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Abstract. This study proposes and justifies a Bayesian ap-
proach to modeling wavelet coefficients and finding statis-
tically significant features in wavelet power spectra. The
approach utilizes ideas elaborated in scale-space smoothing
methods and wavelet data analysis. We treat each scale of the
discrete wavelet decomposition as a sequence of independent
random variables and then apply Bayes’ rule for construct-
ing the posterior distribution of the smoothed wavelet coef-
ficients. Samples drawn from the posterior are subsequently
used for finding the estimate of the true wavelet spectrum at
each scale. The method offers two different significance test-
ing procedures for wavelet spectra. A traditional approach
assesses the statistical significance against a red noise back-
ground. The second procedure tests for homoscedasticity of
the wavelet power assessing whether the spectrum deriva-
tive significantly differs from zero at each particular point of
the spectrum. Case studies with simulated data and climatic
time-series prove the method to be a potentially useful tool
in data analysis.

1 Introduction

A variety of different methods and tools have been developed
to analyze statistical properties of data sequences. A study of
time-series at different levels of time/space resolution repre-
sents a particular interest. Classical approaches, such as the
Fourier transform, allow analysis of the frequency content in
the signal. This implicitly presumes the harmonicity of the
studied process. For most real time-series, however, this as-
sumption is not accurate, leading to misinterpretations of the
output results.

Decomposing a time-series into wavelets, in turn, allows
highlighting of the variability features at different time-scales
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(Kaiser, 1994; Torrence and Compo, 1998; Percival and
Walden, 2000), and is essentially a tool to visualize the fre-
quency content of a signal as it varies through time. Over the
last decades, wavelets have become a popular tool for data
analysis. Applied fields that are now making use of wavelets
include signal and image processing in physical studies, en-
gineering, music, medicine etc.

It is known that the raw wavelet-based estimator of the
time-varying power spectrum suffers from the same serious
disadvantage as the periodogram in the Fourier analysis. Be-
ing an asymptotically inconsistent estimator of the true spec-
trum it requires some kind of smoother to be applied in a
frequency domain to reduce the variance of the individual
power measurements. A natural extension to wavelets would
be to assume stationarity over some time interval and smooth
the wavelet spectrum along the time axis.

In this study, we formulate a method in a Bayesian frame-
work, with the smoothing procedure efficiently substituted
by sampling from the posterior density. The latter is con-
structed basing on the prior information that can be inferred
from the data themselves. In developing this approach we
largely utilize ideas elaborated in a family of the so-called
scale-space techniques (Chaudhuri and Marron, 1999; Park
et al., 2004; Godtliebsen and Øig̊ard, 2005). The second key
issue we try to address in the paper is a search for features in
the analyzed data that are “really there”, or in other words,
are statistically significant relative to the established hypoth-
esis. The method implements two independent significance
testing procedures for the estimated wavelet spectrum. A
conventional one, introduced inTorrence and Compo(1998),
hypothesizes that the background process can adequately be
described by the stationary AR(1) model and tests for the
presence of features inconsistent with it. For the second ap-
proach, adopted from the scale-space methods, a test for non-
stationarity in a wavelet variance is developed with the deci-
sion rule based on the spectrum derivative.

Published by Copernicus GmbH on behalf of the European Geosciences Union and the American Geophysical Union.



80 D. V. Divine and F. Godtliebsen: Bayesian approach to wavelet power spectra

The paper is presented as follows. In Sects.2.1and2.2we
present the basics of the wavelet theory and show how the ap-
plication of Bayes rule can be used for modeling the wavelet
coefficients. Finding the smoothing parameterβ through
solving the minimization problem is shown in Sect.2.4. The
procedure utilizes the estimate of the noise variance, intro-
duced earlier in Sect.2.3. Section2.5 justifies the choice of
the mother wavelet function. Section2.6 briefly introduces
the concept of the wavelet spectrum and provides signifi-
cance tests for the smoothed wavelet power. Section3 de-
scribes the numerical implementation of the proposed tech-
nique. In Sect.4 we show some examples of data analysis
to demonstrate the method’s performance and potential, fol-
lowed by conclusions in Sect.5.

2 Method

2.1 Wavelet transform

Wavelet decompositions can be commonly divided into two
principal classes following the type of the basis used for
transformation. This comprises the use of an orthogonal ba-
sis in the discrete wavelet transform (DWT), a nonorthogo-
nal basis in the maximal overlap discrete wavelet transform
(MODWT), or the continuous wavelet transform (CWT). A
wavelet function used for constructing the basis can be ei-
ther real or complex. Thus, one can also distinguish be-
tween complex (captures better oscillatory behaviour) and
real (more suitable for isolating peaks or discontinuities)
wavelet transforms. We in this study restrict our analysis
to real wavelets only, although the theoretical considerations
are generally applicable to complex wavelets too.

Given a discrete stochastic processut , t=1, .., N , with a
time incrementδt , a continuous wavelet transform is defined
as a convolution ofut with a scaled and translated version
of the “mother wavelet”ψ0 which forms a basis of the trans-
form. We write

Wt (s) =

√
δt

s

N∑
t ′=1

ut ′ψ0[(t
′
− t)

δt

s
]. (1)

The wavelet transform can generally be thought of as an ex-
tension of the common discrete Fourier transform with the
periodic exponentialeiωt replaced with a localized wavelet
functionψ0[(t

′
− t) δt

s
]. This mother wavelet function is lo-

cated around timet and stretched according to the investi-
gated scales.

The continuous decomposition scales of the CWT in case
of the DWT is substituted by a dyadic scale 2j−1,j=1, ..., J
wherej denotes a decomposition level. Expressing the con-
volution operation in terms of a linear filtering, the discrete
wavelet transform writes as follows:

Wj t =

Lj−1∑
l=0

hj,lu2j (t+1)−1−l modN (2)

where t=1, ..., Nj , summation is over the width
Lj≡(2j−1)(L−1)+1 of the wavelet filterhj at scale
j , andL denotes the width of the wavelet filter at scale 1.
Notation “2j (t+1)−1−l modN ” is defined as follows. If
j is an integer such that 0≤j≤N−1, thenj modN≡j ; if
j is any other integer, thenj modN≡j+pN , wherepN is
the unique integer multiple ofN such that 0≤j+pN≤N−1
(Percival and Walden, 2000). The numberNj of wavelet
coefficients at each decomposition levelj follows the law
Nj=N/2j provided that the analyzed sample sizeN=l2J

for some integersJ<J0 andl, with J0 denoting the number
of levels in the “full” DWT (Percival and Walden, 2000).
In practice the length of the time-series may be an integer
multiple of 2J only by chance. To override this restriction
the “padding” with zeroes up to a nearest integer multiple
of 2J is used, with subsequent elimination of the biased
wavelet coefficients. Note that the use of the orthogonal
basis ensures that the derived wavelet coefficients do not
contain redundant information, i.e. they are approximately
independent both along and across the scales.

2.2 Modeling the wavelet coefficients: a Bayesian ap-
proach

Suppose that the observed signalut , t=1, ..., N can be pre-
sented in the vector form as

u = û + η (3)

whereû=[û1, . . . , ûN ]
T is the true underlying signal. The

superscriptT denotes the transpose, andη=[η1, . . . , ηN ]
T

denotes a vector of independent Gaussian distributed errors
with zero mean and a diagonal covariance matrix with ele-
mentsσ 2. We assume for now that this quantity is known,
although the most common situation is that it has to be es-
timated. Since the DWT is an orthonormal transform, the
additive noise component being transformed has the same
statistical properties as the untransformed noise.

In what follows below, we rest upon the property of the
DWT to decorrelate efficiently the time-series even provided
that the analyzed series is generated by a long-memory pro-
cess (seePercival and Walden, 2000, for details). Under the
reasonable approximation thatWj t are random samples from
the Gaussian distribution, one can apply Bayes’ rule for mod-
eling these coefficients by their posterior distribution. For
such an approach we adopt the ideas from the recently devel-
oped posterior smoothing technique (PS) in the scale-space
framework of data representation (Godtliebsen and Øig̊ard,
2005).

The realistic model forWj t at each decomposition levelj
can be presented as

W = Ŵ + η (4)

HereW=[W1, . . . ,WM ]
T andŴ=[Ŵ1, . . . , ŴM ]

T denote
the observed and true wavelet coefficients respectively, and
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M≡Nj is the number of wavelet coefficients at the refer-
ence level of the DWT. Note that we omit further in this sub-
section the subscriptj denoting the level of the wavelet de-
composition under consideration. Also here and elsewhere
the term “observed”, when applying to the wavelet coeffi-
cients, highlights the fact that they are derived from obser-
vations, rather than implying that they have really been ob-
served.

We assume that the true wavelet coefficientsŴ can be
modeled by a Gaussian Markov Random Field, seeRue
(2001), which is specified through the local characteristics

E
(
Ŵt |Ŵ−t

)
= −

∑
k∈∂t

Qtk

Qt t

Ŵk and

Var
(
Ŵt |Ŵ−t

)
= Q−1

t t , (5)

where E(a|b) and Var(a|b) denote conditional expectation
and variance fora givenb, respectively,Q is the inverse co-
variance matrix, or often referred to as the precision matrix.
TheQ matrix is nonzero if and only ifk ∈ {∂t∪t}. Here∂t
denotes the neighbors to data pointt , andŴ−t denotes all
elements ofŴ apart fromŴt . This illustrates the Markov
property, i.e.

p(Ŵt |Ŵ−t ) = p(Ŵt |Ŵ ∂t ). (6)

Based on these assumptions, the prior model forŴ is given
by

p(Ŵ ) ∝ exp

[
−β

∑
t∼k

(
Ŵt − Ŵk

)2
]
, (7)

where t∼k means that the points indexed byt and k are
neighbors. In our default implementation,∂t={t−1, t+1} is
used (with obvious modifications at the borders). The param-
eterβ in Eq. (7), controls the degree of smoothness in the
realizations ofŴ obtained fromp(Ŵ ). If samples are drawn
from Eq. (7), large values ofβ will give smooth realizations
of Ŵ while small values ofβ will give rougher realizations.

The observed wavelet coefficientsWt now follow a Gaus-
sian distribution with mean̂Wt and standard deviationσ , i.e.
Wt ∼ N [Ŵt , σ

2
]. Hence, the likelihood ofW givenŴ is

p(W |Ŵ ) =

(
1

√
2πσ

)M
exp

[
−

1

2σ 2

M∑
t=1

(Wt − Ŵt )
2

]
. (8)

Using Bayes theorem (Berger, 1985), the posterior distribu-
tion of Ŵ givenW can be found from

p(Ŵ |W ) ∝ p(W |Ŵ )p(Ŵ )

∝ exp

[
−

1

2σ 2

M∑
t=1

(Ŵt −Wt )
2
− β

∑
t∼k

(
Ŵt − Ŵk

)2
]
.

(9)

Samples can now be drawn from the posterior distribution.
An efficient exact sampling algorithm for this situation is de-
scribed byØigård (2004). The degree of smoothness in the
obtained realizations for̂W depends heavily on the choice of
β in the same way as the degree of smoothness in the local
linear kernel estimator is controlled through the bandwidthh,
seeChaudhuri and Marron(1999). The choice of appropri-
ateβ can be organized in a data-driven way and is discussed
further in Sect.2.4.

2.3 Estimating the noise variance

Assessing the noise characteristics in a number of situations
is not a trivial task and its detailed consideration lies beyond
the scope of the present paper. No universal recipe can be
proposed and each case should generally be considered indi-
vidually. Besides it is yet to be decided what will be regarded
as noise in the course of the analysis. In the typical climate
proxy record, for example, the noise constituent is a mixture
of an instrumental noise (measurement and dating errors),
climatic noise, which inheres in the background process it-
self and some extra variability due to the postdepositional
alterations of the initial profile (Fisher et al., 1985). Their
separation may not be possible at all, so the question will be
what part of the variability can be attributed to one or another
component and subsequently filtered out.

When analyzing climatic series the problem is also of-
ten complicated by the presence of a serial correlation. If
neglected, the resultingσ 2 may be substantially underesti-
mated. We therefore propose a procedure that may be suit-
able when one deals with a time-series having pronounced
auto-regressive characteristics. AR(1), the simplest model,
is the one most commonly used. If one assumes that the ana-
lyzed time-series is generated by an AR(1) process, the noise
term can be associated with residuals of the time-series and
fitted AR(1) model. This readily yields the estimate of the
noise variance as:

σ 2
= var

(
u − uAR(1)

)
.

Using this approach will likely put too much conservatism in
the procedure of feature detection. This, on the other hand,
brings more confidence to conclusions drawn from the anal-
ysis.

2.4 Choice ofβ

Modeling and analysis over a broad range of the smooth-
ing parameter simultaneously is a typical approach in the
scale-space methods of data exploration. In our case, when
the wavelet decomposition itself already gives the time-scale
representation of a time-series, this will produce a redundant
output and exert a substantial additional computational bur-
den. An apparent way of solving this problem lies in model-
ing the wavelet coefficients at a single value ofβ rather than
the range.
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Given the model (Eq.4) for the wavelet coefficients, the
respective variance at each decomposition levelj is the sum
of the true (smoothed) coefficients variance and the noise:

σ 2
j = σ̂j

2
+ σ 2

whereσ̂j
2 is a function of the smoothing parameterβ. Hav-

ing approximately GaussianWj t andŴj t , a simple sample
variance can be used as a reasonable estimator ofσj

2 and
σ̂j

2. The problem of finding an optimal amount of smooth-
ing applied to the wavelet coefficients is now the problem of
minimizing the relationship∣∣∣(σ 2

j − σ 2)− γ σ̂j (β)
2
∣∣∣ (10)

with regard toβ at each level of the wavelet decomposition.
The parameterγ>0, set to unit by default, can be used to ad-
just the amount of smoothing to a desired value. One should
mention, however, that in some occasions the estimated noise
variance may exceed the particular wavelet scale variance
simply by chance, making the solution of Eq. (10) impos-
sible. In such situations, the amount of smoothing applied to
the wavelet scale is determined by a signal/noise ratio for the
whole signal, namely the value ofσ 2 in Eq. (10) is substi-
tuted byσ 2

j ∗σ 2/σs
2, whereσs2 denotes a standard estimator

of the time-series variance.

2.5 Choice of wavelet function

Since the proposed method is based on the DWT transform,
a choice of a wavelet function becomes crucial. Our choice
was a least asymmetric wavelet function of the width 8
(LA(8) or Sym4 in different notations).Percival and Walden
(2000) argues that LA(8) often provides a good trade-off be-
tween the width of the wavelet function and its smoothness.
Being relatively short, and therefore providing a narrower
cone of influence in the wavelet decomposition, its shape is
still a good match to the characteristic features for most of the
time-series. The wavelet center frequency, 0.71, is slightly
lower the optimal value of 1, suggesting its better localiza-
tion in the time domain. “Least asymmetric” means that the
associated wavelet filter has nearly zero phase property, i.e.
the resulting features in the wavelet decomposition will be
aligned in time with the features in the time-series being an-
alyzed.

2.6 Wavelet power spectrum and significance testing

After the sampling procedure is performed, we are left with
someK realizations (samples) of the truêW j for each
decomposition levelj . The modeled wavelet coefficients
can now be utilized for calculating the smoothed observed
wavelet power spectrum (WPS), which is an estimator for
the “true” WPS of the underlying process. This is defined,
by analogy with Fourier analysis, as the wavelet transforma-
tion of the autocorrelation function:

Pj t = E(Wj tW
∗

j t ), (11)

with “*”, denoting the complex conjugate, being relevant
only if the complex mother wavelet is used. Commonly,
when only one realization of the wavelet decomposition is
given, the squared absolute values of the wavelet coefficients
are used as an estimator for the true WPS. This measure is
called “wavelet periodogram” and has properties similar to
its counterpart in Fourier analysis (Nason et al., 2000; Ma-
raun and Kurths, 2004). Bayesian modeling of the wavelet
coefficients, in its turn, provides us with theoretically un-
restricted number of independent realizations. This allows
calculating the expectation value of the periodogram imme-
diately using Eq. (11).

The wavelet power spectrum (also called the wavelet vari-
ance) decomposes the time-dependent variance of a time-
seriesut on a scale-by-scale basis.Percival and Walden
(2000) show that the WPS is well defined for both second
order stationary time-series and non-stationary time-series
with stationary backward differences as long as the mother
wavelet function has the backward difference scheme em-
bedded and its widthL is large enough. Given the non-
stationary time-series whose backward difference of orderd

is stationary, a conditionL>2d is to be satisfied in order to
ensure that the wavelet variance is a good approximation of
the time-series variance.

Our first approach to assessing the significance of peaks
in the modeled wavelet spectrum is based on testing the null-
hypothesis that the analyzed signal represents samples drawn
from a stationary process with a given background power
spectrumS(f ). If a peak in the WPS is significantly above
this background spectrum, then it can be claimed to be a
“real” feature with a certain percent confidence. Many real
time-series, in particular in geophysical studies, can be mod-
eled using a stochastic autoregressive process of the first or-
der, or AR(1), with a positive lag-1 autocorrelation coeffi-
cient. This model is used as default in some wavelet applica-
tions (see for exampleTorrence and Compo, 1998; Grinsted
et al., 2004). Recall now that the wavelet coefficients at level
j are nominally associated with frequencies in the interval
[fl, fh]=[1/2j+1,1/2j ] (Percival and Walden, 2000). Us-
ing the results ofTorrence and Compo(1998), anα-quantile
for the distribution ofŴ2

j /σs
2 at thej -th level of DWT is

defined as

q
AR(1)
j,p =

Q1(α)

δf

∫ fh

fl

1 − φ2

1 + φ2 − 2φ cos(2πf )
df, (12)

whereσs2 is a standard estimator of the time-series variance,
P [Q>Q1(α)] =α andQ1 is χ2

1 distributed,f=0, ...,0.5 is
the frequency andδf=fh−fl . We now can consider a feature
to be significant ifŴ2

j t>σs
2q
AR(1)
j,α with α equal to, say, 0.05.

The second approach utilizes all available realizations of
the wavelet power at each particular scale of the DWT. From
these realizations and a decision rule it is decided, at each
(j, t) location, whether the derivative of the wavelet spec-
trum is significantly different from zero. We interpret the
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procedure as testing for violation in homoscedasticity at the
particular level of the DWT. The magnitude of the derivative
is estimated from theK samples by:

dPj t,k = Ŵ2
j (t+1),k − Ŵ2

j t,k.

For the chosen statistical modeldPj t at point (j, t) has a
symmetric distribution centered at zero when the derivative
at this point is zero. At each point(j, t) we therefore claim
thatdPj t is “significantly different” from zero if the absolute
value of the meanE(dPj t ), is large compared to its standard
deviationSD(dPj t ):∣∣∣∣ E(dPj t )SD(dPj t )

∣∣∣∣ > qEj,α.

HereqEj,α denotes an appropriate quantile depending on the
DWT scale numberj , and the level of the testα. For es-
timatingE(dPj t ) andSD(dPj t ) we use ordinary empirical
estimators for the mean and standard deviation.

The quantileqEj,α is estimated directly from the data fol-
lowing the procedure proposed inØigård (2004). For each
scale numberj , it is found by using the empirical distribu-
tion, obtained from the large amount of available simulated
samples. We define the standardized estimates of the deriva-
tive dP Sjt,k by

dP Sjt,k =
dPj t,k − E(dPj t )

SD(dPj t )
.

Then, for each decomposition levelj=1, ..., J and the esti-
mated wavelet power in the pointst=1, ..., Nj , the quantile
qj t,α is chosen to be the largest value such that 100α% of

the modeled standardized realizations
∣∣∣dP Sjt,k∣∣∣, k=1, ..., K

are greater thanqj t,α. For large values ofK, we have that

P
{∣∣∣dP Sjt,k∣∣∣>qj t,α} ≈α. We then proceed conservatively,

and chooseqEj,α to be the maximum of all theNj quantiles

qj t,α for each decomposition levelj , i.e.qEj,α= maxt
{
qj t,α

}
.

This can be basically thought of as a procedure correcting for
multiple testing.

3 Numerical implementation

The computational steps to analyze the signal using the pro-
posed method are as follows:

1. Set input arguments: Specify the noise variance term
in the signal model, as defined in Eq. (3), and choose
a desired type of the quantile for significance testing
procedure. Note that when choosingqAR(1) quantile,
a relevant estimate of the autocorrelation parameter is
to be additionally provided. By default this parame-
ter is generated through the embedded function. If the
value of the noise variance is not available, it can be esti-
mated using the default procedure proposed in Sect.2.3.

Changeγ set by default to 1 to 0<γ<1 or γ>1 if the
modeled spectrum needs to be under- or oversmoothed.
Choose between solving the minimization problem for
β (default) and specifying the value of the smoothing
parameter manually.

2. Find the DWT of the original data sequence for the pre-
scribed range of scalesj. The DWT algorithm is based
on the routinewavedecfrom the Wavelet toolbox for
Matlab. The method implementation fitted to the use
of LA(8) basis function can, in principle, be adapted
to other wavelets. By default “padding” with zeroes is
used to extend the analyzed time series up to a nearest
integer multiple of 2J , with subsequent elimination of
the biased wavelet coefficients.

3. Solve the minimization problem (Eq.10) with respect
to β for each wavelet decomposition scale.

4. At each point(j, t) of the observed DWT draw a nec-
essary number of realizations of the modeled wavelet
coefficients from the constructed posterior distribution
(Eq. 9). Our default choice isK=200. As an extra op-
tion, inverse DWT (implemented usingwaverecfunc-
tion) uses realizations averaged overK for reconstruct-
ing the smoothed signal from the modeled (smoothed)
wavelet coefficients.

5. Calculate the smoothed wavelet periodogramPj t
(Eq.11) .

6. Calculate quantilesqEj,α from the modeled realizations

of the wavelet periodogramPj t,k or qAR(1) using the
specified value ofφ.

7. For each scalej apply the significance testing procedure
to the modeled wavelet power spectrum.

A computer program that performs the above steps is avail-
able from the authors. The zip-archive includes MATLAB
codes, program documentation and examples files. The pro-
gram requiresWavelet Toolboxextension package for Matlab
to be installed.

4 Results

In this section we investigate the robustness of the proposed
technique. Case studies with synthetic data and two real
climatic time-series demonstrate the overall performance of
the method and its potential as a useful tool for data analy-
sis. Comparison of results with outputs from other methods
proves the adequacy of the proposed approach to time-series
exploration.

The sample climatic time-series were preliminarily de-
trended using a linear fit and subsequently tested for sta-
tionarity of the expected mean. For the latter procedure we
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analyzed the time-integrated wavelet spectrum following the
technique proposed inPercival and Walden(2000). In or-
der to check appropriateness of the AR(1) model, which is
often used by default in geophysical applications, we fitted
this model to the sample time-series. The cumulative pe-
riodogram test for randomness of the residuals (Box et al.,
1994) has proved the adequacy of the proposed model for
describing the time-series used in both examples.

A three-component visual display device is used for show-
ing the results of the analysis. It comprises the raw and the
smoothed time-series (panel A), estimated true power spec-
trum of a signal (panel B) and a feature map showing the out-
put of the significance testing procedure (panel C). The last
panel in programming implementation of the method may
have two different visual representations depending on what
testing procedure has been chosen. For demonstrational pur-
poses, however, the examples shown below display the out-
put from both of the available testing methods.

Black areas in panel Ca (testing against red noise back-
ground) highlight those parts of the power spectrum shown in
panel B that are statistically significant at the prescribed sig-
nificance level, according to the criterion stated above. The
color map used in panel Cb is similar to that one originally in-
troduced inChaudhuri and Marron(1999) with areas where
the wavelet power exhibits statistically significant increase
and decrease flagged as red and blue, respectively. The ver-
tical axis in panel B shows the decomposition scale number.
In panel C, for convenience, these are substituted by inverse
of the wavelet pseudo-frequency (i.e. pseudo-period) corre-
sponding to the decomposition scale. This is defined as the
frequency maximizing the Fourier transform of the wavelet
function. This may provide a hint about the real time scale
being analyzed. Semitransparent fringes of the panels out-
line the areas affected by the edge effects. Note that the re-
sults obtained for these parts of the decomposition and sig-
nificance testing should be interpreted with caution.

4.1 Testing the method

For testing the proposed technique we ran a series of numer-
ical simulations. As test data we used generated time-series
with well-known spectral characteristics. These are purely
random process, stationary autoregressive process of the first
order with positive autocorrelation and a random walk pro-
cess, which is a non-stationary 1/f -Type process with sta-
tionary backward difference of the first order. We generated
500 time-series of the length 1024 for each of the categories.
The assigned value ofσ was equal to one in all three cases
and the autocorrelation coefficientφ in the AR(1) process
was set to 0.7. Since we initially knew all the parameters of
the analyzed signals, we used them when running the pro-
gram. The following testing procedures have been imple-
mented:

(a) testing for consistency of the estimated (smoothed)
spectrum with the prescribed (true) spectrum of the pro-
cess

(b) testing for detection of spurious significant features in
these purely random data samples.

In the first experiment we examined whether, on average,
the true spectrum and its estimate are consistent. If the true
spectrum at a point falls outside of the confidence interval of
the modeled spectrum, then this point considered a “miss”.
The confidence intervals were constructed based on our prior
knowledge of the process type. Using the results and no-
tation introduced in Sect.2.6 readily gives an approximate
100(1−α)% confidence interval for̂W2

j t/σs
2 in the form[

SjQ1(1 −
α

2
), SjQ1(

α

2
)
]
. (13)

Sj here denotes the theoretical normalized discrete Fourier

power spectrum of the analyzed process averaged over the

proper range of frequencies and defined as

Sj =



1, N(0,1)

1

δf

∫ fh

fl

1 − φ2

1 + φ2 − 2φ cos(2πf )
df, AR(1) process

1

δf

∫ fh

fl

1

4 sin2(πf )
df, random walk

with f andδf being the same as defined earlier in Sect.2.6.
Based on 500 available realizations of the same process the

relative number of misses were estimated for each point of
the wavelet spectrum. The analysis have demonstrated that it
usually does not exceed a prescribed value ofα for any of the
three types of processes (AR(1) withφ=0 andφ=0.7, and a
random walk) considered. This indicates that the modeled
wavelet spectrum of a time-series is a reasonable estimate of
the theoretical one.

Both significance testing procedures were subject to verifi-
cation for spurious detection of significant features in purely
random data samples. Running the method in such cases
should, ideally, give no significant features. In practice, the
number of false identifications will depend on the level of the
test, which was set toα=0.05. We used the same design as
in the first series of numerical experiments. The results of
the analysis were obtained in the form of the relative number
of features spuriously found to be significant at each point
of the wavelet spectrum. These are not shown here in order
to reduce the size of the current presentation. We found that
for all three types of the processes considered the average
number of false identifications for testing using the empir-
ical quantile was much below the level of the test. Such a
low number of false identifications is certainly due to virtual
correction for multiple testing embedded in the procedure of
estimating the quantile. This approach appears thereby to be
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Fig. 1. (A) Raw (blue) and smoothed (red) Niño3 seasonal SST index.(B) normalized smoothed wavelet periodogram (estimate of the true
wavelet power spectrum) of the time-series. See color bar from the right of panel (B) for spectral power gradation.(C) Feature maps for
the power spectrum shown in B calculated usingqAR(1) (Ca) andqE quantiles (Cb). Grey areas inCa highlight the features in the wavelet
power spectrum of greater than 95% confidence for a red-noise process. Red and blue in panelCb designate the areas where the wavelet
power exhibits, respectively, statistically significant increase and decrease. Semitransparent fringes of panels B,Ca andCb enclose the areas
affected by the edge effects.

conservative enough to be recommended for use in situations
where a suitable model for the analyzed time-series is uncer-
tain.

The procedure of testing against the AR(1) background
showed similar results (no features detected) only for purely
random and AR(1) time-series, i.e. when the testing hypoth-
esis was trivially true. Testing the random walk series treated
as being AR(1), in turn, yields a persistently higher number
of features marked as statistically significant (up to 20%, de-
pending on magnitude of added random noise). The result
is not unexpected keeping in mind that the theoretical spec-
tral power of the normalized random walk time-series is gen-
erally higher than the one for the stationary AR(1) process,
whatever the autocorrelation coefficient is.

4.2 Example 1: Nĩno3 SST index

Figure1 shows an application of the proposed technique to
the Niño3 sea surface temperature, (SST) used as a mea-
sure of the amplitude of the El Niño-Southern Oscillation
(ENSO). The Nĩno3 SST index (panel A) is defined as
the seasonal SST averaged over the central Pacific 5◦ S–
5◦ N 90◦ W–150◦ W. The data for 1871–1997 is presented
in the form of seasonal anomalies. A detailed analysis of
this time-series using the wavelet decomposition technique
is found inTorrence and Compo(1998).

The feature map calculated usingqAR(1) quantile
(φ=0.71) shows increased significant variability inconsistent
with an AR(1) model on the time-scale of approximately
3 years before 1940 and after 1960, with somewhat fewer
peaks marked as significant in between. This is in line with
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Fig. 2. Same as for Fig.1, but for GISP2δ18O oxygen isotope record.

the conception of weaker ENSO variability during this period
(Dong et al., 2006). The feature map also generally repro-
duces the results presented inTorrence and Compo(1998)
where the real and complex CWT (Figs. 1b and c there, re-
spectively) with testing against the red noise was used. At
the same time more conservative testing using the empirical
quantile with noise variance estimate of(0.47)2 yielded an
anticipated result, with only one peak flagged as significant.

4.3 Example 2: GISP2δ18O oxygen isotope record

As a second example, we consider the glacial part (13–
59 ky BP) of the oxygen-isotope record, measured as
O18/O16 ratio, from the GISP2 ice core from Greenland
(Grootes and Stuiver, 1997). This time-series reflects, to a
large extent, air temperature fluctuations above Greenland
during this period. Prior to applying the wavelet transform
we binned initially unevenly sampled record at century reso-
lution. Assuming the AR(1) model for the analyzed signal is
generally true, the noise variance of(0.68)2 is estimated from
the residuals following the procedure proposed in Sect.2.3.

Figure2 shows the results of the analysis. Testing the null-
hypothesis that the background process is AR(1) (φ=0.85)
reveals the variability at scale 3 (1–2 kyears) inconsistent
with the proposed model. Some more features appear as sig-
nificant at the first two scales too. They can largely be inter-
preted as an extension of sharp major peaks at 1.5 ky scale
(so-called Dansgaard-Oeschger oscillations) to finer scales.
Two peaks are also detected as significant on the longer
scales. These results are in a good agreement with spec-
tral analyses presented inGrootes and Stuiver(1997) and
Schulz and Mudelsee(2002). Testing using the more con-
servative empirical quantile marks as “real” only the peak
close to 40 000 BP, identified as interstadial 8, according to
the classification proposed inDansgaard et al.(1993).

One needs to mention nevertheless that this inference may
appear to be too conservative due to application of a simpli-
fied model for estimatingσ 2. When all types of noise except
the instrumental error are ruled out, its value is much reduced
to a common estimate of(0.1)2, weakening accordingly the
conservatism of the test. The number of features detected as
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significant in this case is essentially higher (not shown here);
among them are Dansgaard-Oeschger oscillations at millen-
nial scale. This example underscores the crucial role of a
proper choice ofσ 2 for making further inference whether the
features seen in the analyzed time-series can be regarded as
significant, with respect to a statistical hypothesis applied.

5 Conclusions

The motivation of this study has been to develop a wavelet-
based tool for exploring structures in data sequences at differ-
ent scales of resolution. We have demonstrated how the ideas
elaborated in the scale-space techniques can successfully be
employed in wavelet analysis. Recalling that the raw wavelet
spectrum is not a consistent estimator of the local wavelet
power, we put forward an idea of using the decorrelating
properties of the discrete wavelet transform for Bayesian
modeling of the wavelet coefficients. The smoothing to the
spectrum is introduced in a natural way via a smoothing prior
with parameters estimated from the data. However, as we
show by an example, both the estimate of the true wavelet
spectrum and analysis for significance can be quite sensitive
to the estimate of the noise variance. One should therefore
always consider carefully the possible impact of this choice
on the final inference. It is worth mentioning that like any
tool for the time-series analysis the program should not be
used as a black-box without checking the properties of the
data sequence prior to its analysis.

The general idea of the method – the modeling – can po-
tentially be transferred to more conventional types of wavelet
transforms, MODWT or CWT. They have a substantial ad-
vantage over the DWT, namely the results are not so sensi-
tive to the choice of wavelet function. As shown byPercival
and Walden(2000), the MODWT variance estimator is sta-
tistically more efficient and, it has much better temporal res-
olution and visual representation which simplifies the inter-
pretation of derived spectra. These transforms do, however,
use the non-orthogonal basis and produce a redundant out-
put. The direct application of the method, therefore, is not
possible since the basic assumption of independent errors is
not satisfied any more. Modeling in this case will require,
for each decomposition scale, a detailed assessment of the
error covariance matrix based on the reproducing kernel of
the wavelet transform (Maraun et al., 2007). The overall for-
malism of the method, namely Eqs. (5–9), will have to be
revised too. We leave this problem for future research.

One should also notice that the algorithm involves two
computer intensive procedures, namely inverting the covari-
ance matrix and drawing samples from the posterior. The
running time therefore may become relatively long when the
length of the time-series exceeds some 1000 points (depend-
ing on the PC). This, together with a need to have an ex-
tra commercial software installed (wavelet package for Mat-
lab) may potentially restrict the application of the proposed

method. These problems are nevertheless planned to be
solved in the next version of the program through substituting
the inversion procedure in Eq. (5) by the exact solution and
using the open source functions for the wavelet transform.
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