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Abstract. We propose an efficient method for estimating
a time-mean state of an ocean model subject to given ob-
servations using implicit time-stepping. The new method
uses (i) an implicit implementation of the 4D-Var method
to fit the model trajectory to the observations, and (ii) a pre-
processor which applies a multi-channel singular spectrum
analysis to enhance the signal-to-noise ratio of the obser-
vational data and to filter out the high frequency variabil-
ity. This approach enables one to estimate the time-mean
model state using larger time-steps than is possible with an
explicit model. The performance of the method is presented
for two test cases within a barotropic quasi-geostrophic non-
linear model of the wind-driven double-gyre ocean circula-
tion. The method turns out to be accurate and, in comparison
with the time-mean state computed with an explicit version
of the model, relatively cheap in computational cost.

1 Introduction

The ocean has been routinely observed for the past decades.
These observations mainly consist of satellite measurements
of sea surface height (TOPEX/POSEIDON), sea surface tem-
perature (AVHRR) supplemented by hydrographic data col-
lected from a variety of sources ranging from cruises along
sections (WOCE) to drifter and floats (ARGOS). The anal-
ysis of these observational data provides much information
on the large-scale ocean currents. It is, however, not suffi-
cient to fully describe the time-mean ocean circulation due to
problems in coverage, spatial and/or temporal resolution or
in accuracy. To obtain an accurate analysis of the time-mean
ocean circulation, it is therefore necessary to combine these
observations with an ocean model using data-assimilation or
inverse modeling techniques.
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One of the data-assimilation methods widely applied in
physical oceanography is four-dimensional variational data-
assimilation (4D-Var). It is a method in which information
that is present in observations is combined with the evolu-
tion determined by a particular ocean, atmosphere or climate
model. Estimates of the ocean state from 1992 through 2000
were calculated by assimilating WOCE data and NCEP re-
analysis of the surface fluxes (Stammer et al., 2003). Ob-
servations are also used in operational oceanography to ini-
tialize ocean circulation models (Vialard et al., 2003) or to
estimate model parameters for example diffusivities (Stam-
mer, 2005) or eddy stresses (Ferreira et al., 2005).

Given an ocean model and observations the aim of 4D-
Var is to find an initial state and/or model parameters, such
that the observations are “close” to the model trajectory. A
cost function is formulated which measures the distance of
the model trajectory to the observations. Minimization of
this cost function over the initial conditions (or parameters)
gives the so-called analysis. The minimization procedure re-
quires a gradient, which in general is evaluated using a for-
ward and an adjoint model. Compilers exits which generate
actual computer code of an adjoint model given the code of
the forward model (Giering and Kaminski, 1998), but the for-
mulation of an adjoint model is in most cases a nontrivial and
time-consuming process.

A direct approach of determining an estimate of the time-
mean state of the ocean, is to assimilate the observations into
an ocean model and calculate the time-mean state of the re-
sulting analysis. For a data-assimilation method with an ex-
plicit time-stepping model this has high computational cost
since small time-steps have to be taken due numerical stabil-
ity constraints, such as the CFL-criterion (Peyret and Taylor,
1983). Furthermore, a small time-step requires a high tem-
poral resolution of the observational data, which may not be
available. Small time-steps also make the estimate sensitive
to observational noise and high frequency, small amplitude
variability.
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The 4D-Var method has recently been implemented in im-
plicit time-stepping models where the advantage is that the
adjoint can be constructed directly from the implicit time-
stepping scheme, such as the Crank-Nicholson scheme (Ter-
wisscha van Scheltinga and Dijkstra, 2005). This new im-
plementation has several advantages over variational data-
assimilation with an explicit model: (i) a larger time-step
can be taken since the size of the time-step is not bounded
by the CFL-criterion, and (ii) the method is more accurate
for similar time-steps (Terwisscha van Scheltinga and Dijk-
stra, 2007). The possibility of taking a large time-step is an
advantage that we will utilize here for the estimation of the
time-mean state.

To be able to use large time steps, one needs a way to
handle the smaller time-scale variability in the observations.
This variability can usually be decomposed into statistical
modes (Ghil et al., 2002) using statistical techniques for ex-
ample, Multi-channel Singular Spectrum Analysis (M-SSA);
these techniques aim at enhancing the signal-to-noise. The
observations can then be reconstructed using only the M-
SSA dominant modes, or when required, only those with fre-
quencies within a certain frequency band.

In this paper we explore the use of implicit models in data-
assimilation and propose an efficient estimation method for
the time-mean state in an ocean model under given observa-
tions. The approach consists of two building blocks:

i) a method to pre-process the observations prior to data-
assimilation, i.e. a data-handling procedure that uses
multi-channel spectrum analysis (MSSA) to enhance
the signal-to-noise ratio and reconstruct the observa-
tions such that only the dominant modes and relevant
time-scales are assimilated; and

ii) the 4D-Var method using an implicit time-stepping
scheme, which allows us to take relatively large time-
steps.

The method will be tested using the barotropic quasi-
geostrophic model of the wind-driven ocean circulation as
presented in Sect. 2. We will consider both a case of ex-
ternally forced variability (Sect. 3.1) and a case of internal
variability (Sect. 3.2), the latter arising through Hopf bifur-
cations. For both cases, the estimation method is compared
with a direct approach of estimating the time-mean state us-
ing an explicit version of the model.

2 Model and methods

In this section we will first provide (Sect. 2.1) the model of
the wind-driven ocean circulation which is used in this study.
Next, we provide a basic overview of the 4D-Var method
(Sect. 2.2) followed by a detailed discussion of the esti-
mation method for the time-mean state in the ocean model
(Sect. 2.3).

2.1 Quasi-geostrophic model

Consider a rectangular ocean basin of sizeL×L having a
constant depthD. The basin is situated on a mid-latitudeβ-
plane with a central latitudeθ0=45◦ N and Coriolis param-
eterf0=2� sinθ0, where� is the rotation rate of the Earth.
The meridional variation of the Coriolis parameter at the lat-
itude θ0 is indicated byβ0. The densityρ of the water is
constant and the flow is forced at the surface through a wind-
stress vectorT=τ0[τ

x(x, y), τ y(x, y)]. The governing equa-
tions are non-dimensionalized using a horizontal length scale
L, a vertical length scaleD, a horizontal velocity scaleU , the
advective time scaleL/U and a characteristic amplitude of
the wind-stress vector,τ0. The effect of deformations of the
ocean-atmosphere interface on the flow is neglected.

The dimensionless barotropic quasi-geostrophic model of
the flow for the vertical component of the vorticity,ζ , and
the geostrophic streamfunctionψ is (Pedlosky, 1987)[ ∂
∂t

+ u
∂

∂x
+ v

∂

∂y

]
[ζ + βy] = Re−1

∇
2ζ + ατ

(∂τ y
∂x

−
∂τ x

∂y

)
, (1a)

ζ = ∇
2ψ, (1b)

where the horizontal velocities are given byu=−∂ψ/∂y and
v=∂ψ/∂x. The parameters in Eq. (1a) are the Reynolds
numberRe, the planetary vorticity gradient parameterβ and
the wind-stress forcing strengthατ . These parameters are
defined as:

Re =
UL

AH
; β =

β0L
2

U
; ατ =

τ0L

ρDU2
(2)

whereg is the gravitational acceleration andAH is the lateral
friction coefficient. When the horizontal velocity scaleU is
based on a Sverdrup balance of the flow, i.e.,

U =
τ0

ρDβ0L
. (3)

it follows thatατ=β and there are only two free parameters
(e.g.,Re andβ).

We assume no-slip conditions on the east-west boundaries
and slip on the north-south boundaries. The boundary condi-
tions are therefore given by

x = 0, x = 1 : ψ =
∂ψ

∂x
= 0, (4a)

y = 0, y = 1 : ψ = ζ = 0. (4b)

The wind-stress forcing is prescribed as the sum of a sym-
metric steady wind forcing with added time-dependent com-
ponents with different frequencies and amplitudes, i.e.,

τ x(x, y) =
−1

2π
cos(2πy)

+
a1(t)

π
cos(πy)+

a2(t)

3π
cos(3πy)

+
a3(t)

4π
cos(4πy)+

a4(t)

5π
cos(5πy) (5a)

τ y(x, y) = 0. (5b)
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Table 1. Standard values of the parameters for the barotropic quasi-
geostrophic ocean model in the steady flow regime.

Parameter Value

L 1.0×106 m
U 7.1×10−3 m
D 7.0×102 m
β0 2.0×10−11 (ms)−1

f0 1.0×10−4 s−1

g 9.8 ms−2

ρ 1.0×103 kgm−3

τ0 1.0×10−1 Pa

P ∗
1 360 days
P ∗

2 90 days
P ∗

3 30 days
P ∗

4 7 days

The amplitudesai are given by:

ai(t) =
τi24−i

60
sin(

2πt

Pi
). (6)

wherePi is the dimensionless period of the amplitude and
τi∈[0,1] is a control parameter. The values for the dimen-
sional periodP ∗

i =LPi/U are given in Table1; a1(t) has a
period of one year,a2(t) a period of three months,a3(t) a
period of a month anda4(t) a period of a week. The ampli-
tude and the spatial scale of the time-dependent wind-stress
componentsai(t) decrease withi.

For the parameters as in Table1 and symmetric forc-
ing (τi=0, i=1, ...,4), (Dijkstra and Katsman, 1997) showed
that several different flow regimes exist whenRe is varied.
For Re<30, the quasi-geostrophic model has one unique
stable steady state. The streamfunctionψ of this steady
state is anti-symmetric with respect to the mid-axis of the
basin. Two asymmetric stable steady-state solutions, one
with a downward jet-displacement and the jet-up solution
exist for 30<Re<52. NearRe=52 both asymmetric states
become unstable due to the occurrence of Hopf bifurcations;
for 52<Re<74 stable periodic orbits exist. The solutions be-
come quasi-periodic forRe>74 and irregular for higher val-
ues ofRe; the route to chaos is through a homoclinic orbit
(Simonnet et al., 2005).

With this model we will test our time-mean estimation
method presented in Sect. 2.3 for internal and externally in-
duced variability. For the former we will takeRe>74 and
τi=0, i=1, ...,4, i.e. the quasi-periodic regime described
above. For the latter we takeRe=50 andτi=1, i=1, ...,4,
the steady regime where we induce variability through the
time-dependent components of the wind stress.

The equations Eq. (1a) and boundary conditions Eq. (4)
are spatially discretized using a control-volume method on
an equidistantN×M grid. A standard set of parameter

values has been chosen (Table1) that are similar to those
in (Dijkstra and Katsman, 1997) and for these parame-
ters,ατ=β=2.8×103. For the implicit time integration the
second-order Crank-Nicholson scheme is used, while for the
explicit time integration a second order Adams-Bashforth
scheme is used.

2.2 Variational data-assimilation

Suppose the initial condition of the background modelwb(t0)

is given. The analysis is the model trajectory that simultane-
ously minimizes the distance to the initial backgroundwb(t0)

and the observations{yi : i=0, · · ·, N−1}. This is an opti-
mization problem, which in the incremental 4D-Var formu-
lation (Courtier et al., 1994) is stated as:

δwa = min
δw

J (δw), (7a)

J (δw) = δwTB−1δw +

N−1∑
i=0

dTi R−1
i d i, (7b)

d i = yi −HiM(ti, t0)(w
b(t0))+ HiM(ti, t0)δw. (7c)

In above equationsJ is the cost function which mea-
sures the distance to the observations and the initial con-
ditions, δwa is the optimal increment on the initial back-
groundwb(t0) state andd i is the departure of the model tra-
jectory from observationyi . The operatorsM(ti, t0) andHi
are the evolution operator and the observation operator with
M(ti, t0) andHi their linearizations around the background
trajectorywb(ti). The matricesB andRi are the covariance
matrices for the background errors and observational errors.
Given an optimumδwa of Eq. (7a) the analysiswa(ti) is
given by:

wa(ti) = M(ti, t0)(w
b(t0)+ δwa). (8)

The method used for the solution of the minimization
problem described here needs the gradient∇J , which for
Eq. (7a) is given by:

∇J =

N−1∑
i=0

M(ti, t0)THT
i R−1

i d i . (9)

For the explicit model the procedure is to evaluate the cost
function by using explicit time-stepping, while the gradient
is evaluated using the adjoint modelM(ti, t0)T to integrate
backward in time. For 4D-Var with implicit time-stepping,
the construction of the adjoint model is easy (Terwisscha van
Scheltinga and Dijkstra, 2005), since the adjoint model is
directly available from the Newton-Raphson method used
in the Crank-Nicholson method. Furthermore, the implicit
implementation also has the advantage that the time-step is
not limited by numerical stability and is capable of finding
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(a)

(b)

Fig. 1. Sketch of the 4D-Var method, where an assimilation in-
terval has been divided into three subintervals.(a) ‖H(wb(ti)‖2
and‖H(wa(ti)‖2, theL2-norm of the projection of the background
wb(ti) (solid) and analysiswa(ti) (dashes) on the observations
space; theL2-norm of the observationsyi (crosses) and the optimal
incrementsδwa (arrows). (b) the initial (solid) and final (dashed)
value of the cost function.

an accurate analysis for large time steps (Terwisscha van
Scheltinga and Dijkstra, 2007).

The minimization problem for the cost functionJ is solved
using a limited memory quasi-Newton conjugate gradient
method. This method terminates successfully if all of the
following conditions on the convergence of the cost function,
increment and gradient are met:

J l−1
− J l < εm(1 + |J l |), (10a)

‖δwl−1
− δwl‖ < ε

1/2
m (1 + ‖δwl‖), (10b)

‖∇J l‖ ≤ ε
1/3
m (1 + |J l |), (10c)

where l is the iteration index of the conjugate gradient
method andεm the optimality tolerance.

For time-series with many observations in the time-
domain, i.e. largeN , it is more practical to divide the large
time series intom smaller (sub-)intervals, each withn points.
The observation in each sub-interval are then assimilated us-
ing the analysis of the previous one. An example of this is
presented in Fig.1, where the observations are shown on an
assimilation interval of 12 points. This interval is divided

into 3 subintervals (m=3), each with four points (n=4).
For every interval the background trajectorywb(ti) (solid),
the optimal incrementwa (arrows) and the analysiswa(ti)
(dashed) are shown. The background on the first interval is
given. For the other intervals, the background is calculated
from the analysis on the previous interval. On each interval
the minimization problem is solved. Due to the dependence
of the cost function on the background, the increment and the
observations, the initial and the final value of the cost func-
tion will vary over the subintervals (Fig.1b).

2.3 Time-mean state estimation

To fully utilize the advantage of taking a large time step, we
only want to assimilate those statistical modes of the obser-
vations which explain most of the variance seen in the ob-
servational data. These modes are then separated into sev-
eral frequency bands, ordered from low to higher frequen-
cies. For large time steps we only assimilate the modes in
the low frequency band, while for smaller time steps we will
retain the low frequency modes but include higher frequen-
cies. The underlying assumption is that for large time steps
we can quickly estimate a time-mean state based on only the
low frequency variability in the observations, while the re-
finement of the time-mean state due to the assimilation of
high frequency variability is expected to be relatively small.

To illustrate the approach graphically, a hypothetical ob-
servational time-series is shown in Fig.2a. The variability of
this time series can be decomposed into several modes, as is
shown in Fig.2b, each with a different frequency. From this
picture it becomes clear that to produce an accurate analy-
sis, each mode of variability can be handled with a different
time step during assimilation. The low-frequency variability
can be assimilated with a much larger time step than the high
frequency variability. For large time steps (Fig.2c) we only
assimilate the low frequency mode, while for smaller time
steps we take both the low and medium frequency variabil-
ity into account. Each assimilation of reconstructed obser-
vations produces an estimate for the time-mean state, which
is successively improved by adding more higher frequency
components, while simultaneously reducing the size of the
time step.

To obtain the statistical mode decomposition in the obser-
vations, we use the M-SSA method applied on the leading
principle components (PC) of the observations (Vautard and
Ghil, 1989). After the leading M-SSA modes have been cal-
culated the observations are reconstructed. Depending on the
size of the time step, this reconstruction will be based on the
modes in only one or in more frequency bands.

The algorithm for the time-mean estimation hence consists
of two parts: (i) a data-handling procedure, which produces
several reconstructions of the observations from the M-SSA
modes; (ii) iterative assimilation of the reconstructed obser-
vations using 4D-Var. The steps in the data-handling proce-
dure are the following:
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1. Calculate the mean̄y from the observationsyi in the
interval t0≤ti≤tn. If a trend is present in the data, then
this trend must be removed before calculating the mean.

2. Calculate theF leading M-SSA modes (see Appendix),
i.e. those who explain most of the spatial-temporal vari-
ance. The number of modesF depends on how much
of the variance should be explained (usually, 90% or
more). Note that this is highly dependent on the quality
of the observations, but in practiceF is not large, say
10–20.

3. Separate the different modes of variability, i.e., divide
theF modes into sets of modesKj with each set rep-
resenting a band of frequencies (e.g., seasonal, interan-
nual, decadal). The setsKj must satisfy:

Kj ∩Kk = ∅, j 6= k (11a)
K⋃
j=1

Kj = KF , (11b)

whereKF contains theF leading modes. The sets are
ordered from low to high frequencies bands.

4. Reconstruct the observations as follows:

K̃1 = ∅, (12a)

K̃j = K̃j−1 ∪Kj , (12b)

y
j
i = ȳ +RK̃j (ti), (12c)

whereyji is the jth reconstruction based on the modes
in K̃j , andRK̃j (ti) is the reconstruction of the devia-

tions from the mean using the modes inK̃j . Note that
the first reconstruction of the observational time-series
is the mean̄y. For the estimation of the mean we will
iterate inj , or equivalently, over the reconstructed ob-
servationsyji . Since the sets were ordered from low to
high frequencies,̃Kj contains all the frequencies up to
a certain frequency band.

For a fixed value ofj the seriesyji will be assimilated
using 4D-Var and from the resulting analysis the time-mean
state is estimated. For eachj we have to choose a time-step
1t and size of the (sub-)intervals and point per (sub-)interval
(see Fig.1). The steps in this procedure are as follows:

1. Choose a time step1tj , where1tj<1tj−1. Here the
choice of1tj depends on the variability present in the

reconstructed observationsyji . It is necessary to have a
good temporal resolution in order to produce an accu-
rate analysis and estimate for the time-mean state. The
size of the time-step must be smaller than the period of
the variability present in theyji .

(a)

(b)

(c)

Fig. 2. Sketch of the time-mean estimation:(a) the observational
time-series;(b) three modes of variability present in the time-series:
the low frequency mode (dotted), medium frequency mode (dashed)
and the high frequency mode (solid);(c) three reconstructions of
this time-series based on the low frequency mode (dotted), low and
medium frequency modes (dashed) and low, medium and high fre-
quency modes (solid).

2. Set the number of subintervalsmj and the number of
points per subintervalnj (Fig. 1). Bothmj andnj will
vary with the size of the time step1tj , since the follow-
ing must hold:

ttotal = mjnj1tj , (13)

wherettotal is the length of the time interval. Note that it
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(a)

(b)

(c)

(d)

Fig. 3. Overview of the model run atRe=50 andτi=1 for all i:
(a) the basin integrated kinetic energyEkin; (b) the asymmetry of
the streamfunctionψ ; (c) the time-mean of the streamfunction over
the last five years, the contours are with respect to an absolute max-
imum of ψ=2.2; and (d) the difference between this time-mean
state and the jet-down steady-state, the contours are with respect to
an absolute maximum ofψ=0.055.

is not necessary to use all the available (reconstructed)
observations. Depending on the choice ofmj , nj and
1tj only the observations at someti will be used.

3. Calculate an estimate for the time-mean state by taking
the average over the calculated analysis.

During an iteration overj the setup of the assimilation
(mj , nj and 1tj ) and the assimilated observations (y

j
i )

change. In the remainder of this paper, a steady state will
be used as the initial background for each iterationj . We do
not use the analyses of previous iterations as the background
since it was found difficult to implement, difficult to use in
combination with the varying setup of the assimilation and
it did not yield significantly better results for the test cases
presented below.

3 Results

The methodology will be applied to the model presented in
Sect. 2.1, using the parameters from Table1 and a model res-
olution of 60×40 gridpoints. We will test the new time-mean
estimation method for two cases. In the first case (Sect. 3.1)
we chooseRe=50 where the equilibrium flow is steady un-
der symmetric time-independent wind forcing. External vari-
ability is introduced through the time-dependent components
of the wind stress by takingτi=1 for all i in Eq. (5). In the
second case (Sect. 3.2) we takeRe=80 such that the equi-
librium flow is irregular due to internal instabilities (arising
through Hopf bifurcations) andτi=0 for all i in Eq. (5) such
that there is no externally induced variability. In all the re-
sults below, for convenience we will use dimensional values
of time and time step but we will keep the notationt and1t .

3.1 Externally induced variability

First a 10 year model run was performed forRe=50 with a
time step1t=3 h. The wind-stress forcing is given by Eq. (5)
with τi=1 for all i and the model run is started from the jet-
down steady-state solution atRe=50. In the Figs.3a–b the
dimensionless kinetic energyEkin and the asymmetry of the
streamfunction19 defined by:

19 =
max(ψ)+ min(ψ)

max(ψ,−ψ)
. (14)

are plotted versus time. The kinetic energy and the asymme-
try of the streamfunction for the jet-down steady-state solu-
tion have also been plotted (dashed). In both the Figs.3a–b,
it can be seen that after a few years the streamfunction fluctu-
ates around the steady state in a regular fashion; the variabil-
ity of this signal has a dominant period of one year (by con-
struction). In Fig.3c, the time-mean of the streamfunction
over these five years is shown. The difference of this time-
mean state and the jet-down steady-state solution is plotted
in Fig. 3d. The time-mean state has also a jet-down structure
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and the difference pattern in Fig.3d shows the signature of
the P-mode found in (Dijkstra and Katsman, 1997).

From this simulation, the last 5 years were used for the
generation of the observations. All valuesψ on the 60×40
grid were taken as the observations. After subtracting the
time-mean state, the 20 leading EOFs and PCs were calcu-
lated. Since we use unperturbed observations generated by
a model, 100% of the variance in the observations could be
explained. Based on these principle components, the leading
20 M-SSA modes were calculated, which in total accounted
for more than 90% of the variance. The leading pair of modes
has a frequency of once a year and higher frequencies are less
dominant. The 20 M-SSA modes were separated into three
frequency bands: low frequencies (period of a year or more),
a mid-frequency range (period of a quarter to a year) and the
higher frequency range (periods of a quarter or less).

From these frequency bands three reconstructions of the
observations were made. The first reconstruction was based
on the low frequency band, the second and third by adding
the mid-frequencies and the high frequencies, successively.
The time step1tj , number of subintervalsmj and the per
subintervalnj were chosen as:

1tj =
24

2(j−1)
, (15a)

mj = 3 · 2(j−1), (15b)

nj = 5, (15c)

where the time step1tj is in days andj∈{1,3} corresponds
with each of the reconstructions. For the casej=0 only the
time-mean state is assimilated. Using this setup we will only
assimilate the first 360 days of our set of observations.

For the optimality toleranceεm the value of 10−3 has been
chosen. This ensures that the solutions are accurate and cal-
culated efficiently: a smaller value does not give significantly
more accurate solutions (in this case), but does significantly
increase the computational cost. The covariance matrices
have been chosen as the identity matrix, i.e.B = Ri=I . For
the moment all the components of the wind-stress forcing are
included for every reconstruction, i.e. for each casej , τi=1
for all i. The initial background will always be taken as the
jet-down steady-state solution.

For each value ofj , the basin integrated kinetic energy of
the background and the analysis is shown in Fig.4. In each
panel, the background trajectory is shown as the thin solid
curve, the analysis trajectory as the thick solid curve and the
observations as the dashed curve. In Fig.4a, only the ob-
servational time-mean was assimilated with a time step of
24 days (j=0). From this figure it is clear that the analysis
trajectory is far from the observations; it stays close to the
time-mean state. Forj=1 (Fig. 4b) the low-frequency vari-
ability is assimilated with a time step of1t=12 days. Here
the method finds an analysis which is closer to the observa-
tion than the background. For the reconstruction based on
the low-to-mid frequencies (Fig.4c;1t=6 days) and all the

(a)

(b)

(c)

(d)

Fig. 4. Basin integrated kinetic energyEkin of the analyses (thick
and solid) and background (thin and solid) plotted against the ki-
netic energy of the unreconstructed observations for several values
of j : (a) j=0, assimilation of only the time-mean observations with
1t=24 days;(b) j=1, assimilation of the low frequency variability
with 1t=12 days;(c) j=2, assimilation of the lower en mid-range
frequency variability with1t=6 days; and(d) j=3, assimilation of
all the leading modes for1t=3 days.
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Fig. 5. Difference between the time-mean state of the analysis and
the observational time-meanAj , as defined by Eq. (16). The solid
curve represents the case where all the wind-stress forcing compo-
nents were used for eachj , the dashed curve is the case in which
there is a matching of modes and wind-stress forcing, and the dotted
curve shows the result for the explicit model.

modes (Fig.4d;1t=3 days) the analysis and the background
move closer to the observations, and the assimilation of these
observations improves the quality of the analysis.

In Fig. 4b–d some jumps in the curves for the background
and analysis can be seen. These jumps occur between the
subintervals (see Fig.1) and become smaller for largerj
(smaller1t) and inclusion of higher frequency modes. Al-
though the method is able to find an analysis close to the re-
constructed observations, the model cannot exactly fit these
observations. As a result, the analysis trajectory will be suf-
ficiently close to the observations over the interval, but it will
start to deviate from the observations in the trailing interval.
As this part of the trajectory is used as the background for
the next interval, these errors will introduce the jumps in the
background and analysis. For smaller1t the jumps become
less prominent.

In Fig. 5 the time-mean of the analyses is compared with
the “true” time-mean state, the difference defined by:

Aj = ‖ψ
j
est− ψ true‖2, (16)

whereψjest is the estimate of the time-mean calculated from
the available analyses at iteratej , andψ true the time-mean
of the observations (shown in Fig.3c). The solid curve in
Fig 5 showsAj for the cases presented in Fig.4. Clearly for
smaller1t and largerj , the time-mean state of the analysis
converges to the observational time-mean state. This is ex-
pected, since we use unperturbed observations and use all the
available observations. The result also indicates that only a
few statistical modes need to be included here for a reason-
ably accurate estimate of the time-mean state.

To look at the effect of the wind-stress forcing field, the
same calculations were performed as above, but now the
wind forcing applied to the model is also varying withj .
Only those components of the wind stress that match with the

frequencies of the modes present in the reconstruction of the
observations are included, i.e., forj=0 the time-mean obser-
vations are assimilated with the steady wind stress (τi=0 for
all i). For j=1, the low frequencies are included in the re-
construction of the observations and only the low frequency
component (τ1=1, others zero) is included in the wind forc-
ing. The resulting value ofAj is plotted as the dashed curve
in Fig. 5. For j=0, the estimated time-mean state is bet-
ter than calculated with all the wind-stress components. For
j>0 the differences become very small because the annual
variability is the dominant mode of variability in the obser-
vations.

3.2 Internal variability

ForRe=80 and a steady wind-stress (τi=0 for all i), a model
trajectory was calculated with1t=3 h starting from the un-
stable jet-up steady state. In Fig.6a–b, the dimensionless
basin integrated kinetic energy and the asymmetry of the
streamfunction19 of this trajectory are shown. For the
first four years, the trajectory stays very close to the unstable
steady state but it becomes quasi-periodic over the next 8–9
years. During the last nine years, two types of variability can
be seen, one with a period of about 5 years and the second
with a period of about 50 days having a smaller amplitude
as the first. The trajectory circles around the unstable jet-up
steady state but has a slightly lower mean kinetic energy. The
time-mean streamfunction over the last five years is shown in
Fig.6c. The time-mean state has a jet-up structure and differs
substantially from the unstable jet-up solution (Fig.6d). The
values of the streamfunction on all the grid point over the last
five years of the integration were taken as the observations.

After subtraction of the time-mean, the 20 leading prin-
ciple components of the observations were calculated. As
in the previous section 100% of the variance could be ex-
plained, since we use perfect observations. A total of 20 M-
SSA modes were calculated from the principle components.
Of these 20 modes two pairs were dominant; the first pair
with a period of 100 days, the second pair with a period of 50
days. The other modes have smaller periods and amplitudes.
These modes were divided into frequency bands accordingly.

The same assimilation setup as in the previous subsec-
tion was used, i.e., the time steps1tj , the number of subin-
tervalsmj and the points per subintervalnj are given by
Eq. (15). The initial background was taken as the unstable
jet-up steady state and only the first year of the five year pe-
riod is assimilated. The trajectories of the background and
analysis forall values ofj are shown in Fig.7. For refer-
ence, the observations are also shown in the same figure as
the dashed curve.

When assimilating only the time-mean observations (j=0)
with a time step of 24 days, the initial background is far from
the observations (Fig.7a). The assimilation, however, finds
an analysis that is much closer to the observations. This is
also seen for other values ofj . After the first interval both
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(a)

(b)

(c)

(d)

Fig. 6. Overview of the model run atRe=80 andτi=0 for all i: (a)
the basin integrated kinetic energyEkin; (b) the asymmetry of the
streamfunctionψ ; (c) the mean of the streamfunction over the last
five years, the contours are with respect to an absolute maximum
of ψ=2.5; and(d) the difference of this mean with respect to the
unstable jet-up steady-state atRe=80, the contours are with respect
to an absolute maximum ofψ=0.45.

(a)

(b)

(c)

(d)

Fig. 7. Basin integrated kinetic energy of the analyses (thick and
solid) and background (thin and solid) plotted against the kinetic en-
ergy of the unreconstructed observations for several values ofj : (a)
j=0, assimilation of only the time-mean observations with1t=24
days; (b) j=1, assimilation of the low frequency variability with
1t=12 days;(c) j=2, assimilation of the lower en mid-range fre-
quency variability with1t=6 days; and(d) j=3, assimilation of all
the leading modes for1t=3 days.
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Fig. 8. Difference between the time-mean state of the analysis
(drawn curve) and the observational time-mean,Aj as defined by
Eq. (16). The dotted curve is the result from the computation with
the explicit model.

the background and analysis are close to the observations but
they do not show the 50 day period, when compared with
the observations. Increasing the value ofj , i.e. taking a
smaller time step and taking more statistical modes into ac-
count, leads to a smaller difference with the observations.
For j=1 (Fig. 7b) both trajectories fit the observations and
show a small 100 day oscillation. Forj=2 (Fig. 7c) and
j=3 (Fig.7d) the analysis and background also show the 50
day period.

The estimate of the time-mean state as calculated from the
analyses is compared with the time-mean state from the ob-
servations in Fig.8. For smaller time steps and more modes
present in the reconstruction, the estimate becomes more ac-
curate. Forj=2 andj=3 the differences with the observa-
tional time-mean state are practically the same. Hence tak-
ing a time step of 3 days and taking a reconstruction based
on 20 M-SSA modes does not give an improvement when
compared to the result for a time step of 6 days and only the
dominant two pairs of M-SSA modes. For an accurate esti-
mate of the time-mean state it is sufficient to take only the
dominant statistical modes in the observations into account.

3.3 Comparison with the estimate from the explicit model

To see how much advantage there is from the implicit
methodology, we compare the results above with an estimate
of the time-mean state calculated over an analysis trajectory
resulting from a data-assimilation with the explicit model
using the second order Adams-Bashforth scheme. We will
compare both the accuracy of the estimated time-mean state
and the computational cost. For both the externally induced
variability and the internal variability the model generated
observations are assimilated using the explicit model using
the following setup: 8 points per subinterval andB=Ri=I
and a time step of1t=3 h.

(a)

(b)

Fig. 9. (a)The ratio of the difference between estimated time-mean
state using the implicit method and the true time-mean state and
the same difference as calculated by the explicit method;(b) the
ratio of the processor times used for the implicit estimation and for
the explicit estimation. In both figures the results for the external
variability with constant forcing (τi=1 for all i andj ) are drawn
solid, for the external variability with variable forcing (values ofτi
variable withj ) are drawn dotted and for the internal variability the
curves are drawn dashed.

First consider the externally induced variability. With all
the time-dependent components in the wind-stress (τi 6=0),
the 4D-Var analysis has been calculated with the explicit
model. From this analysis, the time-mean state is calculated
and the difference with the time-mean state from the obser-
vations is shown as the dotted curve in Fig.5. The explicit
assimilation is able to find a better estimate for the time-mean
state when compared with the implicit estimation method for
j=0,1 andj=2. For j=3, i.e., for1t=3 days in the im-
plicit method and observations reconstructed with 20 M-SSA
modes, the implicit estimation method performs better than
the explicit estimation method. For the case of internal vari-
ability, the difference between the estimate of the time-mean
calculated using the explicit model and true time-mean state
is shown as the dotted curve in Fig.8. Again, the implicit
method is more accurate when both dominant pairs of modes
(j=2,3) are used in the reconstruction of the observations.

The implicit estimation and explicit estimation methods
are compared both on accuracy and efficiency in Fig.9. In
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Fig. 9a, the difference between estimated time-mean state
using the implicit method and the true time-mean state has
been divided by the same difference as calculated by the ex-
plicit method. If this ratio is larger (smaller) than 1, then the
explicit estimation method is more (less) accurate. The dif-
ferent curves represent again the different cases, with drawn
the external variability with constant forcing having a solid
linestyle, external variability with variable forcing a dotted
linestyle and the dashed curve represents the case of internal
variability. For a time step of 6 days or smaller and with only
the dominant statistical modes present in the reconstruction,
the implicit estimation method performs better than the di-
rect approach using an explicit model. In Fig.9b, the ratio
of the processor times used for the implicit estimation and
for the explicit estimation are shown and clearly the explicit
approach is up to a factor 40 more expensive. The implicit es-
timation approach is much cheaper because a larger time step
is used, reducing the number of subintervals and the number
of minimizations needed to calculate the analysis.

4 Summary and conclusion

A new method for the estimation of a time-mean state con-
sistent with given observations was presented. The main idea
of the estimation method is to fully utilize the advantage of
taking a large time step in the implicit model by only as-
similating, in addition to the time-mean observations, those
statistical modes which explain most of the variance seen in
the observational data. These modes are separated into sev-
eral frequency bands, ordered from low to higher frequen-
cies. For large time-steps only the modes in the low fre-
quency band are assimilated, while for smaller time-steps
higher frequencies can be included. The statistical modes
of variability are calculated from the observations using the
M-SSA technique. Assimilation of the reconstructed obser-
vations based on a few low-frequency statistical modes cir-
cumvents the high computational cost associated with small
time steps needed for fitting high frequency variations in the
observations as has to be done with an explicit model. Fur-
thermore, in the new estimation method a high temporal res-
olution of the data is not required.

The performance of the implicit estimation method was
tested using a barotropic quasi-geostrophic model of the
wind-driven double-gyre ocean circulation. Two test-
cases were considered: externally variability induced by a
time-dependent wind stress and internal variability induced
through the occurrence of internal instabilities. The implicit
estimation method has a comparable accuracy compared to
that of the explicit estimation method. Depending on which
modes are used for the reconstruction of the observations
and the size of the time step, the implicit estimation method
is more accurate. Furthermore, this method is a factor 10–
40 cheaper in CPU time when compared with the explicit
method.

We admit that the model problem used here, with the ide-
alized observations and identity covariance matrices, is rel-
atively simple when compared to the estimation of a time-
mean state within a sophisticated ocean model and realistic
observational data. The application of this estimation method
to realistic problems is dependent on the quality and quan-
tity of the observational data and the availability of implicit
ocean general circulation models. The results presented here
are, however, motivating to further develop implicit ocean
models and corresponding assimilation and estimation meth-
ods.
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