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Abstract. The orthogonal field components from global IN-
TERMAGNET magnetometer stations are studied via multi-
fractal detrended fluctuation analysis to determine whether
there are clear and consistent regional patterns in the be-
havior of the fluctuations. There are three distinct scal-
ing regimes in the qth-order fluctuation function for each of
the 24 stations studied covering Southwest North America,
Northeast North America, Central Europe, Northern Europe,
Australasia and Asia. There is a consistent break point at
time scale around 23 h for all stations. The scaling exponents
of the second-order fluctuation functions reflect the regional
character of the stations, and can be used for station classifi-
cation, and for possible regional models.

1 Introduction

The Earth acts like a great magnet and its magnetic fluctua-
tions are measured almost continuously by arrays of magne-
tometers located around the world. The INTERMAGNET
program has established a global network of cooperating
digital magnetic observatories that currently comprises over
100 observatories. Typical measured parameters include the
north (Bx) and east (By) components of the horizontal in-
tensity, and the vertical intensity (Bz), or some combination
of these. Because the Earth’s magnetic field is constantly
changing, it is a difficult task to accurately predict what the
field will be at any point in the future. An important goal
of space weather studies is to develop spatiotemporal models
of magnetic fluctuations with reasonable accuracy. By con-
stantly measuring the magnetic field through programs such
as INTERMAGNET, we can observe how the field is chang-
ing over a period of years and use it to derive a mathematical
representation of the Earth’s main magnetic field and how it
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is changing. A statistical method accurately characterizing
the data can enable identification of the underlying funda-
mentals and dynamics of the phenomenon under study.

In the recent literature, fractal and multifractal approaches
have been quite successful in extracting salient features of
physical processes responsible for the near-Earth magneto-
spheric phenomena (Lui, 2002). Heavy-tailed Lévy-type
behaviour has been observed in the interplanetary medium
and the magnetosphere (Burlaga, 1991, 2001; Burlaga et al.,
2003; Kabin and Papitashvili, 1998; Lui et al., 2000, 2003).
Wanliss (2004, 2005) and Wanliss and Dobias (2007) have
found that theDst index exhibits a power-law spectrum with
the Hurst parameter varying over different segments of the
time series. This behavior indicates thatDst is a multifrac-
tional process. A method to describe the multiple scaling of
the measure representation of theDst time series was pro-
vided in Wanliss et al. (2005). A prediction method was de-
tailed in Anh et al. (2005) together with some evaluation of
its performance. A two-dimensional chaos game represen-
tation of theDst index for prediction of geomagnetic storm
events was proposed in Yu et al. (2007). The spatiotempo-
ral scaling properties of the ground geomagnetic field varia-
tions from individual magnetometer stations were studied in
Pulkkinen et al. (2005) and Cersosimo and Wanliss (2007).

The detrended fluctuation analysis (DFA) introduced by
Peng et al. (1994) has become a widely used technique to
determine the fractal scaling properties of, and to detect the
long-range correlations in, stationary and nonstationary time
series (Hu et al., 2001; Chen et al., 2002). For uncorre-
lated data, the scaling exponenth in DFA is equal to 1/2.
The range 1/2<h<1.0 indicates the presence of long mem-
ory or persistence, while the range 0<h<1/2 indicates short
memory or anti-persistence. The DFA method has been ap-
plied successfully in diverse fields such as DNA sequences,
heart rate dynamics, neuron spiking, weather records, eco-
nomics time series (Kantelhardt et al., 2002, and the refer-
ences therein). Yu et al. (2001) used it to study the length
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sequences of complete genomes. Recently, Yu et al. (2006)
used the DFA method to study the classification problem
of protein secondary structures. The multifractal detrended
fluctuation analysis (MF-DFA) proposed by Kantelhardt et
al. (2002) is a modified version of DFA to detect multifrac-
tal properties of time series. It allows a reliable multifractal
characteriation of nonstationary time series typical of geo-
physical phenomena (Kantelhardt et al., 2002). Movahed et
al. (2006) used the MF-DFA to study sunspot fluctuations. In
this paper, we analyze ground magnetic fluctuations for the
year 2000 Anno Domini through the use of MF-DFA.

2 Multifractal detrended fluctuation analysis

Simple multifractal analyses have been developed for the
multifractal characterization of normalized, stationary time
series. This standard formalism does not give correct results
for nonstationary time series which are affected by trends
or cannot be normalized. Multifractal detrended fluctuation
analysis, which is a generalization of the standard DFA, is
based on the identification of the scaling of theqth-order mo-
ments of the time series, which may be nonstationary.

We first recapture some features of this technique. Con-
sider a time series{X1, X2, ..., XN } of length N . For an
integer s≥0, we divide the time series into[N/s] seg-
ments of equal lengths, where [N/s] is the integer part
of N/s. In each segmentj , we compute the partial sums
Y (i)=

∑i
k=1 Xk, i=1, 2, ..., s, fit a local trendyj (i) to Y (i)

by least squares, then compute the sample variances of the
residuals:

F 2(s, j) =
1

s

s∑
i=1

(Y ((j − 1)s + i) − yj (i))
2, (1)

j = 1, ..., [N/s].

Theqth-order fluctuation function is then defined as the av-
erage over all segments:

Fq(s) =

(
1

[N/s]

[N/s]∑
j=1

(
F 2(s, j)

)q/2
)1/q

. (2)

Since the segments are all of the same length, the second-
order fluctuation functionF2 (s) is equivalent to the sample
variance of the entire series. This is not so for the general
caseq 6=2. We will assume thatFq(s) is characterized by a
power law:

Fq(s) ∝ sh(q). (3)

The scaling functionh (q) is then determined by the regres-
sion of logFq(s) on logs in some range of time scales.

Fractional Brownian motion{BH (t) , t≥0} is a Gaussian
process with stationary increments, having mean 0, variance
E
(
B2

H (t)
)
=t2H and covariance

E (BH (s) BH (t)) =
1

2

(
s2H

+ t2H
− |s − t |2H

)
.

It is statistically self-similar in the sense that{BH (at) , t≥0}

has the same finite-dimensional distributions as
{aH BH (t) , t≥0} for all a>0. The self-similarity pa-
rameterH , also known as the Hurst index, takes values
between 0 and 1.BH (t) possesses long-range dependence
or long memory when 1/2<H<1. The spectral density of
its increments is

f (ω) = CH |ω|
1−2H as |ω| → 0, (4)

whereCH is a constant (Flandrin, 1989; Taqqu et al., 1995).
For the increments of fractional Brownian motion, and

using a linear trendyj (i)=aj+bj i in Eq. (1), Taqqu et
al. (1995) showed that whens→∞, the expectation of their
sample varianceF2 (s) as given by Eq. (2) with q=2 is
asymptotically proportional tos2H :

E
(
F 2 (s)

)
∼
(

2

2H + 1
+

1

H + 2
−

2

H + 1

)
s2H . (5)

This result suggests that the Hurst indexH may be obtained
from the slope of the log-regression based on Eq. (3) for
q=2, that is,H=h (2) for the increments of fractional Brow-
nian motion.

For fractional Brownian motion itself and also using a lin-
ear trend in Eq. (1), Movahed et al. (2006) showed that

E
(
F 2 (s)

)
∼ CH s2(H+1) ass → ∞, (6)

where

CH =
1

(2H + 3)(H + 1)2
−

4

(H + 1)2(H + 2)2

−
12

(H + 1)2(H + 3)2
+

12

(H + 1)2(H + 2)(H + 3)
.

Thus, for fractional Brownian motion, we inferH=h (2)−1.

Using this relationship (orH=h (2) for the stationarity case)
and the estimate ofh (2) from the regression of logF2(s) on
log s, an estimate of the Hurst indexH , and hence the extent
of long memory in the time series, is obtained.

Note that linear, quadratic, cubic or higher order polyno-
mials can be used in the local trend fitting, and the DFA is
accordingly called DFA1, DFA2, DFA3,... In the following
we use only DFA1.

We generated a time series of Gaussian noise and a sam-
ple path of Brownian motion with the same length as our
data. Gaussian noise is uncorrelated, while Brownian mo-
tion has uncorrelated increments, hence both have Hurst in-
dexH=1/2. We then computed the exponentsh(1) andh(2)

using the MF-DFA1. The fitting of the exponents is shown in
Fig. 1. The estimated values ofh(2) are 0.4960± 0.0049 for
the Gaussian noise series and 1.4979±0.0046 for the Brown-
ian motion series for both small and large time scales. These
numerical results support the above relationships between the
exponentsH andh(2).

For a stationary, normalized series, the exponenth(q) for
small scales is directly related to the scaling exponentτ(q)
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Fig. 1. Log-log plots ofFq (s) versuss for the Gaussian noise time
series (top) and Brownian motion (bottom) withq=2.

defined by the standard partition function-based multifractal
formalism. The relation between this exponenth(q) and the
generalized multifractal dimension is given by (Movahed et
al., 2006)

D(q) =
τ(q)

q − 1
=

qh(q) − 1

q − 1
. (7)

But the standard multifractal formalism does not give cor-
rect results for nonstationary time series that are affected by
trends or cannot be normalized (Movahed et al., 2006). The
MF-DFA seems to be a suitable for this situation (Kantel-
hardt et al., 2002). Hence in this work, we use theh(q)

curves to characterize the multifractal property of magnetic
field time series.

3 Results and discussion

We use the MF-DFA method to analyze the hourly averaged
magnetic field time seriesBx , By , Bz from INTERMAGNET
stations. We break the stations down into 6 groups for the
year 2000 A.D.: Southwest North America (NA1), North-
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Fig. 2. The hourly magnetic field data for the year 2000 at station
NCK.

Table 1. The estimated values ofa0, a1 anda2 corresponding to
q=2 for theBx component at the selected stations.

Group Station a0 a1 a2

BOU 1.1944± 0.0327 0.9011± 0.0209 0.8911± 0.0244
NA1 FRN 1.2199± 0.0265 1.0203± 0.0217 0.8832± 0.0237

DLR 1.2070± 0.0206 1.0639± 0.0292 0.8930± 0.0248
TUC 1.2478± 0.0241 1.0697± 0.0269 0.8845± 0.0251

FCC 1.2150± 0.0225 0.3614± 0.0130 0.5621± 0.0088
NA2 PBQ 1.2249± 0.0218 0.3758± 0.0101 0.5922± 0.0110

OTT 1.1733± 0.0722 0.5659± 0.0291 0.7645± 0.0187
STJ 1.2188± 0.0531 0.5708± 0.0434 0.8841± 0.0212

BDV 1.3191± 0.0300 0.9445± 0.0325 0.8816± 0.0220
CEUR NCK 1.3010± 0.0291 0.9916± 0.0299 0.8852± 0.0226

FUR 1.3148± 0.0275 0.9660± 0.0326 0.8843± 0.0223
NGK 1.2998± 0.0362 0.8360± 0.0343 0.8726± 0.0208

ABK 1.2200± 0.0292 0.3520± 0.0141 0.4878± 0.0227
NEUR NUR 1.2058± 0.0672 0.6042± 0.0559 0.7177± 0.0197

LOV 1.2167± 0.0664 0.6329± 0.0535 0.7489± 0.0204
SOD 1.2122± 0.0319 0.3965± 0.0164 0.5122± 0.0234

ASP 1.3426± 0.0171 1.1102± 0.0152 0.9065± 0.0205
AUS CTA 1.3430± 0.0227 1.1205± 0.0189 0.8772± 0.0233

KDU 1.4687± 0.0468 0.9011± 0.0383 0.8356± 0.0295

BMT 1.2653± 0.0330 1.0600± 0.0263 0.8958± 0.0237
ASIA KAK 1.3146 ± 0.0273 1.1553± 0.0287 0.9019± 0.0254

MMB 1.2761± 0.0367 1.0058± 0.0231 0.9030± 0.0238

east North America (NA2), Central Europe (CEUR), North-
ern Europe (NEUR), Australasia (AUS) and Asia (ASIA).
The stations in each group are listed in Table1. Figure2
shows the hourly magnetic field data from the NCK station
in CEUR, and illustrates the anomalous nature of this kind
of data. The time series appear to be non-Gaussian and dis-
play Brownian motion-type behavior at small scales. This
indicates the existence of different scalings in the process.

Following the MF-DFA1 method, generalized expo-
nents h(q) can be found by analyzing log-log plots of
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Fig. 3. Crossover behavior of log-log plots ofFq (s) versuss for the
hourly magnetic field componentsBx , By , Bz at station NCK.

Fq(s)mboxversuss for eachq. Our investigation shows that
there are three scaling regimes in theqth-order fluctuation
function. The log-log plots of fluctuation functions withq=2
for the hourly averaged magnetic field data of station NCK
are shown in Fig.3. Theqth-order fluctuation functions have
a clear point at which the first scaling region switches to a
new region with a new scaling exponent. We call this point

Table 2. The estimated values ofa0, a1 anda2 corresponding to
q=2 for theBy component at the selected stations.

Group Station a0 a1 a2

BOU 1.2027± 0.0636 0.1838± 0.0096 0.6898± 0.0344
NA1 FRN 1.2831± 0.0823 0.2465± 0.0187 0.7790± 0.0187

DLR 1.1932± 0.0672 0.1682± 0.0103 0.6362± 0.0345
TUC 1.2268± 0.0720 0.2177± 0.0155 0.7618± 0.0236

FCC 1.0880± 0.0390 0.2811± 0.0228 0.4254± 0.0087
NA2 PBQ 1.2273± 0.0321 0.2918± 0.0170 0.4752± 0.0170

OTT 1.1402± 0.0454 0.2489± 0.0200 0.4266± 0.0182
STJ 1.2398± 0.0466 0.2268± 0.0239 0.4887± 0.0353

BDV 1.2488± 0.0662 0.2862± 0.0225 0.6782± 0.0219
CEUR NCK 1.2423± 0.0706 0.2400± 0.0178 0.6318± 0.0245

FUR 1.2457± 0.0637 0.2829± 0.0218 0.6361± 0.0201
NGK 1.2505± 0.0629 0.2871± 0.0230 0.6747± 0.0222

ABK 1.3101± 0.0259 0.2570± 0.0118 0.4935± 0.0124
NEUR NUR 1.2780± 0.0542 0.2947± 0.0268 0.6455± 0.0177

LOV 1.2799± 0.0541 0.2983± 0.0250 0.6644± 0.0201
SOD 1.3066± 0.0263 0.2819± 0.0153 0.5439± 0.0176

ASP 1.1481± 0.0602 0.1798± 0.0118 0.4536± 0.0313
AUS CTA 1.1843± 0.0649 0.2026± 0.0132 0.5450± 0.0305

KDU 1.1284± 0.0630 0.2162± 0.0114 0.5064± 0.0228

BMT 1.1458± 0.0613 0.1206± 0.0099 0.4424± 0.0354
ASIA KAK 1.2649 ± 0.0803 0.1572± 0.0110 0.4823± 0.0278

MMB 1.3302± 0.0843 0.1530± 0.0122 0.4801± 0.0283

a break point. We find the break point occurs around a time
scale of approximately 23 h and it is universal for all com-
ponents of the selected stations. The ubiquity of this break
point can be associated with the regular diurnal quiet solar
variation in the current system.

In order to determine statistical properties of the fluctua-
tions, and to see the extent to which the fluctuations are re-
flected in terms of geographical location, we compute the
three scaling exponents in small time scales, middle time
scales and large time scales of second-order fluctuation func-
tions for the selected data sets. For eachq, we denote the
exponenth(q) in small time scales asa0, that in middle time
scales asa1 and that in large time scales asa2. We list the
estimated values ofa0, a1 anda2 for q=2 of theBx compo-
nent of these stations in Table1, the values forq=2 of the
By component in Table2, and the values forq=2 of theBz

component in Table3. The values in the first columns of Ta-
bles1 to 3 confirm that the magnetic field componentsBx ,
By andBz are nonstationary processes with anti-persistent
correlations.

We find that the parametersa0 and a2 corresponding to
q=2 for field componentsBx, By, Bz reflect the regional
character of the stations, suggesting that these scaling ex-
ponents can be used for station classification. In Fig.4,
we show the three-dimensional parameter space spanned by
a2(q=2) for Bx , a2(q=2) for By anda2(q=2) for Bz. A
point in this space represents a magnetometer station. Ac-
cording to this figure, the stations can be divided into four
groups: NA2 stations, NEUR stations, NA1 and CEUR sta-
tions, ASIA and AUS stations. In order to clearly distinguish
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Table 3. The estimated values ofa0, a1 anda2 corresponding to
q=2 for theBz component at the selected stations.

Group Station a0 a1 a2

BOU 1.2247± 0.0461 0.7091± 0.0384 0.8619± 0.0192
NA1 FRN 1.2389± 0.0611 0.5142± 0.0167 1.0867± 0.0367

DLR 1.2544± 0.0487 0.3972± 0.0323 1.0248± 0.0270
TUC 1.2699± 0.0597 0.5230± 0.0258 0.8981± 0.0158

FCC 1.1543± 0.0355 0.4637± 0.0082 0.6703± 0.0165
NA2 PBQ 1.0146± 0.0320 0.5446± 0.0242 0.7510± 0.0173

OTT 1.1106± 0.0283 0.4389± 0.0210 0.6979± 0.0270
STJ 1.2967± 0.0388 0.3296± 0.0375 0.7518± 0.0204

BDV 1.3104± 0.0562 0.6672± 0.0622 0.9257± 0.0204
CEUR NCK 1.3213± 0.0558 0.6860± 0.0630 0.9134± 0.0212

FUR 1.3118± 0.0524 0.6665± 0.0615 0.9236± 0.0223
NGK 1.2756± 0.0615 0.5785± 0.0559 0.9016± 0.0200

ABK 1.0453± 0.0389 0.5048± 0.0334 0.6280± 0.0137
NEUR NUR 1.2550± 0.0356 0.4563± 0.0444 0.5918± 0.0218

LOV 1.2834± 0.0436 0.4461± 0.0506 0.6363± 0.0234
SOD 1.0931± 0.0343 0.4419± 0.0214 0.6117± 0.0120

ASP 1.4287± 0.0854 0.4486± 0.0360 0.8817± 0.0205
AUS CTA 1.3476± 0.0506 0.4400± 0.0272 0.8413± 0.0223

KDU 1.4610± 0.0899 0.3460± 0.0308 0.9153± 0.0250

BMT 1.4274± 0.0915 0.3756± 0.0367 0.8588± 0.0204
ASIA KAK 1.2057 ± 0.0486 0.3127± 0.0350 0.8135± 0.0201

MMB 1.2926± 0.0488 0.5152± 0.0458 0.9710± 0.0262

NA1 stations from CEUR stations, and ASIA stations from
AUS stations, we find that two-dimensional parameter spaces
spanned bya0(q=2) for Bx anda0(q=2) for By can be used.
The results are shown in Fig.5.

In order to give a quantitative assessment of our clustering
on the selected stations, we use Fisher’s linear discriminant
algorithm (Mardia et al., 1979; Duda et al., 2001) to calculate
the discriminant accuracies of the following procedure:

(i) Separating NA2 and NEUR stations from
CEUR, NA1, AUS and ASIA stations in Fig.4;

(ii) Separating NA2 stations from NEUR stations
in Fig. 4;

(iii) Separating NA1 and CEUR stations from AUS
and ASIA stations in Fig.4;

(iv) Separating NA1 stations from CEUR stations
in Fig. 5;

(v) Separating AUS stations from ASIA stations in
Fig. 5.

Fisher’s discriminant algorithm is used to find a classi-
fier in the two- or three-dimensional space for the training
set. The given training setH={x1, x2, . . . , xn} is partitioned
into n1≤n training vectors in a subsetH1 andn2≤n train-
ing vectors in a subsetH2, wheren1+n2=n and each vec-
tor xi is a point in the two- or three-dimensional param-
eter space. ThenH=H1∪H2. We need to find a param-
eter vectorw=(w1, w2, w3) (for three-dimensional space)
and w=(w1, w2) (for two-dimensional space) such that
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Table 4. The parameters in Fisher’s discriminant algorithm and the
discriminant accuracies for stations in the present method.

Stations w1 w2 w3 pH1 pH2

step (i) −1.2197 −0.0142 −2.3253 87.5% 100%
step (ii) 4.5762 −15.8702 19.1322 100% 100%
step (iii) 5.4250 7.3880 0.1395 100% 100%
step (iv) −53.6141 7.4140 100% 100%
step (v) 7.8468 −4.3222 100% 100%

{yi=wT xi}
n
i=1 can be classified into two classes in the space

of real numbers. If we denote

mj =
1

nj

∑
xi∈Hj

xi, j = 1, 2, (8)

Sj =

∑
xi∈Hj

(xi − mj )(xi − mj )
T , j = 1, 2, (9)

Sw = S1 + S2, (10)

then the parameter vectorw is estimated asS−1
w (m1−m2)

(Duda et al., 2001). As a result, Fisher’s discriminant rule
becomes

“assign x to H1 if (m1 − m2)
T C−1

w [x −
1
2(m1 +

m2)] > 0 and to H2 otherwise.” (Mardia et al.,
1979).

We use the whole data set as the training set here because
the number of stations is small. The discriminant accuracies
for resubstitution analysis are defined as

pH1 = numch1/n1, (11)

pH2 = numch2/n2, (12)

where numch1 and numch2 mean the number of correctly dis-
criminatedH1 elements and the number of correctly discrim-
inatedH2 elements in the training set respectively.

We denote the NA2 and NEUR stations asH1, the stations
in the other groups asH2 in steps (i); the NA2 stations asH1,
the NEUR stations asH2 in steps (ii); the NA1 and CEUR
stations asH1, the AUS and ASIA stations asH2 in steps
(iii); the NA1 stations asH1, the CEUR stations asH2 in
step (iv); the AUS stations asH1, the ASIA stations asH2 in
step (v).

The estimated parametersw=(w1, w2, w3) or
w=(w1, w2) in Fisher’s discriminant algorithm and the
discriminant accuracies for the stations in the above five
steps are given in Table4. It is seen that the discriminant
accuracies are very high.

In order to find whether the magnetic field time series have
multifractal nature, we calculate the exponentsh(q) of small
scales for all stations. The nonlinearity of theh(q) curves
obtained suggests that all the magnetic field time series have
multifractal property. For example, we shown those of the
stations from the NA1 and AUS groups in Figs.6 and7.
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Fig. 6. The exponentsh(q) of small time scales for the NA1 sta-
tions.

4 Conclusions

Many time series do not exhibit simple monofractal scaling
behavior, which can be characterized by a single exponent.
In some cases, there exist crossover (time-) scales separat-
ing regimes with different scaling exponents. Hence a mul-
titude of scaling exponents is required for a full description
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Fig. 7. The exponentsh(q) of small time scales for the AUS sta-
tions.

of the scaling behavior, and a multifractal analysis must be
applied (Kantelhardt et al., 2002). Simple multifractal analy-
ses have been developed for the multifractal characterization
of normalized, stationary time series. This standard formal-
ism does not give correct results for nonstationary time series
which are affected by trends or cannot be normalized. The
MF-DFA method is a modified version of the DFA adapted

to nonstationary processes to detect their multifractal proper-
ties.

From the MF-DFA estimation, we find that there are three
scaling regimes in theqth-order fluctuation functions of all
hourly averaged magnetic field time series. Theqth-order
fluctuation functions have a clear point at which the first
crossover time scales change to the second crossover time
scales. Forq=1, 2, the break point occurs around the time
scale of 23 h and is universal for all stations. The break point
can be associated with the regular diurnal quiet solar varia-
tion of the current system.

From Tables 1 to 3, theh(2) values of small time scales
confirm that magnetic field componentsBx , By and Bz

are nonstationary processes with anti-persistent correlations.
Theh(q) curves obtained indicate that all the magnetic field
time series have multifractal property.

The result that is most useful for spatiotemporal space
weather modelling is that the parametersa0 and a2 corre-
sponding toq=2 for field componentsBx , By andBz reflect
the regional character of the global INTERMAGNET sta-
tions. Therefore these exponents can be used for station clas-
sification. The discriminant accuracies are very high indicat-
ing the robustness of this result. The short period and long
period scaling regimes exhibit similar fractal scaling within
limited geographical regions (e.g. Figs. 3 and 5). This sug-
gests that a feasible strategy to develop spatiotemporal space
weather models is to first develop suitable models for homo-
geneous subregions, then couple them into a global multi-
scale model.
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