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Abstract. Charging of individual dust particles in contact
with hot plasmas is studied by numerical methods. The dust
particle is treated as a rigid solid body, composed by either
perfectly insulating or conducting material. The collision-
less plasma, consisting of electrons and singly charged ions,
is simulated by Particle-in-Cell methods in two spatial di-
mensions. It is demonstrated that the surface conditions, i.e.
roughness, of the dust particles are significant for the charg-
ing. In a streaming plasma, a dust grain develops an electric
dipole moment which varies systematically with the relative
plasma flow. The strength and direction of this dipole mo-
ment depends critically on the material. We observe also
Langmuir oscillations excited in the vicinity of the particles,
and analyze the spatial variation of their spectral distribution.

1 Introduction

The interactions between dust particles and warm plasmas
represent a variety of often very complicated problems,
where not all questions are amenable for theoretical or an-
alytical studies, not even when individual dust particles are
considered (Piel and Melzer, 2002; Fortov et al., 2005). In
the present work we analyze the charging of a single dust
particle by numerical methods. The analysis is carried out
in two spatial dimensions with Cartesian coordinates: this
restricted geometry is sufficient for illustrating the basic con-
cepts of the problem, while on the same time allows many
relevant simulations to be performed within an overseeable
time. The results can be directly relevant for elongated ob-
jects (not necessarily dust particles) embedded in warm lab-
oratory or space plasmas, for instance long wires with diam-
eters larger than the Debye length.
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We find two properties of the dust particles to be impor-
tant: 1) There is a pronounced distinction between perfectly
conducting and insulating materials. 2) The surface condi-
tions, i.e. the roughness of the material, influence the results
noticeably. For isotropic thermal plasmas some of our re-
sults could be foreseen, at least qualitatively, by simple ar-
guments. The situation is, however, significantly compli-
cated when dust particles are exposed to streaming plasmas
(or alternatively, the particles are moving with respect to a
stationary plasma). We study the charging of dust particles
with scale sizes exceeding the total Debye length,λD (hav-
ing λ−2

D ≡λ−2
De+λ−2

Di , in terms of the electron and ion Debye
lengths). Particular attention is given to the dipole moment
that develops for a charged dust grain, when there is a relative
velocity between the particle and the plasma. We demon-
strate that this electric dipole moment exists for insulating
as well as conducting particles, but its magnitude is signifi-
cantly different, and also the direction is opposite for the two
cases. Contrary to what might have been expected, the dipole
moment is not short-circuited for a perfect conductor, but is
for this case imposed by the surroundings, the wake electric
field in particular.

2 Numerical code

The numerical analysis is carried out by a Particle-In-Cell
(PIC) code. The basic features of the program are standard,
and need not be discussed in any detail here (Birdsall and
Langdon, 1985), so we mention just some specific features.
The problem is analyzed with two boundary conditions for
Poisson’s equation, one at the outer boundaries, where ions
and electrons are injected according to a priori chosen veloc-
ity distributions. Particles are initially also distributed inter-
nally in the simulation area (except for regions occupied by
dust), according to the selected velocity distributions. Parti-
cles can leave freely across any outer boundary. The second
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Fig. 1. Illustration of dust shapes considered in the present study.
Shape(a) is as close to a circle as possible with the given grid reso-
lution, while shape(b) is used for studies of very irregular surfaces.

inner boundary defines the nature of the individual dust parti-
cles. For perfect insulators, we assume that a charged particle
hitting the surface remains at that position for all later times,
contributing to the total electric fields. For perfect conduc-
tors, we have that the electrostatic potential is the same for
all positions at the boundary, the electric field being perpen-
dicular to the surface. The electric fields vanish inside the
conductor. The dust particles are assumed to be rigid and
massive, i.e. they retain their initial shape and remain immo-
bile for the duration of the simulation. Our simulations with
conducting materials have many properties common with re-
lated studies of Langmuir probe performance in collisionless
plasmas (Taccogna et al., 2004; Teodoru et al., 2005). Our
code has thus been verified by operating it in a “Langmuir
probe mode”, where a fixed potential on the inner boundary
is imposed externally. We here reproduced probe characteris-
tics for standard conditions, as well as for more complicated
conditions with plane probes embedded in plasmas with ion-
beams (Weber et al., 1979; Skøelv et al., 1984; Armstrong
et al., 1992). The code allows many dust particles to be dis-
tributed inside the simulation area, but for the present analy-
sis we limit the case to only one.

For the present study, the code is operated with fixed po-
tentials at all outer boundaries. We use typically(1−5)×105

simulation particles in the following analysis. We have a grid
spacing ofλD/2 to resolve also the Debye length. For the
reference case we use a 200×200 grid resolution (ng=200),
giving a simulation area of 100×100 λ2

D. The time resolu-
tion is 1/10 of an electron plasma period. We analyze two ba-
sically different shapes of the dust particles, one with smooth
and one with an irregular surface, as illustrated in Fig.1. The
example in Fig.1a represents a shape as close to being circu-
lar as possible with the square mesh used for computations.
The example in Fig.1b is chosen to include deep cavities as
well as extrusions. The particles are assumed to be of finite
size, i.e. several Debye lengths in characteristic diameter. We
have studied many other shapes than those shown in Fig.1,
but these are our “reference shapes” in the following.
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Fig. 1. Illustration of dust shapes considered in the present study. Shape a)
is as close to a circle as possible with the given grid resolution, while shape
b) is used for studies of very irregular surfaces.

Fig. 2. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded at rest in a thermal plasma withTe/Ti = 3. Results
are shown for five ion/electron-mass ratios. Times are normalized by the
electron plasma period, and potentials by the floating potential (1), recalling
thatΦfl < 0.

Fig. 3. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded at rest in a thermal plasma. Resultsare shown for
three electron temperatures, measured in relation to the reference tempera-
ture in Fig. 2. Times are also here normalized by the electronplasma period,
and potentials by the floating potential (1), which is here changing with the
electron temperature. Full line shows the reference case from Fig. 2. We also
have a curve for the caseng = 100, where the grid resolution is reduced by
a factor 1/2, as compared to the reference case. We haveM/m = 120.

Fig. 4. Debye shielding of a dust grain of irregular shape made of insulating
material as in Fig. 1b). The figure shows a section of a larger simulation
area. Distances are normalized byλD , and potentials by (1), recalling that
Φfl < 0.

Fig. 2. Time evolution of the potential of an initially uncharged in-
sulating dust particle, embedded at rest in a thermal plasma with
Te/Ti=3. Results are shown for five ion/electron-mass ratios.
Times are normalized by the electron plasma period, and potentials
by the floating potential (1), recalling that8f l<0.

3 Numerical results

We analyzed the case where the plasma was in local equi-
librium with a stationary particle, and also the case with a
relative velocity.

3.1 Simulation results for thermal plasmas

In the first part of the study, we assume that both electrons
and ions have a Maxwellian velocity distribution, and that the
dust particles are at rest. We solve the problem by assuming
that the dust is initially uncharged. The time evolution of the
absolute value of the potential for an insulating particle with
the shape (a) in Fig.1 is illustrated in Fig.2, for different
ion/electron mass ratios. The figure shows the relaxation to
the floating potential, superimposed by an oscillatory compo-
nent, with a frequency close to the electron plasma frequency.
This latter component is associated with sheath oscillations,
which are excited by the initial condition. Because the poten-
tial at t=0 is different from the floating potential,8f l , the
initial condition acts as a step-like perturbation of the sys-
tem. The initial time variation, up to approximately one half
electron plasma period, is almost identical for the five cases
shown. The process is subsequently slowed-down on a time
scale which is scaling approximately with the square root of
the mass ratio. Note that curves for increasing mass ratio
lie at successively smaller ordinates in the initial temporal
phase. We also note that the saturated floating potential value
is reached on a time which is smaller than the ion plasma pe-
riod. The initial potential of the dust particle is not exactly
zero due to the random initial distribution of charges. The
oscillations observed in Fig.2 have negligible influence on
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the current to the dust particle, and after a transient period,
the electric field close to the surface varies only little. For
small mass ratios,M/m≤60 we note a small “overshoot” in
the dust potential at the early phase of the charging. This sig-
nature becomes inconspicuous as the mass ratio is increased.
We attribute this overshoot to unphysically small mass ratios
(M/m<100), and useM/m=120 in the following. For these
mass ratios the results will not be quantitatively correct, but
the normalizedpresentation used in Fig.2 and later figures
can give also quantitatively correct results. For magnetized
plasmas, the choice of mass ratio deserves particular scrutiny
(Mälkki, 1994), but these arguments do not affect the present
analysis of unmagnetized plasmas.

We studied the time-evolution of the dust potential for dif-
ferent electron temperatures, see Fig.3. Also, we show re-
sults for different numerical grid spacings. The amplitudes
of the oscillations at the plasma frequency are changing, with
the largest temperature giving the smallest amplitude, but the
overall averaged time-variation is basically the same. As an
illustration, we also show the results obtained by simulations
on a 100×100 grid (ng=100), which gives almost identical
results. This observation indicates that the grid resolution
used here is giving robust results.

Usually the time evolution of an initial value problem has
little practical relevance, but as argued in Sect.3.2 the char-
acteristic time scale for the charging has important conse-
quences for modeling the forces on moving charged dust par-
ticles.

We find generally that the initial transient charging time is
well approximated by the electron plasma period. The subse-
quent relaxation to a stationary floating potential scales, for
homogeneous conditions, approximately by the ion plasma
period, as we might expect. The ultimate stationary potential
level is given by the floating potential associated also with
a Langmuir probe biased to conditions where the probe cur-
rent vanishes. We use the expression for the floating potential
with respect to the plasma potential for a large probe in units
of λD. Taking the ion acceleration through a pre-sheath into
account (the Bohm condition (Chen, 1984; Boeuf and Pun-
set, 1999)), we have

8f l = −
κTe

2e

(
ln

(
M

2π m

)
+ 1

)
, (1)

where it is implicitly assumed thatTe�Ti . The result (1)
is independent of the plasma density. The numerical fig-
ure 1 in the parenthesis in Eq. (1) originates from the pre-
sheath, which is necessary to pre-accelerate the ions. We
will use Eq. (1) for normalization several times in the fol-
lowing, noting that for parameters relevant for our study we
have8f l<0. The floating potential depends only logarithmi-
cally on the mass ratio, and it is therefore not critical to have
completely realistic values ofM/m in the simulations. The
result (Eq.1) is inaccurate for realistic finite ion temperature
conditions by implicitly assumingTi≈0 K. The time asymp-
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Fig. 1. Illustration of dust shapes considered in the present study. Shape a)
is as close to a circle as possible with the given grid resolution, while shape
b) is used for studies of very irregular surfaces.

Fig. 2. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded at rest in a thermal plasma withTe/Ti = 3. Results
are shown for five ion/electron-mass ratios. Times are normalized by the
electron plasma period, and potentials by the floating potential (1), recalling
thatΦfl < 0.

Fig. 3. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded at rest in a thermal plasma. Resultsare shown for
three electron temperatures, measured in relation to the reference tempera-
ture in Fig. 2. Times are also here normalized by the electronplasma period,
and potentials by the floating potential (1), which is here changing with the
electron temperature. Full line shows the reference case from Fig. 2. We also
have a curve for the caseng = 100, where the grid resolution is reduced by
a factor 1/2, as compared to the reference case. We haveM/m = 120.

Fig. 4. Debye shielding of a dust grain of irregular shape made of insulating
material as in Fig. 1b). The figure shows a section of a larger simulation
area. Distances are normalized byλD , and potentials by (1), recalling that
Φfl < 0.

Fig. 3. Time evolution of the potential of an initially uncharged in-
sulating dust particle, embedded at rest in a thermal plasma. Results
are shown for three electron temperatures, measured in relation to
the reference temperature in Fig.2. Times are also here normalized
by the electron plasma period, and potentials by the floating poten-
tial (1), which is here changing with the electron temperature. Full
line shows the reference case from Fig.2. We also have a curve for
the caseng=100, where the grid resolution is reduced by a factor
1/2, as compared to the reference case. We haveM/m=120.

totic potential in Fig.2 is nonetheless well approximated by
the standard analytical estimate Eq. (1).

The result (Eq.1) refers to the case where the dust grain
has a diameter greater than the Debye length,λD. For the
opposite limit, we can determine an analytical expression for
the floating potential by orbit theory, for instance (Lochte-
Holtgreven, 1968).

For smooth surfaces as in Fig.1a, the potential variation
around the dust grain shows the usual Debye shielded poten-
tial. For irregular surfaces we can have an irregular potential
distribution around the dust particles, as illustrated in Fig.4,
but the irregularity of the sheath diminishes as the distance
to the object increases. The properties of the local irregular
electric field variation at the surface will be particularly im-
portant when considering the coagulation of two dust grains.

For the present conditions, we find the nonlinear correc-
tions to the linear Debye-shielding to be immaterial, but
note that for surfaces that can be considered locally plane
(i.e. when the radius of curvature is much larger thanλD),
this case can be solved analytically (Sivukhin, 1966).

3.2 Simulation results for drifting plasmas

As a simple generalization of the results from Sect.3.1 we
now assume that the plasma is drifting with some veloc-
ity U , or alternatively that the dust particle is moving with
constant velocity through a thermal plasma (Lapenta, 1999;
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Fig. 1. Illustration of dust shapes considered in the present study. Shape a)
is as close to a circle as possible with the given grid resolution, while shape
b) is used for studies of very irregular surfaces.

Fig. 2. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded at rest in a thermal plasma withTe/Ti = 3. Results
are shown for five ion/electron-mass ratios. Times are normalized by the
electron plasma period, and potentials by the floating potential (1), recalling
thatΦfl < 0.

Fig. 3. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded at rest in a thermal plasma. Resultsare shown for
three electron temperatures, measured in relation to the reference tempera-
ture in Fig. 2. Times are also here normalized by the electronplasma period,
and potentials by the floating potential (1), which is here changing with the
electron temperature. Full line shows the reference case from Fig. 2. We also
have a curve for the caseng = 100, where the grid resolution is reduced by
a factor 1/2, as compared to the reference case. We haveM/m = 120.

Fig. 4. Debye shielding of a dust grain of irregular shape made of insulating
material as in Fig. 1b). The figure shows a section of a larger simulation
area. Distances are normalized byλD , and potentials by (1), recalling that
Φfl < 0.

Fig. 4. Debye shielding of a dust grain of irregular shape made of
insulating material as in Fig.1b. The figure shows a section of a
larger simulation area. Distances are normalized byλD , and poten-
tials by (1), recalling that8f l<0.

Kwok et al., 2003). In particular, for supersonic particles, we
expect the formation of aV -shaped Mach-cone behind the
dust grain, where for the present conditions the finite size of
the particle is likely to be of importance, and the radiation
pattern will differ from that of a point charge studied else-
where (Huld et al., 1990; Guio and Ṕecseli, 2003). For dis-
tances much larger than the diameter of the dust grain, we can
however expect the analytical results of e.g.Guio and Ṕecseli
(2003) to apply. We emphasize that the wake and the Mach-
cone are entirely unrelated physical phenomena: the Mach-
cone will be observed also for a supersonic point charge, in
which case no wake is formed. We define the wake as the
region in the shadow of the object, where the electron and
ion densities are significantly reduced (by more than∼50%).
The Mach-cone is a wave-like disturbance, emitted from a
supersonic source, while the wake is caused by the finite size
of the object, depending also on the distributions of the par-
ticles absorbed on the surface.

We find a significantly increased charging time, as com-
pared to the case where the dust-grain is at rest with respect
to the plasma, with representative cases illustrated in Fig.5.
The initial phase, with duration of a few electron plasma pe-
riods, is almost indistinguishable from the results in Fig.2,
while the subsequent time evolution of the net charge is con-
siderable slower. For large flow velocities, the potential be-
comes also increasingly fluctuating, and the estimate on, for
instance, the charge on the dust particles becomes some-
what more uncertain. Dust particles moving at high speeds
through inhomogeneous plasmas will at any given position
have a charge that depends on the prior orbit, in general. We
should like to mention that the characteristic charging-time
Tc is an important parameter for particles propagating in an
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Fig. 5. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded in a flowing plasma withTe/Ti = 3. We have
M/m = 120. Times are normalized by the electron plasma period, and
potentials by the floating potential (1). We show four cases:U = 0, 1, 2, 3
in units ofCs. The oscillations at the electron plasma frequency have been
removed by filtering to improve the presentation.

Fig. 6. Time asymptotic potential distribution (color coded) around an insu-
lating dust grain in a flowing plasma. The particle shape is given by Fig. 1a).
We haveU = 2Cs. Note the large potential variation inside the dust grain.
Also here we normalize distances byλD , and potentials byΦfl from (1).

Fig. 7. The time asymptotic potential distribution (color coded) around a
dust grain made of a perfectly conducting material embeddedin a flowing
plasma. The shape of the particle is given by Fig. 1a). The potential is
constant inside the dust grain in this case, and a white coloris used there for
improving the presentation. We haveU = 2Cs.

Fig. 8. Absolute value of the normalized average charge on an insulating
dust grain with shape as in Fig. 1a), for different plasma flowvelocities.
Velocities are normalized by the sound speedCs and charges byQ0 from
(2), recalling thatQ0 < 0.

Fig. 5. Time evolution of the potential of an initially uncharged in-
sulating dust particle, embedded in a flowing plasma withTe/Ti=3.
We haveM/m=120. Times are normalized by the electron plasma
period, and potentials by the floating potential (1). We show four
cases:U=0, 1, 2, 3 in units ofCs . The oscillations at the electron
plasma frequency have been removed by filtering to improve the
presentation.

inhomogeneous plasma: given the particle velocityU , we
can define a time scale associated with the inhomogeneity
asτin≡L/U , whereL is a characteristic scale-length of the
plasma inhomogeneity. IfTc<τin we can argue that the dust
charge is at all times derived from local equilibrium condi-
tions in the plasma, while in the opposite case,Tc>τin, there
is a “memory” in the system, and the actual charged state of
the dust will depend on the preceeding motion through the
plasma. Assuming that the dust is moving in a stationary
electrostatic field, the forces on a dust grain are generally not
conservative when the charged state of a dust grain depends
on its path (Raadu and Shafiq, 2003; Shafiq and Raadu, 2004;
Zhdanov et al., 2005).

The most conspicuous difference in the electrostatic fields
around a dust grain at rest and one moving with respect to
the plasma is the asymmetry developing due to the shadow
or wake behind the particle. In many ways these features
are similar for microscopic dust grains and macroscopic ob-
jects like space-crafts (Singh et al., 1986, 1989) or the moon
(Nakagawa and Iizima, 2005). We will here consider only
relative velocities well below the electron thermal speed, and
may safely assume that the object is exposed to an almost
isotropic and uniform electron flux. The ion flux is, on the
other hand, anisotropic, in general. The part of the dust
grain facing the flow direction experiences the largest ion
flux. Consequently an electric field builds up inside the dust
particle for insulating materials. This electric field may be-
come so large that the particle is disrupted. (If we consider
small organisms like bacteria as equivalent to dust grains,
these features may actually be used for sterilization (Shukla
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Fig. 5. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded in a flowing plasma withTe/Ti = 3. We have
M/m = 120. Times are normalized by the electron plasma period, and
potentials by the floating potential (1). We show four cases:U = 0, 1, 2, 3
in units ofCs. The oscillations at the electron plasma frequency have been
removed by filtering to improve the presentation.

Fig. 6. Time asymptotic potential distribution (color coded) around an insu-
lating dust grain in a flowing plasma. The particle shape is given by Fig. 1a).
We haveU = 2Cs. Note the large potential variation inside the dust grain.
Also here we normalize distances byλD , and potentials byΦfl from (1).

Fig. 7. The time asymptotic potential distribution (color coded) around a
dust grain made of a perfectly conducting material embeddedin a flowing
plasma. The shape of the particle is given by Fig. 1a). The potential is
constant inside the dust grain in this case, and a white coloris used there for
improving the presentation. We haveU = 2Cs.

Fig. 8. Absolute value of the normalized average charge on an insulating
dust grain with shape as in Fig. 1a), for different plasma flowvelocities.
Velocities are normalized by the sound speedCs and charges byQ0 from
(2), recalling thatQ0 < 0.

Fig. 6. Time asymptotic potential distribution (color coded) around
an insulating dust grain in a flowing plasma. The particle shape
is given by Fig.1a. We haveU=2Cs . Note the large potential
variation inside the dust grain. Also here we normalize distances by
λD , and potentials by8f l from Eq. (1).

and Mamun, 2002; Laroussi et al., 2003).) For a perfectly
conducting material, on the other hand, the surface charges
have to be redistributed so as to make the internal electric
fields vanishing. Consequently, we expect to find signifi-
cant differences between the potential distributions around
insulators and conductors when they are moving through the
plasma.

In Figs.6 and7 we show the saturated time-stationary po-
tential variation around a dust grain embedded in a stream-
ing plasma (Manweiler et al., 2000), where the flow velocity
is 2Cs , the temperature ratioTe/Ti=3, and the ion-electron
mass ratio isM/m=120. In normalized units, the results can
be directly relevant, for instance, also forQ-machine condi-
tions (Motley, 1975). When the diameter of the dust grain
exceeds the Debye lengthλD, we can obtain an analytical
estimate for the electric field inside a dust grain of insulating
material by considering a small surface element locally as
equivalent to a plane Langmuir probe. For a surface element
at the side of the probe, the flow velocity is tangential, and
the floating potential associated with that element is given
as for a plasma at rest (Eq.1). For surface elements facing
towards or away from the plasma flow, we can still assume
the potential as given by the floating potential of a Langmuir
probe, but have to take the plasma flow into account. The
foregoing estimates will be incorrect for conducting materi-
als, where charges are redistributed to maintain a vanishing
internal electric field.

For purely ballistic or free streaming ions, we can readily
estimate the shape of the plasma density wake to be approx-
imately triangular, with a length∼1

2LU/uth, whereuth is
a thermal ion velocity andL is the diameter of the obsta-
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Fig. 5. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded in a flowing plasma withTe/Ti = 3. We have
M/m = 120. Times are normalized by the electron plasma period, and
potentials by the floating potential (1). We show four cases:U = 0, 1, 2, 3
in units ofCs. The oscillations at the electron plasma frequency have been
removed by filtering to improve the presentation.

Fig. 6. Time asymptotic potential distribution (color coded) around an insu-
lating dust grain in a flowing plasma. The particle shape is given by Fig. 1a).
We haveU = 2Cs. Note the large potential variation inside the dust grain.
Also here we normalize distances byλD , and potentials byΦfl from (1).

Fig. 7. The time asymptotic potential distribution (color coded) around a
dust grain made of a perfectly conducting material embeddedin a flowing
plasma. The shape of the particle is given by Fig. 1a). The potential is
constant inside the dust grain in this case, and a white coloris used there for
improving the presentation. We haveU = 2Cs.

Fig. 8. Absolute value of the normalized average charge on an insulating
dust grain with shape as in Fig. 1a), for different plasma flowvelocities.
Velocities are normalized by the sound speedCs and charges byQ0 from
(2), recalling thatQ0 < 0.

Fig. 7. The time asymptotic potential distribution (color coded)
around a dust grain made of a perfectly conducting material em-
bedded in a flowing plasma. The shape of the particle is given by
Fig. 1a. The potential is constant inside the dust grain in this case,
and a white color is used there for improving the presentation. We
haveU=2Cs .

cle in the flow, measured in the direction perpendicular to
the flow vector. More accurately, but still with free stream-
ing ions having a Maxwellian distribution, we can determine
the density variation in a two-dimensional wake by assuming
quasi-neutrality. These estimates ignore the ion acceleration
by the ambipolar electric fields. The ions are accelerated,
giving a triangular shape of the wake, with an approximate
length 1

2LU/Cs . This latter estimate gives a value which is
too low when the flow velocity is sub-sonic. If we have ap-
proximate thermal equilibrium,Te≈Ti , the ambipolar elec-
tric fields have little importance, and the free streaming wake
can be used as a reasonably accurate estimate for sub-sonic
flows. For sub-sonic flows withTe>Ti , but with velocities
exceeding the ion thermal velocityuth, we expect distorted,
and non-triangular, shapes for the wake as observed for in-
stance in numerical simulations (Guio and Ṕecseli, 2005).

The plasma streaming creates an ion wake behind the dust
grain. The electron pressure forces electrons into this wake,
and the resulting charge imbalance creates an ambipolar elec-
tric field which accelerates ions into the wake as well. For the
insulating material, the charges are negative on the surface
facing away from the flow, and these charges subsequently
attract the ions. For conducting materials, the surface charges
on the back side have to be compensated by the charge redis-
tribution in order to cancel the internal electric fields, and
the ion dynamics in the wake will be altered substantially
as compared to the insulating case. By comparing Figs.6
and7 we find that the range of variation of the electrostatic
potential is much smaller for the conductor, as compared to
the insulating material, the difference being caused by the
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Fig. 5. Time evolution of the potential of an initially uncharged insulating
dust particle, embedded in a flowing plasma withTe/Ti = 3. We have
M/m = 120. Times are normalized by the electron plasma period, and
potentials by the floating potential (1). We show four cases:U = 0, 1, 2, 3
in units ofCs. The oscillations at the electron plasma frequency have been
removed by filtering to improve the presentation.

Fig. 6. Time asymptotic potential distribution (color coded) around an insu-
lating dust grain in a flowing plasma. The particle shape is given by Fig. 1a).
We haveU = 2Cs. Note the large potential variation inside the dust grain.
Also here we normalize distances byλD , and potentials byΦfl from (1).

Fig. 7. The time asymptotic potential distribution (color coded) around a
dust grain made of a perfectly conducting material embeddedin a flowing
plasma. The shape of the particle is given by Fig. 1a). The potential is
constant inside the dust grain in this case, and a white coloris used there for
improving the presentation. We haveU = 2Cs.

Fig. 8. Absolute value of the normalized average charge on an insulating
dust grain with shape as in Fig. 1a), for different plasma flowvelocities.
Velocities are normalized by the sound speedCs and charges byQ0 from
(2), recalling thatQ0 < 0.

Fig. 8. Absolute value of the normalized average charge on an insu-
lating dust grain with shape as in Fig.1a, for different plasma flow
velocities. Velocities are normalized by the sound speedCs and
charges byQ0 from Eq. (2), recalling thatQ0<0.

charge redistribution just mentioned. We note the presence
of a Mach-cone, best seen in Fig.7. For the present case,
with U=2Cs , we have the opening angle of the cone to be
θ=30◦, which is close to the observed value within the ob-
servational accuracy. We should note that the sound speed
was here deduced from the electron and ion temperatures of
the undisturbed plasma, so a perfect agreement can not be
expected since the particle distribution functions are signifi-
cantly disturbed in the vicinity of the dust grain. We obtain
the sound speed byCs=

√
κ(Te+γ Ti)/M, with γ=5/3 for

adiabatic ion dynamics. We also note that the Mach cone
pattern is significantly damped with distance away from the
particle, and does not extend to more than∼50λD, consistent
with analytical results (Guio and Ṕecseli, 2003), where the
effects of the kinetic Landau-damping are included. The di-
agnostic potential in the observations of Mach cones (which
are observable from large distances) has been noted (Havnes
et al., 1996).

The normalized charge accumulated on a dust particle for
different flow velocities is shown in Figs.8 and9. The shape
of the particle is in both cases given in Fig.1a. We ob-
tain a normalizing chargeQ0 per length unit̀ in the direc-
tion perpendicular to the simulation plane by considering the
isotropic case without flow. The physical dimension ofQ0
is Coulomb/length. We argue that for cylindrical symmetry
the electrostatic shielded potential is given byaK0(r/λD),
where by Eq. (1) we havea=8f l/K0(R/λD), with K0 be-
ing the modified Bessel function andR the radius of the dust
grain. The radial electric field is thenEr=(a/λD)K1(r/λD).
For a conducting material, as well as for insulators with
cylindrical symmetry, the electric field inside the dust grain
vanishes when the charge is restricted to the surface. The
electric field then also determines the surface charge density
σ=ε0 E. We thus obtainQ0=2πRε0(a/λD)K1(R/λD), or
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Fig. 9. The normalized average charge on a conducting dust grain with shape
as in Fig. 1a), for different plasma flow velocities. Velocities are normalized
by the sound speed,Cs, and charges byQ0 from (2), recalling thatQ0 < 0.

Fig. 10. Potential distribution (color coded) around a dust grain made of a
perfectly insulating material embedded in a flowing plasma.The shape is
given by Fig. 1b).

Fig. 11. Front and back potentials on an insulating dust particle forvary-
ing plasma drift velocities. The symbol◦ shows the potential on the front
side, facing the flow, while△ is on the shadow side. With• we show the
maximum potential difference across the particle, here with shape as given
in Fig. 1a). Full and dashed lines give the analytical functions (3) and (4),
respectively. The normalizing potentialΦfl is given by (1).

Fig. 12. The absolute value of the dipole moment of a dust particle embed-
ded in a streaming plasma, shown as a function of drift velocity (in units of
Cs). In a) we show the case of insulating material, in b) a perfect conductor.
The shape of the dust grain as given in Fig. 1a) is illustratedby •, while the
shape given in Fig. 1b) is shown by△. Ideally, we should have the dipole
moment vanishing forU = 0: the actual value gives the uncertainty on our
estimate for the dipole moment.

Fig. 9. The normalized average charge on a conducting dust grain
with shape as in Fig.1a, for different plasma flow velocities. Ve-
locities are normalized by the sound speed,Cs , and charges byQ0
from Eq. (2), recalling thatQ0<0.

Q0 = −πε0
κTe

e

(
ln

(
M

2π m

)
+ 1

)
R

λD

K1(R/λD)

K0(R/λD)
. (2)

We will useQ0 for normalizations of relevant quantities in
the following, noting thatQ0<0 for these cases. The refer-
ence charge is a measurable quantity (Homann et al., 1999),
and has general interest for the dust dynamics, but as stated,
the present derivation refers to stationary dust grains only.
The interesting problem is how this charge varies with veloc-
ity, as summarized here by Figs.8 and9. While net charges
can be determined experimentally, thedistributionof charges
on the surfaces can be found only by numerical simulations.

The number of elementary charges on the dust grain is here
approximately given by

Q0`

e
≈ π`λ2

Dn0

(
ln

(
M

2π m

)
+ 1

)
R

λD

K1(R/λD)

K0(R/λD)
,

which has to be truncated to the nearest integer number. The
parenthesis will typically be of the order 5, so for an order of
magnitude estimate we can use

Q0`

e
∼ `λDRn0 = Np

`R

λ2
D

,

in terms of the plasma parameterNp≡n0λ
3
D, noting that the

ratio of the two Bessel functions is 1<K1/K0<2 for the ar-
gumentR/λD>0.4. Recall that by using Eq. (1), we have
implicitly assumed that the dust grain can be locally approx-
imated by a plane surface. Consequently, the estimate (2)
depends only linearly onR, to a good approximation. We
haveNp�1 for most plasmas of interest here. Assuming
that the number of charges on a dust grain has a Poisson dis-
tribution, to a reasonable approximation, withQ0 represent-
ing the average value, we will have the standard deviation of
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the charges to be∼
√

Q0. This implies that the relative mag-
nitude of charge fluctuations is∼1/

√
Q0, which is a small

quantity (Matsoukas and Russell, 1995). We can usually ig-
nore the statistical variations in the number of elementary
charges on dust grains when their scale sizes are larger than
the Debye length.

The results summarized in Figs.8 and 9 show that the
net charge on a dust particle is reasonably close to the esti-
mate (2) for vanishing or small plasma flow velocities. (Re-
call thatQ0 in Eq. (2) was derived for stationary and isotropic
conditions, and enters here solely for normalizing purposes.)
As the flow velocity increases, we find an increase in the net
charge for the insulating case. The increase is not dramatic,
though, since we need a strongly supersonic flow in order to
obtain approximately a doubling of the charge. We note a
maximum charge value for Mach numbers close toM=2.5.
For this and larger Mach numbers, our calculations of the net
charges become increasingly more uncertain. A charge max-
imum for large Mach numbers of the plasma flow have been
argued on theoretical grounds (Fortov et al., 2005). Note here
that the largest velocity shown in Fig.5 corresponds to a re-
gion after the charge maximum in Fig.8. For conductors, we
do not find any charge maximum, at least within the param-
eter regime studied here. For spherical dust particles studied
in full three dimensions, somewhat different results are ex-
pected for the related problem (Fortov et al., 2005; Hutchin-
son, 2005). The initial trend of the charge variations with
flow velocity differs for insulators and conductors. This is
also observed in the spherical case (Lapenta, 1999). Signifi-
cant differences, as compared to the present cylindrical case,
are manifested only for large plasma drift velocities.

The potential distribution around an irregular dust parti-
cle (with shape given in Fig.1b), is shown in Fig.10. We
note the large variation in surface charge density. Only very
little charge penetrates into the bottom of the cavities, ex-
cept in the cases where these cavities face directly towards
the plasma flow. In a way, these results agree with those
obtained for the micro-porous ion energy analyzers used in
some double plasma devices. Also in these cases only those
ions having a velocity vector exactly aligned with the pores
of the analyzer reach the collector (Stenzel et al., 1982). We
also note the large potential variations originating from the
differences in charge density on the two sides of extrusions
facing towards and away the plasma flow, respectively. The
front part is exposed to the full plasma flow, while the back
side is predominantly bombarded by the electron component.
For moderate Mach numbers for the plasma drift velocity,
we can assume that the electron flux to the probe-surface re-
mains isotropic to a good approximation. Including a drift
velocity into Eq. (1), we can assume that the pre-sheath is
unaffected by a drift. This is probably acceptable as long as
the drift velocity is much smaller than the electron thermal
velocity. In that case, the ions can be assumed to arrive at the
sheath edge with a velocity approximately given asCs+U .
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Fig. 9. The normalized average charge on a conducting dust grain with shape
as in Fig. 1a), for different plasma flow velocities. Velocities are normalized
by the sound speed,Cs, and charges byQ0 from (2), recalling thatQ0 < 0.

Fig. 10. Potential distribution (color coded) around a dust grain made of a
perfectly insulating material embedded in a flowing plasma.The shape is
given by Fig. 1b).

Fig. 11. Front and back potentials on an insulating dust particle forvary-
ing plasma drift velocities. The symbol◦ shows the potential on the front
side, facing the flow, while△ is on the shadow side. With• we show the
maximum potential difference across the particle, here with shape as given
in Fig. 1a). Full and dashed lines give the analytical functions (3) and (4),
respectively. The normalizing potentialΦfl is given by (1).

Fig. 12. The absolute value of the dipole moment of a dust particle embed-
ded in a streaming plasma, shown as a function of drift velocity (in units of
Cs). In a) we show the case of insulating material, in b) a perfect conductor.
The shape of the dust grain as given in Fig. 1a) is illustratedby •, while the
shape given in Fig. 1b) is shown by△. Ideally, we should have the dipole
moment vanishing forU = 0: the actual value gives the uncertainty on our
estimate for the dipole moment.

Fig. 10. Potential distribution (color coded) around a dust grain
made of a perfectly insulating material embedded in a flowing
plasma. The shape is given by Fig.1b.

This generalizes Eq. (1) to give the approximate expression

8f l = −
κTe

2e

(
ln

(
M

2π m(1 +M)2

)
+ 1

)
, (3)

withM≡U/Cs being the Mach number. The result (Eq.3)
applies for a surface facing the plasma flow. The opposite
side is not exposed to any drift, and here ions enter with a
velocity essentially determined by the acceleration in the pre-
sheath. At least for moderate drift velocities,M�1, we can
consequently estimate the maximum potential drop across a
dust grain made of insulating material by

|18| =
κTe

e
ln(1 +M) ≈

κTe

e
M , (4)

where the latter approximation applies for small Mach num-
bers,M�1. The expressions (3) and (4) are seemingly inde-
pendent of the plasma density. We should emphasize, how-
ever, thatn0 enters implicitly by the assumption thatR>λD.
The estimate (4) is independent of the electron-ion mass ra-
tio.

In Fig. 11 we illustrate the potential on selected positions
on an insulating dust particle for varying plasma drift veloci-
ties. Thus, the symbol◦ shows the potential on the front side,
which is facing the flow, while4 shows the potential on the
shadow side. With• we show the maximum potential differ-
ence across the particle, here with shape as given in Fig.1a.
For clarity we show the potential difference negative: the cor-
responding electric field points in the plasma flow direction,
see also Fig.6. For significantly super-ion thermal flow ve-
locities (which need not be supersonic ifTe�Ti), the ions
can not reach the shadow side of the macroscopic particle by
ballistic motion, and the electron current is dominating. The
electron flux to the shadow-side surface builds up an electric
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Fig. 9. The normalized average charge on a conducting dust grain with shape
as in Fig. 1a), for different plasma flow velocities. Velocities are normalized
by the sound speed,Cs, and charges byQ0 from (2), recalling thatQ0 < 0.

Fig. 10. Potential distribution (color coded) around a dust grain made of a
perfectly insulating material embedded in a flowing plasma.The shape is
given by Fig. 1b).

Fig. 11. Front and back potentials on an insulating dust particle forvary-
ing plasma drift velocities. The symbol◦ shows the potential on the front
side, facing the flow, while△ is on the shadow side. With• we show the
maximum potential difference across the particle, here with shape as given
in Fig. 1a). Full and dashed lines give the analytical functions (3) and (4),
respectively. The normalizing potentialΦfl is given by (1).

Fig. 12. The absolute value of the dipole moment of a dust particle embed-
ded in a streaming plasma, shown as a function of drift velocity (in units of
Cs). In a) we show the case of insulating material, in b) a perfect conductor.
The shape of the dust grain as given in Fig. 1a) is illustratedby •, while the
shape given in Fig. 1b) is shown by△. Ideally, we should have the dipole
moment vanishing forU = 0: the actual value gives the uncertainty on our
estimate for the dipole moment.

Fig. 11. Front and back potentials on an insulating dust particle for
varying plasma drift velocities. The symbol◦ shows the potential on
the front side, facing the flow, while4 is on the shadow side. With
• we show the maximum potential difference across the particle,
here with shape as given in Fig.1a. Full and dashed lines give
the analytical functions (3) and (4), respectively. The normalizing
potential8f l is given by Eq. (1).

field, until it is strong enough to accelerate passing ions into
the wake.

For plasma flow velocitiesCs<U�uthe, one possibility
could be that the shadow side of the particle, facing directly
opposite the plasma flow vectorU, would be bombarded
solelyby the electron population. In that case we would ex-
pect a potential given approximately asκTe/e, i.e. a constant
quantity given by8f l in Eq. (1) apart from a numerical con-
stant and independent of the plasma flow velocity. Inspec-
tion of Fig. 11 shows that the shadow-side potential varies
with the plasma flow velocity, and we can therefore argue
that energetic ions are deflected to reach into the wake.

Full and dashed lines in Fig.11 give the analytical func-
tions (3) and (4). Note that the potential difference|18|

reaches saturation at the same flow velocity where the charge
on the dust particle reaches the maximum level, see Fig.8.
We find that the potential on the front side is reasonable well
accounted for by Eq. (3), qualitatively as well as quantita-
tively, while the shadow side potential varies quite differ-
ently, as soon as the flow velocity exceeds a small fraction
of the sound speed. Consequently, also the analytical result
(4) will have a limited range of validity,M<0.2.

Considering again bacteria as equivalent to dust particles,
we may estimate the plasma flow velocity necessary to build
up an electric field sufficient for their disruption (Shukla and
Mamun, 2002; Laroussi et al., 2003). We take as an example
a plasma withTe≈0.5 eV, which is representative for many
discharge plasmas. A typical scale size of the bacteria can be
Rb≈10µm, and the stress necessary to break the organism

(the tensile strength, expressed as the force per unit area) is
estimated to beFt≈(1−5)×106 dyn cm−2

=(1−5)×105 Pa.
For the given value ofTe, we need a plasma density
n0>3×1012 m−3 to give Rb>λD. The force on the sur-
face charges that produce the internal electric field can be
estimated asF≈σE, whereσ is the surface charge den-
sity. As an estimate for the electric field inside and close
to the surface of an insulator we can useE≈

1
2σ/ε0, giv-

ing F≈
1
2ε0E

2 i.e. the electric field energy density, which
for electrostatic conditions can as well be expressed as
F≈

1
2ε0(∇φ)2

∼
1
2ε0φ

2/R2
b . To haveF≈Ft it turns out that

we requireM�1, which is hardly feasible, and the range of
validity of Eq. (3) is exceeded anyhow. Referring to Fig.4
for insulating materials, we note, however, that even in the
absence of any plasma flow, we can have large electric fields
at extrusions from any object, bacteria in particular (Shukla
and Mamun, 2002). These extrusions can be seriously dam-
aged even in the absence of any plasma flow (Laroussi et al.,
2003). Plasma flows thus have little importance for steriliza-
tion, in this context.

The strong anisotropy of the ion flux to the surface of the
dust particle in a streaming plasma gives rise to a dipole mo-
ment of the resulting charge distribution (Manweiler et al.,
2000; Ivlev et al., 1999). Previous related works (Lapenta,
1998, 1999) studied a particle of radiusR=0.1λDe in cylin-
drical coordinates in a plasma with drifting ions by using
PIC-simulations. The ion to electron mass ratio was there
M/m=100, and the temperature ratioTe/Ti=5. It was found
there that the electric dipole moment develops only on dielec-
tric particles, while the conducting particles were assumed to
charge homogeneously, and that the electric field around the
conducting particle is symmetric. In the present study, see
Figs.12a and b, we find that 25 times larger conducting par-
ticles (particle radiusR≈2.5λDe) acquire a significant elec-
tric dipole moment in plasmas with the ion drift velocities
larger than the ion thermal velocity, and that the ion drift
leads to a strong anisotropy in the potential distribution in
space. This electric dipole moment is, however, one order of
magnitude lower than for corresponding insulating dust par-
ticles. In either case we find a saturation of the dipole mo-
ment for large plasma flow velocities,U/Cs>2. The plasma
flow velocity is normalized by the sound speed, while the
electric dipole moment is normalized byQ0D, again with
Q0 given by Eq. (2), while D is the maximum length of the
dust grain along the direction of the plasma flow. The two
quantitiesQ0 andD appear natural choices for the normal-
izations, but we emphasize that there are no reasons to expect
dipole moments havingpreciselythe valueQ0D.

4 Langmuir oscillations

Langmuir waves are excited in the system. These oscillations
are weakly damped in the case without plasma flow, while
they seem to prevail during the simulations for the case where

Nonlin. Processes Geophys., 14, 575–586, 2007 www.nonlin-processes-geophys.net/14/575/2007/



W. J. Miloch et al.: Numerical simulations of the charging of dust particles 583

111

Fig. 9. The normalized average charge on a conducting dust grain with shape
as in Fig. 1a), for different plasma flow velocities. Velocities are normalized
by the sound speed,Cs, and charges byQ0 from (2), recalling thatQ0 < 0.

Fig. 10. Potential distribution (color coded) around a dust grain made of a
perfectly insulating material embedded in a flowing plasma.The shape is
given by Fig. 1b).

Fig. 11. Front and back potentials on an insulating dust particle forvary-
ing plasma drift velocities. The symbol◦ shows the potential on the front
side, facing the flow, while△ is on the shadow side. With• we show the
maximum potential difference across the particle, here with shape as given
in Fig. 1a). Full and dashed lines give the analytical functions (3) and (4),
respectively. The normalizing potentialΦfl is given by (1).

Fig. 12. The absolute value of the dipole moment of a dust particle embed-
ded in a streaming plasma, shown as a function of drift velocity (in units of
Cs). In a) we show the case of insulating material, in b) a perfect conductor.
The shape of the dust grain as given in Fig. 1a) is illustratedby •, while the
shape given in Fig. 1b) is shown by△. Ideally, we should have the dipole
moment vanishing forU = 0: the actual value gives the uncertainty on our
estimate for the dipole moment.

Fig. 12. The absolute value of the dipole moment of a dust particle
embedded in a streaming plasma, shown as a function of drift veloc-
ity (in units of Cs ). In (a) we show the case of insulating material,
in (b) a perfect conductor. The shape of the dust grain as given in
Fig. 1a is illustrated by•, while the shape given in Fig.1b is shown
by 4. Ideally, we should have the dipole moment vanishing for
U=0: the actual value gives the uncertainty on our estimate for the
dipole moment.

we have a net plasma flow past the obstacles. We will quan-
tify the nature of these oscillations, demonstrating in particu-
lar also here a significant difference between the conducting
and insulating materials.

In Fig. 13 we show for reference the variation of the elec-
tron density in the vicinity of an insulating particle. We have
taken the average over many time-steps in order to reduce
the noise level in the figure. The spectra for the observed
Langmuir oscillations are shown in Fig.14 for seven differ-
ent spatial positions shown by dots in Fig.13. The spectra
are obtained by analyzing the full time series and then av-
eraging over 5 neighboring frequency samples. Hereby we
obtain an improvement of the spectral estimate, on the ex-
pense of frequency resolution. The same improvement can
be obtained by reducing the original time series to 5 shorter
ones and then take the average of the spectra (Bendat and
Piersol, 1986). We find that at a position inside the sheath
(the uppermost curve in Fig.14) we have oscillations for a
relatively broad frequency interval, up to the electron plasma
frequency corresponding to the unperturbed density at large
distances from the probe. Also outside the sheath we find
oscillations at frequencies corresponding to plasma densities
inside the sheath. These can not originate from waves gen-
erated within the sheath, since these can not propagate into
the over-dense plasma. However, as already demonstrated by
Barston(1964) for a cold plasma model, the frequency spec-
trum of Langmuir waves for an inhomogeneous plasma will
in general at any position have a broad spectrum including all
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Fig. 13. Variation of the electron density in the vicinity of an insulating
particle. We haveTe/Ti = 5. A white line indicates the surface of the
obstacle. We haveU = 2Cs. Densities are normalized byn0e, which is the
unperturbed ion density at large distances from the dust-grain.

Fig. 14. High frequency spectrum of the oscillations in double logarithmic
presentation at selected positions shown in Fig. 13 by open dots. Frequen-
cies are normalized by the plasma frequency of the plasma at large distances
from the particle. Tick marks on the vertical axis are with a factor of 10
separation and the individual power spectra are displaced similarly in the
vertical direction.

Fig. 15. Variation of the electron density in the vicinity of a conducting
particle. We haveTe/Ti = 5 andU = 2Cs. Densities are normalized as
in Fig. 14.

Fig. 16. Double logarithmic presentation of the high frequency spectrum of
the oscillations at selected positions shown in Fig. 15 by open dots. Frequen-
cies are normalized by the plasma frequency of the plasma at large distances
from the particle, see also Fig. 14

Fig. 13. Variation of the electron density in the vicinity of an in-
sulating particle. We haveTe/Ti=5. A white line indicates the
surface of the obstacle. We haveU=2Cs . Densities are normalized
by n0e, which is the unperturbed ion density at large distances from
the dust-grain.

plasma frequencies in the plasma, because of the non-local
spatial variation of the potential resulting from an excitation
at any position.

In Fig. 15 we show for reference the variation of the elec-
tron density in the vicinity of a conducting particle. The
spectra for the observed Langmuir oscillations are shown in
Fig. 16 for seven different spatial positions shown by dots
in Fig. 15. We here note a pronounced reduction in fluctua-
tion amplitudes within the sheath, as compared to the case of
an insulating object, as in Fig.14. Evidently, the conducting
surface acts as a short circuit for the potential, which is physi-
cally reasonable for an un-symmetric sheath, as in the present
case, see Figs.13and15. For a completely cylindrical sheath
we could in principle have the lowest order,m=0, mode un-
affected by the composition of the object. At larger distances
from the particle, the Langmuir spectra become very similar
in Figs. 14 and16. In particular we also have oscillations
with ω>ωpe, corresponding to the finite temperature part of
the dispersion relation.

For low frequencies, below the ion plasma frequency, we
find an enhanced fluctuation level, but the time series are too
short to allow a detailed resolution of this part.

Langmuir oscillations are often observed to be contin-
uously excited in space plasmas (Eriksson and Boström,
1995). Although the bandwidths are usually relatively large,
the fluctuations can be used to give a crude calibration of
independent plasma density measurements, by Langmuir
probes, for instance. Our results indicate that a probe
will usually detect a frequency somewhat below that of the
plasma frequency of the surrounding plasma.
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Fig. 13. Variation of the electron density in the vicinity of an insulating
particle. We haveTe/Ti = 5. A white line indicates the surface of the
obstacle. We haveU = 2Cs. Densities are normalized byn0e, which is the
unperturbed ion density at large distances from the dust-grain.

Fig. 14. High frequency spectrum of the oscillations in double logarithmic
presentation at selected positions shown in Fig. 13 by open dots. Frequen-
cies are normalized by the plasma frequency of the plasma at large distances
from the particle. Tick marks on the vertical axis are with a factor of 10
separation and the individual power spectra are displaced similarly in the
vertical direction.

Fig. 15. Variation of the electron density in the vicinity of a conducting
particle. We haveTe/Ti = 5 andU = 2Cs. Densities are normalized as
in Fig. 14.

Fig. 16. Double logarithmic presentation of the high frequency spectrum of
the oscillations at selected positions shown in Fig. 15 by open dots. Frequen-
cies are normalized by the plasma frequency of the plasma at large distances
from the particle, see also Fig. 14

Fig. 14. High frequency spectrum of the oscillations in double log-
arithmic presentation at selected positions shown in Fig.13by open
dots. Frequencies are normalized by the plasma frequency of the
plasma at large distances from the particle. Tick marks on the verti-
cal axis are with a factor of 10 separation and the individual power
spectra are displaced similarly in the vertical direction.
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Fig. 13. Variation of the electron density in the vicinity of an insulating
particle. We haveTe/Ti = 5. A white line indicates the surface of the
obstacle. We haveU = 2Cs. Densities are normalized byn0e, which is the
unperturbed ion density at large distances from the dust-grain.

Fig. 14. High frequency spectrum of the oscillations in double logarithmic
presentation at selected positions shown in Fig. 13 by open dots. Frequen-
cies are normalized by the plasma frequency of the plasma at large distances
from the particle. Tick marks on the vertical axis are with a factor of 10
separation and the individual power spectra are displaced similarly in the
vertical direction.

Fig. 15. Variation of the electron density in the vicinity of a conducting
particle. We haveTe/Ti = 5 andU = 2Cs. Densities are normalized as
in Fig. 14.

Fig. 16. Double logarithmic presentation of the high frequency spectrum of
the oscillations at selected positions shown in Fig. 15 by open dots. Frequen-
cies are normalized by the plasma frequency of the plasma at large distances
from the particle, see also Fig. 14

Fig. 15. Variation of the electron density in the vicinity of a con-
ducting particle. We haveTe/Ti=5 andU=2Cs . Densities are
normalized as in Fig.14.

5 Conclusions

The interactions between dust particles and warm plasmas
have been analyzed by numerical methods. For a particle at
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Fig. 13. Variation of the electron density in the vicinity of an insulating
particle. We haveTe/Ti = 5. A white line indicates the surface of the
obstacle. We haveU = 2Cs. Densities are normalized byn0e, which is the
unperturbed ion density at large distances from the dust-grain.

Fig. 14. High frequency spectrum of the oscillations in double logarithmic
presentation at selected positions shown in Fig. 13 by open dots. Frequen-
cies are normalized by the plasma frequency of the plasma at large distances
from the particle. Tick marks on the vertical axis are with a factor of 10
separation and the individual power spectra are displaced similarly in the
vertical direction.

Fig. 15. Variation of the electron density in the vicinity of a conducting
particle. We haveTe/Ti = 5 andU = 2Cs. Densities are normalized as
in Fig. 14.

Fig. 16. Double logarithmic presentation of the high frequency spectrum of
the oscillations at selected positions shown in Fig. 15 by open dots. Frequen-
cies are normalized by the plasma frequency of the plasma at large distances
from the particle, see also Fig. 14

Fig. 16. Double logarithmic presentation of the high frequency
spectrum of the oscillations at selected positions shown in Fig.15
by open dots. Frequencies are normalized by the plasma frequency
of the plasma at large distances from the particle, see also Fig.14.

rest in a thermal plasma, the results are basically indepen-
dent of the particle material, and corresponds to what will
be found for a Langmuir probe at floating potential. Impor-
tant differences between dust grains consisting of insulating
and conducting materials, respectively, are found when such
particles are exposed to a streaming plasma.

We have presented figures for the potential distribu-
tions, and note that for scales much larger than the De-
bye length, we can assume quasi-neutrality,ne≈ni . For
the relatively slow phenomena studied here, the electron
component can, in addition, be considered to be locally
in a Boltzmann equilibrium for the given thermal plasma,
ne/n0≈ exp(eφ/κTe)≈1+eφ/κTe, and consequently the
plasma potential is representative for the large scale varia-
tion of the bulk plasma density as well, although deviations
can occur on scales comparable to the Debye length.

Several results of our studies can have general interest.
Thus we note that the Mach cone at supersonic flows is most
clearly observed for conducting particles, see Fig.7. The
cone is present also in the case of insulating material, see
Fig. 6, but for this case the potential and density variations
are completely dominated by the wake, directly behind the
dust grain.

By enhancing the electron-ion temperature ratio we
achieve an enhancement of the ambipolar electric fields: this
effect will be particularly conspicuous for an obstacle in a
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streaming plasma. For the case of an insulating material
shown in Fig.13 we note that the plasma is focused behind
the dust grain, but find also that this effect can be absent for
the case of a conducting material, see Fig.15. Here the den-
sity depletion of the wake is reduced and the electric fields
that build up are not as strong as for the insulating case. The
focusing in Fig.13 is manifested by the slight narrowing of
the equi-density contours, in particular their inward curva-
ture as compared to Fig.15. The possibility of plasma focus-
ing in this context has been discussed before (Melandsø and
Goree, 1995; Maiorov et al., 2000; Fortov et al., 2005), but
for different geometries. The focusing requires a strong am-
bipolar electric field pointing into the cavity region, which in
turns requires a large electron pressure. In the simulations
we found that the focusing effect required a relatively large
temperature ratio in order to be noticeable: we consider the
present case withTe/Ti=5 as somewhat marginal.

A macroscopic dust particle obtains a dipole moment
when it has a relative motion with respect to the plasma.
Our results are summarized in Figs.12a and b for insulat-
ing and perfectly conducting materials, respectively (Lafon
et al., 1981). We analyzed also the effect of different surface
conditions, again using the two dust-grain shapes illustrated
in Fig. 1. There is a significant difference between conduc-
tors and insulators, the dipole moment being much larger for
the latter material. The surface conditions seem not to be
critical for the insulator case: the charge is predominantly
accumulated on the outer surface, with only little penetrating
into deep cavities. For the conductor, where charges are re-
distributed to cancel internal electric fields, it seems that the
surface conditions are slightly more significant. The main
differences between the two cases illustrated in Fig.1 are
explained by the wakes forming behind the objects. Since
charges are freely moving in the conducting particles, the
dipole moment is to a great extent “short-circuited” for this
case. The dipole moment of the charged conducting dust par-
ticle is what is needed to neutralize the electric fields induced
from the charge distribution in the surrounding plasma in or-
der to make the internal electric field vanishing. In order
to compensate an electric field pointing along the flow di-
rection, the surface charges on the conducting material have
to contribute with an electric field in the opposite direction.
Consequently the direction of the dipole moment for the con-
ducting material is opposite of the direction found for the in-
sulator. There is no simple analytical relation between the
dipole moments of insulating and conducting materials.

As evident, our results rely on a two-dimensional geome-
try. Most of the results remain qualitatively applicable also
for a fully three-dimensional case. A comparison of the two
cases has been carried out byMelandsø and Goree(1995),
although their simulations did not use a self-consistently ob-
tained charging of the object. The ion focusing effect will
generally be more pronounced for a sphere as compared to a
cylinder with same radius.

The results of the present study refer to a system which
is in thermal equilibrium in the rest frame of the plasma.
The case where the plasma has beam components, thus being
out of thermal equilibrium, contains many parameters, and a
complete study of the relevant parameter space is hardly fea-
sible. This problem is not discussed in any further detail here,
but we mention that our codes can cover such cases as well.
Selected problems will be discussed later in a different con-
text. We have several places explicitly used that typical scale
sizes for the dust particles were larger thanλD. Many argu-
ments are readily generalized to cases where the opposite in-
equality holds. The reference floating potentials and charges
then have to be derived from orbit theory. For these cases the
numerical analysis has to rely on very fine grid resolutions,
where the efficiency of a PIC-code is not the optimum.
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