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Abstract. The orthogonal field components from global IN- is changing. A statistical method accurately characterizing
TERMAGNET magnetometer stations are studied via multi-the data can enable identification of the underlying funda-
fractal detrended fluctuation analysis to determine whethementals and dynamics of the phenomenon under study.
there are clear and consistent regional patterns in the be- |n the recent literature, fractal and multifractal approaches
havior of the fluctuations. There are three distinct scal-have been quite successful in extracting salient features of
ing regimes in the gth-order fluctuation function for each of physical processes responsible for the near-Earth magneto-
the 24 stations studied covering Southwest North Americaspheric phenomena (Lui, 2002). Heavy-taileévi-type
Northeast North America, Central Europe, Northern Europe behaviour has been observed in the interplanetary medium
Australasia and Asia. There is a consistent break point atnd the magnetosphere (Burlaga, 1991, 2001; Burlaga et al.,
time scale around 23 h for all stations. The scaling exponent®003; Kabin and Papitashvili, 1998; Lui et al., 2000, 2003).
of the second-order fluctuation functions reflect the regionalwanliss (2004, 2005) and Wanliss and Dobias (2007) have
character of the stations, and can be used for station classiffound that theD;, index exhibits a power-law spectrum with
cation, and for possible regional models. the Hurst parameter varying over different segments of the
time series. This behavior indicates thay; is a multifrac-
tional process. A method to describe the multiple scaling of
the measure representation of thg, time series was pro-
vided in Wanliss et al. (2005). A prediction method was de-
The Earth acts like a great magnet and its magnetic quctua.!a”(ad in Anh et al. (2005) _together with some evaluation of
tions are measured almost continuously by arrays of magne[ts_performance: A two-d|men3|pnal chaos game represen-
tometers located around the world. The INTERMAGNET tation of theDy; index for prediction of geomagnetic storm
program has established a global network of cooperrcltingfventS was propqsed in Yu et al. (2007). The spgtlotempo-
digital magnetic observatories that currently comprises ove al scaling properties of the ground geomagnetic field varia-

100 observatories. Typical measured parameters include thg°"S from individual magnetometer stations were studied in
north (8,) and east §,) components of the horizontal in- Pulkkinen et al. (2005) and Cersosimo and Wanliss (2007).
tensity, and the vertical intensity3(), or some combination The detrended fluctuation analysis (DFA) introduced by
of these. Because the Earth's magnetic field is constantly’€nd et al. (1994) has become a widely used technique to
changing, it is a difficult task to accurately predict what the determine the fractal scaling properties of, and to detect the
field will be at any point in the future. An important goal long-range correlations in, stationary and nonstationary time
of space weather studies is to develop spatiotemporal modef€ries (Hu et al., 2001; Chen et al,, 2002). For uncorre-
of magnetic fluctuations with reasonable accuracy. By conlated data, the scaling exponentn DFA is equal to 1/2.
stantly measuring the magnetic field through programs sucH N€ range 12</<1.0 indicates the presence of long mem-
as INTERMAGNET, we can observe how the field is chang- O'Y OF persistence, w_hlle the range<1/2 indicates short

ing over a period of years and use it to derive a mathematical"€mory or anti-persistence. The DFA method has been ap-

representation of the Earth’s main magnetic field and how itPlied successfully in diverse fields such as DNA sequences,
heart rate dynamics, neuron spiking, weather records, eco-

Correspondence taZ.-G. Yu nomics time series (Kantelhardt et al., 2002, and the refer-
(z.yu@qut.edu.au) ences therein). Yu et al. (2001) used it to study the length

1 Introduction
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702 V. Anh et al.: Analysis of global geomagnetic variability

sequences of complete genomes. Recently, Yu et al. (2006} is statistically self-similar in the sense tH#ty (at) , >0}
used the DFA method to study the classification problemhas the same finite-dimensional distributions as
of protein secondary structures. The multifractal detrendeda” By (t), >0} for all a>0. The self-similarity pa-
fluctuation analysis (MF-DFA) proposed by Kantelhardt et rameter H, also known as the Hurst index, takes values
al. (2002) is a modified version of DFA to detect multifrac- between 0 and 1By (t) possesses long-range dependence
tal properties of time series. It allows a reliable multifractal or long memory when 22<H <1. The spectral density of
characteriation of nonstationary time series typical of geo-its increments is

physical phenomena (Kantelhardt et al., 2002). Movahed et 12

al. (2006) used the MF-DFA to study sunspot fluctuations. In/ (®) = C# |@| as|w| — 0, )

this paper, we analyze ground magnetic fluctuations for theyherec, is a constant (Flandrin, 1989; Taqqu et al., 1995).
year 2000 Anno Domini through the use of MF-DFA. For the increments of fractional Brownian motion, and
using a linear trendy;(i)=a;+b;i in Eq. (1), Tagqu et
al. (1995) showed that when- oo, the expectation of their
sample varianceFy (s) as given by Eq. 4) with ¢g=2 is
Simple multifractal analyses have been developed for the2Symptotically proportional tg?:
multifractal characterization of normalized, stationary time 2 1 2
series. This standard formalism does not give correct result$ (FZ (S)) ~ <2H 1 tq T2 Hr 1) 2H
for nonstationary time series which are affected by trends
or cannot be normalized. Multifractal detrended fluctuation This result suggests that the Hurst indéxmay be obtained
analysis, which is a generalization of the standard DFA, isfrom the slope of the log-regression based on E.f¢r
based on the identification of the scaling of tte-order mo- ~ ¢=2, thatis,H=h (2) for the increments of fractional Brow-
ments of the time series, which may be nonstationary. nian motion.

We first recapture some features of this technique. Con- For fractional Brownian motion itself and also using a lin-
sider a time serie$X1, Xo, ..., Xy} of length N. For an  €artrend in Eq.X), Movahed et al. (2006) showed that
integer s>0, we divide the time series intpN/s] seg-

2 Multifractal detrended fluctuation analysis

®)

. - 2 2(H+1)
ments of equal length, where[N/s] is the integer part £ (F (5)> ~ Chs ass — oo, (6)
of N/s. In each segmenf, we compute the partial sums where
Y(i)=) 41 Xr, i=1,2, ..., s, fitalocal trendy; (i) to Y (i)
by least squares, then compute the sample variances of th@H _ 1 _ 4
residuals: (2H +3)(H +1)2 (H+ 12(H + 2)2
F2(s, j) = . S (G = Ds +i) — ;602 1) (H+D2H+32 H+DXH+2(H+23)
i=1 . . . .
=1 ... [N/s]. Thus, for fractional Brownian motion, we infé&f=h (2) — 1.

Using this relationship (oH =h (2) for the stationarity case)
The gth-order fluctuation function is then defined as the av-and the estimate df (2) from the regression of log»(s) on

erage over all segments: log s, an estimate of the Hurst indé%, and hence the extent
IN/s] 1/q of long memory in the time _series,_ is obtgined.
F,(s) = ( 1 Z (Fz(s j)>‘1/2> ) @) Note that linear, quadratic, cubic or higher order polyno-
1 [N/s] = ’ mials can be used in the local trend fitting, and the DFA is

) accordingly called DFA1, DFA2, DFA3,... In the following
Since the segments are all of the same length, the secongye yse only DFAL.

order fluctuation functiorF; (s) is equivalent to the sample  \\e generated a time series of Gaussian noise and a sam-
variance of the entire series. This is not so for the generab|e path of Brownian motion with the same length as our
caseg#2. We will assume thaf (s) is characterized by a gata. Gaussian noise is uncorrelated, while Brownian mo-
power law: tion has uncorrelated increments, hence both have Hurst in-
Fy(s) sh@) A3) de_xH=1/2. We then compu_ted the exponentd) a_ndh(Z) _
using the MF-DFAL. The fitting of the exponents is shown in
The scaling functiork (¢) is then determined by the regres- Fig. 1. The estimated values 6f2) are 04960+ 0.0049 for
sion of log F, (s) on logs in some range of time scale the Gaussian noise series andd79+0.0046 for the Brown-
Fractional Brownian motioiBy (1) , =0} is a Gaussian  jan motion series for both small and large time scales. These
process with stationary increments, having mean 0, varianc@umerical results support the above relationships between the

E (B (1)) =t?" and covariance exponents? andh(2).
1/ oy o - For a stationary, normalized series, the exporgny for
E (By (s) By (1)) = > (S +7 — s — 1] ) . small scales is directly related to the scaling exponeny
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Fig. 2. The hourly magnetic field data for the year 2000 at station
1s) NCK.
ORI
T Table 1. The estimated values @b, a; andas corresponding to
— .
2 os ¢=2 for the B, component at the selected stations.
or Group  Station ag ai ap
BOU  1.1944+0.0327 0.9011 0.0209  0.891% 0.0244
-osp NAL FRN  1.2199+0.0265 1.0203 0.0217  0.8832 0.0237
DLR  1.2070+0.0206  1.0639% 0.0292  0.893G: 0.0248
. ‘ ‘ ‘ ‘ TUC  1.2478+0.0241  1.069% 0.0269  0.884% 0.0251
0.5 1 15 2 25
log, s FCC  1.2150+0.0225 0.3614-0.0130  0.562% 0.0088
NA2 PBQ  1.2249+0.0218 0.375& 0.0101  0.5922 0.0110
OTT  1.1733£0.0722 0.5659% 0.0291  0.7645 0.0187
Fig. 1. Log-log plots of F; (s) versuss for the Gaussian noise time STJ 1.2188: 0.0531  0.5708:0.0434  0.8841 0.0212
series (top) and Brownian motion (bottom) wifk-2. BDV  1.3191+0.0300 0.9445 0.0325 0.8816 0.0220
CEUR  NCK  1.3010+0.0291  0.9916- 0.0299  0.8852 0.0226
FUR  1.3148£0.0275 0.966@: 0.0326  0.8843 0.0223
] N ) ] NGK  1.2998+0.0362  0.836@: 0.0343  0.8726 0.0208
defined by the standard partition function-based multifractal
) : . ABK 12200+ 0.0292  0.3520: 0.0141  0.4878 0.0227
formalism. The relation between this exponé) and the NEUR NUR  1.2058: 0.0672 0.6042- 0.0559 0.717Z 0.0197
generalized multifractal dimension is given by (Movahed et LoV~ 12167+00664 063280.0535  0.748% 0.0204
SOD  1.2122:0.0319  0.3965:0.0164  0.5122- 0.0234
al., 2006)
ASP  13426£00171 1.1102:0.0152  0.9065 0.0205
t(q) _qh(g) -1 AUS  CTA  13430+00227 1120500189 08772 0.0233
D(g) = = ) KDU  1.4687+0.0468 0.901% 0.0383  0.8356 0.0295
q-1 q-1 BMT  1.2653+0.0330 1.0600- 0.0263  0.8958 0.0237
. . . ASIA  KAK  13146+00273 1.1553 0.0287  0.9019%: 0.0254
But the standard multifractal formalism does not give cor- MMB 12761+ 0.0367 10058 00231  0.903G 0.0238

rect results for nonstationary time series that are affected by

trends or cannot be normalized (Movahed et al., 2006). The

MF-DFA seems to be a suitable for this situation (Kantel-
hardt et al., 2002). Hence in this work, we use thg)
curves to characterize the multifractal property of magnetic
field time series.

east North America (NA2), Central Europe (CEUR), North-
ern Europe (NEUR), Australasia (AUS) and Asia (ASIA).
The stations in each group are listed in Table Figure 2
shows the hourly magnetic field data from the NCK station
in CEUR, and illustrates the anomalous nature of this kind
of data. The time series appear to be non-Gaussian and dis-
We use the MF-DFA method to analyze the hourly averageddlay Brownian motion-type behavior at small scales. This
magnetic field time serieB,, By, B, from INTERMAGNET indicates the existence of different scalings in the process.
stations. We break the stations down into 6 groups for the Following the MF-DFA1 method, generalized expo-
year 2000 A.D.: Southwest North America (NA1), North- nents h(¢q) can be found by analyzing log-log plots of

3 Results and discussion
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3 . .
Table 2. The estimated values @, a1 anday corresponding to
For B, of NCK, q=2 g=2 for the By, component at the selected stations.
25F b
Group  Station ag ay ap
BOU  1.2027+0.0636 0.1838 0.0096  0.6898 0.0344
z 7 1 NAL  FRN  1.2831+0.0823 0.2465 0.0187  0.7796 0.0187
w DLR 1.1932+ 0.0672 0.1682t 0.0103 0.6362: 0.0345
D’Q TUC 1.2268+ 0.0720 0.217%# 0.0155 0.7618t 0.0236
(e}
- il FCC  1.0880+0.0390  0.281% 0.0228  0.4254: 0.0087
NA2  PBQ  1.2273t0.0321 0.2918 0.0170  0.4752: 0.0170
oTT 1.1402+ 0.0454 0.248% 0.0200 0.4266t 0.0182
Az | STJ  1.2398:0.0466  0.2268-0.0239  0.488% 0.0353
BDV ~ 1.2488+0.0662 0.2862-0.0225  0.6782: 0.0219
CEUR NCK 1.2423+ 0.0706 0.240@t 0.0178 0.6318t 0.0245
05 . . . . FUR 1.2457+ 0.0637 0.282% 0.0218 0.6361 0.0201
05 1 15 | 2 25 3 NGK 1.2505+ 0.0629 0.2871 0.0230 0.674%# 0.0222
0og.. S
26 10 ABK  1.3101+0.0259 0.2570:0.0118  0.4935 0.0124
NEUR NUR 1.2780+ 0.0542 0.294'# 0.0268 0.6455: 0.0177
241 ForB of NCK, q=2 o | LOV  1.2799+0.0541  0.2983 0.0250  0.6644: 0.0201
y o SOD  1.3066+0.0263 0.2819:0.0153  0.543% 0.0176
22r © ) ASP 1.1481 0.0602 0.1798t 0.0118 0.4536t 0.0313
AUS CTA 1.1843+ 0.0649 0.2026t 0.0132 0.545@ 0.0305
2F 1 KDU  1.1284+0.0630 0.2162-0.0114  0.5064: 0.0228
—~ QO
O | BMT  1.1458+0.0613  0.1206: 0.0099  0.4424: 0.0354
I-Lo o M ASIA KAK 1.2649 + 0.0803 0.1572t 0.0110 0.4823t 0.0278
g 16 1 MMB  1.3302+0.0843  0.1530-0.0122  0.480% 0.0283
B [0}
141 i
(o)
12r b
Az oo | a break point. We find the break point occurs around a time
scale of approximately 23 h and it is universal for all com-
T 1 15 2 25 s ponents of the selected stations. The ubiquity of this break
. log;y s point can be associated with the regular diurnal quiet solar
variation in the current system.
. For B, of NCK, g=2 In order to determine statistical properties of the fluctua-
5 b . . .
tions, and to see the extent to which the fluctuations are re-
flected in terms of geographical location, we compute the
‘[ | three scaling exponents in small time scales, middle time
T o scales and large time scales of second-order fluctuation func-
a7 OM ] tions for the selected data sets. For eachve denote the
= exponenti(g) in small time scales ag, that in middle time
i i scales ag1 and that in large time scales as. We list the
estimated values afy, a1 andas for g=2 of the B, compo-
osF g ] nent of these stations in Table the values foiy=2 of the
By, component in Tabl, and the values fog=2 of the B,

0 L L L L
0.5 1 15 2 25 3

Iog10 s

component in Tabl&. The values in the first columns of Ta-
bles1 to 3 confirm that the magnetic field componeiits,

B, and B; are nonstationary processes with anti-persistent
correlations.

We find that the parameterg anday corresponding to
g=2 for field componentsB,, By, B, reflect the regional
character of the stations, suggesting that these scaling ex-
ponents can be used for station classification. In Big.

Fig. 3. Crossover behavior of log-log plots 8f, (s) versuss for the
hourly magnetic field componenss;, By, B; at station NCK.

F,(s)mboxversus for eachg. Our investigation shows that
there are three scaling regimes in tith-order fluctuation  we show the three-dimensional parameter space spanned by
function. The log-log plots of fluctuation functions wigh2 ax(g=2) for By, ax(g=2) for B, andax(q=2) for B,. A

for the hourly averaged magnetic field data of station NCK point in this space represents a magnetometer station. Ac-
are shown in Fig3. Thegth-order fluctuation functions have cording to this figure, the stations can be divided into four

a clear point at which the first scaling region switches to agroups: NA2 stations, NEUR stations, NA1 and CEUR sta-
new region with a new scaling exponent. We call this pointtions, ASIA and AUS stations. In order to clearly distinguish

Nonlin. Processes Geophys., 14, 7028 2007 www.nonlin-processes-geophys.net/14/701/2007/
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Table 3. The estimated values afy, a; anday corresponding to

¢=2 for the B, component at the selected stations. L satons .
1.2 O CEUR stations
O NEUR stati
Group  Station ag ay ap 11 + Aus s;uao:: °
< ASIA stations * *
BOU  1.2247+0.0461 0.70910.0384  0.8619 0.0192 ol $ o
NAL FRN 1.2389+ 0.0611 0.5142- 0.0167 1.0867% 0.0367 =
DLR 1.2544+ 0.0487 0.3972 0.0323 1.0248t 0.0270 E 09 <
TUC  1.2699+0.0597 0.5230: 0.0258  0.898% 0.0158 N 0s i .
RS <
FCC  1.1543:0.0355 0.46370.0082  0.6703 0.0165 o7 .
NA2 PBQ 1.0146+ 0.0320 0.5446t 0.0242 0.751@& 0.0173 g
oTT 1.1106+ 0.0283 0.438% 0.0210 0.697% 0.0270 06 S
STJ  1.2967:0.0388  0.3296:0.0375  0.7518: 0.0204 os °
BDV 1.3104+ 0.0562 0.6672 0.0622 0.925% 0.0204 o e o
CEUR  NCK  1.3213:0.0558 0.686@: 0.0630  0.9134 0.0212 o7 0o
FUR  1.3118:0.0524  0.6665:0.0615  0.9236 0.0223 06 T os
NGK  1.2756+0.0615  0.5785: 0.0559  0.9016- 0.0200 q, (s, 0s os
% 05 8
ABK  1.0453+0.0389  0.5048 0.0334  0.628@ 0.0137 g 04 o4 o @D 0 ™%
NEUR NUR 1.2550+ 0.0356 0.4563 0.0444 0.5918: 0.0218 y 2
LOV ~ 1.2834+0.0436 0.4461 0.0506  0.6363: 0.0234
SOD 1093100343 0.4419:0.0214  0.6117 0.0120 Fig. 4. Classification of stations in the three-dimensional parameter
ASP 1.4287+ 0.0854 0.4486t 0.0360 0.881& 0.0205 space spanned ng(q = 2) for By, az(q=2) for By andaz(q=2)
AUS CTA 1.3476+ 0.0506 0.440@: 0.0272 0.8413 0.0223 for B
KDU  1.4610+0.0899  0.3466-0.0308  0.9153 0.0250 z
BMT 1.4274+ 0.0915 0.3756t 0.0367 0.8588t 0.0204
ASIA KAK 1.2057 + 0.0486 0.312% 0.0350 0.8135 0.0201
MMB  1.2926+0.0488  0.5152-0.0458  0.971G: 0.0262
* NAL1 stations
1.35F o CEUR stations 4
NA1 stations from CEUR stations, and ASIA stations from o 1
AUS stations, we find that two-dimensional parameter spaces 3
spanned byig(¢=2) for B, andag(¢=2) for B, can be used. & ey 9 ]
The results are shown in Fig. = .
In order to give a quantitative assessment of our clustering  © 2 * 1
on the selected stations, we use Fisher's linear discriminant
algorithm (Mardia et al., 1979; Duda et al., 2001) to calculate L1 1
the discriminant accuracies of the following procedure:
11 L
(i) Separating NA2 and NEUR stations from " e " a, (q=2) for B, v e H
CEUR, NA1, AUS and ASIA stations in Fig; 15 ‘
(i) Separating NA2 stations from NEUR stations s 8
in Fig. 4, Ll i
(iii) Separating NA1 and CEUR stations from AUS sl |
and ASIA stations in Fig4; o™ <
O 13p 1
(iv) Separating NA1 stations from CEUR stations S P
H H . o 125F B
in Fig. 5; :o
(v) Separating AUS stations from ASIA stations in il . |
Flg 5 115 4 + 1
.
Fisher's discriminant algorithm is used to find a classi- M |
fier in the two- or three-dimensional space for the training g
set. The given training séf ={x1, X2, ..., X, } is partitioned a, (9=2) for B,

into n1<n training vectors in a subsdf; andny,<n train-

ing vectors in a subsefl,, whereni+ny,=n and each vec- Fig. 5. Classification of stations in the two-dimensional parameter
tor x; is a point in the two- or three-dimensional param- space spanned by(g=2) for By andag(¢=2) for By.

eter space. Thew/=H1UH,. We need to find a param-

eter vectorw=(w1, w2, w3) (for three-dimensional space)

and w=(w1, w2) (for two-dimensional space) such that

www.nonlin-processes-geophys.net/14/701/2007/ Nonlin. Processes Geophys., Y08/2067
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Table 4. The parameters in Fisher'’s discriminant algorithm and the T T e
discriminant accuracies for stations in the present method. L8 1:2;::: ]
16 —w—BofTuUC| |

Stations w1 w2 w3  PH1 PH2

step (i) —1.2197 -0.0142 -2.3253 87.5% 100%

step (ii) 45762 —15.8702 19.1322 100% 100%

step (iii) 5.4250 7.3880 0.1395 100% 100%

step (iv) —53.6141 7.4140 100% 100%

step (v) 7.8468 —4.3222 100%  100%

061

04r

021

{yi=w’x;}!'_; can be classified into two classes in the space

of real numbers. If we denote % 1 2 s 4 5 & 7 8 s 1
1 P
m] — — Z X, .] = 1, 2, (8) —o—8,0fB0U
") xieH, e i;:ig ]
Si= Y @i-mp@i—mp’, j=12 ©) i
x,-eHj 141
Su="S1+%, (10) M
then the parameter vectar is estimated as;l(ml—mg) =
(Duda et al., 2001). As a result, Fisher’s discriminant rule oer
becomes os
“assignx to Hy if (M1 — mp)” Cy Y x — $(my + o4
m»)] > 0 and to H, otherwise.” (Mardia et al., 02l
1979) 0 -
We use the whole data set as the training set here because I R
the number of stations is small. The discriminant accuracies ooy
for resubstitution analysis are defined as al or0LR| |
PH1 = NUMy1/n1, (11) il
PpH2 = NUMy2/n2, (12) '
where nurg,1 and nuny,2 mean the number of correctly dis- = v
criminatedH; elements and the number of correctly discrim- £ !
inated H> elements in the training set respectively. osf
We denote the NA2 and NEUR stations/g the stations ok
in the other groups aH> in steps (i); the NA2 stations &%, ol
the NEUR stations a#l» in steps (ii); the NA1 and CEUR '
stations asH1, the AUS and ASIA stations aH> in steps ozr
(iii); the NA1 stations asH;, the CEUR stations a#& in —_—
step (iv); the AUS stations &4, the ASIA stations a#l, in q

step (v).
The estimated parametersw=(w1, wo, w3) Of Fig. 6. The exponent&(q) of small time scales for the NA1 sta-
w=(w1, w2) in Fisher's discriminant algorithm and the tions.
discriminant accuracies for the stations in the above five
steps are given in Tablé It is seen that the discriminant

accuracies are very high. 4 Conclusions
In order to find whether the magnetic field time series have
multifractal nature, we calculate the exponéngg) of small Many time series do not exhibit simple monofractal scaling

scales for all stations. The nonlinearity of thé;) curves  behavior, which can be characterized by a single exponent.
obtained suggests that all the magnetic field time series havih some cases, there exist crossover (time-) scales separat-
multifractal property. For example, we shown those of theing regimes with different scaling exponents. Hence a mul-
stations from the NA1 and AUS groups in Figsand7. titude of scaling exponents is required for a full description

Nonlin. Processes Geophys., 14, 7028 2007 www.nonlin-processes-geophys.net/14/701/2007/
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to nonstationary processes to detect their multifractal proper-

T T
—o— B, of ASP

18 — & B ofCTA| ] ties.
—o— B, ofKDU

From the MF-DFA estimation, we find that there are three
scaling regimes in thgth-order fluctuation functions of all
hourly averaged magnetic field time series. Ttk-order
fluctuation functions have a clear point at which the first
crossover time scales change to the second crossover time
scales. Fog=1, 2, the break point occurs around the time
scale of 23 h and is universal for all stations. The break point
osr 1 can be associated with the regular diurnal quiet solar varia-
oal 1 tion of the current system.

From Tables 1 to 3, thé(2) values of small time scales
confirm that magnetic field componenss;, B, and B,

16

14r

12f

0.8

021

o 1 2 3 4 ; s 7 8 9w are nonstationary processes with anti-persistent correlations.
2 : ‘ ‘ Theh(g) curves obtained indicate that all the magnetic field
ol o] time series have multifractal property.
o B oy The result that is most useful for spatiotemporal space

weather modelling is that the parametegsand ay corre-
sponding ta;=2 for field components,, B, and B, reflect

the regional character of the global INTERMAGNET sta-
tions. Therefore these exponents can be used for station clas-
sification. The discriminant accuracies are very high indicat-
ing the robustness of this result. The short period and long
osr 1 period scaling regimes exhibit similar fractal scaling within
0al- i limited geographical regions (e.g. Figs. 3 and 5). This sug-
gests that a feasible strategy to develop spatiotemporal space
weather models is to first develop suitable models for homo-
geneous subregions, then couple them into a global multi-
scale model.
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