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Abstract. The interaction of wind and water wave groups
is investigated theoretically and numerically. A steep wave
train is generated by means of dispersive focusing, using both
the linear theory and fully nonlinear equations. The linear
theory is based on the Schrödinger equation while the nonlin-
ear approach is developed numerically within the framework
of the potential theory. The interaction between the chirped
wave packet and wind is described by the Miles’ mechanism.
The differences between both approaches are discussed, and
the influence of nonlinearity is emphasized. Furthermore, a
different mechanism is considered, described by the modi-
fied Jeffreys’ sheltering theory. From comparison between
the two mechanisms, it is found that the persistence of the
steep wave group depends on the physical model used, and
is significantly increased when we use the latter mechanism.

1 Introduction

The problem of modelling the interaction of wind and sea
waves has been widely studied during the last century. A
large number of theories have been proposed to describe the
phenomenon. None of them were completely satisfying be-
fore the theory derived byMiles (1957), as pointed out by
Ursell (1956). The popular Miles’ theory is based on the
resonant interaction of a sheared air flow with a weakly non-
linear periodic wave field. This theory, complementary to
the theory proposed byPhillips (1957), was the first to pre-
dict an exponential growth of waves corresponding to the
growth observed. By assuming the pressure to vary in phase
with the wave slope, Miles correlated the wave growth to

Correspondence to:J. Touboul
(julien.touboul@univ-tln.fr)

the shear profile of the wind above. Considering the lin-
ear stability analysis of this parallel shear flow, he showed
that the principal parameter controlling the growth rate was
the curvature of the mean wind vertical profile at the critical
height. This growth rate was then parameterized by using the
wave age (c/u∗), c being the wave phase velocity, andu∗ the
wind friction velocity. Since then, this mechanism as been
widely studied and improved, for example through incor-
porating Reynolds stresses originally ignored in the model
(Miles, 1996, 1999). It is now recognized as an excellent
description of the wind-wave interaction (Janssen, 2004).

However, the specific case of wind interacting with space
limited wave groups was not the central point of the previ-
ous investigations. This situation changed recently, with the
growing interest of the scientific community in rogue waves.
The increasing number of accidents related to those waves
lead oceanographers to focus on the study of such events. As
suggested byKharif and Pelinovsky(2003), rogue waves can
appear in various places, and are related to numerous physi-
cal phenomena. Especially, such waves can appear in storm
areas, where they encounter strong winds. In this context,
the influence of wind on such unusual waves became a key
point.

Recent work byTouboul et al.(2006), Touboul and Kharif
(2006), andKharif et al. (2008) investigated experimentally
and numerically the influence of wind on focusing wave
groups. Their study emphasized the existence of a strong
asymmetry between the focusing and defocusing stages, due
to the interaction between wind and very steep waves. In the
absence of wind the increase (during the focusing stage) and
the decrease (during the defocusing stage) of the maximum
magnitude of the wave group envelope present symmetric
spatial evolutions. In the presence of wind the symmetry
of the spatial evolutions is broken. In relation to the case
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without wind, the maximum magnitude of the wave group
envelope during the defocusing stage is increased under wind
action. The previous authors suggested that the process could
be described by a modified Jeffreys’ sheltering mechanism.
This mechanism, first introduced byJeffreys(1925), is based
on the difference of pressure between the leeward and wind-
ward faces of the waves induced by air flow separation over
high wave crests. With this assumption, they considered
that the local air flow separation observed over steep crests
was predominant to describe the wind-wave interaction in the
presence of steep waves events.

In the framework of wind interaction with steep waves,
one should recall that very steep waves are short-lived events
in a wave group presenting low steepness’ value most of the
time. Hence, it is questionable to consider the role of air flow
separation as a dominant mechanism. One can wonder if
Miles’ mechanism could be relevant to describe this specific
interaction, since it should act during the whole lifetime of
the group. Present work has been motivated by this remark.

In a first step, a linear model based on the Schrödinger
equation is derived, describing the evolution of a chirped
wave packet under wind forcing. In a second step, full non-
linearity of hydrodynamical equations is introduced to prop-
agate the chirped wave packet under wind action. In both
cases, wind is introduced through a linear pressure term, sup-
posed to be in phase with the wave slope. The magnitude of
this term depends on a growth parameter. This parameter
was chosen accordingly to the theoretical studies ofMiles
(1957, 1996, 1999), and experimental observations (Komen
et al., 1994). Theoretical and numerical results obtained with
both models are then compared. The role of nonlinearity
is emphasized. The asymmetry induced by this process is
then quantified and discussed. Values of asymmetry obtained
do not explain experimental observation presented inKharif
et al.(2008). Thus, a comparison with the modified Jeffreys’
sheltering mechanism is finally provided and discussed.

2 Theoretical model

The spatio-temporal evolution of the envelope of narrow-
banded weakly nonlinear water waves may be described by
the nonlinear Schrödinger equation (NLS), initially derived
in the context of water waves byBenney and Newell(1967).
A balance between dispersion and nonlinearity results in this
universal equation that reads
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whereA is the complex amplitude. The small parameter of
nonlinearityε corresponds to the wave steepness, and the sur-
face elevationη(x, t) is given by

η(x, t) =
1

2
A(x, t) exp[i(k0x − ω0t)] + c.c. (2)

The wavenumber and frequency of the carrier wave arek0
andω0 respectively,cg=(dω/dk)k0 is the group velocity and
c.c. denotes the complex conjugate. The complex ampli-
tude is assumed to be a slowly varying function ofx and
t . Introducing the transformationτ=ω0(t−x/cg), y=εk0x,
a=k0A, as used byKit and Shemer(2002), and wind forcing
in Eq. (1) yields to the forced spatial nonlinear Schrödinger
equation

i
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The RHS term represents the wind action, whereδ is the spa-
tial growth rate. It was initially introduced in an ad hoc man-
ner byTrulsen and Dysthe(1992) to express wind influence.
However, this term can also be obtained by expressing the
dynamic boundary condition in the presence of wind. Writ-
ing the kinematic boundary condition, with the assumption
δ'ε2, provides a link between the pressure termp and the
vertical component of the velocityika. Within the frame-
work of water waves, a proper derivation of the forced NLS
equation is developed byLeblanc(2007).

Let us consider the focusing of a linear wave group under
wind action. Equation (3) reduces to the following linear
parabolic equation

i
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By introducing a(τ, y)=b(τ, y) exp(δy) into equation (4),
this equation rewrites

i
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Equation (5) is generally used to describe the wave focusing
of chirped wave trains (seeClauss, 1999; Kharif and Peli-
novsky, 2003), since it admits the following solution
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and the related phase is
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The maximum of amplitude, reached forτ=0, decreases
asy−1/2. The frequency modulation,�(τ, y)=∂arg(b)/∂τ ,
varies linearly with time in the wave train. Hence, the low
frequency oscillations are located ahead of the wave group as
it is expected for a dispersive system. Under the transforma-
tion y→−y the high frequency oscillations are now located
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in front of the wave train (see Fig. 1). The dispersive behav-
ior of water waves leads this modulated wave group to focus
energy in time and space. A caustic is formed, corresponding
to a large amplitude wave. It describes the dispersive focus-
ing of a chirped wave packet, generating an extreme wave
event of maximal amplitudeB1 and characteristic spectral
width �1, at pointy=0.

Let us assume the wave maker located aty=−Xf , and
introduce the new spatial coordinatez=y/L+1. Here,
L=k0Xf is a dimensionless focusing length withXf the di-
mensional coordinate of the focus point. Let us also intro-
duceq=4�2

1L, the phase index. The amplitude Eq. (7) of
solution Eq. (6) reads now
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while the argument Eq. (8) becomes

arg[b(τ, z)] =
atan(q(z − 1))

2
+(

1 + q2

1 + q2(z − 1)2

)
q(z − 1)�2

0τ
2.

(10)

In Eqs. (9) and (10), B0 and�0 refer to initial amplitude and
characteristic spectral width respectively. They are related to
B1 and�1 through

B0 =
B1

(1 + q2)1/4
and �0 =

�1

(1 + q2)1/2
. (11)

The linear evolution of a transient wave packet yielding a
steep wave event is completely described by Eqs. (9) and
(10), which only depend on three independent parameters:
the initial maximum amplitudeB0, the initial characteristic
spectral width�0, and the phase indexq.

As mentioned earlier, wind effect is introduced by multi-
plying solution Eq. (9) by exp(δy). Maximum amplitude of
the envelope of the chirped wave packet propagated under
the action of wind is given by

A(z) = A0

(
1 + q2

1 + q2(z − 1)2

)1/4

exp(γ z), (12)

whereA0=B0 is the maximum amplitude of the initial con-
dition’s envelope, andγ=δL is the dimensionless spatial
growth rate of wave energy. It is clear that the wave ampli-
tudeA(z) is now non-symmetric around focusing pointz=1,
while it was in the absence of wind.

The spatial growth rate of energy is computed to obtain
an exponential growth of the waves corresponding to Miles’
theory. Hence, the spatial growth rate of wave amplitude due
to a wind of velocityU is given by

δ =
β

κ2

ρa

ρw

(
u∗

c

)2

. (13)

In Eq. (13), β is the energy-transfer parameter of Miles,
κ=0.4 is the Von Karman constant,ρa andρw are the den-
sities of air and water respectively,u∗

=
√

CdU is the fric-
tion velocity,c is the wave phase velocity andk0 is the cor-
responding wave number. The drag coefficientCd=0.004
is known experimentally for such wave groups, and for in-
verse wave ageu∗/c=0.2. These experiments are described
in Kharif et al. (2008), and correspond to an averaged fre-
quency of 1 Hz for the chirped wave packet propagated un-
der a wind velocity of 5 m/s. The value ofβ is considered as
a parameter, as it will be discussed later. Phase velocity and
wave number are obtained using the linear dispersion relation
in infinite depth:k0=ω2

0/g, andc=g/ω0.

3 Numerical model

The focusing wave group has low steepness during the ma-
jor part of its evolution. This feature can justify the use of
the linear approach. Nevertheless, the steepness reached in
the vicinity of the focusing point becomes important, and
one should consider nonlinear effects due to large steepness.
Hence, the fully nonlinear potential equations governing the
free surface motion are considered here to describe the evo-
lution of the transient wave group. These equations are the
Laplace equation and nonlinear boundary conditions

1φ = 0, for − h < z < η(x, t), (14)
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, on z = η(x, t), (16)

∂φ

∂n
= 0 on z = −h, (17)

whereφ(x, z, t) is the velocity potential,z=η(x, t) is the
equation of the surface,g is the acceleration due to gravity,
p is the atmospheric pressure at the surface,x andz are the
horizontal and vertical coordinates respectively andt is the
time. The numerical wave tank is closed using wall condi-
tions on its ends. One of these ends is mobile and used as a
wavemaker. The equations are solved with a boundary inte-
gral element method (BIEM), using a mixed Euler Lagrange
description of the above equations. Time stepping is per-
formed using a fourth order Runge and Kutta scheme, with
a constant time step. More details can be found inTouboul
et al.(2006).
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Fig. 1. Surface elevationη (m) as a function of timet (s) corresponding to initial condition 4 of Table1: theoretical solution (–) and
numerical simulation (· · ·).

Table 1. Initial conditions used for the simulations and correspond-
ing maximal steepness.

B1 εth |∂η/∂x| εs

1 0.075 0.024 0.030 0.030
2 0.150 0.048 0.061 0.061
3 0.225 0.072 0.098 0.098
4 0.300 0.095 0.131 0.130
5 0.375 0.119 0.181 0.178
6 0.450 0.144 0.227 0.220
7 0.525 0.168 0.305 0.289

The wind effect is described by the pressure termp(x, t)

applied at the interface, in Eq. (16). Following Banner and
Song(2002), this term is assumed to be in phase with the
wave slope. The surface pressure is assumed to have a distri-
bution of the form

p(x, t) = αρau
∗

2 ∂η

∂x
, (18)

whereρa is the air density, andα an unknown parameter. The
total energy input from this pressure term is

∫
λ (p∂η/∂t) dx,

whereλ is a wavelength. Thus, the relation betweenα and
the spatial growth rate is easily established by using a linear
description ofη(x, t), and calculating this integral. It comes
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The simulations are conducted using the pressure term of
Eq. (18), with the valueα=2β/κ2. The growth rate due
to this pressure term is equal to the theoretical growth rate.
However, it is important to notice that full nonlinearity is

only introduced in water. This description of air flow, based
on Miles’ theory, neglects nonlinearity. The friction velocity
u∗ is assumed constant along the group, which is a basic as-
sumption. However, the recent work byMakin et al.(2007)
emphasizes that the variation ofu∗ in the range of steepness
considered in our groups is of order 10%.

4 Results and discussion

Effect of nonlinearity on transient wave packets has already
been investigated by several authors (Brown and Jensen,
2001; Shemer et al., 2007). These authors observed a front
– tail asymmetry appearing on the wave group envelope. In
these studies, the authors emphasized that this asymmetry
was correlated to low order nonlinearity. It was explained as
soon as bound waves were taken into account. In both cases,
they found that the maximum amplitude of the wave group
envelope, or amplification factor, had a nonlinear behavior
around the focusing point. However, results fitted with linear
theory far from the focusing point, this maximum present-
ing a symmetrical behavior around the focusing point. In the
following we focus on the asymmetry induced in this ampli-
fication factor for wave trains propagating under wind action.

To investigate the effect of nonlinearity, several initial con-
ditions are used. Table1 presents these conditions, with
the corresponding nonlinearity reached during the simula-
tions.εth=B1×k0 is the maximum steepness at the focusing
point, given by the linear theory.|∂η/∂x| is the maximum lo-
cal slope obtained from nonlinear simulations without wind,
while εs is the steepness of a high order nonlinear Stokes
wave, computed with the method developed byLonguet-
Higgins (1987), presenting the same maximal slope. One
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should note that the linear theory underestimates steepness
up to 70%.

Initial conditions correspond to initial parameters
Xf =15m and�1=0.3. The frequency of the carrier wave
is chosen such asω0=2πrad/s, which is similar to the
value used inKharif et al. (2008). Figure 1 shows the
theoretical initial elevation (solid line) versus time, obtained
from Eqs. (2) and (9), at z=0. It corresponds to the initial
focusing wave train, with initial parameterB1=0.3. Figure1
displays the nonlinear free surface elevation (dotted line)
too, recorded one carrier wavelength away from the paddle.
It has been obtained iteratively, to reproduce theoretical
initial condition. This probe location is considered as being
the origin of thex axis in the following simulations. The
comparison between both theoretical and numerical probes
shows an excellent agreement.

These initial conditions are used to propagate numerically
wave groups without wind, and under wind, foru∗/c=0.2.
For this value of inverse wave age, several values ofα ex-
tending from 27 and 38 are available in the literature (see
Fig. 1 of Banner and Song, 2002, cited fromKomen et al.,
1994). Banner and Song(2002) usedα=32.5. According
to Eq. (19), this value corresponds toβ=2.6. Simulations
are then performed withβ=2.2, β=2.6 andβ=3, the latter
value corresponding to the value obtained byMiles (1996).
The results are then compared.

Figure2 shows the amplification factorA/A0 versus di-
mensionless fetchz. Amplification parameter is defined nu-
merically by

A

A0
(z) =

max{η(z, t)}

max{η(0, t)}
. (20)

Figure2a corresponds to the theoretical solution and nu-
merical solution corresponding to the initial condition 4 of
Table 1, without wind. Nonlinear effects results in a widen-
ing of the curve around the peak. The nonlinear interactions
among the different components of the group produce a de-
tuning effect that diminishes the peak height. The maximum
amplitude is weaker in the nonlinear simulation than pre-
dicted by the linear theory, confirming results obtained by
Shemer et al.(2007).

Figure2b shows the spatial evolution of the numerical so-
lution corresponding to initial condition 4 of Table 1 and the-
oretical solutions with and without wind. The growth rate
used herein isβ=2.6. A comparison between theoretical lin-
ear solutions emphasizes the effect of the wind. An increase
of the amplification factor and a weak asymmetry between
focusing and defocusing stages are observed. These features
are more important when the nonlinearity is introduced.

In both Fig.2a and b, oscillations of the amplification fac-
tor appear around the peak. Figure3 presents an enlargement
of these figures, where these oscillations can be seen. One
can notice that the oscillations present a wave number equal
to k0. They are amplified in the presence of wind. Similar
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tions (2) and (9), at z = 0. It corresponds to the initial fo-
cusing wave train, with initial parameter B1 = 0.3. Figure 1
displays the nonlinear free surface elevation (dotted line) too,
recorded one carrier wavelength away from the paddle. It has
been obtained iteratively, to reproduce theoretical initial con-
dition. This probe location is considered as being the origin
of the x axis in the following simulations. The comparison
between both theoretical and numerical probes shows an ex-
cellent agreement.
These initial conditions are used to propagate numerically
wave groups without wind, and under wind, for u∗/c = 0.2.
For this value of inverse wave age, several values of α ex-
tending from 27 and 38 are available in the literature (see
Figure 1 of Banner & Song (2002), cited from komen et al.
(1994)). Banner & Song (2002) used α = 32.5. According
to equation (19), this value corresponds to β = 2.6. Simula-
tions are then performed with β = 2.2, β = 2.6 and β = 3,
the latter value corresponding to the value obtained by Miles
(1996). The results are then compared.
Figure 2 shows the amplification factor A/A0 versus dimen-
sionless fetch z. Amplification parameter is defined numeri-
cally by

A

A0
(z) =

max{η(z, t)}
max{η(0, t)} . (20)

Figure 2(a) corresponds to the theoretical solution and nu-
merical solution corresponding to the initial condition 4 of
Table 1, without wind. Nonlinear effects results in a widen-
ing of the curve around the peak. The nonlinear interactions
among the different components of the group produce a de-
tuning effect that diminishes the peak height. The maximum
amplitude is weaker in the nonlinear simulation than pre-
dicted by the linear theory, confirming results obtained by
Shemer et al. (2007).
Figure 2(b) shows the spatial evolution of the numerical solu-
tion corresponding to initial condition 4 of Table 1 and theo-
retical solutions with and without wind. The growth rate used
herein is β = 2.6. A comparison between theoretical linear
solutions emphasizes the effect of the wind. An increase of
the amplification factor and a weak asymmetry between fo-
cusing and defocusing stages are observed. These features
are more important when the nonlinearity is introduced.
In both Figures 2(a) and 2(b), oscillations of the amplifica-
tion factor appear around the peak. Figure 3 presents an en-
largement of these figures, where these oscillations can be
seen. One can notice that the oscillations present a wave
number equal to k0. They are amplified in the presence of
wind. Similar oscillations have already been observed by
Song & Banner (2002) around the maximum of modula-
tion for a wave group submitted to Benjamin-Feir instabil-
ity, without wind. They noticed that these oscillations were
the consequence of the asymmetry between wave crests and
troughs. When a crest or a trough are located at the maxi-
mum envelope amplitude, the densities of energy are not the
same. It results in an oscillation of frequency 2ω0, and wave
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Fig. 2. (a): Amplification factor A/A0(z) for a transient wave
group propagated without wind. (—): Theoretical linear solution;
(o): Numerical solution. (b): Amplification factor for a wave group
propagated under wind action, with growth rate β = 2.6. (—):
Theoretical linear solution without wind; (- -): Theoretical linear
solution with wind; (o): Numerical solution. Both simulations are
conducted with initial condition 4 of Table 1.

number k0, of the maximum amplitude of the envelope of the
group. This result was also observed experimentally by She-
mer et al. (2007) in the framework of linear focusing. By
comparing their results to computations based on Zakharov
equation, they emphasized that the asymmetry between wave
crests and troughs was correlated to the dominant role played
by bound waves associated to the leading wave. Thus, this
phenomenon is correlated to nonlinearity, rather than wind
action. However, it is reasonable to consider that wind in-
creases nonlinearity. The phenomenon observed is similar to

Fig. 2. (a)Amplification factorA/A0(z) for a transient wave group
propagated without wind. (—): Theoretical linear solution; (o) Nu-
merical solution.(b) Amplification factor for a wave group propa-
gated under wind action, with growth rateβ=2.6. (–): Theoretical
linear solution without wind; (– –): Theoretical linear solution with
wind; (o): Numerical solution. Both simulations are conducted with
initial condition 4 of Table1.

oscillations have already been observed bySong and Ban-
ner (2002) around the maximum of modulation for a wave
group submitted to Benjamin-Feir instability, without wind.
They noticed that these oscillations were the consequence of
the asymmetry between wave crests and troughs. When a
crest or a trough are located at the maximum envelope am-
plitude, the densities of energy are not the same. It results in

www.nonlin-processes-geophys.net/15/1023/2008/ Nonlin. Processes Geophys., 15, 1023–1031, 2008



1028 J. Touboul et al.: On the interaction of wind and steep gravity wave groups

Z

A
/A

0

0.8 0.9 1 1.1 1.2
0

1

2

3

4

5

6
(a)

Z

A
/A

0

0.8 0.9 1 1.1 1.2
0

1

2

3

4

5

6
(b)

Fig. 3. Enlargement of Fig.2 around focusing point.

an oscillation of frequency 2ω0, and wave numberk0, of the
maximum amplitude of the envelope of the group. This result
was also observed experimentally byShemer et al.(2007) in
the framework of linear focusing. By comparing their results
to computations based on Zakharov equation, they empha-
sized that the asymmetry between wave crests and troughs
was correlated to the dominant role played by bound waves
associated to the leading wave. Thus, this phenomenon is
correlated to nonlinearity, rather than wind action. However,
it is reasonable to consider that wind increases nonlinearity.
The phenomenon observed is similar to the one described by
Song and Banner(2002) andShemer et al.(2007).

Figures2a, b, 3a and b also display an horizontal line,
which corresponds toA/A0=2.2. A wave is considered to be
a rogue wave as soon asA/A0≥2.2, as mentioned byKharif
and Pelinovsky(2003). This criterion is used to define a sig-
nificant length of existence of steep waves in the group. This
lengthLf during which this criterion is satisfied, depends on
the asymmetry of the focusing-defocusing curve.

Figure4a and b show respectively the lengthLf , normal-
ized by its value without windLf 0, and the maximum am-
plitude Af reached in the transient wave packet during the
focusing-defocusing process, normalized by the correspond-
ing value without windAf 0, for several values of the growth
rate β. Both quantities are presented as a function of the
steepness parameterεs . This nonlinear parameter used as
abscissa is the steepness presented in Table1. It corresponds
to an estimate of the steepness reached in the simulations
without wind. The valueεs=0 corresponds to the theoreti-
cal solution, and the corresponding points on Fig.4a and b
show respectively the normalized lengthLf and the normal-
ized amplitudeAf calculated from the theoretical approach.
Simulations have been performed with growth ratesβ=2.2,
β=2.4, andβ=3 respectively. Points corresponding to larger
steepness are not presented, because wave breaking occurred
during these simulations. It is important to emphasize that
the value of the local slope|∂η/∂x| in the numerical simula-
tions in the presence of wind can be larger than 0.5.

One can notice from Fig.4a that nonlinearity plays a sig-
nificant role in sustaining steep wave groups. For small value
of the growth rateβ=2.2, the deviation from the linear the-
ory is not very important (about 10%). For larger values ofβ,
2.6 and 3, the deviation from the linear theory is quite more
significant (up to 50%). For the latter cases, wind input is
more important, and nonlinearity is increased. The transient
wave packet which is affected by nonlinearity, presents steep
waves over significant distances.

From Fig. 4b, it is observed that the normalized ampli-
fication A/A0 is not significantly affected by the nonlinear
parameterεs . In every simulations, the deviation from the
linear theory has never been larger than 13%. This confirms
the fact that nonlinear interactions between waves lead to the
detuning process mentioned above.

However, as mentioned in Sect.3, nonlinearity in the air
flow is not taken into account using this mechanism. Its rel-
evance to describe the interaction of wind and steep waves
might be questionable. The Jeffreys’ sheltering mechanism
describes air flow separation over waves. This mechanism
is not relevant for low steepness waves as shown byStanton
et al.(1932). However, for larger steepness, it is well known
that air flow separation occurs, resulting in a significant in-
crease of wind to wave energy flux.Belcher and Hunt(1998)
suggested that the Jeffreys sheltering mechanism would be
appropriate to describe wind forcing over the steepest waves.
This behavior can be described by introducing a threshold in
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slope, and expressing the pressure term of Eq. (18) by

p(x) = 0
if |∂η/∂x|max < |∂η/∂x|c

p(x) = ρas (U − c)2 ∂η

∂x
(x)

if |∂η/∂x|max ≥ |∂η/∂x|c

(21)

where s is a sheltering coefficient, introduced byJeffreys
(1925). By introducing the rates of growth of wave energy
due to wind action,γJeffreysandγMiles, corresponding to the
Jeffreys’ sheltering and Miles’ mechanisms respectively, one
can express

γJeffreys

γMiles
=

sκ2

βCd

(
1 −

c

U

)2
, (22)

Within the framework of our simulations, it is found that this
ratio always exceeds three, meaning that the characteristic
time scale of the Miles’ mechanism is more than three times
larger than the characteristic time scale of the Jeffreys’ shel-
tering mechanism. More details about the modified Jeffreys’
sheltering mechanism can be found inTouboul et al.(2006).

In order to compare Miles’ theory with the modified Jef-
freys’ sheltering mechanism, simulations have also been per-
formed using this latter phenomenon. Each initial condition
has been propagated under the Jeffreys’ sheltering mecha-
nism. The parameter|∂η/∂x|c was chosen to be 60% of
the maximum value presented in Table1, while the shelter-
ing coefficient was chosen to bes=0.5, as suggested byJef-
freys (1925), and confirmed experimentally. The numerical
and theoretical spatial evolutions of the amplification factor
A/A0(z) are plotted in Fig.5. The solution computed nu-
merically from the fully nonlinear equations corresponds to
the initial condition 7 of Table 1 under wind action when the
modified Jeffreys’ sheltering mechanism is used. The theo-
retical solution given by the linear theory without wind effect
and the horizontal straight line corresponding to the rogue
wave criterion are also plotted, for the sake of reference.

Jeffreys pressure term is applied on the surface of each
wave of the group overcoming this threshold. It is the crit-
ical parameter|∂η/∂x|c mentioned above. Thus, during the
focusing-defocusing process, the modified Jeffreys’ shelter-
ing mechanism is only active near the focusing point. This
is very different from Miles’ mechanism, which is effective
during the whole process. The total amount of energy trans-
ferred from wind to waves is larger through Jeffreys’ mecha-
nism during extreme wave event, but the energy distribution
in time and space is different from a mechanism to another.
This changes considerably the dynamics of the chirped wave
packets under wind action. In the absence of wind, wave
groups of large steepness are near breaking in the vicinity
of the focusing point. In the presence of wind, some en-
ergy is added. Using Miles’ mechanism, a large amount
of energy have already been transferred before occurrence
of the extreme wave event. With Jeffreys’ mechanism, the
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Fig. 4. (a): Length of existence of the steep wave under wind action
Lf /Lf 0 as a function of the nonlinear parameterεs . (b): Max-
imum amplitude reached by the transient wave group under wind
action versus nonlinear parameterεs . The valueεs=0 corresponds
to theoretical model in both cases.

transfer starts when the chirped wave packet reaches the fo-
cusing point. If wind is introduced using the Miles’ mech-
anism, this would result in the disappearance of the group
close to that point because breaking will occur. It is not the
case for wave groups propagated using Jeffreys’ sheltering
mechanism. Results can be seen in Fig.5. In that case, the
length of existence of the rogue wave event is significantly
increased (at least 200%). This result is sensitive to the set
of parameters used to model air flow separation. However,
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Fig. 5. Amplification factorA/A0(z) for a transient wave group.
(—): Theoretical linear solution without wind; (o): Numerical solu-
tion corresponding to a wave group of steepnessεStokes=0.28 prop-
agated under wind modelled through the modified Jeffreys’ shelter-
ing mechanism.

this model produces a persistence of rogue waves which is
in good agreement with experimental behavior observed by
Kharif et al.(2008).

5 Conclusions

The influence of wind on the dynamics of extremely steep
waves produced from chirped wave packets has been stud-
ied theoretically and numerically. Wind has been introduced
through a pressure term acting on the free surface. The
growth parameter of this term was chosen accordingly to
the quasi-linear Miles’ theory, assuming a weak variation
of wind stress along the group. The role of nonlinearity in
the process has been investigated by comparing the linear
Schr̈odinger equation to numerical simulations, based on the
fully nonlinear equations of water waves within the frame-
work of the potential theory.

Results derived from the linear Schrödinger equation point
out that the wind is responsible for an increase of the max-
imum wave amplitude. A weak asymmetry in wave group
amplitude during the focusing-defocusing process is also ob-
served.

The nonlinear simulations have partially confirmed these
results. Several initial conditions have been used in the nu-
merical wave tank. These initial conditions, corresponding to
different values of the steepnessεs , lead to several behaviors.
Results are analyzed as a function of the nonlinear parame-
ter εs . In every simulations, a weak deviation from linear
theory for the maximum of amplitude is observed (less than

13%) while it is not the case for the lengthLf which is pro-
portional to wind input. Major differences are found when
considering the asymmetry of wave group amplitude during
the focusing-defocusing process. The asymmetry observed
in the focusing-defocusing process is significantly larger than
expected, resulting in the persistence over larger distances of
the extreme wave event. The relative deviation between non-
linear and linear models with wind action presents values up
to 50%. However the relative deviation between the nonlin-
ear models with and without wind never exceeds 70%.

Experimentally,Touboul et al.(2006) and Kharif et al.
(2008) found an increase of duration length larger than
200%. We can conclude that Miles’ mechanism cannot ex-
plain correctly experimental observations. Hence, simula-
tions have also been performed using the modified Jeffreys’
sheltering theory. In this case, a better agreement between
numerical and experimental results is found. The relative de-
viation between the nonlinear models with and without wind
exceeds 200%, for large values ofεs . In spite of its strong
hypothesis, this simple wind model is capable of reproducing
qualitatively the behavior of the chirped wave packet under
wind action.
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