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Abstract. A new methodology is proposed to estimate and
account for systematic model error in linear filtering as well
as in nonlinear ensemble based filtering. Our results extend
the work ofDee and Todling(2000) on constant bias errors
to time-varying model errors. In contrast to existing method-
ologies, the new filter can also deal with the case where no
dynamical model for the systematic error is available. In the
latter case, the applicability is limited by a matrix rank con-
dition which has to be satisfied in order for the filter to exist.

The performance of the filter developed in this paper is
limited by the availability and the accuracy of observations
and by the variance of the stochastic model error compo-
nent. The effect of these aspects on the estimation accu-
racy is investigated in several numerical experiments using
theLorenz(1996) model. Experimental results indicate that
the availability of a dynamical model for the systematic er-
ror significantly reduces the variance of the model error esti-
mates, but has only minor effect on the estimates of the sys-
tem state. The filter is able to estimate additive model error
of any type, provided that the rank condition is satisfied and
that the stochastic errors and measurement errors are signifi-
cantly smaller than the systematic errors. The results of this
study are encouraging. However, it remains to be seen how
the filter performs in more realistic applications.

1 Introduction

Error in environmental forecasting is mainly due to two
causes: inaccurate initial conditions and deficiencies in the
model. Much of attention has focused on reducing the ef-
fect of the first cause. Several suboptimal filters have been
developed to assimilate measurements into large-scale mod-
els in order to come up with a more accurate estimate of the
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initial condition. The ensemble Kalman filter (EnKF), intro-
duced byEvensen(1994), has gained particular popularity
for environmental state estimation thanks to its ease of imple-
mentation and its robustness against filter divergence. Nowa-
days, the number of data assimilation applications involving
the EnKF is numerous, see (Evensen, 1994; Houtekamer and
Mitchell, 2001; Reichle et al., 2002; Evensen, 2003) and the
references therein.

However, apart from stochastic model uncertainties, the
EnKF is based on a perfect model assumptions. It is thus not
able to deal with deficiencies in the model, which may play a
major role in environmental forecasting (Orrell et al., 2001).
A number of authors have addressed this lack of the EnKF.
The effect of systematic model errors on the estimation ac-
curacy is investigated in (Mitchell and Houtekamer, 2002)
and (Reichle et al., 2002). In (Mitchell and Houtekamer,
2002; Heemink et al., 2001), an ad hoc method is used to ac-
count for systematic errors by treating the errors like random
white noise with prescribed error covariance matrix. Another
heuristic technique is covariance inflation (Anderson and An-
derson, 1999), where the spread of the ensemble is artifi-
cially enlarged to make the filter more robust against model
errors. Although both methods are successfully used in prac-
tice, they do not make use of the observations which con-
tain information about the model error. Furthermore, none of
both methods is able to yield estimates of the model error.

A commonly used method to estimate and deal with model
error in Kalman filtering, is to augment the state vector with
the model error vector and then design a Kalman filter for the
augmented model. To reduce the computational load of the
augmented state filter,Friedland(1969) proposed the two-
stage filter, where the estimation of the state and the model
error are separated. An efficient suboptimal variation of the
two-stage filter was first applied in the data assimilation com-
munity byDee and Da Silva(1998); Dee and Todling(2000)
to estimate constant bias errors in numerical weather predic-
tion. The state augmentation method has been successfully
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used for estimating systematic model error in ensemble based
data assimilation as well as in variational data assimilation
(Zupanski, 1997; Griffith and Nichols, 2000; Martin et al.,
2002; Zupanski and Zupanski, 2006). The method has the
advantage of being very flexible and being able to incorpo-
rate different types of prior knowledge about the model er-
ror into the assimilation procedure. However, the fact that a
model which describes the dynamical evolution of the error
must be available, limits the applicability of the method.

There are types of model error of which the dynamics are
not known, for example certain types of time-varying bias
errors, errors due to unresolved scales, discretization errors,
unmodeled dynamics and unknown disturbances. In these
cases, the state augmentation method can not be used.

Like (Dee and Da Silva, 1998; Dee and Todling, 2000),
this paper addresses the problem of additive model error es-
timation and correction in data assimilation. Based on the
optimal linear filters ofKitanidis (1987); Gillijns and De
Moor (2007), we develop a rigorous and efficient method to
deal with systematic model error in linear filtering as well as
in nonlinear ensemble based filtering. In case a dynamical
model for the systematic error is available, our results extend
the work ofDee and Todling(2000) to time-varying model
error. More precisely, using the same approximation, we de-
velop a suboptimal but efficient filter where the estimation
of the time-varying model error and the state are intercon-
nected. However, provided that a certain matrix rank condi-
tion is satisfied, our method can also deal with the case where
no dynamical model for the systematic error is available.

The performance of the filter developed in this paper is
limited by the availability and the accuracy of observations
and by the variance of the stochastic model error component.
The effect of these aspects on the estimation accuracy is in-
vestigated in several numerical experiments using theLorenz
(1996) model. Due to the limitations, the method can in prac-
tice not be used to correct the entire state vector for all types
of errors described above. However, it can be used to ob-
tain, possibly for a limited number of state variables, an idea
about the additive effect of the model error affecting these
state variables, which is especially useful if the dynamics of
the error are unknown. These estimates might give insight
into the dynamics of the error, which might lead to a re-
finement of the simulation model or to the development of
a “model error model” which can then be incorporated into
the assimilation procedure.

This paper is outlined as follows. In the next section, we
formulate the problem considered in this paper in more de-
tail. In Sect.3, we develop two linear filters which can deal
with systematic model error. The first filter is based on the
results ofKitanidis (1987); Gillijns and De Moor(2007) and
assumes that no dynamical model for the error is available.
The second filter is obtained by incorporating prior knowl-
edge about the model error in the first filter and has a close
connection to the result ofDee and Todling(2000). These
filters are extended to the framework of nonlinear ensemble

based filtering in Sect.4. In Sect.5, we discuss the relation
between our filters, the state augmentation method and the
filter of Dee and Todling(2000). Finally, in Sect.6, we con-
sider several numerical examples using the Lorenz model.

2 Problem formulation

Consider the nonlinear discrete-time model

xk+1 = Fk(xk, uk), (1)

wherexk∈Rn is the state vector,uk∈Rl is a known external
forcing term and the operatorFk(·) maps the state vector at
time instantk to time instantk + 1. Assume that the model
operatorFk(·) is subject to both additive stochastic model
error and systematic model error. The stochastic component
is denoted bywk∈Rn and is assumed zero-mean white with
covariance matrixQk=E[wkw

T
k ]. Furthermore, assume that

the errorneous equations ofFk(·) are known. This type of
prior knowledge about the systematic model error may be
represented by a matrixGk∈Rn×m, wherem is the number
of independent errors. For example, a binary matrix can be
used, where thei-th row contains a 1 if thei-th equation
of the operatorFk(·) is errorneous. If thei-th and thej -th
equation of the operatorFk(·) are subject to the same error,
then thei-th and thej -th row of Gk contain a 1 in the same
column. Under these assumptions on the stochastic and the
systematic model errors, there exists a vectordk∈Rm such
that the state of the true system at time instantk+1 is given
by

xk+1 = Fk(xk, uk) + Gkdk + wk, (2)

wherexk is the true system state at time instantk. The vector
dk, which will be called themodel error vectoror simply
model error, is in general a nonlinear function ofxk−1 and
dk−1, that is,

dk+1 = Hk(dk, xk). (3)

In previous work on data assimilation in the presence of sys-
tematic model errors, it was always assumed that the operator
Hk(·) is known. In this paper, we will also consider the case
whereHk(·) is unknown.

We assume that noisy measurementsyk∈Rp are available,
related to the system statexk by

yk = Ckxk + vk, (4)

where vk∈Rp, assumed to be uncorrelated towk, is a
zero-mean white random vector with covariance matrix
Rk=E[vkv

T
k ]. The measurements are assumed not to be sub-

ject to systematic errors.
The first objective of this paper is to develop linear recur-

sive filters which estimate both the model errordk and the
system statexk from the observationsyk in case the opera-
tor Fk(·) is linear. We will consider the caseHk(·) known as
well as the caseHk(·) unknown. This objective is addressed
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in Sect.3. The second objective of the paper is to extend the
linear filters to the framework of nonlinear ensemble based
filtering. This objective is addressed in Sect.4.

3 Linear filtering in the presence of model error

In case the model operatorFk(·) is linear, the dynamics of
the true system (2) can be written as

xk+1 = Akxk + Bkuk + Gkdk + wk. (5)

In Sect.3.1, we investigate what happens ifdk is neglected
and the Kalman filter is used to estimate the state vectorxk.

Next, in Sect.3.2, we discuss the filters ofKitanidis (1987);
Gillijns and De Moor(2007) which take the model error into
account and yield optimal estimates ofxk under the assump-
tion thatHk(·) is unknown. Finally, in Sect.3.3, we show
how the knowledge of the operatorHk(·) can be incorporated
in the filter ofGillijns and De Moor(2007).

3.1 The flaws of the Kalman filter

Assume that we neglect the model errordk and apply the
Kalman filter to estimate the state of system (5). The result-
ing filter equations are then given by,

x̂f
k = Ak−1x̂

a
k−1 + Bk−1uk−1, (6)

x̂a
k = x̂f

k + K k(yk − Ckx̂
f
k), (7)

wherex̂f
k denotes the estimate ofxk given measurements up

to time instantk−1 andx̂a
k denotes the estimate ofxk given

measurements up to time instantk. The Kalman gainK k is
given by

K k = Pf
kCT

k (CkPf
kCT

k + Rk)
−1, (8)

wherePf
k is updated by

Pf
k = Ak−1Pa

k−1AT
k−1 + Qk−1, (9)

Pa
k = (I − K kCk)Pf

k. (10)

Let x̂a
k−1 be unbiased, then it follows from (6) that x̂f

k is
biased because the model error is neglected. Furthermore, it
follows from (7) that for the choice ofK k given by (8), also
the updated state estimatex̂a

k is biased. The optimal linear
analysis is thus not given by the Kalman filter update.

3.2 An extension of the Kalman filter

Kitanidis (1987) developed a filter for the system (5) which
can deal withHk(·) unknown and actually is optimal only if
Hk(·) is unknown. His filter takes the form (6)–(7) of the
Kalman filter. However, the optimal gain matrix is not given
by (8) but is obtained by minimizing the variance ofx̂a

k un-
der an unbiasedness condition. The result of Kitanidis was
extended in (Gillijns and De Moor, 2007), where a new de-
sign method for the filter was given and where it was shown

that optimal estimates ofdk−1 can be obtained from the in-
novationyk−Ckx̂

f
k.

In this section, we summarize the equations of the filter
developed in (Gillijns and De Moor, 2007). The filter takes
the recursive from

x̂f
k = Ak−1x̂

a
k−1 + Bk−1uk−1, (11)

d̂a
k−1 = M k(yk − Ckx̂

f
k), (12)

x̂a∗
k = x̂f

k + Gk−1d̂
a
k−1, (13)

x̂a
k = x̂a∗

k + K k(yk − Ckx̂
a∗
k ), (14)

where the estimation of the state vector and the model er-
ror vector are interconnected. As discussed in the previous
section, (11) yields a biased estimate of the system statexk.

Therefore, in the second step,M k is determined such that
(12) yields a minimum-variance unbiased estimate ofdk−1
based on the innovationyk−Ckx̂

f
k. This estimate is used for

compensation in (13), such thatx̂a∗
k is unbiased. In the fi-

nal step,K k is determined such that (14) yields a minimum-
variance unbiased estimate of the system statexk. Note that
(14) takes the form of the analysis step of the Kalman filter.
Furthermore, note that (13)–(14) can be rewritten as

x̂a
k = x̂f

k + L k(yk − Ckx̂
f
k), (15)

whereL k is given by

L k = K k + (I − K kCk)Gk−1M k. (16)

As shown in (Gillijns and De Moor, 2007), the gain matrix
K k minimizing the variance of̂xa

k is not unique. One of the
optimal values forK k takes the form of the Kalman gain,

K k = Pf
kCT

k (CkPf
kCT

k + Rk)
−1, (17)

where the covariance matrixPf
k is defined by

Pf
k = E[x̃f

kx̃
fT
k ], (18)

= Ak−1Pa
k−1AT

k−1 + Qk−1, (19)

with x̃f
k=xk−Gk−1dk−1−x̂f

k, and with Pa
k the covariance

matrix of x̂a
k,

Pa
k = E[(xk − x̂a

k)(xk − x̂a
k)

T
]. (20)

It follows from (11) and (4)–(5) that there is a linear re-
lation between the innovationyk−Ckx̂

f
k and the model error

dk−1, given by

yk − Ckx̂
f
k = Ekdk−1 + ek, (21)

whereEk=CkGk−1 and whereek is given by

ek = Ckx̃
f
k + vk. (22)

SinceE[x̃f
k]=0, ek is a zero-mean random variable with co-

variance matrix

R̃k = E[eke
T
k ] = CkPf

kCT
k + Rk. (23)
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It follows from (21) that a minimum-variance unbiased es-
timate of dk−1 can be obtained from the innovation by
weighted least-squares estimation with weighting matrix
R̃−1

k . The optimal value forM k is thus given by

M k =

(
ET

k R̃−1
k Ek

)−1
ET

k R̃−1
k , (24)

and the variance of the corresponding model error estimate
d̂a

k−1 by

Pd
k−1 = E[(dk−1 − d̂a

k−1)(dk−1 − d̂a
k−1)

T
], (25)

= (ET
k R̃−1

k Ek)
−1. (26)

Note that the inverses in (24) and (26) exist under the condi-
tion that

rankCkGk−1 = rankGk−1 = m. (27)

Equation (27) gives the condition under which the model er-
ror can be uniquely determined from the innovation. Note
that this condition impliesn≥m andp≥m.

The filter described in this section can thus deal with the
case whereHk(·) is unknown. Note that it can estimate
model errors of any type. However, its applicability is lim-
ited by the matrix rank condition (27). Furthermore, as will
be discussed further in the paper, the variance of the model
error estimate (12) can be rather high.

3.3 Incorporating prior knowledge about the model error

If prior information about the model error is available, the
variance of the model error estimate (12) can be reduced.
Consider the case where an unbiased estimated̂ f

k−1 with co-

variance matrixPf,d
k−1 is available. The least-squares problem

obtained by combining the information in the innovation and
in d̂ f

k−1, is given by[
yk − Ckx̂

f
k

d̂ f
k−1

]
=

[
Ek

I

]
dk−1 +

[
ek

d̃ f
k−1

]
, (28)

whered̃ f
k−1=d̂ f

k−1−dk−1 is a zero-mean random vector with

covariance matrixPf,d
k−1. Under the assumption that

E[d̃ f
k−1v

T
k ] = 0, (29)

E[d̃ f
k−1(x̃

f
k)

T
] = 0, (30)

the least-squares solution̂da
k−1 of (28) which coincides with

the linear minimum-variance unbiased estimate ofdk−1, can
be written as

d̂a
k−1 = d̂ f

k−1 + Pf,d
k−1ET

k

(
EkPf,d

k−1ET
k + R̃k

)−1

(yk − Ckx̂
f
k − Ek d̂

f
k−1), (31)

see (Kailath et al., 2000). Note that (31) has a structure sim-
ilar to the analysis step of the Kalman filter. Furthermore,
note that the inverse in (31) also exists ifEk does not have
full column rank. If prior information about the model error
is available, the existence condition (27) does not have to be
necessarily satisfied in order for the filter to exist.

Substituting (12) by (31), we obtain the following filter,

x̂f
k = Ak−1x̂

a
k−1 + Bk−1uk−1, (32)

d̂a
k−1 = d̂ f

k−1 + Kd
k(yk − Ckx̂

f
k − Ek d̂

f
k−1), (33)

Kd
k = Pf,d

k−1ET
k (EkPf,d

k−1ET
k + CkPf

kCT
k + Rk)

−1, (34)

x̂a∗
k = x̂f

k + Gk−1d̂
a
k−1, (35)

x̂a
k = x̂a∗

k + Kx
k(yk − Ckx̂

a∗
k ), (36)

Kx
k = Pf

kCT
k (CkPf

kCT
k + Rk)

−1. (37)

If conditions (29)–(30) hold, this filter is optimal in the
minimum-variance unbiased sense. Indeed, under these con-
ditions the gain matrix (37) minimizes the variance of (36),
see AppendixA for an outline of the proof.

Now, assume thatHk−2(·) is known and linear. Then the
optimal estimatêd f

k−1 is given by

d̂ f
k−1 = Hk−2(d̂

a
k−2, x̂

a
k−2). (38)

Consider the filter consisting of (32)–(38). Note that for this
filter the optimality condition (29) obtains. However, it is
straightforward to verify that the optimality condition (30) is
not satisfied, so that the filter is suboptimal. As will be shown
in Sect.5, this suboptimal filter has a strong connection to the
efficient filter developed byDee and Da Silva(1998); Dee
and Todling(2000).

4 Nonlinear filtering in the presence of model error

In this section, we extend the filters discussed in the previous
section to the framework of large-scale nonlinear ensemble
based filtering. In Sect.4.1, we show that the EnKF suffers
from the same flaws as the Kalman filter. Next, in Sect.4.2,
we develop an ensemble based version of the Kitanidis fil-
ter which can deal with additive model error of any type. In
Sect.4.3, we show how prior information can be incorpo-
rated into the latter filter. Finally, in Sects.4.4 and4.5, we
discuss computational aspects and limitations with respect to
applicability.

4.1 The flaws of the ensemble Kalman filter

The EnKF can be seen as an ad hoc extension of the Kalman
filter to large-scale nonlinear systems. It propagates an en-
semble ofq (q�n) members,{ξ i , i=1 . . . q}, which capture
the mean and the covariance of the current state estimate.
Covariance information is thus propagated implicitly in the
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ensemble. The EnKF is widely used in data assimilation ap-
plications due to the ease of implementation, the low compu-
tational cost and the low storage requirements.

First, consider the model (2) with dk=0. The algorithm
of the EnKF consists of two steps which are repeated recur-
sively.

The first step of the algorithm, the forecast step, projects
the q ensemble members ahead in time, from time instant
k−1 tok. This step is given by

ξ
f,i
k = Fk−1(ξ

a,i
k−1, uk−1) + wi

k−1, i = 1 . . . q, (39)

ξ̄ f
k =

1

q

q∑
i=1

ξ
f,i
k , (40)

whereξ̄ f
k denotes the estimate of the system state at time in-

stantk given measurements up to timek−1. The forecast
step thus comprisesq runs of the numerical model, one run
for each of theq ensemble membersξa,i

k−1. To account for the
stochastic model error,q random realizationswi

k−1, sampled
from a distribution with mean zero and varianceQk−1, are
added to the forecasted ensemble members in (39).

In the second step, the analysis step, theq ensemble mem-
bers are updated with the observationyk through a proce-
dure which emulates the Kalman filter measurement update.
Defining the error covariance matrix̆Pf

k by

P̆f
k = E[(xk − ξ̄ f

k)(xk − ξ̄ f
k)

T
], (41)

this step starts by approximatinğPf
kCk and CkP̆f

kCT
k using

theq ensemble members,

Pf
kCT

k =
1

q − 1

q∑
i=1

(
ξ̃

f,i
k (Ck ξ̃

f,i
k )T

)
, (42)

CkPf
kCT

k =
1

q − 1

q∑
i=1

(
(Ck ξ̃

f,i
k )(Ck ξ̃

f,i
k )T

)
, (43)

whereξ̃
f,i
k =ξ̄ f

k−ξ
f,i
k . Next, the gain matrix̄K k is computed

using the formula for the Kalman gain,

R̄k = CkPf
kCT

k + Rk, (44)

K̄ k = Pf
kCT

k R̄−1
k , (45)

and the ensemble members are updated with the measure-
ments,

ξ
a,i
k = ξ

f,i
k + K̄ k

(
yk − Ckξ

f,i
k + vi

k

)
, i = 1 . . . q (46)

ξ̄a
k =

1

q

q∑
i=1

ξ
a,i
k , (47)

where random realizationsvi
k, sampled from a distribution

with mean zero and varianceRk, have to be added to the
observations to account for the measurement noise (Burgers
et al., 1998).

Now, consider the casedk 6=0 and assume that we apply
the EnKF to estimate the system state. Like in the Kalman
filter, the forecasted state estimateξ̄ f

k is then biased, even for
q→∞. Consequently, it follows from (46) and (47) that the
updated state estimateξ̄a

k is also biased.

4.2 The ensemble Kitanidis filter

An ensemble based filter which can deal withHk(·) unknown
is obtained by extending the Kitanidis to the framework of
ensemble based filtering. The resulting filter is called the
ensemble Kitanidis filter (EnKiF) and consists of three steps.

In the first step, the ensemble membersξ
a,i
k−1 are projected

ahead in time. Like in the EnKF, this step comprisesq runs
of the numerical model and is given by (39)–(40). Due to the
model error, this step introduces a bias error in the forecasted
ensemble membersξ f,i

k .

In the second step, this bias error is accounted for by es-
timating the model error from the innovations and by using
the resulting estimates for compensation. More precisely, an
ensemble of model error estimates{δ i

k−1, i=1. . .q} is com-
puted from the measurementyk and the forecasted ensemble
{ξ

f,i
k , i=1. . .q} by using an ensemble version of (12). To this

aim, the matrixR̃−1
k in (24) is replaced by its approximation

(44),

M̄ k =

(
ET

k R̄−1
k Ek

)−1
ET

k R̄−1
k . (48)

The ensemble membersδ i
k−1 are then computed by

δ i
k−1 = M̄ k(yk − Ckξ

f,i
k + vi

k), i = 1 . . . q, (49)

and the estimate of the model error is given by

δ̄k−1 =
1

q

q∑
i=1

δ i
k−1. (50)

As will be shown further in the paper, random vectorsvi
k with

mean zero and varianceRk have to be added to the observa-
tionyk in (49) in order that the sample variance of the ensem-
ble of model error estimates converges to (26) for q→∞.

This is similar to the analysis step of the EnKF where per-
turbed observations have to be used in order that the variance
of the updated ensemble members converges to the correct
value (Burgers et al., 1998). Finally, the forecasted ensem-
ble membersξ f,i

k are updated withδ i
k−1 using an ensemble

version of (13),

ξ
a,i∗
k = ξ

f,i
k + Gk−1δ

i
k−1, i = 1 . . . q. (51)

In the third step, the variance of the ensemble
{ξ

a,i∗
k , i=1. . .q} is reduced by emulating (14) in the same

way as in the analysis step of the EnKF,

ξ
a,i
k = ξ

a,i∗
k + K̄ k

(
yk − Ckξ

a,i∗
k + vi

k

)
, (52)
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whereK̄ k is given by (45). Finally, the updated estimate of
the system state is given by (47).

The random vectorsvi
k in (52) may be the same as in (49).

Furthermore, if the same random vectors are used, (49), (51)
and (52) can be combined to

ξ
a,i
k = ξ

f,i
k + L̄ k

(
yk − Ckξ

f,i
k + vi

k

)
, (53)

whereL̄ k is given by

L̄ k = K̄ k + (I − K̄ kCk)Gk−1M̄ k. (54)

In case of a linear model operatorFk(·), this filter con-
verges forq→∞ to the filter ofGillijns and De Moor(2007),
see AppendixB for an outline of the proof.

4.3 Incorporating prior knowledge in the EnKiF

If a prior estimate of the model error is available, e.g. in
the form of an operatorHk(·), equations (32)-(38) can be
extended to the framework of ensemble based filtering by
making use of the analogy of (33)–(34) to the analysis step
of the Kalman filter. As will be discussed in Sect.5, the
resulting filter has a close connection to the filter developed
by Dee and Da Silva(1998). Therefore, it will be called the
DDS-EnKiF.

It follows from (32)–(38) that the DDS-EnKiF needs
a prior estimated̂ f

−1 with known variance to be initial-
ized. However, if no prior estimate is available, but rank
C0G−1=m, the DDS-EnKiF can be initialized by running
the EnKiF for one or a few steps.

4.4 Computational aspects

Under the assumption thatCk andGk−1 are sparse, the ma-
trix ET

k R̄−1
k Ek∈Rm×m in (48) can be efficiently computed by

applying the matrix inversion lemma to (44) (Tippett et al.,
2003), even if the number of measurements is very high.
However, the calculation of the model error vector requires
the inverse ofET

k R̄−1
k Ek to be computed, which is compu-

tationally very demanding ifm is large. Consequently, the
number of errors which can be accounted for by the EnKiF
is limited by the available computational power.

It is well known that the use of a limited number of
ensemble members(q�n) introduces sampling errors in
the forecasted ensemble of the EnKF due to spuriously
large correlation estimates between greatly separated grid
points. Houtekamer and Mitchell(2001); Hamill et al.
(2001) showed that the analysis can be improved by using
covariance localization, a technique where the covariance
estimates obtained from the ensemble are multiplied by a
distance-dependent correlation function. In thelocal ensem-
ble Kalman filter(Ott et al., 2002), a method where the anal-
ysis at each grid point is based on the forecasted ensemble
members within a local cube of a few grid points, spurious

correlations are avoided by assuming the correlation zero be-
yond the local cube. Similar techniques may be used to re-
duce the effect of spurious correlations in the EnKiF, where
not only the forecasted state ensemble, but also the ensemble
of model error estimates is affected by sampling errors.

The use of perturbed observations also introduces sam-
pling errors in the EnKF and thus also in the EnKiF. Since
the third step of the EnKiF is equivalent to the analysis step
of the EnKF, asquare root filter(Whitaker and Hamill, 2002;
Bishop et al., 2001; Anderson, 2001; Tippett et al., 2003)
can be employed to avoid the perturbed observations in (52).
Note that the ensemble of model error estimates also suffers
from sampling errors due to perturbed observations. A tech-
nique similar to square root filtering, where the mean and the
variance of the model error estimate are computed separately,
might reduce the effect of sampling errors due to perturbed
observations.

4.5 Limitations with respect to applicability

The applicability of the EnKiF is hampered by the existence
condition (27). For a constant bias error affecting all state
variables in the same way, one measurement is in theory suf-
ficient to estimate and account for the error. If all state vari-
ables are affected by independent errors, the method can not
be used to correct the entire state vector because this would
require that values of all state variables are incorporated into
the measurement. In this case, the EnKiF can be used to ob-
tain, possibly for a limited number of state variables, an idea
about the additive effect of the model error affecting these
state variables, which is especially useful if the dynamics
of the error are unknown. The estimates of the model er-
ror might give insight into the dynamics of the errors, which
might lead to a refinement of the simulation model or might
lead to the development of a “model error model” which can
then be incorporated into the assimilation procedure.

The EnKiF and DDS-EnKiF are based on the assumption
that observational errors are zero-mean white with known co-
variance. If measurements with systematic errors are assim-
ilated without preprocessing, the model error estimates and
state estimates will be biased because the filter can not dis-
tinguish between systematic errors in the forecast model and
in the observations. Therefore, if possible, observational bias
must be removed. Also, a limited subset of unbiased observa-
tions may be used for the purpose of model error estimation
(Dee and Da Silva, 1998).

The EnKiF is also based on the assumption that measure-
ments are available at every assimilation time. If this is not
the case, the EnKiF can still be used to estimate the model
error which is build up during the consecutive time instants
at which no measurements are available.

It follows from (26) that the variance of the model er-
ror estimate is determined by the variance of the measure-
ment noise and by the variance of the forecasted state en-
semble. In case the measurements are very noisy or the
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spread of the forecasted ensemble is very large (e.g. due to
stochastic model error with high variance), the model error
estimates obtained with the EnKiF will be very noisy too.
Consequently, the model error estimates obtained with the
EnKiF will be appropriate and accurate only if the stochas-
tic model error and the measurement error are significantly
smaller than the systematic model error.

The effect of these limitations on the accuracy of the state
estimates and the model error estimates obtained with the
EnKiF and DDS-EnKiF is investigated in several numerical
studies in Sect.6.

5 Comparison to existing methods

A standard approach to deal with systematic model error in
Kalman filtering and data assimilation, is to augment the
state vector with a vector of model error variables (Zupanski,
1997; Griffith and Nichols, 2000; Martin et al., 2002; Zu-
panski and Zupanski, 2006). This so-called method of state
augmentation is very flexible and can incorporate different
types of prior information into the problem. In its most gen-
eral form, the method can estimate model error which nonlin-
early interacts with the state vector. Let the model be given
by (1), then the method can deal with the case where the true
system is given byxk+1=F̄k(xk, uk, dk), provided that the
interaction between the model errordk and state vectorxk is
known and provided that a model for the dynamical evolution
of dk is available, which is in its most general form given by
(3). Note that the filters presented in Sect.4 are not able to
estimate the model errordk in this general setting. However,
they can be used to compensate and estimate the additive ef-
fect of these types of errors on the state vector, provided that
the errorneous model equations are known.

In case of constant bias errors, the method ofDee and Da
Silva(1998); Dee and Todling(2000) is usually applied. This
method is based on the two-stage Kalman filter introduced
by Friedland(1969), which can be seen as an augmented
state filter where the estimation of the state and the model
error have been separated.Dee and Todling(2000) devel-
oped a suboptimal, but efficient variation of the two-stage
filter where, in contrast to the two-stage filter itself, infor-
mation between the bias estimator and the state estimator is
exchanged in two directions. The latter filter has a strong
connection to the suboptimal filters developed in Sects.3.3
and 4.3. More precisely, our results extend the work of
Dee and Todling(2000) to time-varying model error. In-
deed, in Sect.3.3 we used the same approximation asDee
and Todling(2000) to develop an efficient filter which has a
structure very similar to that ofDee and Todling(2000). The
main difference is that our method estimates the model error
with one step delay.

6 Numerical examples

In this section, we consider three numerical examples. The
first example deals with bias errors, the second example with
non-smooth disturbances and the third example with errors
due to unresolved scales.

6.1 Bias errors

In a first experiment, we consider the example which was
also used in (Anderson, 2001) for state estimation under con-
stant bias errors. Consider the nonlinear one-levelLorenz
(1996) model withN=40 andF=8 (the equations are given
in Appendix C). This model is discretized using a fourth
order Runge-Kutta scheme with time step1t=0.005. The
“true” states of the system are taken as the trajectories ob-
tained with the Runge-Kutta scheme, where Gaussian white
process noise is added to the discretized state variables. It is
assumed that the exact value ofF is unknown. The model is
thus subject to a constant bias error. Noisy measurements of
all state variables are available.

We compare the assimilation results obtained with an aug-
mented EnKF based on the error modeldk+1=dk to the re-
sults of the DDS-EnKiF based on the same error model and
to the results of the EnKiF. In the (DDS)-EnKiF, the matrix
G is chosen asG=1T

m, which reflects that all state variables
are affected by the same error. The initial bias estimate in the
augmented EnKF wasF0=10. The DDS-EnKiF is initialized
by first running one step of the EnKiF so that no initial esti-
mate of the bias is needed.

Figure 1 compares the estimation results for 20 ensem-
ble members andQ=10−5I , R=10−3I . Part (a) of the figure
shows the estimated values ofF. The variance of the esti-
mates obtained with the EnKiF is clearly much higher than
for the other two methods. Incorporating prior knowledge
thus significantly reduces the variance of the bias estimate.
Note the rather slow convergence of the augmented EnKF
compared to the DDS-EnKiF where convergence is almost
immediate. Part (b) of the figure shows the estimated values
of the system state. Note that the high variance of the bias
estimates obtained with the EnKiF has no detrimental effect
on the estimated state trajectory.

Table1 compares the mean square error (MSE) of the es-
timatedF -values as function of the measurement noise vari-
ance and the variance of the stochastic model error. The val-
ues shown in the table were obtained by averaging the MSE
over 1000 consecutive steps, after a converging time of 1000
steps. Results are shown for 20 ensemble members. The
model error estimates are more accurate whenR decreases.
The MSE of the model error estimates also decreases with
Q. However, ifQ is very small, the estimates degrade due to
the fact that the spread of the ensemble is very small. This
may lead to filter divergence because the filter gives very low
confidence to the observations. We note filter divergence for
values ofQ smaller than 10−8I . Again, it should be noted that
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Fig. 1. Comparison between the assimilation results of an aug-
mented EnKF, the EnKiF and the DDS-EnKiF for the example deal-
ing with constant bias errors.(a) The variance of the bias estimates
obtained with the EnKiF is much higher than for the other two meth-
ods. (b) However, this has no detrimental effect on the estimated
state trajectory. Results are shown for 20 ensemble members and
Q=10−5I , R=10−3I .

Table 1. Comparison between the mean square error of the esti-
matedF−values obtained with the EnKiF and the DDS-EnKiF as
function of the measurement noise varianceR and the variance of
the stochastic model errorQ. Results are shown for 20 ensemble
members.

Q R
10−2I 10−4I 10−6I 10−8I

10−2I DDS-EnKiF 2.10−2 7.10−3 9.10−3 7.10−3

EnKiF 45 30 31 31
10−4I DDS-EnKiF 4.10−3 8.10−4 1.10−3 7.10−4

EnKiF 26 4.10−1 3.10−1 3.10−1

10−6I DDS-EnKiF 1.10−2 4.10−3 7.10−4 7.10−4

EnKiF 23 3.10−2 7.10−3 6.10−3

10−8I DDS-EnKiF 2.10−1 6.10−3 3.10−3 7.10−4

EnKiF 45 7.10−1 3.10−2 3.10−3

the high variance of the model error estimates obtained with
the EnKiF has no detrimental effect on the state estimates.

In real-life data assimilation applications, measurements
may not be available at every assimilation time. Figure2 ex-
plores what happens when the time between measurements
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Fig. 2. Comparison between the model error estimates(a) and the
state estimates(b) of the augmented EnKF, the EnKiF and the DDS-
EnKiF when the time between measurements equals 31t. Results
are shown forQ = 10−6I , R = 10−4I and 20 ensemble members.

equals 31t. The second and the third step of the EnKiF can
then be applied at only one out of three assimilation times.
The estimateŝda

k−1 obtained with the EnKiF thus represent
the build-up of the systematic model error over three steps.
Part (a) of Fig.2 compares the estimated values of the model
error obtained with the augmented EnKF, the DDS-EnKiF
and the EnKiF. The estimates of the EnKiF shown in the fig-
ure are obtained by dividinĝda

k−1 by three. Part (b) of Fig.2
shows the estimated values of the system state. Due to the
bias error which is not accounted for in the EnKiF, the state
estimate diverges from the true value during two consecutive
steps and then re-converges when measurements are assim-
ilated. This leads to the behavior seen in Fig.2. The non-
availability of measurements at all assimilation times has mi-
nor effect on the augmented EnKF and the DDS-EnKiF, but
is detrimental for the accuracy of the EnKiF.

The effect of systematic measurement error and incom-
plete measurements is investigated in Fig.3. This fig-
ure shows results for 10 ensemble members,Q=10−6I and
R=10−4I . The measurements are subject to systematic er-
rors which have a maximal value of 2, 5.10−1. In addition,
one out of five state variables is not measured. Part (a) of
the figure compares the bias estimates obtained with an aug-
mented EnKF, the EnKiF and the DDS-EnKiF. Part (b) shows
the estimated value of state variablex20, which is not mea-
sured. The MSE of the estimated bias error obtained with the
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Fig. 3. Effect of systematic measurement error and incomplete mea-
surements on the estimation accuracy.(a) Comparison between
the bias estimates obtained with an augmented EnKF, the EnKiF
and the DDS-EnKiF.(b) Estimated trajectory of state variablex20,

which is not measured. Results are shown forQ=10−6I , R=10−4I
and 10 ensemble members.

DDS-EnKiF increases from 8.10−3 in case of unbiased mea-
surements to 1, 1.10−2 in case of systematic measurement
error. The systematic measurement error has thus only small
detrimental effect on the accuracy of the state estimates.

Now, consider the case where the model is subject to
a time-varying bias error of which the dynamics are not
known, such that the DDS-EnKiF and the augmented EnKF
can not be used. Figure4 shows the true value of the
bias error and the estimate obtained with the EnKiF for
Q=10−6I , R=10−4I and 20 ensemble members. Like in the
example dealing with constant bias errors, the estimates ob-
tained with the EnKiF are rather noisy. However, the EnKiF
is able to follow the fast variations in the bias error.

6.2 Non-smooth disturbances

In a second example, the true states of the system are taken
as the trajectories of the one-level Lorenz model (withN=40
and F=8) obtained with the Runge-Kutta scheme, where
Gaussian white process noise with varianceQ=10−2I is
added to the discretized state variables and where a non-
smooth disturbance is added to state variablex21 at time in-
stant 5001t . This disturbance has a peak value of 5 and a
duration of 101t . We compare the assimilation results ob-
tained with the EnKF, where the disturbance is neglected, to
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Fig. 4. Model error estimates obtained with the EnKiF for the ex-
ample dealing with time-varying bias errors. Like in the example
dealing with constant bias errors, the estimates obtained with the
EnKiF are rather noisy. However, the EnKiF is able to follow the
fast variations in the bias errors. Results are shown forQ=10−6I ,
R=10−4I and 20 ensemble members.

the results of the EnKiF. Results are presented for 20 ensem-
ble members and it is assumed that noisy measurements of
all state variables, exceptx20, are available. The measure-
ment noise is Gaussian white with varianceR=10−3I . Fig-
ure5a shows the true trajectory of state variablex21 and the
trajectory that would be obtained if no disturbance would be
present. The estimates of the EnKF and the EnKiF are also
shown. The EnKF looses the true trajectory at the time the
disturbances strikes, but quickly re-converges when the dis-
turbance has disappeared. The performance of the EnKiF is
better, it almost performs as if no disturbance is present. Fig-
ure 5b shows the trajectories for state variablex20 which is
not affected by a disturbance, but not measured either. The
same conclusions apply here.

6.3 Errors due to unresolved scales

Finally, in the third example, we emulate errors due to unre-
solved scales. The true system is taken to be the two-level
Lorenz (1996) model (see AppendixC for the equations)
with N=32,M=16 andF=10, consisting of 32 large-scale
variables (thex-variables) and 512 fine-scale variables (the
y-variables). The parametersc=10 andb=10 are chosen so
that the fine-scale variables fluctuate ten times more rapidly,
but with ten times smaller magnitude than the large-scale
variables. The system is discretized using a fourth order
Runge-Kutta scheme with time step1t=0.005. The model
is the one-level Lorenz model withN = 32 andF=10. As
pointed out in (Orrell et al., 2001), this situation is analo-
gous to that encountered in real weather models, where a
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Fig. 5. Comparison between the assimilation results of the EnKF
and the EnKiF for the Lorenz model subject to a high non-smooth
disturbance. Results are shown for 20 ensemble members and
Q=10−2I , R=10−3I . (a) Results for state variablex21, which is
measured, but affected by a disturbance.(b) Results for state vari-
ablex20, which is not affected by a disturbance, but not measured
either.

constant forcing term is adopted to model the influence of un-
resolved fine-scale variables on the large-scale variables. The
stochastic model error is assumed to be Gaussian white with
varianceQx=10−6I for the discretized large-scale variable
and varianceQy=10−8I for the discretized small-scale vari-
able. It is assumed that noisy measurements of all large-scale
variables are available. The measurement noise is Gaussian
white withR=10−6I . For these choices, the error in the mea-
surements is approximately ten times smaller than the mag-
nitude of the error due to unresolved scales.

The aim of this experiment is twofold. Firstly, we want
to obtain an accurate estimate of the model error affecting
state variablesx15, x16 and x17. Secondly, we want to ac-
count for the model error affecting all other state variables
by using an extension of the additive error approach devel-
oped byMitchell and Houtekamer(2002) and used byHamill
and Whitaker(2005) to account for errors due to unresolved
scales. In this approach, systematic model errors are ac-
counted for by treating them like random white noise with
artificially chosen variance. The aim of this experiment is to
design a procedure in which this variance is computed from
the estimates of the filter.
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Fig. 6. True and estimated value of the error due to unresolved
scales affecting state variablex16. The model is taken to be the
one-level Lorenz model, while measurements are generated using
the two-level Lorenz model.(a) Results forQ=10−6I . (b) Results
for Q=3, 3.10−4I .

In order for the EnKiF to yield estimates of the model error
affecting state variablesx15 to x17, we choose theG-matrix
asG=[03×14 I3 03×15]

T. The value ofQ in the EnKiF is cho-
sen to beQ=10−6I , which is the variance of the stochastic
model error affecting the large-scale variable in the true sys-
tem. In the second step of the EnKiF algorithm, we apply
covariance localization such that the model error affecting
state variablesx15 to x17 is estimated from innovations de-
pending on estimates of state variablesx15 to x17 only. All
other innovations are inappropriate for estimating the model
error affectingx15 to x17 due to the fact that these innova-
tions depend on state estimates which are not accounted for
model error. The true and estimated value of the model er-
ror affecting the state variable with index 16, are shown in
Fig. 6a. The true value of the model error at time instantk,

is computed by

dk = Ftl
k−1(x

tl
k−1) − Fol

k−1(T(xtl
k−1)), (55)

where Ftl
k−1(·) is the two-level Lorenz model operator,

Fol
k−1(·) is the one-level Lorenz model operator and where

T(·) projects the state of the two-level model to the one-level
model.

In a second step, we proceed as if all state variables are af-
fected by independent zero-mean Gaussian errors with equal
variance. In that case, the optimal value forQ equalsσ 2I ,
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whereσ 2 is the variance of the errors. We approximateσ

by computing the standard deviation of the estimated model
error affectingx16 over 5000 consecutive steps. The com-
puted standard deviation equalss1=0, 018. Next, we apply
the EnKiF withQ=10−6I for state variablesx15 to x17, but
with Q=s2

1I for all other state variables. The true and esti-
mated value of the model error affectingx16 are shown in
Fig. 6b. Estimation accuracy has clearly increased. This
improvement is also noticeable in the MSE of the state es-
timates, which has dropped from 1, 3.10−3 in the first run to
3, 6.10−4 in this run. The standard deviation of the estimated
model error affectingx16 now equalss2=0, 011.

In a third step, we repeat the same procedure, with
Q=10−6I for state variablesx15 to x17 and withQ=s2

2I for
all other state variables. The standard deviation of the model
error affectingx16 now equalss3=0, 012. This values lies
close tos2, which indicates thats has almost converged to
the optimal value which lies around 0, 012. Table2 summa-
rizes the results obtained in the three steps.

The method described above can be used to tune the vari-
ance of the random numbers in the additive error approach of
Mitchell and Houtekamer(2002). In real-life applications,
where the dimension of the measurement vector is much
smaller than the dimension of the state vector, the matrixGk

can for example be chosen to estimate the errors affecting a
limited number of state variables of which the value is incor-
porated into the measurements. For such a choice ofGk, the
rank condition (27) is always satisfied. The method described
above can then be used to obtain an estimate of the errors af-
fecting these state variables. Based on these estimates of the
model error, the variance of the random numbers to be used
in the approach ofMitchell and Houtekamer(2002) can be
tuned.

7 Conclusion and discussion

A new methodology was developed to estimate and account
for additive systematic model error in linear filtering as well
as in nonlinear ensemble based data assimilation. In contrast
to existing methodologies, the approach adopted in this paper
can also deal with the case where no dynamical model for the
error is available.

In case no model for the error is available, the filter is re-
ferred to as EnKiF. The applicability of the EnKiF is limited
by the available computational power and by a matrix rank
condition which has to be satisfied in order for the filter to
exist. The EnKiF can therefore not be used to correct the
entire state vector for all possible types of systematic errors.
The intended use is therefore to obtain, possibly for a limited
number of state variables, an idea about the additive effect of
the model error affecting these state variables. This is espe-
cially useful if the dynamics of the error are unknown, e.g.
in case of unknown time-varying bias errors or errors due to
unresolved scales. The estimates of the model error might

Table 2. Results obtained in the three consecutive experiments deal-
ing with errors due to unresolved scales. The matrixQ denotes the
variance of the random vectors which are added to the forecasted
ensemble members to account for the model error. The column
“MSE” shows the mean square error of the state estimates. The last
column shows the standard deviation of the estimates of the model
error affectingx16, which is used to compute theQ-matrix of the
next step.

Step number Q MSE s

1 10−6I 1, 3.10−3 0,018
2 3, 3.10−4I 3, 6.10−4 0,011
3 1, 2.10−4I 3, 3.10−4 0,012

give insight into the dynamics of the error, which might lead
to a refinement of the simulation model or might lead to the
development of a “model error model” which can then be
incorporated into the assimilation procedure.

In case a model for the error is available, the filter is re-
ferred to as DDS-EnKiF. It was shown that there is strong
connection between the DDS-EnKiF and the efficient sub-
optimal filter developed byDee and Todling(2000). More
precisely, our results extend the latter work to time-varying
bias errors.

Simulation results on the chaoticLorenz(1996) model in-
dicate that the model error estimates obtained with the EnKiF
have a rather high variance. Estimation accuracy is mainly
determined by the variances of the measurement error and
the stochastic model error. It was shown that the availability
of an accurate dynamical model for the error in the DDS-
EnKiF strongly reduces the variance of the model error esti-
mates. However, results also indicate that the high variance
of the model error estimates obtained with the EnKiF has
only minor detrimental effect on the state estimates.

Furthermore, simulation results indicate that the EnKiF
and DDS-EnKiF are robust against systematic errors in the
measurements. The non-availability of measurements at all
assimilation times is detrimental for the accuracy of the
EnKiF, but has only minor effect on the DDS-EnKiF be-
cause of the error model. The example dealing with constant
bias errors indicates that both methods behave similarly as
the number of measurements in space decreases.

This study indicates that the EnKiF might be preferable
over the DDS-EnKiF when little or no prior information of
the model error is available and when accurate measurements
are available at every assimilation time. However, when rela-
tively little information is available from measurements, ad-
ditional information, e.g. in the form of a prior for the model
error or an assumption on its evolution, will be necessary to
account for systematic model error.
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Appendix A

Calculation of optimal gain matrix

In this Appendix, we prove the optimality of the filter (32)–
(38) for the case where conditions (29)–(30) are satisfied.
We show that under the latter conditions the gain matrix (37)
minimizes the variance of (36).

Using (32)–(38), we find that

Pa
k = Kx

k
¯̄RkKxT

k − Kx
k
¯̄Sk −

¯̄ST
k KxT

k + Pa∗
k , (A1)

where

¯̄Rk = CkPa∗
k CT

k + Rk − EkKd
kRk − RkKdT

k ET
k , (A2)

¯̄Sk = CkPa∗
k − RkKdT

k GT
k−1, (A3)

Pa∗
k = E[(xk − x̂a∗

k )(xk − x̂a∗
k )T

], (A4)

= (I −Gk−1Kd
kCk)(Pf

k + Gk−1Pf,d
k−1GT

k−1)

(I −Gk−1Kd
kCk)

T
+ Gk−1Kd

kRkKdT
k GT

k−1. (A5)

Note that these equations are valid only if conditions (29)–
(30) are satisfied. The gain matrixKx

k minimizing the trace
of (A1), is given by

Kx
k =

¯̄ST
k

¯̄R−1
k . (A6)

Finally, substituting (A2) and (A3) in (A6), yields after a
straightforward calculation

Kx
k = Pf

kCT
k (CkPf

kCT
k + Rk)

−1. (A7)

Appendix B

Proof of convergence

In this Appendix, we give an outline of the proof that, in case
of a linear model operator, the EnKiF converges to the filter
developed byGillijns and De Moor(2007) for q→∞. Using
the fact that the EnKF converges to the Kalman filter in case
of a linear model, we only need to show that Eqs. (48)–(50)
converge to the corresponding equations in Sect.3.2. This
basically comes down to showing that the sample variance of
δ i
k−1 converges to (26). This sample variance is given by

1

q − 1

q∑
i=1

(
δ̄k−1 − δ i

k−1

) (
δ̄k−1 − δ i

k−1

)T
= M̄ kR̄kM̄T

k .

(B1)
It follows from the convergence of the EnKF to the Kalman
filter thatR̄k converges tõRk for q→∞. Consequently (B1)
converges to (26). If no perturbed observations are used in
(49), the sample variance would converge toM kCkPf

kCT
k MT

k

and would thus underestimate (26).

Appendix C

The Lorenz (1996) model

The equations for the one-levelLorenz (1996) model are
given by

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, (C1)

where the index i=1, . . . , N is cyclic so that
xi−N=xi+N=xi .

The equations for the two-level model are given by

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F −

c

b

M∑
j=1

yi,j , (C2)

dyi,j

dt
= cb(yi,j−1 − yi,j+2)yi,j+1 − cyi,j +

c

b
xi, (C3)

for i=1, . . . , N andj=1, . . . ,M. The indices are cyclic so
that for exampleyi,j+M=yi+1,j andyi+N,j=yi,j .
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