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Abstract. An infinite number of unstable periodic orbits
(UPOs) are embedded in a chaotic system which models
some complex phenomenon. Several algorithms which ex-
tract UPOs numerically from continuous-time chaotic sys-
tems have been proposed. In this article the damped Newton-
Raphson-Mees algorithm is reviewed, and some important
techniques and remarks concerning the practical numerical
computations are exemplified by employing the Lorenz sys-
tem.

1 Introduction

Complex phenomena concerning geophysics, space physics
and fluid dynamics are often described by chaotic dynamical
systems with continuous time. An infinite number of un-
stable periodic orbits (UPOs) embedded in a chaotic system
play important roles in characterizing and analyzing the sys-
tem. In some continuous-time chaotic systems, several UPOs
are numerically found. For example, Kazantsev (1998, 2001)
detected UPOs of a barotropic ocean model, and discussed
sensitivity of the attractor of the model to external influ-
ences by using them. Rempel and Chian (2005) and Chian,
Kamide, Rempel and Santana (2006) discussed Alfven inter-
mittency in space plasma dynamics through UPOs. Kawa-
hara and Kida (2001), Kato and Yamada (2003), van Veen,
Kawahara and Kida (2005) extracted UPOs in fluid dynamics
models and showed that they characterize turbulence prop-
erties. However, even numerically, it is not easy to detect
many UPOs from a continuous-time chaotic system, because
they cannot be found by the forward time integration of the
system. Then studies on numerical methods and techniques
of identifying UPOs are important, and several numerical
algorithms have been proposed so far. The most popular
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algorithm of finding UPOs is the Newton-Raphson method
with a Poincaŕe section, which reduces a continuous dynam-
ical system to a discrete system. Another method is to de-
tect a UPO by stabilizing the periodic orbit in the sense of
chaos control (Pyragas, 1992)1. Kazantsev (1998) devel-
ops a method which requires similar techniques to data as-
similation, and there is also a variational method (Lan and
Cvitanovíc, 2004). However, in this paper, we focus our at-
tention to the Newton-Raphson-Mees method (Mees, 1981;
Parker and Chua, 1989) with a damping coefficient, where
we do not need to have trouble of choosing the appropriate
Poincaŕe section.

When this algorithm is employed at the practical numeri-
cal computation for the purpose of detecting many UPOs, it
is necessary to select the suitable damping coefficient. The
coefficient is taken to distill the actual error of the initial
guess from the targeted UPO in each iteration of the Newton-
Raphson-Mees algorithm. There is the best coefficient for
detecting each UPO effectively. If the employed damping
coefficient is weaker than the best value, the UPO cannot be
found. And if the employed damping coefficient is stronger,
it takes much time to converge to the UPO. In this paper we
discuss the damping coefficient in detail in relation to the sta-
bility exponent and the period, by taking the Lorenz system
as an example.

A periodic orbit numerically detected by this algorithm is
numerically valid in the sense that the trajectory of a point
close to the periodic orbit remains close to the orbit for a
whole period. It is also confirmed in this article that this
algorithm can detect UPOs which are outside the attractor in
addition to UPOs embedded in the attractor.

1For the H́enon map, there is an excellent method of detecting
UPOs by identifying stable periodic orbits of the dual system (Bi-
ham and Wenzel, 1989), though its mathematical aspects are not
well understood.
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2 Algorithm for detecting UPOs

2.1 Algorithm

The Newton-Raphson-Mees algorithm for detecting UPOs of
then-dimensional ordinary differential equations

dx
dt

= F(x), x ∈ Rn (Cn) (1)

is described (Parker and Chua(1989)).{φt (x)}t∈R denotes
the orbit passing throughx (x∈Rn (Cn)) at t=0. The
periodic orbit of the system is determined by the zeros
(x, t)=(X, T ) (T >0) of

H(x, t) := φt (x) − x, (2)

whereX is one point on the periodic orbit andT is the pe-
riod. The normal Newton-Raphson algorithm does not work
directly for solving this problem, because

H(x, t) = 0 (3)

hasn equations withn+1 unknowns: then components of
X on the periodic orbit and the periodT . The numerical
algorithm is as follows. LinearizingH(x, t), we obtain

1H(x, t) = DxH(x, t)1x + DtH(x, t)1t (4)

= {8t (x) − I }1x + F(φt (x))1t, (5)

whereDxH and DtH indicate the variations ofH about
x and t , respectively. Moreover,8t (x) is n×n matrix and
represents the variation ofφt (x) aboutx, andI is then×n

unit matrix. 1x and 1t are determined so as to satisfy
H(x, t)+1H(x, t)=0, namely

{8t (x) − I }1x + F(φt (x))1t = −H(x, t). (6)

Since this hasn constraints withn+1 unknowns,1x and1t

are not determined uniquely. Then one additional constraint
is required in order to obtain a unique solution of the system.
The constraint proposed by Mees (1981) is that the correction
vector1x is to be orthogonalized to the orbit, i.e.,

< F(x), 1x >= 0. (7)

We can detect periodic orbits by iterating the procedure (6)
and (7) several times. That is, under an appropriate initial
guess(x, t)=(X(i), T (i)), we solve the equation about1X(i)

and1T (i),(
8T (i)(X(i)) − I F (φT (i)(X(i)))

F (X(i))t 0

) (
1X(i)

1T (i)

)
(8)

=

(
X(i)

− φT (i)(X(i))

0

)
, (9)

and modify the initial guess as

(X(i+1), T (i+1)) = (X(i), T (i)) + 2−m(1X(i), 1T (i)), (10)

where superscripts are added to indicate the iteration count
denoted byi (i∈N), 2−m is the damping coefficient, and
m (m∈N) the damping parameter.

2.2 Convergence criterion

We consider two sorts of errors in iterating the above algo-
rithm:

err(i)prac := |H(X(i), T (i))| = |φT (i)(X(i)) − X(i)
|, (11)

err(i)mod := |(1X(i), 1T (i))|. (12)

The former is a practical error at thei-th iteration which
is the distance between the initial pointX(i) and the point
φT (i)(X(i)). The latter is the absolute value of the modified
vector(1X(i), 1T (i)). We consider an unstable periodic or-
bit to be numerically detected if both errors are sufficiently
small at thei-th iteration. In this case,X(i) is considered a
point on the UPO andT (i), its period. The errors are regarded
as sufficiently small if

err(i)prac � 1, err(i)mod � 1. (13)

It is obvious from the criteria of the convergence of the al-
gorithm that we cannot obtain UPOs which does not satisfy
the conditioneλT

�1, whereλ is the Floquet exponent and
T is the period. Note that the terms “converge” and “conver-
gence” in this paper are used in the numerical sense discussed
above.

2.3 Initial guess

Before iterating the algorithm, it is necessary to give the ini-
tial guess(X(0), T (0)). For the convergence of the algorithm
it is very important to give an appropriate initial guess. We
randomly chooseX(0) on the numerically calculated chaotic
orbits, and giveT (0) randomly. This is for the purpose of
detecting various types of UPOs.

3 UPOs embedded in the chaotic attractor of the Lorenz
system

For examining practical aspects of numerical computa-
tions of the Newton-Raphson-Mees method, we employ the
Lorenz system (Lorenz, 1963; Sparrow, 1982):

dx

dt
= σ(y − x),

dy

dt
= rx − y − xz,

dz

dt
= xy − bz (14)

(σ=10, b=8/3, r=28)2 as an example of continuous-time
chaotic systems. The system has a reflection symmetry
with respect to x→−x, y→−y, z→z and fixed points
(x∗, y∗, z∗)=(0, 0, 0), (±

√
b(r−1), ±

√
b(r−1), r−1)(r≥1).

The classical Lorenz system includes an infinite number of
UPOs, which are densely distributed in the chaotic attractor
(Tucker, 1999, 2001). There are several studies on UPOs of
the Lorenz system. For example, Eckhardt and Ott (1994)
and Wiklund and Elgin (1996) studied the zeta function,

2r is set as 23 in Sect. 4.
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Fig. 1. Time series (left) ofx variable and projections (right) of
detected UPOs with PERIOD4 (T =3.023583 (top), 3.023583 (mid-
dle), 3.084276 (center)) (The top and the middle UPOs are identifi-
able based on the reflection symmetry).

the Hausdorff dimension andf (α) spectrum. Franceschini,
Giberti and Zheng (1993) and Vithwanath (2003, 2004)
detected UPOs in a systematic way and suggested that all
the UPOs are labeled by a sequence of symbols, while Zoldi
(1998) examined statistical properties of the Lorenz system
at both classical and non-classical parameter values.

3.1 Detected UPOs

More than 1000 UPOs are extracted numerically from the
chaotic attractor of the classical Lorenz system. Time series
and projections of three UPOs are shown in Fig.1. Here
we briefly see some properties about UPOs of the system.
It should be noted here that two types of period are used
for each periodic orbit. One is the normal real number pe-
riod (periodT ), and the other is the integer period (PERIOD
NT ), which is the period of the Poincaré map whose Poincaré
plane isz=27, and corresponds to the number of rotations
around the two symmetric singular points.

3.1.1 Number of UPOs

We count the number of UPOs by the PERIOD and find the
clear exponential growth of the number of UPOs (Fig.2).
Variations of periodic orbits indicate the topological com-
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Fig. 2. Number of detected UPOs with PERIODNT (Straight line
is 1.8NT multiplied by the constant)

 5

 10

 15

 20

 25

 30

 35

 40

 45

-20 -15 -10 -5  0  5  10  15  20

z

x (=y)

Chaos

 5

 10

 15

 20

 25

 30

 35

 40

 45

-20 -15 -10 -5  0  5  10  15  20

z

x (=y)

UPOs

Fig. 3. Poincaŕe points onxz-plane atx=y of chaotic orbits (left)
and UPOs (right).

plexity of the system, and are closely related with the topo-
logical entropy (Bowen, 1970). If we find the growth rate of
the number of UPOs by covering all or almost all UPOs with
low periods, we can estimate the topological complexity of
the system.

3.1.2 Set of UPOs and chaotic attractor

UPOs are densely embedded in a chaotic attractor of the clas-
sical Lorenz system (Tucker, 1999, 2002). In fact we can
confirm the “complete” correspondence between Poincaré
points of chaotic orbits and those of UPOs onxz-plane at
x=y in Fig. 3. This correspondence is common in chaotic
systems and explains why typical dynamical properties along
chaotic orbits can be captured by using dynamics along
UPOs detected numerically (Kawahara and Kida, 2001; Kato
and Yamada, 2003; Ishiyama and Saiki, 2005; Saiki and
Ishiyama, 20073).

3.2 Practical numerical computations for detecting UPOs

3.2.1 Damping coefficient associated with Floquet expo-
nent and period of UPOs

The importance of damping coefficients for finding many
UPOs by the convergence method like the Newton-Raphson

3Saiki, Y. and Ishiyama, K.: Unstable periodic orbits as the
skeleton of a chaotic oscillator, Business cycles, in preparation,
2007.
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Fig. 4. Floquet exponent of each UPO with periodT (the Floquet
exponents of UPOs with PERIODN are on the same “straight line”)
(left), Required damping parameterm for detecting each UPO with
periodT (straight line indicates 1.4427 T. The damping parameter
needed to detect a UPO tends to increase as the period increases)
(right).

method has already been pointed out by Zoldi and Greenside
(1998). In fact we can detect only a few UPOs, when we
do not employ damping coefficients. But as far as we know,
there are no discussions about how to decide the damping
coefficient for the appropriate detection of UPOs.

We propose from a simple consideration of the algorithm
that the damping parameterm be selected according to the
stability exponentλ (Floquet exponent) and the periodT of a
periodic orbit of the dynamical system. If the distance from
the periodic orbit to the initial guess(X(i), T (i)) at thei-th
iteration in the Newton-Raphson-Mees algorithm isδ(�1),
this error grows to aboutδeλT (i)

at timeT (i) by the expo-
nential instability of the system. The damping coefficient is
adopted to distill the genuine error of the initial point from
the nearest point on a UPO in each iteration. Then the ap-
propriate value of the damping coefficient is thought of as
1/eλT (i)

from the above physical consideration. Then the
damping parameterm in Eq. (10) should be chosen as

m ≈ λT (i)/ log 2 ≈ 1.4427λT (i). (15)

It should be noted that this damping coefficient is essen-
tially different from that often used in the Newton-Raphson
method adopted to find the solution of a normal algebraic
equation.

The approximate period of the periodic orbit to be de-
tected is known in advance, but the stability exponent such
as Floquet exponent (Chicone, 2006) is unknown. Hence it is
necessary to try some damping coefficients according to the
given initial guess for the detection of each targeted UPO.
Figure4 (left) shows the Floquet exponent of each UPO with
periodT detected numerically. The exponent is determined
through calculating the Floquet multiplier (maximal eigen-
value) of the UPO of the corresponding Poincaré map. We
can find that the upper bound of the Floquet exponent of UPO
with PERIODN nearly equals to 1, which is independent of
N . Figure4 (right) shows the required (lower limit of) damp-
ing parameterm∗ to detect each UPO with periodT by the
damping Newton-Raphson-Mees method.m∗ for each UPO
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Fig. 5. Practical error at thei-th step (err(i)prac) in the converging
process to each UPO (T =1.55865 (left), 4.41777 (right)) for vari-
ous damping parametersm(m=0, 1, 2, 3, 4) (m should be chosen to
be more than 2 for identifying the latter UPO).

is identified by trying some computations for convergence of
the damped Newton-Raphson-Mees method with the same
initial guess at different values ofm∈Z. From the figure we
can confirm that the required damping parameterm∗ for de-
tecting a UPO with periodT tends to increase asT increases.
The result is consistent with the estimation (Eq. 15), which
indicates the linear dependence of the required damping pa-
rameter on the period if the Floquet exponentλ is fixed, and
the slope is estimated to be about 1.4427λ. Note that rig-
orously speaking the required damping parameterm(=m∗)

for converging to each UPO depends on the initial condition
nearby the orbit. Required damping parameterm∗ for detect-
ing even the same UPO depends on the initial guess, but the
difference is usually at most one from our experiences.

3.2.2 Number of steps required for convergence to UPOs

We consider the number of steps required to converge to
UPOs. The number of steps in the Newton-Raphson-Mees
algorithm before identifying a UPO is much bigger than
our expectation, even if we choose the appropriate damping
parameterm(=m∗)(∈N), which is the lowest damping pa-
rameter for convergence in the algorithm. Figure5 shows
the practical error ati-th iteration err(i)prac of the Newton-
Raphson-Mees algorithm with the damping parameterm for
two UPOs (T =1.55865, 4.41777). The latter UPO is an ex-
ample of UPOs which we cannot extract when we do not
adopt the idea of damping coefficients. When we choosem

as a damping parameter, the number of steps required to con-
verge to each UPO is about 2m−m∗

times as many as that
when we choosem∗ which is the lowest damping parameter
for convergence. The targeted UPO cannot be identified, if
we choosem(≤m∗

−1) as a damping parameter.

3.3 Validity of numerically detected UPOs

Here we discuss the numerical validity of a UPO identified
by the Newton-Raphson-Mees method. Figure6 shows the
error of the period of a detected UPO from the “genuine” pe-
riod (errT =|T (dt) −T0|), where dt is the time step of a dis-
cretization in the integration by the 4th order Runge-Kutta

Nonlin. Processes Geophys., 14, 615–620, 2007 www.nonlin-processes-geophys.net/14/615/2007/
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of the integration by the Runge-Kutta method ,T0 is the “genuine”
period which is estimated from the computation with the quadruple-
precision arithmetic with a sufficiently small time step.

method, and the “genuine” period is estimated from the nu-
merically robust period, as long as the time steps are suffi-
ciently small. In this case, the numerical accuracy of the pe-
riod of the UPO isO(10−15), as our computation is in double
precision.

The error errT is proportional to (dt)4 for the range
(0.0001<dt<0.01), which is consistent with the fact that we
use the 4th order Runge-Kutta method. This supports the va-
lidity of the numerical computation of the UPO. Note that the
property is not satisfied at dt<0.0001 in the case of double-
precision arithmetic because of the round off error.

4 UPOs outside of the attractor of Lorenz system

Some studies on chaotic saddles (Nusse and Yorke, 1989) of
dynamical systems have been done so far. Recently chaotic
saddles of the complex system described by a PDE, which
generates spatio-temporal chaotic behavior, also have been
found by Rempel and Chian (2007). However, chaotic sad-
dles are usually identified not by UPOs but by indirect meth-
ods, the sprinkler (Kantz and Grassberger, 1985; Hsu et al.,
1988) or the PIM triple method (Nusse and Yorke, 1989).
Here we detect chaotic saddles of the Lorenz system (r=23)
by extracting UPOs directly.

It should be noted that the attracting sets of the Lorenz
system withr=23 are composed of two fixed points. Be-
fore reaching the attractor, the orbits from most initial condi-
tions behave chaotically. And an infinite number of UPOs are
embedded in the nonattracting chaotic set (chaotic saddles),
which is thought to be responsible for chaotic transient dy-
namics. We show the projections of chaotic transients before
reaching to the attractor and the set of numerically detected
UPOs. In fact we can see the close similarity between chaotic
transient behavior and the set of UPOs from the Poincaré
points ofxz-plane atx=y in Fig. 7. We should remark that
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Fig. 7. Poincaŕe points onxz-plane atx=y of chaotic transient
behaviors (left) and UPOs (right) atr=23.

initial guesses should be chosen nearby the numerically cal-
culated chaotic behavior in detecting UPOs.

5 Conclusions

The Newton-Raphson-Mees method with a damping coef-
ficient, which can detect a lot of unstable periodic orbits
(UPOs) of a chaotic system of continuous-time, is reviewed
with the detailed procedures and remarks on numerical com-
putation by taking the Lorenz system as an example. We con-
sider how to choose the appropriate damping coefficient and
find that it can be determined by the Floquet exponent and
the period of each UPO for extracting various types of many
UPOs effectively. The numerical validity of periodic orbits
detected by the Newton-Raphson-Mees method is confirmed
in relation to the error which depends on the time step in dis-
cretization. It is also exemplified that many UPOs outside
the attractor, which form chaotic saddles, can be detected in
addition to UPOs embedded in the attractor by employing
the method. This suggests that the method is valid not only
for analyzing the chaotic attractor but for the nonattracting
chaotic set (chaotic transient) through detecting various sorts
of UPOs.

One of the greatest advantage of the Newton-Raphson-
Mees method is that we do not have trouble with choosing
the appropriate Poincaré plane which crosses orbits of the
system. Another advantage is that a UPO detected by this
method is the numerically robust orbit. A disadvantage is
that the sorts of UPOs which can be detected by this method
are limited by the instability and the period of UPOs and the
numerical accuracy, which is, however, related to the former
advantage. This is a very difficult but an inevitable prob-
lem to be solved for building better algorithm. Moreover, for
moving on to the next stage, we have to establish criteria for
distinguishing or identifying numerical detected close UPOs
automatically.
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