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Abstract. Shell models of turbulence have been employed
as toy models which, in their chaotic states, show statisti-
cal properties similar to real fluid turbulence, including Kol-
mogorov energy spectrum and intermittency. These mod-
els are interesting because, at the present stage, it is still
quite difficult or almost impossible to study relations be-
tween those traditional statistical properties and the structure
of the chaos underlying the real fluid turbulence because of
huge dimension of the chaotic attractor. In this paper we will
give a brief review on the chaotic properties of a shell model
(GOY model), with emphasis on its Lyapunov spectrum and
unstable periodic orbits, in relation to the Kolmogorov scal-
ing law of the turbulence.

1 Introduction

The three-dimensional Navier-Stokes turbulence has long
been a subject of research, where very unstable fluid mo-
tion is observed together with its robust statistical properties
including the Kolmogorov energy spectrum and the intermit-
tency. Several theories have been proposed to explain the
statistical properties of turbulence, where attention was fo-
cused into the Kolmogorov spectrum itself in the early stage
of turbulence study while higher-order correlations of veloc-
ity later attracted researchers’ attention in relation to the in-
termittency, i.e., small deviations from the Kolmogorov scal-
ing law observed in experiments.

From 1970s, on the other hand, it has been recognized
that seemingly stochastic complex motions can be gener-
ated even in a deterministic dynamical system. The origin
of the complex motion is irregular attracting sets in a phase
space, which are called strange or chaotic attractors. The
chaotic attractors in low-dimensional systems have been in-
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tensively investigated, and some aspects of the chaotic at-
tractors have been studied in detail both analytically and nu-
merically. However, most of the theoretical and numerical
techniques employed in these studies cannot be applied to
high-dimensional chaotic attractors because their procedures
become rapidly complicated as the dimension of the attrac-
tor increases. At the present stage, therefore, it is still quite
difficult to study the structure of a chaotic attractor of which
the dimension exceeds some tens.

Along the line of chaos research, the Navier-Stokes tur-
bulence has come to be considered as a typical and impor-
tant dynamical phenomenon which is due to a chaotic attrac-
tor with, however, a huge dimension estimated to be more
than at least some millions by using Kolmogorov scaling ar-
gument (Kida et al., 1989). Therefore, although it is now
widely accepted that the Navier-Stokes turbulence is an ex-
ample of chaos phenomena, and high-performance comput-
ers have become available recently, the computing power is
still far from sufficient and properties of the underlying huge
dimensional chaotic attractor are not well-understood yet,
and especially we do not have an idea of what chaos prop-
erties correspond to the well-known robust statistical prop-
erties of fluid turbulence as the Kolmogorov scaling and the
intermittency.

The present status of numerical calculation may allow two
different ways of approach; one is to study only a few pa-
rameters of the full Navier-Stokes turbulence, and the other
is to deal with a model turbulence of a small dimension to
study a set of chaos parameters in detail. Shell models or
cascade models of turbulence, one of which we discuss in
this paper, belong to the latter approach (Bohr et al., 1998;
Biferale, 2003). The shell model is a toy model of turbu-
lence, which has a chaotic attractor of a low dimension usu-
ally less than some tens, but shares similar statistical prop-
erties to real turbulence. The shell model is not intended to
approximate the real turbulence, and we do not try to justify
the model equation by, for example, an asymptotic analysis.
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The model equation is simply given by imitating the Navier-
Stokes equation in Fourier space, and therefore is not unique
in any sense. Our aim of the shell model research in this pa-
per is to find a possible connection between the chaos prop-
erties and the turbulence statistics, although the connection,
even if any, remains only a candidate at best for what is ex-
pected to take place in real turbulence.

In this paper we discuss the type of the shell model, which
is sometimes called GOY (Gledzer-Ohkitani-Yamada) shell
model. However, we here remark that this choice does not
mean that the shell model is unique in some sense, but only
that some amount of data has been accumulated with respect
to its attractor and statistical properties.

We focus our attention first on Lyapunov spectrum of the
turbulence. Lyapunov spectrum is known to be one of the
most fundamental quantity describing the dynamical prop-
erties of chaotic motion. Lyapunov spectrum characterizes
the instability of the chaotic orbit in phase space, and also is
known to give, for example, an upper bound of the Hausdorff
dimension of the chaotic attractor. However, Lyapunov spec-
trum consists of as many exponents as the system dimension,
and is actually impossible to obtain in a huge system like the
Navier-Stokes turbulence, except for the first few Lyapunov
exponents. It is still unknown how the Lyapunov spectrum is
in real fluid turbulence, and how it is related to the classical
properties of the turbulence. In this paper we show that Lya-
punov spectrum of the shell model can be obtained from the
traditional Kolmogorov scaling law by taking into account
the localization of Lyapunov vectors in phase space.

We are also interested in the scaling exponents of struc-
ture functions of velocity. The scaling exponents are one of
the most fundamental quantities characterizing the statistical
properties of a turbulent velocity field, and have been studied
in most detail in turbulence research. The scaling exponent
of the lowest order structure function, which is directly re-
lated to the energy spectrum, is known to agree well with the
Kolmogorov’s scaling theory (K41) (Kolmogorov, 1941), but
the higher order structure functions are now known to have
a deviation from the K41 theory, which is often called inter-
mittency. Many phenomenological models of intermittency
have been proposed so far to account for the qualitative or
quantitative behavior of the scaling exponents (Kolmogorov,
1962; Parisi and Frisch, 1985; Meneveau and Sreenivasan,
1987; She and Leveque, 1994). However, no dynamical ori-
gin of the intermittency has yet been identified in view of
dynamical system theory. In this paper we show that in the
shell model turbulence, there are three kinds of unstable pe-
riodic solutions; the first one is the fixed point solution, the
second one has a simple time-dependence with K41 scaling
property with no intermittency, and the third one has a rather
complicated orbit corresponding to the intermittency.

In the next section we briefly summarize the basic prop-
erties of the shell model. Lyapunov spectrum of the shell
model is discussed in Sect. 3, and the analysis of unstable

periodic orbits (UPOs) is described in Sect. 4. Conclusion is
given in Sect. 5.

2 A Shell model

The energy cascade in fully developed turbulence has been
modeled in several ways by low-dimensional systems of or-
dinary equations, in which dependent variables stand for dy-
namical variables associated with wavenumber band. These
models, which are called cascade models or shell models,
have been devised in the hope that they give an insight of the
energy cascade process or more specifically the intermittency
observed in the homogeneous isotropic turbulence. An early
example of these models may be given by a cascade model
proposed and studied by Desnyansky and Novikov (1974a,
b) and Bell and Nelkin (1977, 1978);

duj

dt
= a1kj (u

2
j−1 − 2ujuj+1) + a2kj (uj−1uj − 2u2

j+1)

−νk2
juj + Fj (t) (1)

wherekj=2jk0 stands for a discretized scalar wavenumber
band (shell), 2j−1/2k0<|k|<2j+1/2k0, which real velocity
variablesuj are associated with, anda1, a2 are respectively
positive and negative constants. The energy spectrum is then
defined asE(kj )=u2

j/2. Desnyansky and Novikov, and Bell
and Nelkin were interested in the intermittency of turbulence,
and studied in detail both the steady and the time-dependent
solutions of this cascade model, finding a relation between
the ratio of the backward to the forward energy cascades and
an intermittency exponent appearing in the energy spectrum.
We remark that dependent variables in most of these mod-
els were interpreted as some statistical quantities like the en-
ergy spectrum, and the intermittency were discussed with
non-chaotic solutions. A similar cascade model was also
proposed by Gledzer (1973) for the 2-D Navier-Stokes tur-
bulence. The velocity variables are real in the model, and he
obtained two kinds of solutions withk−3-spectrum in the for-
ward enstrophy cascading range, and withk−5/3-spectrum in
the backward energy cascading range, respectively.

Later in 1980s, Gloaguen et al. (1985) and Grappin et
al. (1986) studied a different type of cascade model of MHD
turbulence, in which the dependent variables representing the
velocity and magnetic fields behave in a chaotic manner with
the time-averaged energy spectrum obeying the Kolmogorov
scaling law. In this chaotic cascade model they numeri-
cally obtained the Lyapunov spectrum and verified that the
Kaplan-Yorke dimension of the underlying strange attractor
is consistent with the Kolmogorov scaling law.

A chaotic cascade model, corresponding to the 2-D homo-
geneous isotropic Navier-Stokes turbulence, was studied by
Yamada and Ohkitani (1988). They showed that there are
chaotic solutions in which the time-averaged energy spec-
trum has thek−3 form in the enstrophy cascading range, in
Gledzer’s cascade model with a modification of the forcing
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and dissipation terms. They obtained the Lyapunov spectrum
of its chaotic attractor, and showed that the energy spectrum
obeys the Batchelor-Kraichnan-Leith (BKL) scaling law of
2-D Navier-Stokes turbulence, and that there are many Lya-
punov exponentsλ close to zero, resulting in a divergence of
the density distribution functionf (λ) of the Lyapunov expo-
nents atλ=0.

A chaotic cascade model for 3-D homogeneous isotropic
Navier-Stokes turbulence was then proposed by Yamada and
Ohkitani (1987), who modified the Gledzer model by com-
plexifying the dependent variables and requiring the en-
ergy conservation. They did this modification because pre-
liminary computation showed a statistically unstable behav-
ior of the solution when the dependent variables was kept
real. Another reason for this modification is that the model
is expected to have a similar form to the Fourier trans-
formed Navier-Stokes equation, which has complex veloc-
ity variables with effectively two degrees of freedom for
each wavenumber because of the incompressible condition
for fluid. The complexified model also has two degrees of
freedom for each wavenumber shell, in contrast with the
original Gledzer model which has one degree of freedom for
each wavenumber. Hereafter we focus our attention to this
complexified Gledzer’s model, which is often called GOY
(Gledzer-Ohkitani-Yamada) model.

This shell model is constructed in a discrete wavenum-
ber space, defined askj=k0q

j (q=2, 1≤j≤N). The depen-
dent variableuj , which is associated with the wavenumber
kj , is considered to stand for the velocity component whose
wavenumberk lies in the wavenumber shellkj<|k|<kj+1.
We then define the innerproduct of velocities{uj=uR

j +iuI
j }

and {vj=vR
j +ivI

j } (1≤j≤N) as
∑N

j=1(u
R
j vR

j +uI
jv

I
j ) and

the superscriptsR andI denote the real and the imaginary
parts, respectively. Note that the phase space of the system is
a real 2N -dimensional space, and the inner product is not the
Hermitian one. The energyEI , the enstrophyQI and the en-
ergy spectrumEI (k) at an instance are then defined respec-
tively asEI=

∑N
j=1 |uj |

2/2, QI=
∑N

j=1 k2
j |uj |

2/2, EI (kj )

=|uj |
2/(2kj ).

We assume that each evolution equation foruj is quadrati-
cally nonlinear, and consists of nonlinear interactions among
uj−2, uj−1, uj , uj+1, uj+2. The conservation of the phase
volume,

∑N
j=1(∂u̇R

j /∂uR
j +∂u̇I

j/∂uI
j )=0, is also assumed to

hold in the inviscid case, where the dot denotes the time
derivative. These requirements do not determine the form
of the shell model uniquely, of course. Remembering that
our aim is to see what kind of chaotic attractor can be re-
lated to the scaling law of the Kolmogorov type, we adopt
the following simple set of equations,(

duj

dt
+ νk2

j

)
uj

= i(c
(1)
j u∗

j+2u
∗

j+1 + c
(2)
j u∗

j+1u
∗

j−1 + c
(3)
j u∗

j−1u
∗

j+1)

+f δj,l, (1 ≤ j ≤ N) (2)

where ∗ denotes the complex conjugate,f is a
time-independent force, ν the kinematic viscosity,
δj,l Kronecker’s delta (l∈N), and t is time. The

real constants c
(1)
j , c

(2)
j , c

(3)
j (1≤j≤N) are given as

c
(1)
j =kj , c

(2)
j =−δkj−1, c

(3)
j =(δ−1)kj−2 except for

c
(2)
1 =c

(3)
1 =c

(3)
2 =c

(1)
N−1=c

(1)
N =c

(2)
N =0, where δ is a real

parameter. These nonlinear terms conserve the energyE.
We note that ifδ is larger than unity, the nonlinear terms
conserveE(α)

I =
∑N

j=1 kα
j |uj |

2 together with the energyEI ,
whereα is given byδ=1+1/qα. This property was made
use of to study the relation between the cascade process
and conserved quantities. We now choose the value ofδ to
be 1/2, where we have another inviscid conserved quantity
HI=

∑N
j=1(−1)jkj |uj |

2. This quantity is considered to
correspond to the helicity, which is also conserved in the
Navier-Stokes equations without viscosity. The number
of N is usually taken to be 10–30, with the forcing term
f ∼10−3–10−5 and the viscosityν∼10−3–10−7.

Numerical calculation of this shell model shows that un-
steady solutions are obtained from arbitrary chosen initial
conditions with smooth and not too large energy spectra.
The unsteady solution is found to be a chaotic solution in
the sense that it is a bounded solution with at least one pos-
itive Lyapunov number. Long time average of a dynamical
quantity is observed to converge to a constant value, sug-
gesting that the motion is governed by an attractor with an
invariant measure in phase space. Especially the time aver-
age of the energy spectrumE(k)=<EI (k)> shows ak−5/3

spectral form of Kolmogorov (Fig. 1), which can be observed
over about 10 decades of wavenumber in the case of smaller
viscosity (Yamada and Ohkitani, 1987). We note that the
slope−5/3 is also observed in real turbulence but over about
2 or 3 decades usually. Moreover, the time average of the
energy spectrum is found to obey the Kolmogorov scaling
law in which the time average of the energy dissipation rate
ε=2ν<QI> and the viscosityν are the only parameters de-
termining the spectral form, where the bracket denotes the
time average (Yamada and Ohkitani, 1987). The energy
spectrum is then expressed as

E(k) = ε1/4ν5/4Ee(k/kd) (3)

whereEe is a non-dimensional function andkd=ε1/4ν−3/4

is the Kolmogorov dissipation wavenumber. Actually in the
inertial range, where the energy spectrumE(k) has the Kol-
mogorov scaling form, the energy flux is fairly constant and
equal to the energy dissipation rate (Yamada and Ohkitani,
1989). Thus the K41 scaling law holds for the energy spec-
trum in the shell model.

The original K41 theory is not restricted to the energy
spectrum but describes scaling properties of higher-order
moments of velocity. However, it is now well-known that
for higher-order quantities the K41 theory, employing only
the energy dissipation rateε and the viscosityν as govern-
ing parameters, fails to give the proper scaling exponents of
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Fig. 1. The time averaged energy spectrum at ν = 10−4. The
straight line shows the slope of -5/3. f = 0.005(1+ i), l = 1, N =
16

Also we note that the effect of the helicitylike invariant and
the stability problem of steady solutions have been investi-
gated in the shell model (Kadanoff et al., 1997; Biferale et
al, 1998).

3 Lyapunov spectrum

Numerical simulation shows that solution orbits of the shell
model are chaotic in the phase space. The Lyapunov spec-
trum is often employed to characterize the chaotic properties
of motion. We rewrite the model equation in the following
form.

du
dt

= N(u) (4)

where

u = u(t)
= (uR

1 (t), uI
1(t), u

R
2 (t), uI

2(t), · · · , uR
N (t), uI

N (t)) (5)

and N denotes the sum of the forcing term, the dissipation
term and the linear terms. Together with the time evolu-
tion of u(t), we consider the time evolution of infinitesimal
displacement δu(t) of the solution u(t). The displacement
δu(t) then obeys the linearized equation of motion around
u(t),

dδu
dt

= DN(u)δu(t), (6)

where DN(u) denotes the linearized operator (Fréchet
derivative) of N(u), operating to δu(t). The total dimension
of the phase space is 2N , and thus we can take linearly in-
dependent 2N displacement vectors δup(t) (1 ≤ p ≤ 2N ).
Then the Lyapunov spectrum is a set of the Lyapunov expo-
nents λ1, λ2, · · · , λ2N which are defined by

λ1 + λ2 + · · · + λq

= lim
t→∞

||δu1(t) ∧ δu2(t) ∧ · · · ∧ δuq(t)||
||δu1(0) ∧ δu2(0) ∧ · · · ∧ δuq(0)|| (7)

Fig. 2. Distribution of the Lyapunov exponents λj/H: cir-
cles (N = 19), squares (N = 22), closed squares (N =
24), and closed circles (N = 27). The dashed line de-
notes the theoretical prediction: λj/H = (22/3 − 1)2−2j/3.
Reprinted figure with permission from Yamada and Ohkitani (1998,
http://linkaps.org/abstract/PRE/v57/p6257) in Phys. Rev., E57,
6257. Copyright (1998) by the American Physical Society.

for 1 ≤ q ≤ 2N and for almost all initial condi-
tions δu1(0), δu2(0), · · · , δuq(0). We compute these Lya-
punov exponents by a classical method of Shimada and
Nagashima(1979) using Gram-Schmidt orthogonalization.
Note that these Lyapunov exponents are ordered as λq ≥
λq+1, and also that some of important chaos parameters
are expressed by the Lyapunov exponents. For example,
the Lyapunov (Kaplan-Yorke) dimension D of the chaos
attractor is given by D = p +

∑p
j=1 λj/|λp+1|, p =

max{m|∑m
j=1 λj ≥ 0}, and the Kolmogorov-Sinai (KS)

entropy H is given by H =
∑q

j=1 λj (λq > 0, λq+1 ≤ 0).1

We numerically calculate the Lyapunov exponents of the
model with f = 0.005(1 + i) and l = 4, some of which
are shown in Fig.2, where the Lyapunov exponents are nor-
malized by the KS entropy H , for several values of the vis-
cosity. As the viscosity decreases, the number of the Lya-
punov exponents nearly equal to zero increases while the
number of large positive Lyapunov exponents remains the
same, suggesting that there is an asymptotic expression of
the Lyapunov exponents in the limit of ν → 0. Actually the
asymptotic expression is obtained by examining supports of
the Lyapunov vectors as follows.

We show the support of the Lyapunov vectors in Fig.3,
plotting the squared components of the Lyapunov vectors in
its time average, Ej(kn) =< |δuj

n|2 >, where δuj
n denotes

the n-th Fourier component of the j-th Lyapunov vector, the
bracket the time average and each Lyapunov vector is nor-
malized as

∑
n |δuj

n|2 = 1 for each j.
We can see that each Lyapunov vector has a localized

support in wavenumber space. The center of the support
lies around at n ∼ D/2 for the largest Lyapunov exponent

1Rigorously speaking, H gives only an upper bound of the KS
entropy, but the difference is often small and is not discussed in this
paper.

Fig. 1. The time averaged energy spectrum atν=10−4. The straight
line shows the slope of−5/3. f =0.005(1+i), l=1, N=16.

the structure function of velocity, with the disagreements be-
ing called intermittency. It is remarkable that in the shell
model the velocity shows a similar deviation of the scaling
exponents from K41 theory, and thus has an intermittency
property as observed in real fluid turbulence. The intermit-
tency in the shell model has therefore been studied exten-
sively (Jensen et al., 1991: Pisarenko et al., 1993; Yamada
et al., 1993; Biferale et al., 1994, 1995; Kadanoff et al.,
1995, 1997; Biferale, 2003). We will discuss the intermit-
tency from a viewpoint of UPOs later. Also we note that the
effect of the helicitylike invariant and the stability problem
of steady solutions have been investigated in the shell model
(Kadanoff et al., 1997; Biferale et al., 1998).

3 Lyapunov spectrum

Numerical simulation shows that solution orbits of the shell
model are chaotic in the phase space. The Lyapunov spec-
trum is often employed to characterize the chaotic properties
of motion. We rewrite the model equation in the following
form.

du
dt

= N(u) (4)

where

u = u(t)

= (uR
1 (t), uI

1(t), u
R
2 (t), uI

2(t), · · · , u
R
N (t), uI

N (t)) (5)

andN denotes the sum of the forcing term, the dissipation
term and the linear terms. Together with the time evolution
of u(t), we consider the time evolution of infinitesimal dis-
placementδu(t) of the solutionu(t). The displacementδu(t)

then obeys the linearized equation of motion aroundu(t),

dδu
dt

= DN(u)δu(t), (6)
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Fig. 2. The Lyapunov exponentsλj /H : circles (N=19),
squares (N=22), closed squares (N=24), and closed circles
(N=27). The dashed line denotes the theoretical prediction:
λj /H=(22/3

−1)2−2j/3. Reprinted figure with permission from
Yamada and Ohkitani (1998,http://link.aps.org/abstract/PRE/v57/
p6257) in Phys. Rev., E57, 6257. Copyright (1998) by the Ameri-
can Physical Society.

where DN(u) denotes the linearized operator (Fréchet
derivative) ofN(u), operating toδu(t). The total dimension
of the phase space is 2N , and thus we can take linearly inde-
pendent 2N displacement vectorsδup(t) (1≤p≤2N). Then
the Lyapunov spectrum is a set of the Lyapunov exponents
λ1, λ2, · · · , λ2N which are defined by

λ1 + λ2 + · · · + λq

= lim
t→∞

||δu1(t) ∧ δu2(t) ∧ · · · ∧ δuq(t)||

||δu1(0) ∧ δu2(0) ∧ · · · ∧ δuq(0)||
(7)

for 1≤q≤2N and for almost all initial conditions
δu1(0), δu2(0), · · · , δuq(0). We compute these Lya-
punov exponents by a classical method of Shimada
and Nagashima(1979) using Gram-Schmidt orthogonal-
ization. Note that these Lyapunov exponents are
ordered as λq≥λq+1, and also that some of im-
portant chaos parameters are expressed by the Lya-
punov exponents. For example, the Lyapunov (Kaplan-
Yorke) dimension D of the chaos attractor is given
by D=p+

∑p

j=1 λj/|λp+1|, p= max{m|
∑m

j=1 λj≥0}, and
the Kolmogorov-Sinai (KS) entropyH is given by
H=

∑q

j=1 λj (λq>0, λq+1≤0).1

We numerically calculate the Lyapunov exponents of the
model with f =0.005(1+i) and l=4, some of which are
shown in Fig. 2, where the Lyapunov exponents are nor-
malized by the KS entropyH , for several values of the vis-
cosity. As the viscosity decreases, the number of the Lya-
punov exponents nearly equal to zero increases while the
number of large positive Lyapunov exponents remains the

1Rigorously speaking,H gives only an upper bound of the KS
entropy, but the difference is often small and is not discussed in this
paper.
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same, suggesting that there is an asymptotic expression of
the Lyapunov exponents in the limit ofν→0. Actually the
asymptotic expression is obtained by examining supports of
the Lyapunov vectors as follows.

We show the support of the Lyapunov vectors in Fig. 3,
plotting the squared components of the Lyapunov vectors
in its time average,Ej (kn)=<|δu

j
n|

2>, whereδu
j
n denotes

then-th Fourier component of thej -th Lyapunov vector, the
bracket the time average and each Lyapunov vector is nor-
malized as

∑
n |δu

j
n|

2
=1 for eachj .

We can see that each Lyapunov vector has a localized
support in wavenumber space. The center of the support
lies around atn∼D/2 for the largest Lyapunov exponent
(j=1), while it decreases ton∼0 as j increases toD/2.
For j>D/2, the Lyapunov exponents are negative and the
central wavenumber of the support increases ton∼D/2 at
j∼D. For j>D, two Lyapunov vectors share the same cen-
tral wavenumber increasing withj , and the Lyapunov expo-
nent asymptotically agrees with the reciprocal of the viscous
time scale at the wavenumber.

In summary, for eachn (0≤n≤D/2) there are two Lya-
punov vectors corresponding to positive and negative Lya-
punov exponents, in harmony with the fact that there are two
degrees of freedom at each wavenumber in the shell model.
Forn≥D/2, on the other hand, the wavenumber components
are considered to lie outside the attractor, obeying the simple
dissipation dynamics. The suffix of the wavenumbern≤D/2
is, therefore, considered to correspond to the inertial sub-
range in the shell model.

This observation leads us to introduce the following set
of hypotheses regarding the Lyapunov vectors in the inertial
subrangej≤D for D�1.

1. Lyapunov exponents are positive for 1≤j≤D/2, and
negative forj>D/2.

2. Each Lyapunov vector in wavenumber space is local-
ized around a wavenumber. Letknj

=k02nj be the lo-
calized wavenumber forj -th Lyapunov vector, then
nj is given by nj=D/2−j+1 for 1≤j≤D/2, and
nj=j−D/2 for D/2≤j≤D.

3. In the inertial subrange, thej -th Lyapunov exponents
(j≤D) is inversely proportional to the Kolmogorov
time scaleε−1/3k

−2/3
nj

.

The last hypothesis is a combination of the Kolmogorov’s
dimensional argument and the localization of the Lyapunov
vectors in wavenumber space. This hypothesis is equivalent
to the assumption that the Lyapunov exponent can be rep-
resented in terms of the energy dissipation rateε and the
wavenumberk at which the corresponding Lyapunov vec-
tor localizes. It should be stressed that the localization of the
Lyapunov vectors is thus fundamental to bridge between the
chaos dynamical description and the traditional Kolmogorov
picture of turbulence.
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Fig. 3. Time average of squared components of the Lyapunov
vectors < |vj

n| > (N = 27, D = 35.0) : Contour levels are
0.0489i(i = 1, · · · , 10). Two straight lines represent nj assumed
in the hypothesis 2. Reprinted figure with permission from Yamada
and Ohkitani (1998, http://linkaps.org/abstract/PRE/v57/p6257) in
Phys. Rev., E57, 6257. Copyright (1998) by the American Physical
Society.

(j = 1), while it decreases to n ∼ 0 as j increases to D/2.
For j > D/2, the Lyapunov exponents are negative and the
central wavenumber of the support increases to n ∼ D/2 at
j ∼ D. For j > D, two Lyapunov vectors share the same
central wavenumber increasing with j, and the Lyapunov ex-
ponent asymptotically agrees with the reciprocal of the vis-
cous time scale at the wavenumber.

In summary, for each n (0 ≤ n ≤ D/2) there are two Lya-
punov vectors corresponding to positive and negative Lya-
punov exponents, in harmony with the fact that there are two
degrees of freedom at each wavenumber in the shell model.
For n ≥ D/2, on the other hand, the wavenumber compo-
nents are considered to lie outside the attractor, obeying the
simple dissipation dynamics. The suffix of the wavenumber
n ≤ D/2 is, therefore, considered to correspond to the iner-
tial subrange in the shell model.

This observation leads us to introduce the following set
of hypotheses regarding the Lyapunov vectors in the inertial
subrange j ≤ D for D 	 1.

1. Lyapunov exponents are positive for 1 ≤ j ≤ D/2, and
negative for j > D/2.

2. Each Lyapunov vector in wavenumber space is local-
ized around a wavenumber. Let knj = k02nj be the
localized wavenumber for j-th Lyapunov vector, then
nj is given by nj = D/2− j +1 for 1 ≤ j ≤ D/2, and
nj = j − D/2 for D/2 ≤ j ≤ D.

3. In the inertial subrange, the j-th Lyapunov exponents
(j ≤ D) is inversely proportional to the Kolmogorov
time scale ε−1/3k

−2/3
nj .

The last hypothesis is a combination of the Kolmogorov’s
dimensional argument and the localization of the Lyapunov
vectors in wavenumber space. This hypothesis is equivalent

to the assumption that the Lyapunov exponent can be rep-
resented in terms of the energy dissipation rate ε and the
wavenumber k at which the corresponding Lyapunov vec-
tor localizes. It should be stressed that the localization of the
Lyapunov vectors is thus fundamental to bridge between the
chaos dynamical description and the traditional Kolmogorov
picture of turbulence.

From the hypotheses above, we obtain the following for-
mulas for the Lyapunov exponents,

λj ∼

⎧⎪⎪⎨
⎪⎪⎩

ε1/3k
2/3
nj = ε1/3(2k0)2/32(D−2j)/3

for 1 ≤ j ≤ D/2,

−ε1/3k
2/3
nj = −ε1/3(2k0)2/32(2j−D)/3

for D/2 + 1 ≤ j ≤ D.

(8)

We now normalize the Lyapunov exponents by the KS en-
tropy H as λj/H to eliminate an arbitrary constant in the
dimensional analysis. The KS entropy is obtained as

H =
D/2∑
j=1

λj ∼ ε1/3(2k0)2/3 2D/3 − 1
22/3 − 1

, (9)

and the normalized Lyapunov exponents become

λj

H
=

⎧⎪⎨
⎪⎩

(22/3 − 1)22(D/2−j)/3

2D/3 − 1
for 1 ≤ j ≤ D/2

− (22/3 − 1)22(j−D/2)/3

2D/3−1
for D/2 + 1 ≤ j ≤ D

(10)

For D 	 1, the first expression of (10) reduces to

λj

H
= (22/3 − 1)2−2j/3, (11)

which is depicted in Fig.2 with a solid line. We can see that
the theoretical values and the numerical results agree well
and a better agreement is obtained for larger attractor dimen-
sion D.

It should be remarked here that if the idea of localization
of the Lyapunov vectors in the wavenumber space is appli-
cable to the Navier-Stokes turbulence with high Reynolds
number, a power law is obtained for the density distribution
function of the Lyapunov exponents. The localization im-
plies that the Lyapunov exponents are estimated as the recip-
rocal of the relevant Kolmogorov time scale λ ∼ ε1/3k2/3,
where k is the localization wavenumber of the Lyapunov vec-
tor. The number of Lyapunov exponents lying in [λ, λ + dλ]
is then proportional to 4πk2 dk, and thus the density distri-
bution function of the Lyapunov exponents P (λ) is given by
P (λ)dλ ∼ 4πk2 dk, yielding

P (λ) ∼ λ7/2. (12)

This power law is, however, beyond the reach of the present
ability of numerical computation and its validity is still an
open problem, while (12) is consistent with results of Wang
and Gaspart (1992) for KS-entropy and Aurell et al. (1996)
for the maximum Lyapunov exponent.

Fig. 3. Time average of squared components of the Lya-

punov vectors<|v
j
n |> (N=27, D=35.0): Contour levels are

0.0489i(i=1, · · · , 10). Two straight lines representnj assumed in
the hypothesis 2. Reprinted figure with permission from Yamada
and Ohkitani (1998,http://link.aps.org/abstract/PRE/v57/p6257) in
Phys. Rev., E57, 6257. Copyright (1998) by the American Physical
Society.

From the hypotheses above, we obtain the following for-
mulas for the Lyapunov exponents,

λj ∼


ε1/3k

2/3
nj

= ε1/3(2k0)
2/32(D−2j)/3

for 1 ≤ j ≤ D/2,

−ε1/3k
2/3
nj

= −ε1/3(2k0)
2/32(2j−D)/3

for D/2+1≤j≤D.

(8)

We now normalize the Lyapunov exponents by the KS en-
tropy H asλj/H to eliminate an arbitrary constant in the
dimensional analysis. The KS entropy is obtained as

H =

D/2∑
j=1

λj ∼ ε1/3(2k0)
2/3 2D/3

− 1

22/3 − 1
, (9)

and the normalized Lyapunov exponents become

λj

H
=


(22/3

− 1)22(D/2−j)/3

2D/3 − 1
for 1 ≤ j ≤ D/2

−
(22/3

− 1)22(j−D/2)/3

2D/3−1
for D/2 + 1 ≤ j ≤ D

(10)

ForD�1, the first expression of Eq. (10) reduces to

λj

H
= (22/3

− 1)2−2j/3, (11)

which is depicted in Fig. 2 with a solid line. We can see that
the theoretical values and the numerical results agree well
and a better agreement is obtained for larger attractor dimen-
sionD.

It should be remarked here that if the idea of localization
of the Lyapunov vectors in the wavenumber space is appli-
cable to the Navier-Stokes turbulence with high Reynolds
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number, a power law is obtained for the density distribu-
tion function of the Lyapunov exponents. The localization
implies that the Lyapunov exponents are estimated as the re-
ciprocal of the relevant Kolmogorov time scaleλ∼ε1/3k2/3,
wherek is the localization wavenumber of the Lyapunov vec-
tor. The number of Lyapunov exponents lying in[λ, λ+dλ]

is then proportional to 4πk2 dk, and thus the density distri-
bution function of the Lyapunov exponentsP(λ) is given by
P(λ)dλ∼4πk2 dk, yielding

P(λ) ∼ λ7/2. (12)

This power law is, however, beyond the reach of the present
ability of numerical computation and its validity is still an
open problem, while Eq. (12) is consistent with results of
Wang and Gaspart (1992) for KS-entropy and Aurell et
al. (1996) for the maximum Lyapunov exponent.

4 Unstable periodic orbits (UPOs)

Infinite number of unstable periodic orbits (UPOs) are em-
bedded in a chaotic attractor, and play important roles in
chaotic systems (Cvitanović et al., 2005). However, it is
usually difficult to find numerically UPOs from chaotic dy-
namical systems, because UPOs cannot be found by the for-
ward time integration (or iteration) of dynamical systems.
So, there are few studies on UPOs of high dimensional dy-
namical systems. Here we focus our attention to UPOs of
GOY shell model with turbulent but not fully developed
turbulent regime and discuss relations between UPOs and
chaotic (turbulent) solutions. In this section, the external
forcef =0.005(1+i) is put into the first mode (l=1).

It should be noted here for later convenience that the GOY
shell model has a “translational invariance”; ifu(t)={uj (t)}

is a (steady or unsteady) solution of the GOY shell model
with the external forcef , then Rφu(t) is also a so-
lution, whereRφu=uj (j≡1), eiφuj (j≡2), e−iφuj (j≡0),
with the congruence being defined under mod 3, andφ is
a continuous real parameter.2 TheRφ is called translational
transformation because it is similar to the real-space trans-
lation which rotates the phases of each Fourier component.
We can therefore generate a continuously infinite number of
solutions by applyingRφ to a single solutionu.

4.1 Fixed point solutions

There are some steady solutions for the GOY shell model
with the external forcef at the first mode. These solutions
are captured numerically by the Newton-Raphson method.
Hereafter we call these solutions fixed point solutions. While
some of them lie outside the chaotic attractor, there is a fixed

2This is a special case (θ=0) of the transformation
Rθ

φu=eiθuj (j≡1), ei(φ−θ)uj (j≡2), e−iφuj (j≡0) which is
also a solution of the GOY model without forcing term (Gat et al.,
1995).

point solution which lies inside and whose Fourier spectrum
is quite close to the Kolmogorov−5/3 spectrum, and the
slope remains almost the same against the decreasing vis-
cosity. Numerical simulations show that in the course of the
time development, a nearby solution to the fixed point does
not stay in the neighborhood of the fixed point, indicating
that the fixed point is unstable.

4.2 Kolmogorov solutions

We find periodic solutions with a simple time dependence,
which was first reported by Kato and Yamada (2002). As-
suming that

uj = aj e
iωj t (aj ∈ C, ωj ∈ R) (13)

whereωj=0(j≡1), −θ (j≡2), θ (j≡0) in which θ is a real
constant. The detection of this type of periodic solutions is
reduced to findinga={aj }, θ which satisfy the nonlinear al-
gebraic equations:

F(a, θ) = 0, (14)

where

Fj (a, θ) = ν k2
jaj − {i[ajkjaj+1aj+2 + bjkj−1aj−1aj+1

+ cjkj−2aj−1aj−2]
∗

+ f δj,1} (j≡1) (15)

Fj (a, θ) = (− iθ + νk2
j )aj e

−iθ t
− {i[(ajkjaj+1aj+2

+ bjkj−1aj−1aj+1 + cjkj−2aj−1aj−2)e
iθ t

]
∗

+ f δj,1} (j ≡ 2) (16)

Fj (a, θ) = (i θ + νk2
j )aj e

iθ t
− {i[(ajkjaj+1aj+2

+ bjkj−1aj−1aj+1 + cjkj−2aj−1aj−2)e
−iθ t

]
∗

+ f δj,1} (j ≡ 0). (17)

The zeros ofF(a, θ)=0 are obtained numerically also by the
Newton-Raphson method. Note that in the case ofθ=0, this
solution coincides with the fixed point solution. We can
numerically find some solutions forF(a, θ)=0 with θ 6=0.
These solutions are found unstable in the same manner as
in the case of the fixed point solutions.3

Figure 4 shows projections of a periodic solution onto the
complex plane ofuj at ν=0.0001. The modulus of eachuj

of this solution is constant, as seen from the assumed form
of the solution. When the number of modesN is not large
enough, these solutions do not have smooth energy spectra.
As the viscosity decreases andN is taken larger, the energy
spectra of these solutions is observed to have a longer−5/3
slope in accordance with the celebrated Kolmogorov spec-
trum. On this account, we call these the “Kolmogorov solu-
tions”. It should be remarked that the Kolmogorov solution

3Very recently, Olesen and Jensen (2007) found interesting ex-
act periodic solutions of the GOY shell model without dissipation
and/or forcing terms. In their solutions the modulus of each com-
plex velocity variable is not constant in contrast with the above Kol-
mogorov solution.
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Fig. 4. Behaviors of velocity projected onto each shell (j = 7 (left), j = 8 (middle), j = 9 (right)) at N = 16, ν = 10−4. Thin and thick
lines represent turbulent solution (Chaos) and Kolmogorov solution (KSOL), respectively.
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Fig. 5. Period of the Kolmogorov solution at various νs.

Therefore the Kolmogorov solution realizes the picture of the
turbulence which the original theory of K41 predicted.

4.3 Intermittency solutions

A different type of periodic solutions from the fixed point and
the Kolmogorov solutions was found by Kato and Yamada
(2003) in the shell model. The time dependence of these so-
lutions is not so simple as the Kolmogorov ones, and some
projections of an orbit are shown in Fig.6 for ν = 0.00195,
N = 12. This solution is found also by Newton-Raphson-
Mees method (Mees 1981), but in this case the iteration pro-
cess has to be performed with the full time evolution in which
we have to pay much more attention to stronger instability at
higher wavenumber on the orbit than on the orbit of the Kol-
mogorov solutions.

The projections of the periodic orbits in Fig.6 is not circu-
lar but has non-uniform and complicated structures, meaning
that the behavior of the solution is quite intermittent tem-
porally, which leads us to call the solution the intermittency
solution. The orbit of the intermittency solution uint(t) is
not invariant to the action of the transformation Rφ. The
transformed orbit M ≡ {Rφuint(t)| 0 ≤ φ < 2π, 0 ≤ t <
Tperiod} constitutes a two-dimensional manifold in the phase
space. We see from Fig.6 that the intermittency solution ap-

pears to be within the chaos attractor and the manifold M
mostly covers the chaos attractor. This suggests that prop-
erties of the chaos attractor are at least partially reflected by
those of the intermittency solution.

We calculate the scaling exponent ζp along this intermit-
tency solution (Fig.7). Unfortunately it is not straightforward
to estimate ζp numerically because the scaling wavenumber
range is not wide enough as ν is not sufficiently small and
turbulence is not fully developed. Then we employ the ex-
tended self similarity (ESS) proposed in Benzi et al.(1993) to
estimate the values of ζp, normalizing the structure functions
by that of the third order. We show ζp thus obtained in Fig.7,
where we find a remarkable coincidence of ζps between the
turbulent (chaos) solution and the intermittency solution.

This coincidence means that the intermittency solution
gives an essential property of the shell model turbulence. In
addition, it is observed that the probability distribution func-
tion (pdf) of the velocity component uj of the chaos solution
is well approximated by that of the intermittency solution,
while the Kolmogorov solution fails in the approximation be-
cause of its constant modulus of uj . It is surprising that only
one UPO can give good approximation to the phase space
structure and statistical property of the turbulent (chaotic) be-
havior. But a further study, which will be reported elsewhere,
suggests that this is not so unusual.

Actually there are some studies of fluid turbulence from
viewpoints of UPOs in similar contexts. Kawahara and Kida
(2001) detected a UPO of Couette flow of Navier-Stokes tur-
bulence, and obtained a remarkable agreement of an aver-
aged velocity profile on the single UPO. The UPO shows a
series of typical events of Couette flow as well. Van Veen et
al. (2005) detected UPOs of high-symmetry isotropic flow
of Navier-Stokes turbulence and found that the energy dis-
sipation rate of one of the UPOs appears to converge to a
nonzero value as the Renolds number increases, suggesting
that the UPO corresponds to the isotropic turbulence of fluid
motion, and Kazantsez (2001) studied UPOs of geometric
fluid model. However, it should be noted that in all of these
studies Reynolds number is relatively low and the number of
detected orbits is small. Many problems on UPOs of fluid
and MHD turbulence are left to the future work.

Fig. 4. Behaviors of velocity projected onto each shell (j=7 (left), j=8 (middle),j=9 (right)) atN=16, ν=10−4. Thin and thick lines
represent turbulent solution (Chaos) and Kolmogorov solution (KSOL), respectively.

appears to be embedded in the chaotic attractors which are vi-
sualized by an orbit of a chaotic solution in Fig. 4. However,
the Kolmogorov solution shares only a small part with the
chaotic attractor, although the latter appears to spread around
the Kolmogorov solution. Note that the Kolmogorov solution
is invariant under the action ofRφ .

Figure 5 shows the dependence of the period of the or-
bit of the Kolmogorov solution upon the viscosity. We can
see that as the value ofν approaches up toν∗∼1.646×10−3,
the period increases rapidly, suggesting that the periodic so-
lution converges to the fixed point solutions which are dis-
tributed continuously as obtained under the action of the one-
parameter transformationRφ .

There is no spatial structure in GOY shell model, but
we can define thepth order structure functionSp by
Sp(kj )=<|uj |

p>, and the scaling exponentζp as to satisfy

Sp(kj )=Ck
−ζp

j whereC is a constant. The deviation of the
p-th order scaling exponentζp from p/3, the original K41
scaling, has been considered to characterize the intermittent
structure of turbulence. In the case of the Kolmogorov so-
lutions, which has the temporally constant modulus|uj | at
each wavenumberkj , the scaling exponentζp is found to
coincide withp/3, indicating that the Kolmogorov solution
has no intermittency. Therefore the Kolmogorov solution re-
alizes the picture of the turbulence which the original theory
of K41 predicted.

4.3 Intermittency solutions

A different type of periodic solutions from the fixed point and
the Kolmogorov solutions was found by Kato and Yamada
(2003) in the shell model. The time dependence of these so-
lutions is not so simple as the Kolmogorov ones, and some
projections of an orbit are shown in Fig. 6 forν=0.00195,
N=12. This solution is found also by Newton-Raphson-
Mees method (Mees 1981), but in this case the iteration pro-
cess has to be performed with the full time evolution in which
we have to pay much more attention to stronger instability at
higher wavenumber on the orbit than on the orbit of the Kol-
mogorov solutions.
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Fig. 4. Behaviors of velocity projected onto each shell (j = 7 (left), j = 8 (middle), j = 9 (right)) at N = 16, ν = 10−4. Thin and thick
lines represent turbulent solution (Chaos) and Kolmogorov solution (KSOL), respectively.
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Therefore the Kolmogorov solution realizes the picture of the
turbulence which the original theory of K41 predicted.

4.3 Intermittency solutions

A different type of periodic solutions from the fixed point and
the Kolmogorov solutions was found by Kato and Yamada
(2003) in the shell model. The time dependence of these so-
lutions is not so simple as the Kolmogorov ones, and some
projections of an orbit are shown in Fig.6 for ν = 0.00195,
N = 12. This solution is found also by Newton-Raphson-
Mees method (Mees 1981), but in this case the iteration pro-
cess has to be performed with the full time evolution in which
we have to pay much more attention to stronger instability at
higher wavenumber on the orbit than on the orbit of the Kol-
mogorov solutions.

The projections of the periodic orbits in Fig.6 is not circu-
lar but has non-uniform and complicated structures, meaning
that the behavior of the solution is quite intermittent tem-
porally, which leads us to call the solution the intermittency
solution. The orbit of the intermittency solution uint(t) is
not invariant to the action of the transformation Rφ. The
transformed orbit M ≡ {Rφuint(t)| 0 ≤ φ < 2π, 0 ≤ t <
Tperiod} constitutes a two-dimensional manifold in the phase
space. We see from Fig.6 that the intermittency solution ap-

pears to be within the chaos attractor and the manifold M
mostly covers the chaos attractor. This suggests that prop-
erties of the chaos attractor are at least partially reflected by
those of the intermittency solution.

We calculate the scaling exponent ζp along this intermit-
tency solution (Fig.7). Unfortunately it is not straightforward
to estimate ζp numerically because the scaling wavenumber
range is not wide enough as ν is not sufficiently small and
turbulence is not fully developed. Then we employ the ex-
tended self similarity (ESS) proposed in Benzi et al.(1993) to
estimate the values of ζp, normalizing the structure functions
by that of the third order. We show ζp thus obtained in Fig.7,
where we find a remarkable coincidence of ζps between the
turbulent (chaos) solution and the intermittency solution.

This coincidence means that the intermittency solution
gives an essential property of the shell model turbulence. In
addition, it is observed that the probability distribution func-
tion (pdf) of the velocity component uj of the chaos solution
is well approximated by that of the intermittency solution,
while the Kolmogorov solution fails in the approximation be-
cause of its constant modulus of uj . It is surprising that only
one UPO can give good approximation to the phase space
structure and statistical property of the turbulent (chaotic) be-
havior. But a further study, which will be reported elsewhere,
suggests that this is not so unusual.

Actually there are some studies of fluid turbulence from
viewpoints of UPOs in similar contexts. Kawahara and Kida
(2001) detected a UPO of Couette flow of Navier-Stokes tur-
bulence, and obtained a remarkable agreement of an aver-
aged velocity profile on the single UPO. The UPO shows a
series of typical events of Couette flow as well. Van Veen et
al. (2005) detected UPOs of high-symmetry isotropic flow
of Navier-Stokes turbulence and found that the energy dis-
sipation rate of one of the UPOs appears to converge to a
nonzero value as the Renolds number increases, suggesting
that the UPO corresponds to the isotropic turbulence of fluid
motion, and Kazantsez (2001) studied UPOs of geometric
fluid model. However, it should be noted that in all of these
studies Reynolds number is relatively low and the number of
detected orbits is small. Many problems on UPOs of fluid
and MHD turbulence are left to the future work.

Fig. 5. Period of the Kolmogorov solution at variousνs.

The projections of the periodic orbits in Fig. 6 is not circu-
lar but has non-uniform and complicated structures, meaning
that the behavior of the solution is quite intermittent tempo-
rally, which leads us to call the solution the “intermittency
solution”. The orbit of the intermittency solutionuint(t) is
not invariant to the action of the transformationRφ . The
transformed orbitM≡{Rφuint(t)| 0≤φ<2π, 0≤t<Tperiod}

constitutes a two-dimensional manifold in the phase space.
We see from Fig. 6 that the intermittency solution appears
to be within the chaos attractor and the manifoldM mostly
covers the chaos attractor. This suggests that properties of
the chaos attractor are at least partially reflected by those of
the intermittency solution.

We calculate the scaling exponentζp along this inter-
mittency solution (Fig. 7). Unfortunately it is not straight-
forward to estimateζp numerically because the scaling
wavenumber range is not wide enough asν is not sufficiently
small and turbulence is not fully developed. Then we em-
ploy the “extended self similarity” (ESS) proposed in Benzi
et al. (1993) to estimate the values ofζp, normalizing the
structure functions by that of the third order. We showζp

thus obtained in Fig. 7, where we find a remarkable coinci-
dence ofζps between the turbulent (chaos) solution and the
intermittency solution.
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Fig. 6. Behaviors of velocity of turbulent solution (upper) and intermittency solution (lower) projected onto each shell; j = 7 (left), j = 8
(middle), j = 9 (right) at N = 12, ν = 1.95 × 10−3.

Fig. 7. Scaling exponent ζp of the pth order structure function: This
is obtained by ESS fitting for the intermittency solution (squares)
and turbulent solution (circles). The error bars show the standard
deviations obtained from the method of the least squares. The dot-
ted line corresponds to K41 (ζp = p/3). Reprinted figure with
permission from Kato and Yamada (2002).

5 Conclusions

In this paper we review the shell model of fluid turbulence,
which shows statistical properties similar to real fluid tur-
bulence, from the viewpoint of the Lyapunov analysis and
unstable periodic orbits. In the shell model, the asymptotic
form of the Lyapunov spectrum in the inviscid limit is ob-
tained by Kolmogorov similarity argument using the obser-
vation that the corresponding Lyapunov vectors are localized
in wavenumber space. Therefore the localization is the key to

bridging between the traditional similarity arguments of Kol-
mogorov type and the chaos dynamics of turbulence. This
localization discussion is applied to the real 3D turbulence to
yield the density distribution function P (λ) of the Lyapunov
exponents as P (λ) ∼ λ7/2.

We also discussed UPOs embedded in the chaotic attractor
of the shell model turbulence. We found three kinds of UPOs.
One is the fixed point solution corresponding to a steady so-
lution with Kolmogorov spectrum of k−5/3. The second pe-
riodic solution (Kolmogorov solution) has also k−5/3 spec-
trum with the modulus of each complex velocity variable
being constant while the phase rotates at a constant angular
velocity. The scaling exponents of the structure function in
Kolmogorov solution obey faithfully the Kolmogorov scal-
ing law, ζp = p/3, in contrast with the turbulent solution in
which ζp deviates from p/3. In the third periodic solution
(intermittency solution), the solution orbit is not so simple
as the Kolmogorov solutions. The orbit consists of bursting
states together with laminar states, the latter of which takes
longer time than the former. The energy spectrum of the in-
termittency solution obeys k−5/3 law, and the scaling expo-
nents of the structure function show a clear deviation from
p/3 as the turbulent solution. Moreover, the scaling expo-
nents ζp remarkably coincide with that of the turbulent solu-
tion, suggesting that the intermittency solution is a skeleton
of the chaotic attractor. It should be remarked that the set of
the intermittency solutions generated by a continuous trans-
formation due to a rotational invariance of the equation of
motion, almost covers the chaotic attractor in phase space.

It is still an open problem why a single periodic orbit,
corresponding to the intermittency solution, can capture the
chaotic properties of the chaos solutions. Research on this

Fig. 6. Behaviors of velocity of turbulent solution (upper) and intermittency solution (lower) projected onto each shell;j=7 (left), j=8
(middle),j=9 (right) atN=12,ν=1.95×10−3.
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Fig. 6. Behaviors of velocity of turbulent solution (upper) and intermittency solution (lower) projected onto each shell; j = 7 (left), j = 8
(middle), j = 9 (right) at N = 12, ν = 1.95 × 10−3.

Fig. 7. Scaling exponent ζp of the pth order structure function: This
is obtained by ESS fitting for the intermittency solution (squares)
and turbulent solution (circles). The error bars show the standard
deviations obtained from the method of the least squares. The dot-
ted line corresponds to K41 (ζp = p/3). Reprinted figure with
permission from Kato and Yamada (2002).

5 Conclusions

In this paper we review the shell model of fluid turbulence,
which shows statistical properties similar to real fluid tur-
bulence, from the viewpoint of the Lyapunov analysis and
unstable periodic orbits. In the shell model, the asymptotic
form of the Lyapunov spectrum in the inviscid limit is ob-
tained by Kolmogorov similarity argument using the obser-
vation that the corresponding Lyapunov vectors are localized
in wavenumber space. Therefore the localization is the key to

bridging between the traditional similarity arguments of Kol-
mogorov type and the chaos dynamics of turbulence. This
localization discussion is applied to the real 3D turbulence to
yield the density distribution function P (λ) of the Lyapunov
exponents as P (λ) ∼ λ7/2.

We also discussed UPOs embedded in the chaotic attractor
of the shell model turbulence. We found three kinds of UPOs.
One is the fixed point solution corresponding to a steady so-
lution with Kolmogorov spectrum of k−5/3. The second pe-
riodic solution (Kolmogorov solution) has also k−5/3 spec-
trum with the modulus of each complex velocity variable
being constant while the phase rotates at a constant angular
velocity. The scaling exponents of the structure function in
Kolmogorov solution obey faithfully the Kolmogorov scal-
ing law, ζp = p/3, in contrast with the turbulent solution in
which ζp deviates from p/3. In the third periodic solution
(intermittency solution), the solution orbit is not so simple
as the Kolmogorov solutions. The orbit consists of bursting
states together with laminar states, the latter of which takes
longer time than the former. The energy spectrum of the in-
termittency solution obeys k−5/3 law, and the scaling expo-
nents of the structure function show a clear deviation from
p/3 as the turbulent solution. Moreover, the scaling expo-
nents ζp remarkably coincide with that of the turbulent solu-
tion, suggesting that the intermittency solution is a skeleton
of the chaotic attractor. It should be remarked that the set of
the intermittency solutions generated by a continuous trans-
formation due to a rotational invariance of the equation of
motion, almost covers the chaotic attractor in phase space.

It is still an open problem why a single periodic orbit,
corresponding to the intermittency solution, can capture the
chaotic properties of the chaos solutions. Research on this

Fig. 7. Scaling exponentζp of thepth order structure function: This
is obtained by ESS fitting for the intermittency solution (squares)
and turbulent solution (circles). The error bars show the standard
deviations obtained from the method of the least squares. The dot-
ted line corresponds to K41 (ζp=p/3). Reprinted figure with per-
mission from Kato and Yamada (2002).

This coincidence means that the intermittency solution
gives an essential property of the shell model turbulence. In
addition, it is observed that the probability distribution func-
tion (pdf) of the velocity componentuj of the chaos solution
is well approximated by that of the intermittency solution,
while the Kolmogorov solution fails in the approximation be-
cause of its constant modulus ofuj . It is surprising that only
one UPO can give good approximation to the phase space
structure and statistical property of the turbulent (chaotic) be-

havior. But a further study, which will be reported elsewhere,
suggests that this is not so unusual.

Actually there are some studies of fluid turbulence from
viewpoints of UPOs in similar contexts. Kawahara and Kida
(2001) detected a UPO of Couette flow of Navier-Stokes tur-
bulence, and obtained a remarkable agreement of an aver-
aged velocity profile on the single UPO. The UPO shows a
series of typical events of Couette flow as well. Van Veen
et al. (2005) detected UPOs of high-symmetry isotropic flow
of Navier-Stokes turbulence and found that the energy dis-
sipation rate of one of the UPOs appears to converge to a
nonzero value as the Renolds number increases, suggesting
that the UPO corresponds to the isotropic turbulence of fluid
motion, and Kazantsez (2001) studied UPOs of geometric
fluid model. However, it should be noted that in all of these
studies Reynolds number is relatively low and the number of
detected orbits is small. Many problems on UPOs of fluid
and MHD turbulence are left to the future work.

5 Conclusions

In this paper we review the shell model of fluid turbulence,
which shows statistical properties similar to real fluid tur-
bulence, from the viewpoint of the Lyapunov analysis and
unstable periodic orbits. In the shell model, the asymptotic
form of the Lyapunov spectrum in the inviscid limit is ob-
tained by Kolmogorov similarity argument using the obser-
vation that the corresponding Lyapunov vectors are local-
ized in wavenumber space. Therefore the localization is the
key to bridging between the traditional similarity arguments
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of Kolmogorov type and the chaos dynamics of turbulence.
This localization discussion is applied to the real 3-D turbu-
lence to yield the density distribution functionP(λ) of the
Lyapunov exponents asP(λ)∼λ7/2.

We also discussed UPOs embedded in the chaotic attractor
of the shell model turbulence. We found three kinds of UPOs.
One is the fixed point solution corresponding to a steady so-
lution with Kolmogorov spectrum ofk−5/3. The second pe-
riodic solution (Kolmogorov solution) has alsok−5/3 spec-
trum with the modulus of each complex velocity variable
being constant while the phase rotates at a constant angular
velocity. The scaling exponents of the structure function in
Kolmogorov solution obey faithfully the Kolmogorov scal-
ing law, ζp=p/3, in contrast with the turbulent solution in
which ζp deviates fromp/3. In the third periodic solution
(intermittency solution), the solution orbit is not so simple
as the Kolmogorov solutions. The orbit consists of bursting
states together with laminar states, the latter of which takes
longer time than the former. The energy spectrum of the in-
termittency solution obeysk−5/3 law, and the scaling expo-
nents of the structure function show a clear deviation from
p/3 as the turbulent solution. Moreover, the scaling expo-
nentsζp remarkably coincide with that of the turbulent solu-
tion, suggesting that the intermittency solution is a skeleton
of the chaotic attractor. It should be remarked that the set of
the intermittency solutions generated by a continuous trans-
formation due to a rotational invariance of the equation of
motion, almost covers the chaotic attractor in phase space.

It is still an open problem why a single periodic orbit,
corresponding to the intermittency solution, can capture the
chaotic properties of the chaos solutions. Research on this
subject is now on progress and will be reported elsewhere.
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