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Abstract. We analyze electron microscope X-ray spec-
troscopy data of recent supratidal marine sediments. Sta-
tistical measures are used to characterize the distribution of
silicon and calcium in different layers of the sediments. We
also use cluster analysis and symbolic dynamics to filter mea-
surement noise and to classify different density regions. This
allows to calculate characteristic patch sizes which reflect the
sizes of individual clastic grains and the corresponding pore
sizes. Silicon indicates the independent processes in the sed-
imentation history of certain grains. Calcium is capable to
monitor intrinsic early diagenetic processes of biogeochemi-
cal calcium mineralization of primary organic matter as doc-
umented in more organized distributions with higher cluster-
ing.

1 Introduction

Marine sediments are complex biogeosystems which are
formed by a great variety of processes on many time and spa-
tial scales. Textural and structural characteristics of a sedi-
mentary sequence or even a certain layer document the act-
ing processes of sedimentation (Pettijohn and Potter, 1964).
The analysis of distributions of grain sizes and pores or en-
sembles of components and other details of a sediment is a
basic instrument in sedimentological studies (Tucker, 2001).
The analysis of sediment samples gives insight into the for-
mation of the sediments and therefore enables to reconstruct
environmental conditions. Recently, it has been shown that
biogeochemical processes involved both in the formation and
in the alteration of a sediment can be monitored via care-
ful analysis of sedimentary geometries (Anguy et al., 2001;
Haussels et al., 2001; Morford et al., 2003; Visscher et al.,
2000).

Correspondence to:U. Feudel
(feudel@icbm.de)

A pending problem is to identify certain processes of sed-
imentation and diagenesis when analyzing different geome-
tries of a sediment. A first step towards such an identifica-
tion is the development of methods which yield quantitative
information about sedimentary geometries. Hence the aim of
this study is to provide measures on sedimentary geometries
which point to physical and biogeochemical processes in a
tidal environment. In this study we analyze small samples of
siliciclastic tidal sediments at a millimeter scale. At this scale
microorganisms form microbial mats growing on top of the
inorganic matter (clastic minerals). The microbial mats form
during periods of low sedimentation rates on the sediment
surface. Inorganic matter can be brought in by wind. During
certain flood periods the mats are buried by sedimentation. If
the deposited layer is too thick, the microorganism die and
the newly created sediment surface is inoculated again. Oth-
erwise, microbes are capable to penetrate the surface layer
and to colonize the surface again.

The chemical composition of microbial mat layers differs
from other layers which were created by sedimentation pro-
cesses. We want to exploit this property to distinguish differ-
ent layers in the sediment by the density and spatial config-
uration of chemical elements. We use electron microscopy
images to perform a quantitative analysis which allows us
to derive unique properties for each layer. Firstly we apply
an entropy measure to characterize the distribution of the el-
ements. Secondly we use symbolic dynamics to calculate
characteristic cluster sizes.

2 Data

We study data samples taken from Mellum Island in the Ger-
man part of the southern North Sea (see Fig.1). The island is
located in the Wadden Sea and the samples were taken from a
lower supratidal area. The sediments consist of porous silici-
clastic material. High biological activity during times of low
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Fig. 1. The German Bight. Mellum Island is located in the middle
of the circle.

Fig. 2. Sketch of the sedimentary profile. The upper layers of the
supratidal sedimentary column represent a sequence of siliciclas-
tic layers (gray parts) and intercalated microbial mats (black parts).
The rectangle focuses on the section regarded in this study in detail.

sedimentation documents itself in biofilms of microbial mats.
Our samples originate from the upper section of the sedimen-
tary profile, which consists of fine grained quartz sand with
intercalcated microbial mats and biofilms of several millime-
ters thickness (Gerdes et al., 1985; Block et al., 1991). A
sketch of the sediment bedding is given in Fig.2.

Fig. 3. Working principle of the scanning electron microscope. The
X-ray backscattering is measured on a grid.

The sediment samples were prepared in small subsam-
ples which were then analyzed by a scanning electron mi-
croscope equipped with an energy dispersive X-ray analy-
sis device (Block et al., 1991). This device measures the X-
ray backscatter of the chemical elements in the probe, which
were excited by an electron beam. The chemical elements
are distinguished by their characteristic absorption lines. The
samples are prepared in such a way that the information of
the spatial distribution of the chemical elements is preserved.

Figure3 illustrates the scanning of the electron beam of
the microscope. Every point of the measurement grid is pro-
cessed several times. On everyi-th step a numberri∈N0
is returned at point(x, y) with a certain probability which
is proportional to the concentration of the chemical element
under consideration. Theri are cumulated so that the mea-
surement matrix the device returns is the summation of vari-
ous sampling steps. In that way, the more often the sample is
scanned, the more accurately is the resulting image reflecting
the underlying concentration of the chemical element. This is
a consequence of the central limit theorem (Papoulis, 1984).
However, the number of repetitions is limited by the time
the measurement takes (about 2 min for each scan over the
whole surface) and the fact that the method is not completely
non-destructive. The electron beam charges the material and
destroys a non-negligible amount of the sample after some
measurements.

We measured densities of silicon and calcium for this
test series. Those two elements were chosen since sili-
con is mostly a component of inorganic matter whereas cal-
cium is an important representative of organic compounds.
Each measurement yields a 512×512 matrix. The surface
is scanned 50 times, so that finally the measurement matrix
contains the cumulated entries on the grid.

Figure 4 shows the measurement data from the micro-
scope. It can be seen that the sediments consist of various
layers with different characteristics. Every layer has a differ-
ent abundance of chemical elements and different character-
istic sizes of its element clusters. We calculated the layer
boundaries with the help of a multiscale algorithm which
searches for strong, horizontally connected, vertical gradient
changes (Bube et al., 2006). In Fig. 4 the found boundaries
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Fig. 4. Measurements from a sediment sample. The image is the
sum of 50 single measurements. The red lines are the layer bound-
aries found by a layer searching algorithm. Upper panel: calcium,
the numbers within the sediment plot mark the layer numbering;
lower panel: silicon.

are marked with red lines. The layers were calculated for cal-
cium because of its most pronounced layer structure. These
layer boundaries were also taken for silicon assuming that the
same layers should also be present for all elements. A cross
check did not yield large deviations from this assumption.

3 Analysis

3.1 Understanding the measurement process

In the previous section we noticed that the measurement pro-
cess is stochastic by nature. Therefore, we can only make
statistical statements. Before we go into the surface analysis,
we want to describe the measurement process in more detail.

Each measurement site(x, y) scatters back a certain inten-
sity of X-rays. The precise number of backscattering events
and the energy of the rays is stochastic as a number of ef-
fects cause the emission of X-rays, namely the Compton
effect, Auger effect and the normal relaxation of the elec-
trons in the atomic hull. If a certain threshold is reached,
the detector emits a signal and the count at that point is
incremented by one. This may be repeated several times.
The probability for a responser at point(x, y) is p(x,y)(r).
We repeat the experimentN times and add the number of
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Fig. 5. Upper panel: calcium measurement data of the analysis
of glass. Lower panel: an artificial surface generated by adding
exponentially distributed random numbers.

responsesri(x, y), i={1 . . . N}, the probability of the result
R(x, y)=

∑
i ri(x, y) is

p(x,y)(R) = p(x,y)(r1) ◦ · · · ◦ p(x,y)(rN ), (1)

where◦ denotes a convolution. In order to get a good estima-
tion for p(x,y)(R) the number of replicatesN has to be very
large. This is experimentally infeasible. In our experiment
the numberN=50 corresponds to the number of scans. If
the surface is homogeneous, the element concentrations are
constant and the fluctuations are mainly due to the atomic
emission mechanisms and have the same statistics for every
point. This means that the probability is spatially indepen-
dent, i.e.p(x,y)(R)=p(R). Therefore, it can be estimated
from all measurement points on the surface which drastically
increases the reliability. We verify this assumption by ana-
lyzing glass as an amorphous material and measure the con-
tents of silicon and calcium. The result is shown in the upper
panel of Fig.5. In order to model the probability density
functions in terms of Eq. (1) we assume that the probability
for a response is equal for each point, thusp(x,y)(r)=p(r).
This is reasonable, as the sample is homogeneous in a good
approximation. Furthermore, we assume that the resultsri
are uncorrelated due to the intrinsic measurement noise. This
leads us to a Poisson distribution

p(r) =
λr

r!
e−λ, (2)

whereλ is the average value of the data.
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Fig. 6. The dots mark the mean frequency of responses for a sin-
gle scan over the glass sample. We averaged over 50 iterations.
The error bars denote the standard deviation. The solid line indi-
cates the frequency calculated from a Poisson distribution withλ

estimated as the mean of the measured glass data (λCa=0.0077 and
λSi=0.0455). The upper panel displays the results for calcium, the
lower one for silicon.

The parameterλ can obviously be easily calculated from
the data. Therefore, we are now able to generate artificial sur-
faces with the same properties as the homogeneous samples.
We generate a 512×512 (the same size as the original mea-
surement) matrix with natural numbers distributed according
to Eq. (2). The distribution parameterλ is calculated as the
mean of the 50 single measurements from the glass sample.
The result is shown in Fig.6. It matches very well the exper-
imental result.

To mimic the real measurement process we generate 50
such 512×512 measurement matrices possessing the same
distribution and add their entries as the cumulated values. An
example is shown in the lower panel of Fig.5. The density
distribution of the resulting artificial measurement matrix is
plotted in comparison to the measured glass sample in Fig.7.
Also shown in that figure is the result from a set of Poisson
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Fig. 7. Frequency of the measurement responses integrated over
50 scans. The circles mark the integrated responses measured on
a glass sample, the solid line indicates the result simulated by in-
tegrating over 50 Poisson distributed random surfaces, the dashed
line marks the result from a single random surface withλ estimated
from the integrated glass data. Upper panel: calcium, lower panel:
silicon.

distributed random numbers withλ calculated directly from
the measured data. Both results match equally well.

3.2 Probability analysis

In many applications one is interested in quantifying
how clustered an entity which was measured on a two-
dimensional grid is. A possibility for such a quantification
is to assume a homogeneous distribution and calculate the
deviation from this assumption. In our particular case a ho-
mogeneous distribution of chemical elements on the surface
plane is characterized by a Poissonian distribution of the de-
tector responses as we have shown in the previous section.
A structured surface violates the assumption that the average
measurement is equal for every pixel and thus will yield a
distribution different from a Poissonian.
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When measuring data from sediments the probability for
a response is not homogeneous over the sample, but spa-
tially variant depending on the distribution of chemical el-
ements in the sample (see Fig.4). The probability to mea-
sure a response, e.g. for silicon, is much higher at locations
with quartz grains than at locations with clay. The differ-
ence in terms of information between the homogeneous case
and the structured case can be measured by the Kullback-
Leibler (KL) divergence (also called Kullback-Leibler dis-
tance) (Kullback and Leibler, 1951), which is given by

k(p, q) =

∑
x

p(x) log2
p(x)

q(x)
. (3)

q(x) is the a priori probability andp(x) the a posteriori prob-
ability. In our case the a priori probability is given by the
assumption that every element is distributed homogeneously.
Thusq(x) can be estimated by a Poisson distribution with
the same average as the sediment measurement.p(x) is the
probability which is estimated from the sediment sample.

As some a priori events are very rare and do not occur in
numerical experiments we take recourse to Laplace’s succes-
sor rule (Laplace, 1819)

p(x) =
nx + 1

N + M
, (4)

where nx is the number of measurements with the re-
sult x, N is the total number of measurements andM is
the number of bins in which we sort the measurements,
i.e. x∈{1, 2, . . . ,M}. Notice that the denominator is mod-
ified to guarantee normalization, i.e.

∑M
x=1

nx+1
N+M

=1.
Figure8 shows the distributions of the detector responses

for the sediment profiles in comparison to the glass sample
and Poisson distributed random numbers using the mean of
the measured sediment data for the parameterλ. These distri-
butions were calculated over the whole surface. We now use
the KL divergence to quantify the difference between the dis-
tributions in terms of information. As we have shown above,
the Poisson distributed random matrices yield a rather good
approximation of the homogeneously distributed elements in
the glass sample (cf. Fig.7). Their KL divergence is less than
2·10−4 for both elements. The standard deviation of the KL
divergence for 100 different realizations of the Poissonian
surfaces is about 1%. As we have shown above, the Poisson
distributed random matrices yield a rather good approxima-
tion of the homogeneously distributed elements in the glass
sample (cf. Fig.7). Their KL divergence is less than 2·10−4

for both elements.
We note that due to the non-negativity of the KL diver-

gence both measurement noise and sampling statistics effect
a bias in the estimation: repeated measurements of the same
glass probe or finite samples of the a-priori Poisson distri-
butionq must necessarily result in a positive KL. The stan-
dard deviation of the KL divergence for 100 different realiza-
tions of the Poissonian surfaces is about 0.01 which marks
the borderline between statistically non-significant (≤0.02)
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Fig. 8. Comparison between the sediment (solid) and the glass (long
dashes) measurements. The short dashes denote a Poissonian sur-
face with the same average as the sediment sample. Upper panel:
calcium, the KL divergence from the glass sample is 0.97 and from
the Poissonian sample 0.17. Lower panel: silicon, the KL diver-
gences are 0.40 and 0.23, respectively.

and statistically significant (>0.02) values. The KL diver-
gences for the distribution shown in Fig.8 are 0.97 for the
KL divergence between the sediment calcium data and the
glass sample calcium data, whereas the KL divergence be-
tween sediment and Poisson distributed data for calcium is
only 0.17. For the silicon data we find 0.4 (sediment – glass)
and 0.23 (sediment – Poisson), respectively. It is important
to note that the sediment data and the Poisson distributed
random matrices possess the same mean value. Thus their
comparison yields more insight than the comparison with the
glass sample. That the KL divergence between sediment and
glass is usually bigger than between sediment and Poisson
distributed data is to a large extent due to the different mean
values. Furthermore, the distribution of a homogeneous real
sample depends on the material characteristics of the material
chosen. If another material than glass is taken, another aver-
age value of responses and thus another distribution shape
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Table 1. KL divergences within the single layers. The second and
third column lists the KL divergence between the measured and an
estimated Poissonian surface, the fourth and fifth the KL divergence
between the measured glass sample distribution for calcium and sil-
icon, respectively.

Layer Poisson Glass
Ca Si Ca Si

1 0.06 0.08 0.92 0.22
2 0.08 0.14 0.32 0.28
3 0.13 0.31 0.84 0.49
4 0.47 0.05 1.87 0.87
5 0.07 0.07 0.71 0.26
6 0.11 0.24 1.41 0.53
7 0.13 0.33 0.62 0.36

has to be expected. Therefore the comparison to a randomly
generated surface with the same mean value yields much
more reliable results than the comparison with a homoge-
neous sample of another material.

We also calculated the KL divergence for every sediment
layer separately and compared it to the corresponding “layer”
in the glass sample and the random matrices. The result is
shown in Table1. If compared with Fig.4, it can be seen that
the layers with large clusters have a large KL divergence to
the Poisson surfaces. These are layer 3, 6 and 7 for silicon
and layer 4 for calcium. The other layers are structured but
do not include larger clusters which is reflected in a lower
KL divergence. The layers with the lowest element densities
also have a low KL divergence. For silicon this is especially
layer 4 and for calcium layer 2. A few higher density regions
prevent the calcium layer from being as low as the silicon
layer. The KL divergences of the sediment distribution to
the glass sample are generally higher than to the Poisson dis-
tributed random matrices. However, these KL divergences
are a bad measure to characterize the layers as sometimes
clustered layers have a lower KL divergence than unclustered
ones. The KL divergences of silicon layer 3 and 4 are an ex-
ample for such a case.

3.3 Cluster analysis

From Fig.4 it can be seen that the measurements are dis-
turbed with noise. This is intrinsic to the X-ray backscatter-
ing method as there is an amount of uncertainty involved in
the backscattering of the X-rays. Therefore, it is necessary
to reduce the extent of fluctuations by spatial averaging to
improve the reliability of the measurements. This is justified
by the fact that the grain size is typically larger than the area
covered by a single measurement pixel. As one is mainly in-
terested in the areas with large abundance of certain chemi-
cal elements relative to the other areas we use an approach
known as coarse graining from symbolic dynamics (Hao,
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Fig. 9. Creation of an embedding vector. The neighboring points
around the centerR33 are embedded. The points in the embedding
vector are rank ordered afterwards.

Table 2. Cluster distance measured ′ for various cluster combina-
tions.

Clusters Ca Si

A-B 6.43 4.58
B-C 5.80 7.90
A-C 10.37 12.93

1991; Ott, 1993; Kurths et al., 1996). Each measurement
point is assigned a symbol out of a small alphabet which is
associated with some distinct property of the system.

In our application it seems natural to choose some bin-
ning and to sort the points into these bins. The questions
that remain open are how to include the information from
the neighboring points and how to choose the bin thresholds.
These problems can be solved by using cluster analysis. We
embed the points from the measurement grid in a vector (see
Fig. 9). For each pointRx,y in the grid a corresponding vec-
tor

ξ(x, y) = (Rx−1,y−1, Rx−1,y, Rx−1,y+1, Rx,y−1, Rx,y,

Rx,y+1, Rx+1,y−1, Rx+1,y, Rx+1,y+1)

with the point itself and its next neighbors is created, yielding
a 9-dimensional vector. Repeating this for every measure-
ment point we end up with a set of points in a 9-dimensional
vector space. As the ordering of points conveys misleading
information, we rank order them. Within this 9-dimensional
space it is now possible to search for clusters of points us-
ing a cluster algorithm. All members of a cluster share the
property that the measurement points from which its vectors
are composed have similar values. This method has the ad-
vantage over moving average or other coarse graining tech-
niques that the binning into clusters is chosen automatically
in such a way that the clusters are optimally discriminated.
Furthermore all information except the spatial configuration
within the grid, which is destroyed by the sorting of the
points within the vectors, is preserved for the cluster search-
ing.

For cluster searching we use the well known k-means al-
gorithm (Hartigan, 1975; Hartigan and Wong, 1979). With
this algorithm the number of clusters has to be preset. After
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Fig. 10. Clusters calculated from the element density measure-
ments. The three colors distinguish three clusters, blue is category
A, green is B and red is C. The red lines mark the layer boundaries.
Upper panel: calcium; lower panel: silicon.

some trials we decided to use three clusters. Choosing more
clusters does not make sense with our data sets as the found
clusters are too close to each other and the information gain is
not large enough to justify it. We denote the clusters with the
capital letters A, B and C. A stands for the cluster with the
lowest detector responses, B for intermediate values and C
for the highest values. A way to measure the discriminability
of the clustering is the value

d ′
=

|µ1 − µ2|

|σ1 + σ2|/2
, (5)

where µi is the centroid of clusteri and σi the standard
deviation of the cluster member’s distance to it (Green and
Swets, 1966). Table2 lists the values ford ′ calculated for our
application. For comparison: if the points were Gaussian-
distributed around the centroid and we put a threshold in the
middle of the centroids, a short tail of both distributions lies
on the opposite side of the threshold as its centroid. Thed ′

value would have to be 3.31 so that 95% of the distribution
is on the right side of the threshold. Thus we have a satisfac-
tory discriminability of the clusters. In Fig.10 an image of
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Fig. 11. Area fractions of the clusters for the various layers. The
colors are the same as in Fig.10. Upper panel: calcium; lower
panel: silicon.

the clusters found from the sediment measurement is shown.
Though the layered structure is visible in Fig.4, Fig. 10 en-
ables a much more pronounced distinction of the different
layers. This is due to the mentioned reduction of noise as a
result of the cluster analysis, i.e. Fig.10 is a denoised ana-
logue of Fig.4. In the fourth layer large grains of calcium
can be seen, whereas in the second layer it is lacking almost
completely. The others are a mixture, they differ in the struc-
ture of the alternation of the different clusters. In general the
structures are much clearer than in the raw measurement im-
ages. Comparing the silicon and calcium image, it can be
seen that the elements are complementary. In regions with
a large amount of symbol C of the one element, symbol A
dominates for the other. Symbol B regions act as filling and
transition areas.

In our analysis we are mostly interested in how much each
element is present in one layer and how it is distributed. In
Fig.11it is shown which fraction of the area within one layer
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Fig. 12. Length distributions of contiguous symbols in vertical di-
rection for calcium. From top to bottom: symbol A, B, C. The thick
solid lines are inserted by hand for orientation. The thick dashed
line marks the corridor of the microbial mat layer. Note the differ-
ent scales of the abscissa.

is covered by each symbol. In nearly all layers symbol A
dominates, thus in most areas the density of the measured
elements is low. However, one can also identify layers with
remarkably high abundance of certain elements like layer 4
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Fig. 13. Length distributions of contiguous symbols in vertical di-
rection for silicon. From top to bottom: symbol A, B, C. The thick
solid lines are inserted by hand for orientation. The thick dashed
line marks the corridor of the microbial mat layer. Note the differ-
ent scales of the abscissa.

for calcium. From this particular layer it becomes also clear
that calcium and silicon are in some sense complementary
elements: when calcium content is high then the silicon con-
tent is low. From this information one can conjecture that the
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formation of layer 4 may be due to other mechanisms than
the other layers.

As discussed above the relative amount of material in each
layer is some useful information which can be extracted by
the cluster algorithm. But in general one is not only inter-
ested in the overall content of elements in each layer, even
more important is the spatial distribution of the elements
within each layer. Usually one wants to know if the mate-
rial is clustered or spread. In terms of symbolic dynamics we
want to gain information on the distribution of patches from
class C. A standard measure often used to address this ques-
tion is the lacunarity (Mandelbrot, 1983; Allain and Cloitre,
1991; Plotnick et al., 1996). However, it did not yield satis-
factory results in our application. It detected randomly scat-
tered, clustered sets, but failed to return a reasonable mean
patch size. Thus, in order to gain more insight into the typ-
ical length scales of the different symbol clusters, we cal-
culated the maximal numbers of connected pixels in vertical
direction. We have chosen this direction because it is much
easier to handle the rather complex boundaries of the lay-
ers in vertical direction compared to the horizontal one. But
the results should not depend on the direction chosen. The
distribution of the lengths is shown in Figs.12 and13. The
mean lengths for symbol C are listed in Table3. It can be
seen that the slope of the decrease in length vs. frequency is
nearly the same in every layer for symbols A and B. We now
consider the maximal chain lengths of the different symbols
in the layers. For calcium’s symbol A the shortest lengths
are found in layer 6. Their maximum length is 0.13 mm, the
longest chains are in layer 7 and maximally 0.25 mm long.
For symbol B the shortest length is in layer 4 (0.07 mm) and
the longest in layer 2 (0.16 mm). For symbol C the short-
est length is in layer 2 (0.02 mm) and the longest in layer
4 (0.14 mm). The length spectrum of silicon differs substan-
tially from spectra obtained for calcium. The shortest lengths
are in layer 2 (0.2 mm) for symbol A, layer 4 (0.06 mm) for
symbol B and again layer 4 (0.025 mm) for symbol C. The
longest chains are found in layer 4 (0.35 mm) for symbol A,
layer 7 (0.16 mm) for symbol B and layer 2 (0.1 mm) for
symbol C. In layer 4 we get the largest contiguous calcium
abundance areas. They range up to 0.14 mm. The size of the
largest silicon clusters is dependent on the particular layer
and lies between 0.025 mm and 0.1 mm.

4 Discussion

To tackle the problem of characterizing different layers of
sediment in terms of their structures, we have used entropy
measures as well as methods from symbolic dynamics. We
have shown that the KL divergence between distribution
functions is a good measure to characterize the homogene-
ity of the distribution of chemical elements. It turned out
that one has to compare the distributions obtained from the
electron microscopy images of the sediment with artificially

Table 3. Mean lengths of contiguous high density clusters in verti-
cal direction.

Layer Ca Si

1 2.36 3.10
2 2.31 3.89
3 2.70 6.21
4 7.17 2.62
5 2.49 2.93
6 2.52 4.24
7 2.85 4.77

created Poisson distributed random surfaces using the KL di-
vergence. Due to the same mean value of the distributions the
KL divergence is a reliable measure for the structuredness
of the sediment surface. By contrast, the comparison with
distributions in unstructured samples like glass as a refer-
ence yields incorrect results which are misleading. Thus we
conclude that amorphous reference samples are not a good
choice when using the KL divergence. Moreover, our method
of comparing the measurements to Poisson-distributed sur-
faces is much simpler and adapted to the problem.

We also showed that the method is suitable to classify dif-
ferent layers in the sediment. Especially layer 4 can be well
isolated from the other layers. It has an eye catchingly high
KL divergence in the calcium measurement which reflects
the high structuredness and clustering of this chemical el-
ement. Additionally, this layer exhibits a lack of silicon.
The significant differences in both the calcium and the sil-
icon measures enable to discriminate and to identify a buried
microbial mat (layer 4) within a sequence of siliciclastic lam-
inae (layers 1 to 3 and 5 to 7) (cf. Fig.4). Silicon constitutes
quartz grains of the clastic laminae. Quartz minerals are sel-
dom in microbial mats, since the mats grow during times of
low sedimentation rates. The organic matter is subsequently
mineralised and partially replaced by calcium-minerals af-
ter burial of a microbial mat grown at the surface. These
calcium-minerals, however, are not formed or are unstable
within the siliciclastic laminae (Kropp et al., 1997).

We further derived estimations on typical sizes of regions
rich of one element or poor of it in the sediments. We
achieved this estimation by coarse graining the raw measure-
ment data in terms of symbolic dynamics and then studying
the resulting patterns. The coarse graining sorts every mea-
surement point in one of three categories: element abundance
is high, medium or low. This could be expected for the sandy
material in the research area. The statistical measures yield
quantitative information on the porous siliciclastic layers and
the alternating microbial mats. Measures on the distribution
of silicon correspond to the grain sizes of the quartz minerals
constituting the inorganic skeleton of the sedimentary pro-
file. Individual grains of sizes up to 110µm are indicated
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(Fig. 13). This is in agreement with petrographic grain size
analyses of these fine sands (mean grain sizes between 70
and 120µm of the supratidal sediments of Mellum Island)
(Gerdes et al., 1985). The deposition of individual grains
is a stochastic sedimentation process of independent events
by nature. The biogeochemical process of calcium miner-
alization coupled with the biodegradation of microbial mats
can clearly be distinguished by measures of a more homo-
geneous distribution pattern which reflect a complex in situ
process. The size of the resulting clusters is 120 to 140µm
in maximum. Calcium indicates clusters of authigenic high-
magnesium calcite (Kropp et al., 1997). The growth of these
clusters is limited by intrinsic properties, i.e. pore size or mi-
crobial activity, and therefore controlled by a set of interde-
pendent processes.

The measures on partially mineralized microbial mats sig-
nificantly differ from those obtained for siliciclastic layers,
i.e. the slope of the corridor of length distributions of con-
tiguous symbol C in Fig.12 (clusters of calcium-minerals
formed during the mineralization of microbial mats) and of
symbol A in Fig.13 (microstructure of clastic grains in mi-
crobial mats) are less steep than corridors of data on silici-
clastic layers.

5 Conclusions

In this work we developed and applied a robust method to
quantify the textural and structural homogeneity of layered
sediments. The KL divergence proves to be an adequate
measure for this. It enables to characterize areas of arbi-
trary shape. Comparisons of sedimentary structures which
are known to be homogeneous may produce misleading re-
sults.

Furthermore, we introduce a way to filter measurement
noise with the help of symbolic dynamics. With the fil-
tered sediment profile it is then possible to extract informa-
tion about characteristic patch sizes and chemical element
abundance in every layer. The method can be used for mea-
surements at arbitrary scale, i.e. one can apply this method to
the analysis of any other two-dimensional image studied un-
der the microscope as well as to the investigation of images
from macroscopic measurements.

We were able to identify a buried and partially biode-
graded microbial mat in a siliciclastic sequence and quantify
its characteristics based on geometrical information on the
concentration pattern of elements. The distribution of silicon
can be regarded as indicator for physical sedimentation
processes in a tidal environment. Distribution patterns of
calcium indicate biogeochemical processes linked with
the biodegradation of microbial mats within a siliciclastic
sequence. Comparisons with samples from other areas are
needed in order to give a more general interpretation on the
use of elementary patterns and their relations to sedimentary
processes. This is subject to ongoing research.
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