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Abstract. We study parallel (field-aligned) diffusion of en-
ergetic particles in the upstream of the bow shock with test
particle simulations. We assume parallel shock geometry of
the bow shock, and that MHD wave turbulence convected
by the solar wind toward the shock is purely transverse in
one-dimensional system with a constant background mag-
netic field. We use three turbulence models: a homogeneous
turbulence, a regular cascade from a large scale to smaller
scales, and an inverse cascade from a small scale to larger
scales. For the homogeneous model the particle motions
along the average field are Brownian motions due to ran-
dom and isotropic scattering across 90 degree pitch angle.
On the other hand, for the two cascade models particle mo-
tion is non-Brownian due to coherent and anisotropic pitch
angle scattering for finite time scale. The mean free pathλ‖

calculated by the ensemble average of these particle motions
exhibits dependence on the distance from the shock. It also
depends on the parameters such as the thermal velocity of
the particles, solar wind flow velocity, and a wave turbulence
model. For the inverse cascade model, the dependence of
λ‖ at the shock on the thermal energy is consistent with the
hybrid simulation done byGiacalone(2004), but the spatial
dependence ofλ‖ is inconsistent with it.

1 Introduction

Spatial diffusion process plays a central role in propagation
and diffusive shock acceleration (DSA) of energetic parti-
cles. Charged particles are scattered by magnetohydorody-
namic (MHD) waves in parallel and perpendicular directions
to the ambient magnetic field line. The former is referred
to here as parallel (field-aligned) diffusion, and the latter as
perpendicular (cross-field) diffusion. In this paper we study
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the parallel diffusion of energetic particles in the MHD tur-
bulence in order to apply our study to the DSA process in
the parallel shock geometry. Fundamentally, parallel diffu-
sion is described as a consequence of pitch angle diffusion.
Namely, frequent and random scattering through 90 degree
pitch angle occurs as a consequence of pitch angle diffusion
by MHD waves. Accordingly, particles travel back and forth
along the mean field, resulting in the random walk and the
parallel diffusion.

In quasi-linear theory (QLT), pitch angle diffusion co-
efficient is expressed as a function of power of magnetic
field fluctuation for the resonant wave (Kennel and Petschek,
1966; Tsurutani and Lakhina, 1997; Jokipii, 1966; Lee, 1982;
Gordon et al., 1999). The pitch angle relaxation timeτ , at
which the pitch angle distribution reaches a near-isotropic
equilibrium, is defined by the reciprocal pitch angle diffu-
sion coefficient. Then, for a much longer time scale than
τ , the mean free path is approximated asλ‖ ∼ vthτ , where
vth is thermal velocity of particles (e.g.,Schlickeiser, 2002;
Tsurutani et al., 2002). However, it is a long standing prob-
lem that the observed mean free paths have some discrep-
ancies from the prediction of the QLT in a one-dimensional
slab turbulence model. The QLT underestimates absolute
values of the observedλ‖ by more than an order of mag-
nitude (Tsurutani et al., 2002; Droge, 2000). Researchers
have discussed this problem by using a so-called compos-
ite slab/two-dimensional geometry for the MHD turbulence
model (Bieber et al., 1994). In this paper, we focus our dis-
cussion on the effect of spatially evolving MHD waves using
a one-dimensional model. Consequently, we find that the ob-
tainedλ‖ has a spatial dependence, and thatλ‖ at the shock
is found to be larger than the value in the QLT.

It is evident from multi-spacecraft observations of ener-
getic particles that the mean free pathλ‖ has a spatial de-
pendence due to variations of the magnetic field turbulence
level, power spectrum of the waves, and correlation length
of the waves (Beeck et al., 1987). However, the relationship
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Fig. 1. Schematic Picture of the present model. Upper panel shows
wave generation mechanism via ion beam instability. Lower panels
show the spatial evolutions of the power spectrum for the MHD
waves in two cascade models. Lebels (A), (B), and (C) refer to
spectra at different distances from the bow shock (see Fig.2 for
details)

between the spatial dependence ofλ‖ and statistics of the
magnetic field turbulence is not clear. In numerical mod-
els for particle accelerations at a quasi-parallel interplanetary
shock (Zank et al., 2000; Li et al., 2003, 2005), the spatial de-
pendence is empirically introduced by indexβ as a free pa-
rameter,λ‖ ∼ pαrβ , wherer is radial distance from the sun,
p is particle momentum, andα is an index of the momentum
dependence. We find that the model based on the QLT is not
sufficient for description of the relationship between spatial
variations of the mean free path and the statistics of MHD
waves.

Nonlinear evolution of MHD waves has been observed
in the so-called shocklets, short large-amplitude magnetic
structures (so-called SLAMS) in the interplanetary space and
in the Earth’s foreshock region (Hoppe et al., 1981; Tsu-
rutani et al., 1990, 2005a). The magnetic field turbulence
near the Earth’s bow shock has intermittent properties caused
by nonlinear interactions among waves (Koga et al., 2007).
Also, magnetic decreases (MDs) and magnetic holes (MHs)
have important consequences for the generation of high fre-
quency turbulence in the interplanetary space (Tsurutani et
al., 2005a,b). In this paper, we model one-dimensional wave
cascading upstream of a parallel shock for spatially evolv-
ing MHD waves. Fluctuations of the transverse fields are
given by superposition of sinusoidal waves with different
wavenumbers and random phases, and the ambient magnetic
field magnitude is assumed constant. Thus, the magnetic
field models used in this paper cannot describe wave steep-
ening, MDs, MHs, and intermittency in the field turbulence,
which, however, may have significant contributions to the
particle scattering (see Sect. 3.2 inTsurutani et al.(2005a)).

We employ two cascade models of MHD waves convected
by the solar wind toward the shock: cascading to small scales
(regular cascade model) and cascading to large scales (in-
verse cascade model). Additionally, a statistically homoge-
neous turbulence model is employed for comparison with the
two cascade models. The schematic pictures of the two cas-
cade models are shown in Fig.1. We assume that Alfv́en
waves, excited far upstream (∼ 156 Earth radii,RE) from
the shock by ion beam instability, are cascading to smaller
or larger scales, depending on the models. Far upstream,
wave-particle interactions have been observed up to more
than 80RE distance from the shock, with both Alfvénic and
magnetosonic fluctuations generated far upstream (Tsurutani
and Rodriguez, 1981; Sanderson et al., 1985; Meziane et al.,
1997, 2001). In our models we assume that both right- and
left-handed Alfv́enic fluctuations are generated.

The mechanism of energy transfer between MHD waves
is still controversial. From the observational viewpoint,
the process seems to be the regular cascade, whereas from
the numerical and the theoretical viewpoint within a one-
dimensional system, the process is found to be the inverse
cascade. The monochromatic ULF waves with longer than
30 s period were observed at more than severalRE distance
from the bow shock (Eastwood et al., 2005), whereas short
duration (5− 20 s) structures in SLAMS were observed near
the bow shock (Wilkinson, 2003). Therefore, if wave-wave
interaction occurs between these ULF waves, their frequen-
cies become higher while approaching the shock, i.e. the reg-
ular cascade takes place. On the other hand, in the large-scale
hybrid simulations at a parallel shock done byGiacalone
(2004), the high frequency monochromatic waves are self-
excited by accelerated particles far upstream, and the lower
frequency waves are generated while approaching the shock.
Accordingly, the turbulent field with a power-law spectrum is
generated near the shock. Hence, if there are wave-wave in-
teractions between the waves approaching the shock, the in-
verse cascade will take place. Moreover, according to a stan-
dard schema of the parametric decay instability of Alfvén
waves in a one-dimensional system, a parent wave decays
into a daughter wave with a frequency lower than the parent
wave frequency; inverse cascading takes place. However, at a
nonlinear stage, energy exchange exists in both directions be-
tween parent and daughter waves (Nariyuki and Hada, 2006).
Therefore, both cascading models used here are consistent
with the observations and the simulations in the upstream of
a parallel shock.

It is an observational fact for quasi-parallel interplanetary
shocks that the wave energy increases toward the shock by
gaining from energetic particles through wave-particle inter-
action (Kennel et al., 1984a,b; Sanderson et al., 1985). How-
ever, in the simulation ofGiacalone(2004), the increase in
wave energy toward the shock cannot be described only by
wave-particle interactions, and the importance of a nonlinear
evolution of the waves such as the SLAMS are suggested as
explaination of the excess of the observed wave energy near
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the shock. Further, at the foreshock region of the Earth’s
bow shock,Hada et al.(2003a) have revealed that the wave
phase correlation, which characterizes the nonlinear wave-
wave interaction, becomes stronger as the MHD wave am-
plitude becomes larger. Therefore, not only wave-particle
interaction but also wave-wave interaction should be taken
into account as a generation mechanisms of the upstream
turbulence. In our wave cascade models, spatial evolution
of the wave power spectrum causes increased turbulence en-
ergy toward the shock. In this paper we focus on the spatial
dependence between the particle mean free pathλ‖ and the
modeled turbulence.

The spatially dependentλ‖ in the upstream of a parallel
shock causes modification of the DSA process. The results
of Giacalone(2004) imply that the mean free path of acceler-
ated particles increases with distance in the upstream of the
shock. Also, spatial profile of accelerated particles becomes
flat far upstream due to the presence of escaping particles,
since there is no sufficient turbulence to scatter them. In the
discussion section, we compare our results with those ofGi-
acalone(2004).

2 Numerical model

2.1 Magnetic field fluctuations

Let us consider a region in the upstream of a parallel shock,
and assume a one-dimensional system withx axis as the spa-
tial coordinate, where the background magnetic field and the
solar wind velocityu are parallel to thex axis. The mean ve-
locities of the energetic particles are assumed to be equal to
the solar wind velocityu. Hence, the typical particle velocity
far exceeds the Alfv́en wave velocityvA, we let the waves be
stationary and convected by the solar wind. In this paper, we
employ three different models of one-dimensional MHD tur-
bulence: regular cascade, inverse cascade, and homogeneous
turbulence models. In all three models, the fluctuations in the
transverse fields are written as

δBy + iδBz =

∑
k

δBk(x)exp[ik(x − ut)+ iφk], (1)

where positive and negative wavenumbersk correspond to
right- and left-handed polarizations, respectively, and phases
φk are random constants. They and z axes form an or-
thogonal right-handed system. The normalizationsvA/�

and �, respectively for space and time, are used, where
� is the proton gyro-frequency for an averaged magnetic
field B0. Here we choose the typical solar wind parameters:
vA=50 km/s and�=1/s. Different plasma flow velocities are
used asu=100 km/s,u = 400 km/s, andu=1600 km/s, i.e.,
u=2vA, u=8vA, andu = 32vA, respectively. In total, 125
wave mode numbers for each right- and left-handed polar-
izations are introduced in the system. The mode numbers
are in the range of 4≤m≤128, where wavenumbers are given

by k=2πm/1024. Accordingly, the wave lengths are in the
range from 0.0625 to 2RE . The particle motion in the sim-
ulation is not so sensitive to the wave length for wave modes
higher thanm=128, as discussed in the result section 3.3.2.
The maximum wave length, 2RE , is about twice the wave
length of the quasi-monochromatic fast magnetosonic waves
observed in the foreshock region (Eastwood et al., 2005).
We assume that the position nearx=0 is the wave source,
and that shock position isx=xsh=20480vA/�, which corre-
sponds to 156RE . The periodic turbulence exists forx>xsh.
The spatial size of the foreshock region, 156RE , is almost a
half of the distance of a free-escape boundary from the shock
in the hybrid simulations ofGiacalone(2004).

2.1.1 Amplification of magnetic field fluctuations

An important feature of our fluctuation field models is that
the amplitude of each Fourier mode is spatially amplified.
The spatial amplifications are different in the three models.
For homogeneous turbulence model, the amplitude is con-
stant, i.e.δBk(x)=δBk, and the power spectrumPk is power-
law type with an indexγ , namelyPk∼|k|−γ . On the other
hand, for the other two cascade models,δBk(x) is written as

δBk(x) =

√
Pk

( 1

π
tan−1[x − xk0

1x

]
+

1

2

)
. (2)

The function in the parentheses goes to zero forx � xk0,
goes to unity forx�xk0, and maximally grows at around
x=xk0 with its width1x. Thus the growth rate corresponds to
u/1x, and typically we choose the growth width1x = 256
in the unit length, corresponding to1x = 2 RE . The loca-
tions of the wave excitationxk0, as a function of wavenumber
k, depend on a model. We divide the 125 mode numbers into
18 groups, and the excitation position for thej th group is
given asxk0=512+(j−1)1024. In the regular cascade model,
waves with lower wavenumbers are assigned to the smaller
j-th group in the far upstream region. In the inverse cascade
model, waves with higher wavenumbers are assigned to the
smaller j-th group. We assume the waves in the first group
are excited by wave-particle interaction, whereas the waves
in the other groups approaching the shock are generated by
wave-wave interaction.

2.1.2 Wave source

We describe the wave generation scheme in the first group. In
the upstream of a parallel shock, Alfvén waves, which prop-
agate in the same direction of reflected ion beam at the shock
front, are excited by ion beam instability. The generated
wave energy is comparable to the beam particle energy. For
the regular cascade model, the wave withk=0.0245(m=1)
andδB2/B2

0=0.14 is assumed to be generated far upstream.
Whereas for the inverse cascade model, the waves with
0.626≤k≤0.785(102≤m≤128) andδB2/B2

0=0.025 are as-
sumed. Here the wave energyδB2 is defined by summa-
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Fig. 2. Two cascade models. Magnetic field fluctuations are shown in(a) and(c) for the regular and inverse cascade models, respectively.
Electric field fluctuations, with the motional electric field extracted, are shown in(b) and(d) for the regular and inverse cascade models,
respectively. At the regions labelled by (A), (B), and (C), the power spectra of the magnetic field fluctuations are shown in Fig.1 with the
same labellings.

tion of Pk for the waves in the first group. Now we find
the beam velocityvb and beam densitynb, corresponding
to the generated waves. By combination of the cyclotron
resonance conditionω−kvb=−� and the dispersion rela-
tion of Alfv én wavesω = kvA, we obtainvb=vA+�/k.
The ratio of the beam densitynb to the background plasma
densityn0 is nb/n0=(vA/vb)

2(δB/B0)
2, where the equal-

ity between beam particle energy and wave energy is as-
sumed. Then, the parameters are calculated asvb/vA = 42
and nb/n0=8.3×10−5 for the regular cascade model, and
vb/vA=2.4 andnb/n0=0.012 for the inverse cascade model.

2.1.3 Wave cascade models

The wave generation in the other groups withj≥2 is as-
sumed to be wave cascading, as the spectrum shape is de-
fined by the spectral indexγ . As one approaches the shock,
the waves in each group are generated, so that the increments
of the total wave energy, which are about 0.025, are the same
in the two cascade models. Figure2a shows the magnetic
field fluctuations for the regular cascade model. The solid
and dotted lines show two componentsδBy andδBz, respec-
tively. The vertical dotted lines show positionsxk0 for 18
groups, where the waves in each group are generated. The
developed power spectra in the regions (A), (B), and (C) cor-

respond to different locations for the regular cascade model
shown in Fig.1. In the region (A) up to the lengthx=6000,
five mode numbers from the lowest wavenumber are excited
with their amplitudes∼

√
Pk, and other modes are not gen-

erated. Hence, taking the sum of all these modes in Eq. (1),
the quasi-monochromatic waves are generated in the region
(A). The monochromatic fluctuations in the region (A) excite
fluctuations in the region (C). Figure2c shows magnetic field
fluctuations for the inverse cascade model, and the notations
are the same as in the Fig.2(a). In the region (A), 95 mode
numbers from the highest wavenumber are excited and the
waves with high wavenumbers are generated. In the region
(C) the fluctuations in both models are statistically the same,
and the turbulence levelδB/B0=1 for right- and left-handed
polarizations are also the same with those in the homoge-
neous turbulence model.

2.2 Electric field fluctuations

For the given magnetic field fluctuations, the electric field
fluctuations are obtained by numerical integration of Fara-
day’s law,

Ey + iEz =
u

c

∑
k

exp[−ikut + iφk]

∫
δBk(x)e

ikxdx, (3)
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F. Otsuka et al.: Energetic Particle Parallel Diffusion 591

where the spatial integration is performed by the Simpson
method. IfδBk ∼ const as in the homogeneous turbulence
model, the frozen-in condition is satisfied asE=−u×B/c ≡

Ef r , and within this case particle energy is conserved in the
plasma rest frame. However, in the two cascade models an
additional electric field other than the frozen-in field or mo-
tional electric fieldEf r appears due to amplification ofδBk.
The particle energy is not conserved in the plasma rest frame
anymore. The additional electric fields are not important for
the parallel diffusion, but important for particle acceleration.

Figures 2b and 2d show the additional electric field
1E=E − Ef r , with the two components1Ey and1Ez,
for the regular and the inverse cascade models, respectively.
The additional electric field appears with a packet-like shape
at excitation positionxk0. In the regular cascade model, the
magnitude of1E is largest far upstream, and then decreases
toward the shock. On the contrary in the inverse cascade
model, the magnitude is largest near the shock, and then de-
creases away from the shock. This indicates that the waves
with lower wavenumbers produce larger additional electric
fields. We also make a remark on the amplitude of1E. The
additional electric field disappears far fromxk0, when growth
width 1x is comparable or larger than the wave lengthl.
However,1E remains far fromxk0 when1x<l, i.e., rapid
amplification of the wave is assumed. Thus acceleration due
to1E will be remarkable for1x<l, although this case is not
used in the present work.

2.3 Statistics of particle motions

In the given electromagnetic field, we integrate the ion equa-
tion of motion over time by the Buneman-Boris method,

m
dv
dt

= q
(
E +

v
c

× B
)
;

dx

dt
= vx (4)

where the electric field fluctuations
E=(0, Ey(x, t), Ez(x, t)) are given by Eq. (3) and the
magnetic fieldB=(B0, δBy(x, t), δBz(x, t)) is introduced
in Eq. (1). We assume the test particles are the solar wind
thermal particles rather than accelerated particles. Hence,
the initial particle positions are far upstream atx0=3000 and
the initial velocities are given by the Maxwellian distribution
shifted by the plasma flow velocityu

f (v) =
1

π3/2v3
th

exp[−
(v − ux̂)2

v2
th

], (5)

where the initial thermal velocity isvth and the initial pro-
ton temperature is defined byE0=3mv2

th/2. The thermal ve-
locity vth=400 km/s corresponds to∼2.5 keV. For the fixed
plasma flowu and for each of the fluctuation models, we cal-
culate 11 runs with differentvth corresponding to the tem-
perature range from 0.157 keV to 160 keV.

To estimate the spatial dependence of the mean free path,
we evaluate the diffusion coefficient, keeping the time scale
dependence,

D‖(t) =
< (x − x̄)2 >

t
, (6)

wherex is a particle position for a time scalet , andx̄ is the
mean position defined bȳx=x0+ut , and<> denotes an en-
semble average ofN particles. For the normal diffusion,D‖

is independent of time. However, in general,D‖ is expected
to be a function of space and timeD‖(x, t). Here we assume
the spatial coordinatex, being in a co-moving frame with the
solar windx=x0+ut≡xsw, where the subscript ’sw’ repre-
sents the solar wind rest frame. Then, the spatial dependence
ofD‖ is evaluated by the transformation of Eq. (6) from time
to space as

D‖(t) = D‖(
x − x0

u
). (7)

Finally, we obtain the spatially dependent mean free path as
λ‖(x)=3D‖(x)/vth. The estimation of the spatially depen-
dent diffusion shown here is possible only when the convec-
tion by the solar wind exists. In general, however, the depen-
dence ofD‖ onx andt should be determined independently.

In addition, we discuss dependence of the acceleration
process on the additional electric field due to spatially am-
plified magnetic field. The variance of velocity is evaluated
by,

σvv(t) =< (vx − u)2 > + < v2
y > + < v2

z >, (8)

where the mean velocity in thex direction is assumed equal
to u, and in they and thez directions are zero. These as-
sumptions are valid for the time scale we consider in this pa-
per (see Sect. 3.3). We calculate at least two sets of random
phasesφk of the fluctuations in Eq. (1) for a single run. For a
single set of random phasesφk, i.e. single field pattern, 256
particles are traced. In the two cascade models, some par-
ticles escape far upstream, and these escaping particles are
not used for the ensemble average ofN particles in Eqs. (6)
and (8). In that case, several field patterns are used to avoid
decreasing in the number of the particles, so that the number
of particles is at leastN>250.

2.4 Spatially dependentλ‖ based on the QLT

In the QLT, the parallel diffusion coefficientDQL
‖

is esti-
mated by the integration of the pitch angle diffusion coef-
ficient for the wave power spectrum index in the range of
1<γ<2 (Schlickeiser, 2002). Then the mean free pathλQL

‖

is obtained fromDQL
‖

=vthλ
QL
‖
/3 as

λ
QL
‖

'

(
B0

δB

)2(
�

kminvth

)γ−1 3vth
�

(9)

where the background magnetic fieldB0, fluctuation ampli-
tudeδB, minimum wavenumberkmin, gyro-frequency�, are
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Fig. 3. (a) Magnetic field fluctuation intensity and(b) the spatially dependent mean free paths based on the QLT(quasi-linear theory) in
Eq. (9) and Eq. (10). Dotted-dashed, solid, and dashed lines are for the homogeneous turbulence, the regular cascade, and the inverse cascade
models, respectively.

introduced. Hence, the velocity dependence isλ
QL
‖

∼ v
2−γ

th .
For the homogeneous turbulence model, the turbulence en-
ergyδB2

= 1 andλQL
‖

in Eq. (9) are shown in Fig.3a and b
by dotted-dashed lines, respectively.

On the other hand, for two cascade models, the spatial de-
pendence appears through a spatial variations of the MHD
turbulence. We assume in Eq. (9) the spatial variations of
the MHD turbulence, and then obtain the spatially dependent
mean free pathλQL

‖
based on the QLT as

λ
QL
‖
(x) '

(
B0

δB(x)

)2(
�

kmin(x)vth

)γ−1 3vth
�
. (10)

In this paper,δB2 varies for both cascade models, whereas
kmin varies only for the inverse cascade model. Figure3a
shows the spatial variations ofδB2(x), with solid and
dashed lines for the regular and the inverse cascade mod-
els, respectively. The turbulence energies are obtained as
δB2(x)=

∑
k δB

2
k (x), by using Eq. (2) where the summation

was taken in the right- and the left-handed polarizations sepa-
rately. For both cascade models,δB2(x) increases toward the
shock, and is saturated atδB2

=1 for x∼20 000vA/�∼156
RE . The spatial variations of the two cascade models are not
exactly the same. Figure3b showsλQL

‖
(x) in Eq. (10) with

solid and dashed lines for the regular and the inverse cascade
models, respectively. IfδB2(x) is only considered,λQL

‖
(x)

for the inverse cascade model should be smaller thanλ
QL
‖
(x)

for the inverse cascade model. However, spatial variation of
kmin(x) for the inverse cascade model leads that theλ

QL
‖
(x)

for two cascade models are almost equal. We compare the

numericalλ‖(x) from Eq. (7) with the theoreticalλQL
‖

based
on the QLT in Eq. (10) for two cascade models.

3 Results

3.1 Single particle motion

First we discuss single particle motion for three different
MHD turbulence models. In general, nonlinear motion of a
single particle in a one-dimensional space has been analyzed
based on the Hamiltonian for the particle motion (e.g.,Ku-
ramitsu and Krasnoselskikh, 2005). In the presence of finite
amplitude MHD wave with a single mode, the corresponding
Hamiltonian can be described as a time-independent function
in phase space coordinates which are pitch angle cosine in the
wave rest frameµ and phaseψ between transverse magnetic
field fluctuation and transverse velocity vectors. The particle
trajectory in theψ−µ space follows the contour lines of the
HamiltonianH(ψ,µ) for a single wave. When the wave am-
plitude is finite, the closed orbits appears in theψ−µ space,
representing trapping by the wave with a velocity around res-
onance velocity,kv‖=−�, wherek is a wavenumber of a
single wave andv‖ is parallel velocity in the wave (plasma)
rest frame. In our model, the phase space trajectory deviates
from the contour lines ofH(ψ,µ) due to two effects, i.e., the
spatial variation of the wave amplitude and the presence of
many wave modes.

Figure 4 shows particle positionx−ut (left panels), ve-
locity space (middle panels), and phase space (right panels)
trajectories in the plasma rest frame for a single particle in
three different turbulence models. In the phase space each
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Fig. 4. Particle position (right panels), velocity space trajectories (middle panels), and phase space trajectories (right panels) in the plasma
flow rest frame for a single particle motion for(a) homogeneous,(b) regular cascade, and(c) inverse cascade turbulence models. The
parameters used areu=8, v=8, wherev represents magnitude of initial velocity of the particle in the plasma rest frame.

dot represents a trajectory of a single particle at each time
step. The parameters areu=8 andv=8, where the magni-
tude of the initial velocity of the particle in the plasma rest

frame isv=
√
(vx−u)2+v2

y+v
2
z . In the velocity space, the

parallel and perpendicular velocities to the background mag-

netic field arev‖=vx−u andv⊥=

√
v2
y+v

2
z , respectively. The

phase space coordinatesµ andψ are defined by,

µ = v‖/v; sinψ =
(v × B)x

v⊥δB⊥

. (11)

Here the transverse fluctuation magnitude is

δB⊥=

√
δB2

y+δB
2
z . The velocities are obtained numer-

ically from Eq. (4), and the particle motion is affected by the
fluctuations at each time step. Let us note the definition of
the phaseψ . Theψ in general is defined for a single mode,
whereas in Eq. (11) it is defined for local wave modes, and
the modes interacting with the particle changes in time.

First, let us look at the homogeneous turbulence model
(Fig. 4a). In the x−ut space the orbit looks Brownian,
in the velocity space the scattering is isotropic, and in the

ψ−µ space the trajectory covers the whole phase space re-
gion. We find that the pitch angle scattering occurs effec-
tively and isotropically, and that particles frequently traverse
the 90 degree pitch angle, i.e.µ=0. The frequent traverse
acrossµ = 0 corresponds the frequent reversal of the parallel
velocity. Consequently, the particles are traveling back and
forth along the mean field, resulting in the Brownian motion
in the x−ut space. Also, the Brownian motion represents
that the sign ofµ is randomly reversed. Resonance broaden-
ing, which is the consequence of the finite amplitude waves,
causes the pitch angle diffusion over 90◦ (Hada et al., 2003b),
since the wave amplitude is large, i.e.δB/B0=1.

For the regular cascade model (Fig.4b), the trajectories are
composed of mainly two parts. In thex−ut space, the par-
ticle travels almost with a constant velocity along the mean
field (’walk’) up to 500 sec, and at later time stays almost at
the same position for a long time (“sticking”). In theψ−µ

space, the trajectory is trapped around certain positiveµ, and
at other times the trajectory is open along theψ coordinate
and is periodically acrossµ=0. The former represents trap-
ping by a wave with low wavenumber far upstream. The
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Fig. 5. Particle positions in the plasma flow rest framex−ut as
a function of timet and spacexsw=x0+ut in co-moving frame
with the plasma flow, shown in bottom and top axes, respectively,
for (a) homogeneous(b) regular cascade, and(c) inverse cascade
turbulence models. The parameters used areu=8, vth=8.

certain positiveµ corresponds to resonance with the wave.
The trapped trajectory in theψ−µ space corresponds to the
“walk” segment in thex−ut space, with the almost constant
velocity being equal to the resonance velocity on average. On
the other hand the open trajectory in theψ−µ space repre-
sents that the parallel velocity is almost zero on average, and
thereby corresponds to the “sticking” segment in thex−ut

space. As a consequence of the coherent pitch angle scatter-
ing such as the trapping by a wave with low wavenumber,
the particle motion in thex−ut space appears to be non-
Brownian motion, which is composed of “walk” and “stick-
ing” type motions. The non-Brownian motion reflects that
the pitch angle diffusion over 90◦ is not random.

For the inverse cascade model (Fig.4c), in thex−ut space
there is also “walk” motion up to 400 s, and Brownian like
orbit at a later time. In theψ−µ space, the trajectory is
sometimes concentrated aroundµ∼−1, and other times it
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Fig. 6. Mean free pathλ‖ as a function of space in co-moving frame
with the plasma flow for(a) homogeneous(b) regular cascade, and
(c) inverse cascade turbulence models. The parameters used are the
same as in Fig.5. Solid and dashed lines show numericalλ‖ and
theoretical values in Eqs. (9, 10), respectively.

covers the whole phase space region. The former represents
the anisotropic pitch angle scattering, corresponding to the
walk motion in thex−ut space. Here we refer to a test par-
ticle simulation done byHada et al.(2003b). In the stan-
dard QLT, the pitch angle diffusion is absent at|µ|=1 due to
force free for the particle motion along the mean field. When
δB/B0=1 the standard QLT fails, and the pitch angle diffu-
sion rate around|µ|=1 is finite but still small compared with
those at other pitch angles. Therefore, we think that the weak
scattering around|µ|=1 causes the anisotropic pitch angle
scattering, resulting in the walk motion in thex−ut space.

3.2 Spatial dependence of the mean free path

Next we discuss statistics of particle motion along field
lines. Figure5 shows several particle positions in the plasma
flow rest framex − ut as functions of timet and space
xsw=x0+ut , in co-moving frame with the plasma flow, for
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(a) the homogeneous turbulence, (b) the regular cascade, and
(c) the inverse cascade models. The plasma flow and the ther-
mal velocities for all runs areu=8 andvth=8, respectively.
Figure6 shows the mean free pathλ‖, as a function of space
xsw. In each panel, the calculatedλ‖ is the same run as in
each panel of the Fig.5, and the solid and dashed lines rep-
resent the numericalλ‖ and the theoretical values in Eqs. (9,
10), respectively.

In the homogeneous turbulence model, the orbits look
more or less similar to the Brownian orbits (Fig.5a), and
the mean free path reaches a constant value (Fig.6a), thus
representing normal diffusion. We find that the numericalλ‖

matches well with the quasi-linear formulaλQL
‖

in Eq. (9).
Therefore, the QLT for the parallel diffusion is valid for the
homogeneous turbulence model.

In the regular cascade model, the orbits look quite dif-
ferent from those in the homogeneous turbulence case. In
Fig. 5b, most of the particles are traveling along the mean
field within the short time scalet<500 s (“walk” motion),
and some of the particles are escaping far upstream (shown
by out of the minimum scale in vertical axis of the figure).
The “walk” motion corresponds to particles being in res-
onance with waves with low wavenumbers as discussed in
Sect. 3.1. The escaping particles are non-resonant particles.
In the far upstream regionx<6000, there are only waves with
low wavenumbers in the range of 0.025≤|k| ≤ 0.05, and
corresponding the resonance velocity is 20≤v‖≤40, where
the parallel velocity in the linear resonance condition is as-
sumed . Therefore, non-resonant particles exist in the center
of the Maxwellian distribution since the thermal velocity is
vth=8, and these particles can be the escaping particles. In
Fig. 6b, The calculatedλ‖ is much increased thanλQL

‖
in the

far upstream region (x<50RE). At the shock, the numerical
value is aboutλ‖=20RE , compared withλQL

‖
=0.4RE . We

also find the discrepancy of spatial dependence ofλ‖ between
the simulation and prediction based on the QLT. Namely, the
calculatedλ‖ gradually increases toward the shock, whereas

λ
QL
‖
(x) decreases toward the shock. The increasedλ‖ is due

to the walk motion of the resonant particles. This discrep-
ancy reveals that the spatial dependence ofλ‖ is not only de-
scribed by the spatial evolution of turbulence energyδB2(x).

In the inverse cascade model, a few particles have positive
“walk” segment att<500 s, corresponding toxsw<50RE .
Trajectories of other particles look like the Brownian orbits
(Fig. 5c). The former is probably due to two reasons. One
is due to the anisotropic pitch angle diffusion for finite time
scale as discussed at Sect. 3.1. The other is due to the pres-
ence of non-resonant particles. Far upstreamx<6000, there
are only waves with high wavenumbers 0.208≤|k|≤0.785,
and corresponding resonance velocity is 1.27≤v‖≤4.8 where
the parallel velocity in the linear resonance condition is as-
sumed. Therefore, the particles, in the tail of the Maxwellian
distribution with the range ofv‖>4.8, cannot resonate with
the waves, and sometimes they travel ballistically toward the

shock with their own velocities. The numericalλ‖(x) is dom-
inantly increased in the far upstream region and is gradually
increased toward the shock. This is due to the anisotropically
scattered particles or the non-resonant particles. At the shock
the numerical value is aboutλ‖=10RE (Fig. 6c). The spatial
dependence of the calculatedλ‖ is also inconsistent with the

λ
QL
‖

.

3.3 Mean Free Path at the Shock

Figure7 summarizes the results of the evaluated mean free
pathλ‖ at the shock front,x=20 600 in the unit length, cor-
responding tox∼161RE . The upper (a) and lower (b) pan-
els correspond to the regular and the inverse cascade mod-
els, respectively. In each panel, the symbols represent the
numericalλ‖ for different plasma flow velocities,u=2 (◦),
u=8 (M), andu=32 (�). Also, the numericalλ‖ for the ho-
mogeneous turbulence model atu=8 is shown by the sym-
bols (+) in each panel. The solid line represents theλQL

‖

of the quasi-linear theory in Eq. (9), and the dependence on
vth is λQL

‖
∼ v0.5

th for γ=1.5. The evaluatedλ‖ are plotted
as functions of thermal velocityvth and the initial thermal
temperatureE0=3mv2

th/2 in keV, in the bottom and upper
axes, respectively. The evaluation timeT depends onu, since
the evaluation positionx is fixed asx=x0+uT=20 600. The
evaluation time corresponds to the convection time sweeping
from the monochromatic waves far upstream to the turbulent
waves at the shock. The convection time to the shock front
becomes shorter, as the plasma flow becomes faster. The
evaluation times areT=8800,2200, and 550 foru=2,8, and
32, respectively.

3.3.1 Resonance velocity in the QLT

Particles interact with waves only if resonance conditions are
satisfied. We assume thatvth is equal to the parallel veloc-
ity of a particle in the linear resonance condition. Then, we
obtain the minimum and maximum thermal velocitiesvmin
andvmax to resonate with the waves in the system, shown
with vertical dashed lines in each panel. The values are
vmin=�/kmax and vmax=�/kmin. Hence,vmax becomes
larger if longer wave length is introduced into the system.
The waves resonate with the particles in the velocity range
of vmin≤vth≤vmax. In the range ofvth>vmax, the numerical
λ‖ in all runs are much enhanced, sometimes the values of
λ‖ are out of the system size,∼161RE . For this case most
of the particles do not interact with the waves, and propagate
ballistically with their own initial velocities. Therefore, the
diffusion coefficient increases with elapsed time, and theλ‖

becomes large.

3.3.2 Homogeneous turbulence model

Let us look at the region withvth<vmax. In the homogeneous
turbulence model, the numericalλ‖ matches wellλQL

‖
except
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Fig. 7. Mean free path evaluated near the shock front for(a) regular
cascade and(b) inverse cascade models. Symbols indicate the mean
free paths obtained numerically with different plasma flow velocity,
i.e., u=2(◦), u=8(M), andu=32(�). In each panel, the symbols
(+) and solid line represent the numerical and the QLT values for
homogeneous turbulence model, respectively. The vertical dashed
lines in each panel represent the maximum and minimum resonence
velocities (see text in 3.3.1).

for vth=2. The numerical simulations done byHada et al.
(2003b) have shown that, when turbulence level is larger than
δB/B0=0.1, particles traverse 90◦ pitch angle for a short
time scale, indicating a deviation from the QLT near 90◦

pitch angle. However, our result shows that, for a long time
scale, nearly-isotropic scattering occurs in the homogeneous
turbulence model, and that the resultant parallel diffusion is
well described by the QLT. Therefore, we conclude that the
deviation from QLT for a short time scale is not sensitive to
the isotropic parallel diffusion for a long time scale.

Also, we note the effect of waves with high wavenumbers
in the turbulence. In our model, the power spectrum falls
zero at mode number higher thanm=128. Thus, within the
QLT, the pitch angle scattering near 90◦ are expected to be
inefficient, since the wavenumber, at which the particle near
90◦ resonate linearly, is very large. However, the simulation
shows efficient scattering across 90◦ even though the higher
wave modes are absent, implying the actual motion of the
particle near 90◦ is affected by a higher order terms, such
as mirroring and resonance broadening, which are ignored
in the QLT. This result is consistent with the conclusions of
Giacalone and Jokipii(1999).

3.3.3 Dependence on the thermal velocity in the two cas-
cade models

On the other hand, the numericalλ‖ are found to be larger
than the value of the QLT, reaching the maximum at∼30
RE and∼40RE in the regular and the inverse cascade mod-
els, respectively. In the regular cascade modelλ‖ decreases
with increasingvth, whereas in the inverse cascade modelλ‖

increases with increasingvth. In the regular cascade model,
there are no waves to be in resonance with the particles at low
energies in the far upstream region, and these particles reach
the shock without efficient scattering. As the thermal veloc-
ity increases, the particles can resonate with the waves in the
far upstream region, and they are convected toward the shock
with efficient scattering. Henceλ‖ at the shock approaches
the QLT value for increasedvth.

On the contrary, in the inverse cascade model, there are
resonant waves for the low energy particle in the far upstream
region, and thusλ‖ at the shock for smallvth is close to the
QLT value. As the thermal velocity increases, some parti-
cles in the tail of the Maxwellian distribution travel with own
initial velocity toward the shock without efficient scattering
by the waves. Henceλ‖ at the shock is larger than the QLT
value asvth is larger.

3.3.4 Dependence on the plasma flow velocity in the two
cascade models

Let us study dependence on the plasma flow velocityu. In
the regular cascade model, there is no clear dependence of
λ‖ on u. The numericalλ‖ approaches the QLT value, as
u increases. Whenu is small, theλ‖ increases toward the
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shock as shown in Fig.6b. Whereas, whenu is large, theλ‖

decreases toward the shock, and an efficient scattering based
on the QLT occurs, since the particles convected with the
flow quickly reach the turbulent shock.

In the inverse cascade model,λ‖ is larger than the QLT
value asu increases. Whenu is small (u=2), some par-
ticles with low energies are scattered by the waves far up-
stream, and other particles with high energies escape further
upstream,x<0. As u increases, we observed that the prob-
ability for particles to escape decreases, since more particles
quickly reach the turbulent shock before escaping. Hence,
the particles even with high energies in the upstream region
travel toward the shock without experiencing efficient scat-
tering by the waves assumed in the QLT.

3.4 Thermal energy at the shock

Figure8 shows the variance of velocity defined by Eq. (8) for
the regular and inverse cascade models. The bottom and top
axes are the same as in Fig.7, and the varianceσvv is in keV.
The solid line shows the initial thermal energy (E0) equal to
the particle thermal energy at the shock. The symbols repre-
sent the numericalσvv evaluated at the shock and correspond
to different plasma flow velocitiesu. The symbol notations
used are the same as in Fig.7. We use the same evaluation
times as were used for the results presented in Fig.7.

For a lower thermal energy (vth≤8) corresponding to
E0<2.5 keV, we find finite particle acceleration in both cas-
cade models. The thermal energy maximally increases up
to ∼4.2 times initial thermal energy foru=32 andvth=2 in
both cascade models. The particle acceleration occurs due to
the additional electric fields, which are caused by spatial am-
plifications of transverse magnetic fluctuations. The acceler-
ation is larger for a higher flow velocity, since the additional
electric field1E increases with increasingu. The maximum
amplitudes of1E are 0.05,0.2, and 0.8 for u=2,8, and 32,
respectively.

On the other hand in the higher thermal energy (vth>8),
the decreases ofσvv from the initial values are found in both
models. These decreases are apparent in the inverse cascade
model than in the regular cascade model. In the inverse cas-
cade model, the thermal energy decreases more for lower
flow velocity. These decreases are due to escaping particles.
In the inverse cascade model and low flow velocity, some par-
ticles which belong to the high energy tail of the Maxwellian
distribution are escaping from the upstream region. The vari-
anceσvv is evaluated for the particles convected by the flow
except for escaping particles, and the remaining particles be-
long to the lower energy part in the Maxwellian distribution.
Therefore, by taking an ensemble average of these remaining
particles, the evaluatedσvv at the shock is reduced from the
initial values.
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Fig. 8. Similar to Fig.7 but the variance of velocity in Eq. (8) for
(a) the regular cascade and(b) the inverse cascade models. Symbol
notations are the same as in the Fig.7.

4 Summary and discussion

4.1 Summary

We have studied the parallel (field-aligned) diffusion of ener-
getic particles in the spatially evolving MHD turbulence with
test particle simulations. We have considered the upstream
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region of the bow shock, up to 160 Earth radii from the
shock, with the thermal energy of protons from 0.157 keV
to 160 keV. We have assumed that the bow shock has parallel
shock geometry, and that MHD wave turbulence convected
by the solar wind toward the shock is purely transverse
in the one-dimensional system with a constant background
magnetic field. We have employed two energy cascade mod-
els for the MHD turbulence: the regular cascade and the
inverse cascade. In addition, the homogeneous turbulence
model is used for comparison with the two cascade models.
We have focused on the spatial dependence of the mean free
pathλ‖ of the particles due to the wave cascading. In these
three models the particles are convected with the solar wind,
and thus the spatially dependentλ‖ can be evaluated by a
transformation of the time dependentλ‖, where the spatial
coordinate is assumed to be in the co-moving frame with
the solar wind. We numerically computed particle orbits,
and evaluatedλ‖ as a function of time by taking an ensem-
ble average of the orbits to obtain spatial dependence ofλ‖.
We compare the numericalλ‖(x) with the theoreticalλ‖(x)

based on the QLT (quasi-linear theory). We have showed that
spatial amplification of the magnetic field fluctuations creates
transverse electric fields other than the motional electric field
in the upstream region of the shock. We discuss acceleration
of the particles due to these electric fields.

The principal results of this investigation are listed below:

1. Typical particle orbits are qualitatively different in the
three turbulence models. In the homogeneous turbu-
lence model, particle motion along the mean field is
the Brownian motion due to random and isotropic scat-
tering across the 90 degree pitch angle. For the reg-
ular cascade model, the motion is non-Brownian and
is composed of “walk” (moving along the mean field
with a constant velocity close to the resonance velocity)
and “sticking” (stay a position for some time) segments.
This motion is due to the trapping and de-trapping (re-
lease) by a wave with low wavenumber. In the inverse
cascade model, the motion is combination of “walk”
and the Brownian motion. This is due to anisotropic
scattering caused by weak scattering around 0◦ or 180◦

pitch angles.

2. In the homogeneous turbulence model, the numerical
λ‖ is independent of distance from the shock. On the
other hand, in the two cascade models, theλ‖ depends
on the distance. It also depends on the parameters such
as the thermal velocity of the particlesvth, solar wind
flow velocityu, and wave cascade models.

3. We studied values ofλ‖ at the shock for the different
turbulence models when the thermal velocity satisfies
the linear wave resonance condition. For the homoge-
neous turbulence model, the mean free path at the shock
(λ‖<1 RE) matches well the QLT result. On the other
hand, for the two cascade models,λ‖ at the shock is

found to be larger than the value of the QLT, reaching
the maximum at∼30 RE and∼40 RE for the regular
and inverse cascade models, respectively.

4. In the homogeneous turbulence model,λ‖ at the shock
is λ‖∼v

0.5
th for the wave power spectrum indexγ=1.5.

This result is consistent with the QLT. On the other
hand,λ‖ at the shock decreases or increases with the in-
creasingvth for the regular or the inverse cascade mod-
els, respectively. These results reflect evolution of the
power spectrum in the two cascade models. Namely,
waves with higher (lower) wavenumbers are absent far
upstream in the regular (inverse) cascade model. That
leads to inefficient scattering of the particles, depending
on their thermal energies. In addition, in both cascade
models,λ‖ at the shock depends on solar wind velocity.

5. In both cascade models, finite accelerations are found
for particles at low thermal energies, typically, in the
range less than 2.5 keV. The acceleration occurs due to
the transverse electric field (with the motional electric
field removed). The acceleration efficiency is estimated
by the ratio of the thermal energy to the initial thermal
energyE0, which is about 4.2 for E0=0.157 keV and
u=1600 km/s.

4.2 Comparison with the theoreticalλQL
‖
(x) in Eq. (10)

The observed spatial dependence ofλ‖ is not consistent with
the result of Eq. (10) based on the QLT. This discrepancy
can be explained by the following. In the theory, a spatial
evolution of the wave energyδB2 is considered, but that of
the wave power spectrum is not. In our simulation, the lat-
ter plays an aimportant role in the diffusion process. Even
though the wave energy is the same, the pitch angle scatter-
ing of particles is qualitatively different, depending on which
mode number the power spectrum has. When waves with low
wavenumbers are only present, there is a coherent scattering
due to trapping by the waves. Inversely, when waves with
high wavenumbers are only present two scenarios are possi-
ble. There is an anisotropic scattering and no scattering due
to lack of the waves to be in resonance with particles at high
energy. These coherent and anisotropic scatterings produce
the walk motion along the mean field for finite time. Hence,
the spatial dependence ofλ‖(x) cannot be described only by
the spatial evolution ofδB2. Based on our results, one can
estimate the parameterβ, which models the spatial depen-
dence ofλ‖ in the empirical approach byLi et al. (2003).

4.3 Effect of the solar wind velocity variations on the mean
free path

The observations show a large variation in the magnitudes
of λ‖ from one event to another in a range of two orders of
magnitude (Droge, 2000). In our study for the inverse cas-
cade model, theλ‖ at the shock varies by more than an order
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of magnitude, if the solar wind velocity varies up to the fac-
tor of 16. It is generally observed that the solar wind velocity
fluctuates from one event to another. Therefore, we conclude
that the solar wind velocity is one of the important param-
eters to determine the value ofλ‖ in presence of spatially
evolving MHD waves.

For a homogeneous turbulence, the solar wind velocity
does not affectλ‖, since theλ‖ is not changed in the co-
moving solar wind frame. Namely, the turbulence statistics
in the solar wind frame is uniquely determined as spatially-
independent. Accordingly, the spatial and temporal scales
characterizing the parallel diffusion, which are mean free
pathλ‖ and pitch angle relaxation timeτ , are also uniquely
defined by the turbulence statistics. On the other hand, when
MHD waves evolve spatially generating inhomogeneous tur-
bulence, the foreshock sizeL and the convection time T,
at which the solar wind sweeps the foreshock region and
which is written asT=L/u, become important as spatial
and temporal scales. When the solar wind velocity is small,
i.e.,τ�T , the particles will be isotropically scattered before
reaching the shock if the waves to scatter them are present.
Then, we predict that a slower solar wind leads to nearly
isotropic scattering of the particles, and that it leads to a
short mean free path described by the QLT. The prediction
is consistent with our numerical result for the inverse cas-
cade model (Fig.7b). Namely, whenu decreases, theλ‖

decreases and approaches to the QLT result. Another im-
portant aspect is thatτ also has a spatial dependence. Since
the turbulence is not evolved enough in the far upstream re-
gion,τ will be larger than that near the turbulent shock. The
spatial dependence ofτ should also be taken into account in
understanding the parallel diffusion in the foreshock region.
We suggest that a self-consistent model of wave-particle in-
teraction beyond the QLT is needed for the case when two
important time scales, i.e., the convection time and pitch an-
gle relaxation time are of the same order.

4.4 Comparison with numerical simulations ofGiacalone
(2004)

The spatially evolving magnetic field fluctuations in our in-
verse cascade model are consistent with those in the hybrid
simulations done byGiacalone(2004). We compared our nu-
mericalλ‖ with that in his study. In the paper byGiacalone
(2004), the spatially dependent mean free path was obtained
from fitting of a spatial profile of the energetic particle den-
sity and by assuming the exponential decay of a parallel dif-
fusion coefficient. At the shock the mean free path, of the
Table 2 in his paper, slightly increases from∼6 RE to ∼6.7
RE in the energy range of 8.3 keV<E<166 keV, where unit
lengthc/ωi and unit energyEp=mu2/2 are assumed 100 km
and 0.83 keV for solar wind velocityu=400 km/s, respec-
tively. In our study (see Fig.7b), we also observed a slight
increase inλ‖ up to∼5 RE with vth increase in the energy
range of 5.6 keV<E0<40 keV foru=400 km/s. Therefore,

the dependence ofλ‖ at the shock on the thermal energy is
consistent with that inGiacalone(2004).

In the result ofGiacalone(2004), however, the simulated
λ‖ increases with distance from the shock, and theλ‖ far
upstream (∼320RE from the shock) increases to more than
230RE . On the contrary in our inverse cascade model (see
Fig. 6c), the numericalλ‖ slightly decreases with distance
from the shock, and theλ‖ far upstream (∼130RE from the
shock) is less than∼10RE . Hence, the spatial dependence
of λ‖ in our result is inconsistent with that in the paper by
Giacalone(2004). This inconsistency is due to the different
methods of estimatingλ‖. In our study we took an ensem-
ble average only for particles convected with the solar wind,
whereas in Giacalone’s study the escaping particles far up-
stream are also included in the fitting of the spatial density
profile of the energetic particles.

The important feature of our method is that theλ‖(x) can
be determined without any assumptions of the shape ofλ‖(x)

as a function of space. In the method employed byGiacalone
(2004), the functional form ofλ‖(x) should be needed to find
the solution of the particle density profile and to fit the nu-
merical profile with the obtained solution. Therefore, our
method may contribute to the modification of the DSA (dif-
fusive shock acceleration) process discussed byGiacalone
(2004), by estimating aλ‖ with an arbitrary dependence on
the spatial coordinate. Applying our method to the DSA pro-
cess, we should vary the initial parameters for the particles
such as injection position, which affects the probability of
particles to escape far upstream, and we should also employ
the initial velocity distribution like power-law type for shock
accelerated particles.

4.5 Pre-acceleration for the particles at low energies

In addition, we suggest that particle acceleration considered
in this paper might act as a pre-acceleration mechanism for
the DSA process at a shock. It is essential for the DSA pro-
cess that the particles can be scattered efficiently by the MHD
waves upstream and downstream of the shock. The so-called
injection problem addresses how particles might be acceler-
ated from the thermal pool up to an energy where they can
be diffused back and forth between the upstream and down-
stream regions. The present study reveals that solar wind
particles at low energies can be accelerated before reaching
the shock. The pre-acceleration is due to the transverse elec-
tric field with motional field extracted, which is caused by
amplification of the MHD waves. For comparison with the
observations, we should apply the real parameters to describe
MHD fluctuations at the bow shock. In the cascade models,
the growth rates of the magnetic fluctuations are arbitrary,
that is, the growth length∼ 2RE is comparable to the max-
imum wave length in the system. The growth length affects
magnitude of the transverse electric field, which plays an im-
portant role in the acceleration process we observed.
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5 Conclusions

We investigated spatially dependent diffusion of the solar
wind protons due to the wave cascading in the foreshock re-
gion, and calculated the mean free pathλ‖ along background
magnetic field as a function of space and thermal velocity.
We found that results of the homogeneous turbulence model
match predictions of the QLT (Quasi-Linear Theory). On the
other hand, our results for the two cascading wave turbulence
models are inconsistent with the QLT. Spatial evolution of
wave power turbulent spectrum induces a non-Brownian par-
ticle motion due to trapping by a wave with low wavenum-
ber and the anisotropic pitch angle scattering for a finite time
scale. The numericalλ‖ are much larger than the values pre-
dicted by the QLT near the bow shock. We showed genera-
tion of transverse electric fields (with motional electric field
removed) due to the wave-wave interactions. These electric
fields can result in pre-acceleration of protons upstream of
the bow shock. Further studies such as a self-consistent mod-
eling and statistical analysis of a non-Brownian motion are
needed for understanding of the observedλ‖ and modifica-
tions to the DSA (Diffusive Shock Acceleration) in the pres-
ence of evolving MHD turbulence in the foreshock region.
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