavior is close to the optimalk.

As discussed in Sect. 3.3, the MDVS results can be inter-
preted in terms of the importance of nonlinearity for both the
system state and the forcing variable. Sugihara (1994) dis-
cusses a case with a single variable and noise, in which the
variability induced by the noise process causes the system to
behave in a different mode (e.g. move toward or away from
a stable state) for different noise levels. Similarly, it might
be possible that a sandbar system changes between different
modes of behavior, which means that nonlinearities associ-
ated with the forcing and the dynamics of the sandbar sys-
tem are inherently inseparable. If the sandbar system were
to change between different modes of behavior, the total be-
havior of the system would still be nonlinear. Whereas the
MDVS results only show nonlinearity for the entire system,
that is over all values of the variables, investigating the im-
portance of nonlinearity for different values of each variable
might reveal these different modes. To examine the possi-
bility of different modes of behavior, the performance dif-
ference between linear and nonlinear models was evaluated
at individual values of the cross-shore sandbar position and
wave forcing variables. This analysis included all sandbar
cases and prediction horizons up ton=14, but no relation was
found whatsoever. We have to admit that the significance of
any relation would have been doubtful given the amount of
data and the noise in the available data.

3.5 Implications for modeling

Our findings that linear models can predict observed cross-
shore sandbar behavior almost as accurate as nonlinear mod-
els implies that simple data-driven models might suffice to
model observed cross-shore bar behavior. This is consistent
with Pape et al. (2007), who also found small differences be-
tween the performance of several linear and nonlinear data-
driven models, even over prediction horizons up to 2 year.
Also Plant et al. (1999) found that a relatively simple model
(calibrated on the observations) could explain up to 80% of

the observed bar position variability. There are two possible
causes for the small difference between linear and nonlinear
models: the system is actually linear, or the data gathered
from the system is dominated by noise.

If cross-shore sandbar behavior is actually linear, there
are important implications for the way in which morpho-
logical behavior can best be predicted. Process-based mod-
els that are used to describe the evolution of the nearshore
zone are based on scales that are both temporally and spa-
tially very small compared to a sandbar and its behavior.
Whereas process-based models can compute the evolution of
the morphology for the entire nearshore zone, the data-driven
models used in the present work are based on a small number
of larger-scale variables that represent the significant changes
in underlying morphology (Plant et al., 2001). The interpre-
tation that sandbar behavior is linear might be founded in the
fact that small-scale physical processes can together evolve
towards a simple attractor state. While process-based mod-
els based on sediment flux computations in fine grids and
small timesteps might suffer from numerical instability, or
the build-up of errors in the process formulations, statistical
models might perform better on larger prediction horizons
because they are based on stable statistical properties of at-
tractor states. The long-term evolution of the nearshore zone
might therefore be predicted more accurately using relatively
simple models based on just a few large-scale variables. For a
more elaborate discussion, see Southgate and Möller (2000)
and Werner (1999, 2003).

On the other hand, if the small difference between linear
and nonlinear models is caused by the presence of noise, the
underlying system might still be highly nonlinear. As long
as the noise is not reduced, there is no way to rule out the
possibility that the underlying system is actually highly non-
linear, meaning that a nonlinear model might be much better
in predicting the actual system state. More complex non-
linear models such as the process-based models discussed
before might thus be able to model the actual morphology
and sandbar position more accurately. There is however
no way to validate this claim. Since the datasets used in
the present work are among the highest quality and resolu-
tion datasets in existence, the accuracy of any type of model
would have to be validated against this kind of data. For pre-
diction purposes, the question is not how accurate a model
can predict actual sandbar positions, but how accurate it
predicts theobserved data. In case of the Argus data this
would not necessarily mean the prediction of the sandbar
crest position, but could also be the position of the maxi-
mum roller dissipation, the analog of image breaker intensity
(Aarninkhof et al., 2005).

4 Conclusions

We developed a multivariate extension to the DVS method of
Casdagli and Weigend (1993), termed MDVS, and applied it
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to three sandbar datasets, containing a total of five different
sandbars and their corresponding external wave forcings.
The results of the MDVS method revealed nonlinearity in
the relations between the offshore wave forcing and sandbar
migration. When wave height estimates at the location of the
sandbar were used rather than offshore wave heights, the im-
portance of nonlinearity related to the forcings increased rel-
ative to the importance of nonlinearity related to subsequent
system states. The differences between nonlinear models and
a linear model were however small (the Gold Coast<15%,
Egmond<6% and HORS<2%) even when sandbar positions
were predicted over several days ahead. It might even be that
part of the detected nonlinearity is not present in actual sand-
bar behavior, but is induced by the data gathering procedure.
On the other hand, the presence of noise and the relatively
small amount of available data with respect to the period of
the cyclic patterns in the data might obfuscate the importance
of nonlinearity in the underlying system. Data similar to the
sandbar datasets used in the present work are often used for
calibrating and validating process-based models. Our finding
that linear models are almost as accurate as nonlinear models
on the sandbar datasets implies that the prediction of large-
scale features in the nearshore zone might not benefit much
from the use of such complex nonlinear models.
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