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Abstract. This paper focuses on extracting the information
contained in seismic space-time patterns and their dynamics.
The Greek catalog recorded from 1901 to 1999 is analyzed.
An Ising Cellular Automata representation technique is de-
veloped to reconstruct the history of these patterns. We find
that there is strong correlation in the region, and that small
earthquakes are very important to the stress transfers. Fi-
nally, it is demonstrated that this approach is useful for seis-
mic hazard assessment and intermediate-range earthquake
forecasting.

1 Introduction

Earthquake faults occur in topologically complex, multi-
scale networks or systems that are driven to failure by ex-
ternal forces arising from plate tectonic motions. The ba-
sic problem is that the details of the true space-time, force-
displacement dynamics are unobservable, in general. How-
ever, the space-time patterns associated with the time, lo-
cation, and magnitude of the sudden events (earthquakes)
are observable, leading to a focus on understanding their
observable, multi-scale, apparent dynamics (Rundle et al.,
2003). Regional seismicity has many characteristics of a crit-
ical system (Hirata, 1989; Hirata and Imoto, 1991; Smalley
et al., 1987; Omori, 1895; Bufe and Varnes, 1993; Sammis
and Smith, 1999; Bowman and King, 2001). The observed
scaling laws associated with earthquakes, and its large-scale
correlations, have led a variety of researchers to the conclu-
sion that these events can be regarded as a type of general-
ized phase transition, similar to the nucleation and critical
phenomena that are observed in thermal and magnetic sys-
tems (Rundle et al., 2003). As a result, many investigators
have explored the possibility of using formalisms from sta-
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tistical physics to model the spatial, temporal and magnitude
distributions (All ègre et al., 1982; All ègre and Le Mouel,
1994; Rundle, 1993; Sornette and Sornette, 1989; Sornette
and Sammis, 1995; Tiampo et al., 2002b,a). This statistical
physics approach differs from the earlier approaches by its
emphasis on the treatment of earthquake faults and fault sys-
tems as high-dimensional dynamical systems characterized
by a wide range of scales in both space and time.

Phase transitions are observed in surprisingly simple sys-
tems, e.g. on a lattice of interacting spins. The Ising model
was proposed by Wilhelm Lenz (1888–1957) in 1920 for
studying some ferromagnetic properties. It was solved ex-
actly for the one-dimensional case by his student Ernest Ising
in 1925. Lars Onsager solved the Ising model in 1944 for
two dimensions in the absence of an external magnetic field
and showed that there was a phase transition in two dimen-
sions. The two-dimensional Ising model is the simplest non-
trivial model of a phase transition (Gould and Tobochnik,
2004). The model imitates situations where individual ele-
ments (atoms, animals, proteins, biological cells, social be-
havior, etc.) modify their behavior so that they mimic their
neighbors’ behavior. It has been used for modeling phase
transitions in binary alloys (Kroll and Gompper, 1987) and
spin glasses (Boettcher and Hartmann, 2005). In biology,
it can model neural networks (Schaap, 2005), bird flocks
(Colella et al., 2001) or heart cell beats (Wong, 2005). In ad-
dition, it has been applied to sociology or seismology (Tou-
ssaint and Pride, 2004). More than 12 000 papers have been
published between 1969 and 1997 that use the Ising model
to model complex behaviors resulting from simple neighbor-
hood interactions.

Jiménez et al.(2005); Jiménez and Posadas(2006) de-
veloped a method based on Cellular Automata, where the
activity in the cell is explicitly given by the activity in the
same cell and in its neighbors in the past. The state of the
neighborhood is given by the added surrounding activity, so
that activity triggers activity. However, no quiescence was
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6 A. Jiménez et al.: An Ising model for earthquake dynamics

Fig. 1. Coarse-graining of the data set.

introduced, so that an inactive cell has no interaction with
its neighbors. In the present paper we will introduce an Ising
model scheme, so that this “inactivity” is taking into account.

2 The model

2.1 The Ising model

In the Ising model, the spin at every site is either up (+1)
or down (−1). Unless otherwise stated, the interaction is
between nearest neighbors only and is given by−J if the
spin are parallel and +J if the spins are anti-parallel. The
total energy can be expressed in the form:

E = −J
∑
i,j

SiSj − B
∑

i

Si (1)

whereSi=±1, J is known as the exchange constant andB

is the external (magnetic) field. In a Cellular Automata rep-
resentation, the energy is calculated for each site,j being
the nearest neighbors, and added. The spin-flip probability is
given by the Boltzmann probability function.

P(E) =
1

Z
exp(−

E

kT
) (2)

whereP(E) is the probability of finding the system in the
state of energyE, T is the temperature,k is the Boltzmann
constant andZ is the partition function. The algorithm for
simulating it is that of Metropolis: at a the first step, a grid
with n cells with initial state (+1) or (−1) is created. Then,
a loop starts: i) a cell is randomly chosen; ii) the spin-flipp

probability is the minimum between 1 and exp(−1E
kT

), where
1E is given by Eq. (1), and represents the energy change if
a cell exchanges its state (if the exchange is favored or not);
iii) a random number is calculated, between 0 and 1 and, if
it is lower thanp, the state of the cell is changed; iv) another
cell is randomly chosen, and the procedure goes on. The
basic unit of time is the Monte Carlo step, which equalsn2

trials of spin-flip, so that all the cells have the opportunity of
changing in average.

The order parameter for a magnetic system is the mag-
netization. In this model, it is calculated as the difference
between spins with state up and spins with state down. The
parameter which controls the state of the system is the tem-
perature. At equilibrium, for low temperatures the system is

ordered, and all the spins are up or down. When the temper-
ature is high, the system is disordered, and the magnetization
is null. There is a critical temperature, when the magneti-
zation is null, but the system is ordered in clusters, and rep-
resents the transition from an ordered phase to a disordered
one.

This type of model, as are those derived from theBurridge
and Knopoff(1967) model, is a direct one, where the initial
conditions are given, as well as the transition rules (which
depends on the control parameter), and it is iterated several
times for analyzing its behavior. The parameters of inter-
est (magnetization, for example) are calculated as averages
(macroscopic magnitudes), and the particular state of the cell
in each time is not important, but the properties of the whole
system are of interest. They have been used to successfully
describe the macroscopic behavior of the seismicity, such as
the Gutenberg-Richter law, the temporal and spatial cluster-
ing of the hypocenters (Carlson and Langer, 1989b,a; Chris-
tensen and Olami, 1992; Nakanishi, 1990, 1991; Olami et al.,
1992; Otsuka, 1972; Bak and Tang, 1989; Bak et al., 1988;
Barriere and Turcotte, 1991; Rundle, 1988; Rundle et al.,
2002; Anghel et al., 2000; Klein et al., 1997, 2000). Here,
we are interested in the inverse problem. Given a particular
pattern series, we wish to calculate its transition rules. Note
that the Metropolis algorithm has a random component and,
for the same initial configuration, the successive steps in two
different realizations will be different as well, but the station-
ary state for the macroscopic magnitudes will be the same.
The particular history is not important. In the present work,
however, we are precisely interested in the particular history
of the patterns.

2.2 Method

The pattern series can be modeled in terms of a Cellular Au-
tomaton where the transition rules are calculated by means of
the maximization of the mutual information (Jiménez et al.,
2005; Jiménez and Posadas, 2006), and the particular pat-
terns’ history is successfully emulated. In that case, the avail-
able states were 0 or 1 only, and the transition rules (the state
of the cell given a particular neighborhood’s state) were given
by the number of neighboring active cells (Hirata and Imoto,
1997). Here, we transform this scheme for using the Ising
model: first of all, the available states are (+1) for an active
cell and (−1) for an inactive one (quiescent). Then, we can
define the state of the neighborhood by means of the energy
levels calculated with Eq. (1).

We now consider whether a Cellular Automaton which
reproduces the seismic activity in a region following an
Ising interaction scheme can be constructed. After a coarse-
graining of the events, both spatially and temporally, a state
(active or quiescent for seismic activity) is assigned to each
cell at each time step (Fig.1). The activation criteria are
based on the time series given by the expression:
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εq(N(τ)) =

N(τ)∑
n=1

ε
q
n (3)

whereεn is the released energy of thenth event, andN(τ) is
the number of earthquakes in a given interval of timeτ , and
where the energy is calculated from the relationship between
magnitude and energy (Gutenberg and Richter, 1956). When
q=1, εq represents the accumulated energy; withq=1/2, is
the quantity known as Benioff strain (Sammis and Smith,
1999); for q=1/3, it is an approximation of the fault slip
dimension (Mai and Beroza, 2000; Carpinteri and Pugno,
2005); and forq=0 it is simply the number of the events.
With q<1 in Eq. (3) the effect is that of smoothing the en-
ergy, acting as a low pass filter (Jiménez et al., 2006).

Thus, the activation criteria follows the scheme: if the cu-
mulativeεq from Eq. (3) in a cell at each interval of time is
greater or equal than an established threshold (equivalent to
a certain magnitude,m, related to theq root of the energy re-
lease), the cell is considered active (+1) and, otherwise, qui-
escent (−1). Since this energy threshold is arbitrary, differ-
ent energies (magnitudes) are analyzed. However, forq=0
we can not distinguish between different magnitudes. In this
case, a cell is considered active ifεq is greater or equal than
the mean value divided by the standard deviation at that inter-
val of time (α1 criterion). This choice gives us an estimation
of the behavior of the fluctuations of the considered quan-
tity. Furthermore, we can also use the values for comparing
the activity with the mean divided by the standard deviation
of the entire interval of time (α2 criterion), for a mean field
approximation.

A serial of lattice configurations (patterns) is obtained. As-
suming that each cell interacts only with its nearest neigh-
bors, we can calculate the transition rules directly from these
patterns (Jiménez et al., 2005), by means of a histogram of
occurrences. However, the predictive capacity of the model
depends on the number of cells,N, and time interval,t, cho-
sen. By maximizing the mutual information,µI , between the
past and future states we can find the model which contains a
higher correlation between them (Cover and Thomas, 1991).
The expression forµI in this particular model is as follows:

µI =

1∑
i=0

1∑
j=0

En∑
k=E0

p(i; j, k) lg2
p(i; j, k)

p(i)p(j, k)
(4)

with p(i; j, k) being the joint probability of past and future
states, andp(i)p(j, k) a distribution of independent states,
(i) stands for the central cell at timet+τ , and(j, k) is for
the central and itsk “neighborhood’s state” at timet , with Ei

(i∈[0, n], i∈N ) representing the possible states. The calcu-
latedµI value represents the expected value of the “informa-
tion gain” by using a model with interacting cells instead of
another model where the consecutive states are independent
(Daley and Vere-Jones, 2004). To find the maximum, a grid

Fig. 2. Some neighborhoods.

search in time steps and number of cells is made and, finally,
we derive our Cellular Automaton.

Once we have the Cellular Automaton, we can test how
well it reproduces the data. First, the transition rules are
applied to each real pattern, and an activation probability is
obtained for each cell. Then, the cells are declared active
or inactive using these probabilities (Posadas et al., 2000).
Once the real and simulated patterns for each time are ob-
tained, the correlation function (Vicsek, 1992) and the Ham-
ming distance (Ryan and Frater, 2002) are used to compare
them. The latter is simply the number of cells that failed in
the prediction, representing the simulation error. If the Cel-
lular Automaton rules are applied to the latest pattern, we ob-
tain what we call a Probabilistic Activation Map, where the
probability of surpassing certain cumulativeεq (equivalent
to certain magnitude), or being more active than the average
(q=0) in the next interval of time is shown (Jiménez et al.,
2005; Jiménez and Posadas, 2006).

In an Ising model, as explained, the flip transitions are
given by the energy state of the cells, so that a cell in a
state has a certain probability of changing it depending on
the energy of the interactions with its neighborhood and the
external field. In our method, these probabilities have to be
calculated, since we assume that we have no a priori hypoth-
esis about the nature of the interactions between neighboring
sites, nor between the sites and an external field. Therefore,
we classify the neighborhoods configuration in terms of its
“energetic” state, so that each cell has an associated energy
given by Eq. (1), with Si the central cell’s state andSj is
the neighboring cells’ states, without an external field (which
would represent the driving forces, but cannot be calculated)
and with the term J set to 1, without loss of generality. So
then, the ’energetic state’ of a cell respect to its neighbor-
hood is given by:

E = −

∑
j

SiSj (5)

Since we use a Moore’s neighborhood (c in Fig. 2), more
symmetric than the von Neumann’s one (a in Fig.2), the “en-
ergy” can take only discrete values in the intervalE∈[−8, 8].
No Ising behavior is imposed on the transition probabilities,
but they are extracted from the data itself by calculating the
distribution of the neighborhood’s states and its influence in
the activity or inactivity of the cell in the future.

www.nonlin-processes-geophys.net/14/5/2007/ Nonlin. Processes Geophys., 14, 5–15, 2007
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Fig. 3. Scheme of the tectonic setting.

3 Data

In recent years, studies provided evidence that the tectonic
framework of Greece and its surroundings resembles to a
large extent a converging plate boundary. The principal
agents in the geodynamic evolution of the area are the col-
lision and subduction in the southern part of the Aegean in a
principal SWNE direction, the eastward motion of the Adri-
atic microplate in the NW, the westward motion of the Turk-
ish microplate, expressed through the activity of the north
Anatolian fault in the ENE, and the Kefalonia transform
fault, which seems to exercise a major control over the distri-
bution of stresses throughout the whole area of Greece and its
surroundings (Polimenakos, 1995). These features are shown
in Fig. 3.

Burton et al.(2004a,b) carefully created a homogeneous
earthquake catalog for Greece (Fig.4), because of the high
seismicity in that region. The catalog contains 5198 earth-
quakes during 1900–1999, which are within the area 33◦–
43◦ N, 18◦–30.99◦ E, focal depths 1 to 215 km and magni-
tude range 4.0≤Mw≤7.7. These authors used the catalogs
and bulletins of the International Seismological Center (ISC),
and the researched catalogs ofPapazachos and Comninakis
(1971), Makropoulos and Burton(1985), Makropoulos et al.
(1989), Papazachos et al.(1994) andPapazachos and Papaza-
chou(1997). The catalog is complete above magnitude 5.0.
All data have been used in the calculations, without removing
foreshocks or aftershocks.

Fig. 4. Seismicity in Greece in the the twentieth century.

4 Results and discussion

The results of the optimization for our data set are summa-
rized in Tables1–2. First of all, if we compare these results
to the obtained byJiménez and Posadas(2006), we can see
that the mutual information is always higher with the Ising
model. The mutual information increases with decreasingq

also. The difference is higher (more information can be ex-
tracted) for high magnitude cutoffs in the case ofq 6=0, and is
therefore more interesting for seismic hazard purposes. It is
also interesting to note the increase in the “magnetization”,
approaching the 50% of active cells (so approaching the null
magnetization) with a higher mutual information.

Now, we analyze the behavior of the transition probabili-
ties obtained, to find out if they follow an Ising scheme or
not. With regard to the energy threshold criterion (q=1),
we have the following results. For energy thresholds cor-
responding to magnitudes (m) of 4 and 5: An inactive cell
with “energy” higher than or equal to 0 (E in Eq.5) tends to
change its state with a probability of 55% in average. When
the neighorhood’s state isE<0, and hence the surrounding
activity state is the same of the central cell’s activity, its state
is reinforced at the next interval of time with high probabil-
ity (60–100%). If the cell is active, forE≥0, there are some
changes to inactivity, but it mostly tends to the activity. How-
ever, withE<0, the trend is to continue the activity.

By using a magnitude threshold of 6, the trend is to in-
activity, both for active and inactive cells. However, we can
see that the configurations withE<0 for an inactive cell have
higher probabilities of going on inactive (80–100%, and not
50–60% as forE≥0), and, for an active cell, forE≤−4 the
cell continue clearly active (85% in average). With magni-
tude threshold of 7, there is no configurations for inactive
cells andE≥0, neither active cells withE≤3, so that these
energies are not easily reached by the cells. An inactive cell,
with E<0 tends to inactivity with 95–100% probability. An
active cell withE>4 tends to change its activity.

Nonlin. Processes Geophys., 14, 5–15, 2007 www.nonlin-processes-geophys.net/14/5/2007/
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Fig. 5. Example of correlation functions for real and simulated pat-
terns forq=1, andm=4. The radius (r) refers to the cell’s distances.

In general, an Ising behavior is found, in particular for “en-
ergies” lower than 0, when the surrounding activity state is
the same of the central cell’s activity, which is a consequence
of the clustering found in seismic activity (Aki , 1956; Pẽna
et al., 1993).

We now analyze the correlation functions for the simulated
and real patterns (Fig.5). In the example we can see they are
very similar. It is interesting to point out that there is cor-
relation up tor=10 (being r the distance in cells) in all the
cases withm=4−6, which is nearly the length of the lattices.
The number of active cells, or “magnetization”, is close to
50%, so that we have wide domains of active or quiescent
cells with correlations comparable to the system length. In
percolation theory, this is related to a state near the critical
point. In this case, the correlation function is a power law.
We found the relationship between the correlation andr fol-
lows a straight line in the bi-logarithmic scale, with a corre-
lation coefficient of around 0.75 in these cases, up tor=10.
However, form=7 the correlation falls off earlier, around
r=5. This, and the fact that high magnitudes are difficult to
reach, are related to the “magnetization” values found.

The transition probabilities for equally energetic states (in
the sense of the neighborhood configuration), but different
initial state of the central cell, are not the same. In gen-
eral, lower “energies” are needed to change the state of an
initially active cell, so that the exchange with the external
field, B, behaves in an opposite way than the exchange with
the neighboring activity. So, B must be lower than 0. In-
tuitively, without surrounding exchange, if a cell is inactive
a higher external field should increase its probability of be-
coming active (E≥0), and an active cell should continue its
activity with an increase of the external field. This external
field could be a result of either boundary conditions or inter-
actions with the ductile part corresponding to each cell.

The fact that for configurations withE<0 (the surround-
ing activity state is the same of the central cell’s activity), its
state is always reinforced (both active and inactive), is a clear

Table 1. Results of the maximization of the Ising model with an
energy threshold criterion for Greece (M is the averaged “magneti-
zation”, or number of active cells).

q m t N µI error (%) M (%)

1 4 6 11 0.57 15 64
1 5 6 11 0.56 16 59
1 6 3 10 0.45 21 42
1 7 2 10 0.08 8 8

1/2 4 6 11 0.57 15 64
1/2 5 6 11 0.57 15 59
1/2 6 3 10 0.57 14 54
1/2 7 2 10 0.24 11 15

1/3 4 6 11 0.57 15 64
1/3 5 6 11 0.58 15 60
1/3 6 3 10 0.62 14 63
1/3 7 2 10 0.46 18 41

Table 2. Results of the maximization of the Ising model with a num-
ber of events criterion (q=0) for Greece (m is the average magni-
tude threshold between time intervals and M is the averaged “mag-
netization”, or number of active cells). First row:α1 criterion; sec-
ond row: α2 criterion; third, by using all the realizations of the
fluctuations up to a determined interval of time also withα2 crite-
rion.

m t N µI error (%) M (%)

6.8 3 11 0.50 15 30
6.8 4 10 0.56 18 36
5.9 50 10 0.91 3 45

feature of Ising-like behavior. Taking into account this, an
active region loads its neighborhood when it releases energy,
a feature contained in the Cellular Automata used to simu-
late the seismicity in the literature (Olami et al., 1992; Bar-
riere and Turcotte, 1991; Burridge and Knopoff, 1967). That
leads to the activation of neighboring areas, if they were close
to the rupture point. However, the results obtained here also
point out that an active region becomes quiescent because of
the neighboring quiescence. This is in accordance with Grif-
fith’s principle, in which cells are broken when the release
in elastic energy exceeds the surface energy cost (Toussaint
and Pride, 2004); if a cell releases energy and the surround-
ing areas are not near the rupture point, they will absorb this
energy in an elastic way, without becoming active, so that
when the initially active cell releases all the exceeding en-
ergy, it becomes inactive as well. WhenE≥0 the transition
to changing the state is less clear, mainly because of the non-
uniformity in the stress field, that is, B is different for each
cell, as exposed before.

www.nonlin-processes-geophys.net/14/5/2007/ Nonlin. Processes Geophys., 14, 5–15, 2007
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Fig. 6. Probabilistic Activation Maps for the next intervals of time for Greece (a: with q=1/3, the maps form=4 (16 years),m=5 (16 years),
andm=6 (33 years) are very similar, so we show the last one;b: q=1/3, m=7 for 49 years;c: q=1/2, m=7 for 49 years;d: with q=0, first
row in Table2 for 33 years;e: q=0, second row in Table2 for 25 years; andf: q=0, third row in Table2 for 2 years).

The results forq=1/2 are as follows. With Benioff strain
threshold equivalent tom=4−5, the results are the same as
above. Form=6 is also very similar to the former case. How-
ever, more configurations are found. Anyways, forE<0 the
trend is to continue the previous state, active or inactive. And

for E≥0 there are more probabilities of exchanging the state.
For m=7 we found more configurations as well. An inac-
tive cell will continue its state, in general, but an active cell
with E≥0 will change its state. As can be seen, the behav-
ior is very similar. It is also very similar forq=1/3, the
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Fig. 7. Probabilistic Activation Maps for the next intervals of time for Greece withq=1/3 using data up to the beginning of the last interval
of time found by the method (from left to right,m=5, by using 5 intervals, andm=6 with 2 intervals only). The circles represent the seismic
events with magnitude greater than the corresponding threshold found in the data set in the next interval (the sixth form=5 and the third for
m=6).

difference being in the higher number of active cells with in-
creasing magnitude cut off (take into account that a lowerq

implies a higher weight in smaller earthquakes). The result
is an increase in the mutual information between past and fu-
ture states, and a proximity to the “null magnetization”. In
that case, the system behaves in the closest way to the Ising
model, which is a model for phase transitions (long-range
correlations, clustering and null magnetization).

For q=0, we have different behaviors, depending on the
statistical formulation. If we remove the mean and divide
by the standard deviation of the current interval of time (first
row in Table2), the rules are similar to that detailed above.
In general, an inactive cell tends to be inactive (80% in av-
erage). An active cell tends to be active (90–100%) when
E<0, but there are some configurations forE≥0 when the
probabilities are higher to changing its state. However, if we
use the mean and the standard deviation of the whole cata-
log (in a mean field approximation), the states tend to be the
same, independent of the interaction’s “energy”. No highE

is found, neither active or inactive cells. This is more preva-
lent when all the realizations are included in the calculations.
In this case, the state of the cell is almost completely inde-
pendent on the surroundings, and the continuity in the state
has 95–100% probability. Although it is more accurate to
use the number of the events, we can not recover their ener-
getic weight; we only can mark the regions of highest future
activity, and estimate the average threshold for the activity
between the different intervals of time.

The corresponding Probabilistic Activation Maps for the
next intervals of time withq=1/3 andq=0 are shown in
Fig. 6. The Probabilistic Activation Maps show the proba-
bility of becoming active in the next interval of time for each
Stochastic Cellular Automaton calculated. Since the model

takes into account activity (+1) and quiescence (−1), a prob-
ability p of becoming active corresponds to 1−p probability
of quiescence, and the scale has been modified from [0,1] to
[−1,1] to highlight the Ising behavior. The maps are slightly
smoothed in the corners of the cells, because the size of the
cells that maximize the mutual information is too big, so that
the display is more understandable. We chooseq=1/3 for
the energy thresholds because it has a higher amount of infor-
mation, in particular for higher magnitudes and also because
the maps obtained forq=1 are very similar to those found in
Jiménez and Posadas(2006), and the maps withq=1/2 have
quite similar features to the shown here, except form=7.

As in previous works for the Iberian Peninsula (Jiménez
et al., 2005), and for Greece (Jiménez and Posadas, 2006),
the lower number of cells usually maximize the mutual in-
formation, by providing the higher dependence between the
states, and reflects the large scale of earthquake occurrence.
The same discussion as the one inJiménez and Posadas
(2006) holds for the spatial results found.Wells and Copper-
smith(1994) provide widely accepted relationships between
magnitude and fault rupture length.Burton(1996) used such
relationships to illustrate what might be seen as reasonable
spatial constraint on an earthquake prediction, the point be-
ing that larger earthquakes are not best thought of as point
sources (epicenters) but as fault lengths needing large vol-
ume (cell size) to store sufficient strain energy. Activity at
high magnitude levels might need the resources of several
cells if cells are small. He modeled a region schematically
as a grid and, superimposed onto this area were the specimen
subsurface rupture lengths. For example, a magnitude 7.5 Ms
earthquake might be left floating within an 13 750 km2 area
unless other constrains are applied. We found that for mag-
nitude thresholds of 4 to 5 the optimum cell was of around
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Fig. 8. Map with the seismic hazard zones of Greece (Geophys.
Lab. A.U.TH. and ITSAK, 2002). The p.g.a. values for each zone
are: I) 0.08–0.13, II) 0.13–0.22, III) 0.22–0.30, IV) 0.30–0.45.

13 300 km2, and 16 000 km2 for magnitude 6 and 7. Our re-
sults are slightly higher than those proposed by Burton, but
in the same order (note that no constrains are imposed to the
cells). There is a qualitative change in the patterns form≥6:
the optimum area increases, and the active cells are not so
clustered. This roughly corresponds to the threshold of clear
spatial resolution, when the subsurface rupture length be-
comes about 25 km, and the event cannot be regarded as a
point source (Burton, 1996).

A test have been made by using data only from 1901 to
1984, and magnitude threshold of 5 (where the catalog is
complete) to calculate the Probabilistic Activation Map. The
same test has been made for magnitude threshold of 6, but
with data from 1901 to 1967. In Fig.7 the correspondent
maps and the seismicity from the last interval up to 1999
are shown. The events recorded after the data used for the
model are found in the higher probability regions in most of
the cases. Note that no events after 1984 (m=5) and 1967
(m=6) were used to calculate neither the transition probabil-
ities, neither the maps. The only information used was the
result found by means of the Kullback-Leibler distance of
period of time and cell size needed. A larger catalog has to
be used. In both cases, the mutual information found was
lower than the obtained by using the whole catalog. It is also
remarkable that the transition probabilities follow the same
Ising scheme explained before. Unfortunately, we cannot
test higher magnitude thresholds because of the time peri-
ods needed (50 years), obtained by maximizing the mutual
information.

The seismic hazard in Greece was analyzed byBurton
et al.(2003) andBurton et al.(2004a,b), who provided maps

for the strong ground acceleration occurrence in that region,
as well as maximum magnitudes expected. It has to be noted
that our results deal with probabilities of surpassing certain
energy releases in the areas by means of a two dimensional
spatio-temporal model, and do not include attenuation laws.
Taking this into account, our results are very similar to that
obtained by these authors. In particular, the maps of max-
imum magnitude expected for a period of 50 years inBur-
ton et al.(2004a,b) is nearly the same as ours (in particular,
q=1/3). With regard to the maximum p.g.a. (peak ground
acceleration) expected the major difference is that they de-
rive low values for the southeast along the Hellenic Arc in
Crete, where, as they point out, although large magnitudes
are expected, focal depths are also quite large. Therefore,
their maps do not reflect a high value for the p.g.a. How-
ever,Papaioannou and Papazachos(2000) give the maximum
probabilities for the occurrence of strong-motion (I≥V II )
for the period 1996–2010 to these regions. Their map shows
the same places as ours form=6 as most probable of strong
motion events, with a time-dependent estimation. As be-
fore, they provide intensity values, so that both results are
not completely comparable. At this respect, the present re-
sults are more accurate to the previous one with no Ising-like
model (Jiménez and Posadas, 2006). For a clearer exposi-
tion, in Fig.8 we show the seismic hazard map provided by
Geophys. Lab. A.U.TH. and ITSAK(2002), similar to the
described above.

The real seismicity after the data set used is shown in Fig.9
(NEIC, National Earthquake Information Center). The Prob-
abilistic Activation Maps for energies corresponding tom=4
andm=5 are close to the real seismicity after the data in that
area, and they correspond to a background seismicity in the
whole area. With regard to the other maps the narrow span
of time (only 7 years after the data), we cannot extract any
definite conclusion. It will be interesting to see how the seis-
micity behaves the next years to answer this question. The
main difference between this model and that used inJiménez
and Posadas(2006) in the forecast corresponds to the mag-
nitude threshold of 7. No earthquake is supposed to occur
in the next 50 years followingJiménez and Posadas(2006)
but, as can be seen in this work, the Southern Aegean Sea,
Dodecanese Islands and Crete, in one hand, and Ionian Is-
lands, central Greece and North Anatolian Fault, in the other.
In fact, the higher probabilities for earthquakes of magnitude
equal to or greater than 7 are found in the principal faults of
the region, as explained in Sect.3. So the places where these
extreme events are foreseen are coherent with the tectonical
setting.

The important point of this method is the proposal of a par-
ticular time (50 years since the last data used) to be checked.
The time-dependence it’s important to obtain the transition
probabilities. If we average the energy, we should know the
temporal and spatial scales for the averaging. If we use the
same as the found by the model, the patterns change, so
it would not be time-independent. In a time-independent
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A. Jiménez et al.: An Ising model for earthquake dynamics 13

Fig. 9. Actual seismicity after 2000 (from left to right, and top to bottom,m=4, m=5, andm=6. Nom>7 earthquakes have occurred).

estimation, the energy (or magnitude) used for the calcula-
tions is usually the highest found in each seismogenetic zone,
that may change in time, depending on the time span of the
catalog. So, if we compare the patterns with the highest mag-
nitudes, or add up the energy, it is time-dependent. For ex-
ample, in the catalog, there are some earthquake whose mag-
nitude are grater than 7 in the Anatolian region, and it would
be included in a time-independent estimation. However, the
Probabilistic Activation Maps found do not mark this place
as likable to surpass this magnitude. Note that since the
time span is long and the spatial resolution is low, it can’t
be viewed as a prediction, but as a large-scale forecasting, or,
as we propose, a Probabilistic Activation Map, but not in a
static sense. It is also to be noted that there are no attenua-
tion laws, no site responses applied, so the meaning of these
Probabilistic Activation Map are the probabilities of surpass-
ing certain energies (magnitudes) in the different places of
the studied area.

5 Conclusions

The Ising model tested, although it is a very simplified one
for describing the seismicity, points out some interesting be-

haviors: first, the Benioff strain contains more information
about the sequence of patterns, and it is more predictable,
than direct energy measures. In the same way, criterion based
upon the size of the events (q=1/3) contains more informa-
tion between consecutive patterns than the previous criteria,
in agreement with the Hurst’s exponent; second, that the cells
tend to adopt the surrounding activation or quiescence (in the
sense explained above) as Ising models do; third, that the
cells are disposed in wide domains, while the percentage of
active and quiescent cells is nearly 50% up tom=6 (which
will indicate a “null magnetization”), that could indicate a
critical state. But the patterns are the result of the accumu-
lation of the energy over intervals of time that span from 15
to 50 years, so we can not conclude that it remains always in
a critical state; it means that the higher information is found
when this state is reached, and correlations are higher.

The Probabilistic Activation Maps provided are coherent
with the previous works made for that area, and with its tec-
tonic setting. It also provides different timing for different
energy releases, and it can be viewed as a more dynamical
seismic hazard information.

The advantages of using this instead of the proposed in
Jiménez and Posadas(2006) are the following: the informa-
tion content is higher, in particular for higher energies, so we
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“know” better the transitions from one pattern to another; the
intervals of time found are lower (for example, form=5 we
go from a 25-year to a 15-year map in the present model),
which is more interesting for seismic hazard purposes, and
can be better tested; finally, the model (Ising) is related to
a broad kind of systems in physics, in particular, statistical
mechanic, so that we can use its tools to analyze it.

In conclusion, the Ising-like CA proposed for Greece and
surrounding areas reproduces the principal features of the
seismicity in the zone, delineates the strong correlation be-
tween large areas in the crust, and provides reliable Proba-
bilistic Activation Maps, in the sense explained.
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