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Abstract. Non-propagating magnetic hole solutions in
anisotropic plasmas near the mirror instability threshold are
investigated in numerical simulations of a fluid model that
incorporates linear Landau damping and finite Larmor radius
corrections calculated in the gyrokinetic approximation. This
FLR-Landau fluid model reproduces the subcritical mirror
bifurcation recently identified on the Vlasov-Maxwell sys-
tem, both by theory and numerics. Stable magnetic hole so-
lutions that display a polarization different from that of Hall-
MHD solitons are indeed obtained slighlty below threshold,
while magnetic patterns and spatio-temporal chaos emerge
when the system is maintained in a mirror unstable regime.

1 Introduction

Many observations both in planetary magnetosheaths and in
the solar wind indicate the presence of magnetic increases
and decreases, either periodic or in isolation, that have com-
monly been attributed to nonlinearly saturated mirror modes
(Kaufmann et al., 1970; Sperveslage et al., 2000; Joy et al.,
2006). These magnetic fluctuations that are quasi-stationary
in the plasma frame, are observed in relatively highβ envi-
ronments, in anticorrelation with pressure and density. More-
over, their shape is cigar-like, elongated along a direction
making a small angle with the ambient magnetic field (Lucek
et al., 2001). In many cases, trains of quasi-monochromatic
mirror modes are seen, that are nevertheless not perfectly
symmetric, their degree of skewness, that measures prefer-
ence towards magnetic holes or humps, displaying a clear
statistical correlation with distance to the mirror instability
threshold (Génot et al., 2006). Slighlty above onset, the fluc-
tuations are quasi-sinusoidal. Further above onset (i.e. of-
ten for larger values ofβ), magnetic humps are preferably
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observed. Interestingly, mirror structures in the form of fi-
nite amplitude magnetic holes are also present both above
and below the mirror threshold, indicating the existence of a
bistable regime.

Several numerical and analytical works have been devoted
to the mirror instability, mostly in the linear regime (Vede-
nov and Sagdeev, 1958; Hall, 1979; Gary, 1992; Southwood
and Kivelson, 1993; Pokhotelov et al., 2002). The nonlin-
ear saturation remains in contrast an unsettled issue. When
the distance to threshold and the initial data are small, quasi-
linear effects may have time to significantly affect the bulk
of the distribution function if the system is sufficiently ho-
mogeneous, (Shapiro and Shevchenko, 1964). When the
linear growth is capable of producing significant magnetic
field distortions, the hydrodynamic nonlinearity can over-
come nonlinear kinetic effects. Recently, a systematic reduc-
tive perturbative expansion of the Vlasov-Maxwell equations
close to the mirror instability threshold has been carried out
(Kuznetsov et al., 2007). The resulting equation where lin-
ear Landau damping and finite Larmor radius corrections are
the only relevant kinetic effects, possesses a finite-time sin-
gularity, indicating that the physical system rapidly leaves
the domain of validity of the asymptotics. In particular, this
singularity is a possible signature of a subcritical bifurcation
and of the existence of finite amplitude solutions, even close
to the instability threshold, making the nonlinear saturation
not amenable to a rigorous perturbative treatment.

A few phenomenological models have attempted to ad-
dress the nonlinear saturation of the mirror instability (Kivel-
son and Southwood, 1996; Pantellini, 1998), based on the
cooling of trapped particles in magnetic troughs. They
mostly predict the formation of deep magnetic holes with
magnetic humps occuring only for large values ofβ, but do
not mention the possible existence of bistability, in contrast
with observational evidences.

An alternative scenario based on a dominant saturating ef-
fect originating from the local variation of the ion Larmor
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radius was recently suggested (Kuznetsov et al., 2007). In
regions of weaker magnetic field and larger perpendicular
temperature, the ion Larmor radius is indeed larger, making
the stabilizing effect of finite Larmor radius (FLR) correc-
tions more efficient than within the linear description. As a
result, the mirror instability will be more easily quenched in
magnetic minima than in maxima, making magnetic humps
more likely to form in the saturation phase of the linear mir-
ror instability. The variation of the local ion Larmor radius
can be phenomenologically supplemented to the asymptotic
equation mentioned above, and the resulting model indeed
leads to the formation of magnetic humps above threshold, a
behavior similarly displayed by direct numerical simulations
of the Vlasov-Maxwell equations (Califano et al., 20071).
A bistable region below the mirror instability threshold was
also identified both within this phenomenological model and
in direct simulations of the Vlasov-Maxwell equations. Start-
ing with finite amplitude magnetic perturbations in the form
of localized holes, the system rapidly stabilizes on stationary
solutions. Existence of such structures is compatible with
satellite observations. Note that with anisotropic MHD sup-
plemented by an equation of state appropriate for the quasi-
static regime (Passot and Sulem, 2006a) and thus capable of
accurately reproducing the mirror instability threshold (see
alsoHau et al., 2005), an energy minimization principle can
capture bistability, as well as the preference of magnetic
humps at larger values ofβ and/or for a larger distance from
threshold (Passot et al., 2006), indicating that fluid models
retain essential ingredients associated with the mirror bifur-
cation structure.

Anisotropic MHD models including linear Landau damp-
ing as the only kinetic effect (Snyder et al., 1997), repro-
duce the mirror instability growth rate at large scale, but can
hardly address the nonlinear dynamics since in this quasi-
hydrodynamic regime the instability growth rate increases
linearly with the perturbation wavenumber. Attempts based
on usual anisotropic MHD supplemented with an exponen-
tial filtering of the small scales (Baumg̈artel, 2001) show the
formation of magnetic structures that subsist below the in-
stability threshold. Their properties and shape are however
not in agreement with observations. More recently, a FLR-
Landau fluid model was derived that correctly captures the
mirror instability growth rate at all scales, by incorporating
linear Landau damping and FLR terms calculated within the
gyrokinetic approximation, in a fluid hierarchy closed at the
level of the pressure tensor (Passot and Sulem, 2006a) or
of the fourth order moments (Sulem and Passot, 2007; Pas-
sot and Sulem, 2007). This model was integrated in mirror
unstable regimes, showing the formation of sharp magnetic
holes and transient humps at larger values ofβ (Passot and
Sulem, 2006b). During the saturation phase, mean temper-

1Califano, F., Hellinger, P., Kuznetsov, E., Passot, T., Sulem, P.
L., and Travnicek, P.: Nonlinear mirror mode dynamics: simula-
tions and modeling, preprint, 2007.

atures rapidly evolve in a way as to reduce the distance to
threshold. The structures that are formed are not perfectly
stationary, their amplitude decreasing on a longer time scale.
This tendency is probably due to the lack of particle trapping.
This model does not yet incorporate the local variation of the
Larmor radius and is thus not capable of reproducing the for-
mation of magnetic humps as the development of the mirror
instability from random initial noise, at moderate distance
from threshold.

The goal of this paper is to investigate the properties of
mirror structures in a parameter regime close to the mirror
threshold, paying particular attention to the bistable regime
correctly captured by the FLR-Landau fluid model. For this
purpose, initial conditions will be taken in the form of large
amplitude magnetic fluctuations and mean temperatures will
be kept fixed in order to permit a truely stationary regime.
In Sect. 2, the FLR-Landau fluid model is briefly described
and tested against kinetic theory in the linear regime. A sim-
ulation starting from random initial conditions in close prox-
imity to threshold is discussed in Sect. 3 and compared with
predictions of the asymptotic theory developed inKuznetsov
et al.(2007). Section 4 is devoted to the investigation of so-
lutions obtained when fixing mean ion pressures, both above
threshold, where magnetic patterns are observed, and below
threshold where a bistable regime is found. Section 5 briefly
addresses regimes arising when the angle between the ambi-
ent magnetic field and the wavevector is decreased, leading
to a transition between non-propagating and slowly propa-
gating mirror structures. In the latter case, the amplitude of
the magnetic hole remains almost constant over very long
times, even when the mean temperatures can freely evolve in
time. Section 6 is a brief conclusion.

2 The FLR-Landau fluid model

As a consequence of their quasi-transverse and non-
propagating character, mirror modes near threshold obey a
slow dynamics involving small transverse scales and mak-
ing FLR effects relevant. The fluid approach developed
for addressing slow-dynamics phenomena in fusion plasmas,
known as “gyro-fluids” (Brizard, 1992; Dorland and Ham-
mett, 1993; Beer and Hammet, 1996), is obtained by tak-
ing velocity moments of the gyrokinetic equation (Howes
et al, 2006). Nonlinear FLR corrections to all orders are cap-
tured, but a closure of the hierarchy is still required. Fur-
thermore, the equations are not written in the physical coor-
dinates but in the gyrocenter variables. A simpler descrip-
tion retaining hydrodynamic nonlinearities together with a
linear approximation of FLR contributions estimated from
the kinetic theory assuming the gyrokinetic scaling, was ini-
tiated bySmolyakov et al.(1995), in the limit where Landau
damping is negligible. Based on this idea, we have recently
developed a generalization of the Landau fluid approach,
by deriving equations for the hydrodynamic moments from
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the Vlasov-Maxwell system (Passot and Sulem, 2007) rather
than from the drift-kinetic equation (Snyder et al., 1997).
In addition to the hierarchy closure, this approach involves
the modeling of FLR effects that is carried out by express-
ing the non-gyrotropic part of tensors such as pressures, heat
fluxes, etc. in terms of lower-rank moments, in a way con-
sistent with the linear kinetic theory in the low-frequency
limit ε∼ω/�i � 1, for both quasi-transverse fluctuations
(k‖/k⊥∼ε) with no condition onk⊥rL (as in gyrokinetic
and gyrofluid approaches), but also for hydrodynamic scales
with k‖∼k⊥�1/rL. Here�i denotes the ion cyclotron fre-
quency andrL the ion Larmor radius. Accurate simulations
of scales comparable to a fraction of the ion inertial length in-
deed requires to retain much smaller transverse scales. Note
that at large scales, the model, which then reduces to usual
anisotropic MHD, also captures the fast waves.

The resulting FLR-Landau fluid model is integrated in one
space dimension, assuming that all the fields only depend
on a coordinateξ , along a direction of the(x, z)-plane mak-
ing an angleα with the z-axis defined by the uniform am-
bient magnetic field (of magnitudeB0). The total plasma
density field is normalized byρ0, the magnetic field byB0,
the velocities by the Alfv́en velocityvA=B0/(4πρ0)

1/2, the
pressures by the parallel ion pressurep0=p

i(0)
‖

, the heat

fluxes byp0vA and the fourth rank moments byp0v
2
A. With

the unit of lengthL, one defines the dispersion parameter
Ri=L

−1vA/�i which, in all subsequent simulations, will be
taken equal to unity. The parameterβ = 8πp0/B

2
0 measures

the ratio of the (parallel) thermal to the magnetic pressure.
Velocities without superscripts refer to the ion velocity. The
electron velocityue is given by

uex=ux+Ri cosα
∂ξby

ρ
(1)

uey=uy−Ri
∂ξbp

ρ
(2)

uez=uz−Ri sinα
∂ξby

ρ
, (3)

where we definebp=cosα bx−sinα bz. We also define
ū=sinα ux+cosα uz which, together with∇ · u=∂ξ ū, take
the same form when using the electron velocity. When
integrated, the divergenceless condition∇ · b=0 rewrites
cosα bz+sinα bx=cosα, which allows to write∇ · b̂=∇ ·

(b/|b|)=−cosα∂ξ |b|/|b|2.
The model involves dynamical equations for the ion den-

sity ρ and velocityu, the magnetic field componentsbp and
by , together with, for each speciesr, the gyrotropic parallel
and perpendicular pressurespr

‖
andpr

⊥
, and the heat fluxes

qr
‖

andqr
⊥

. They read
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The equations for the gyrotropic fourth rank cumulantsr̃r
‖‖

,
r̃r
‖⊥

and r̃r
⊥⊥

are given in Eqs. (A12)–(A16). The electric
field and flux terms entering the above equations are given
by

Ep= cosα Ex − sinα Ez (12)
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ρ
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(20)

The specific form of the gyroviscous tensor5 and of the non-
gyrotropic contributions to the fourth-rank cumulantRrNG,
as well as the transverse components of the fluxes of parallel
and perpendicular heatS‖r

x andS⊥r
x are computed from the

linear kinetic theory and given in the Appendix. The work
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Fig. 1. Normalized growth rate=(ω)/�i versusk⊥rL for mir-
ror modes withβ=5, τ=0.1, α=cos−1(0.1), T⊥i/T‖i=1.2 and
T⊥e/T‖e=1.

done by the gyroviscous force (see Eqs. 8 and 9 inGoswami
et al., 2005) is not included in the pressure equations be-
cause it originates from nonlinear terms involving FLR cor-
rections, a type of contributions that have been systematically
neglected. Retaining among them, those contributing to the
conservation of the total energy

E=

∫
[
ρu2

2
+
b2

2
+
β

2

(
p⊥i + p⊥e+

1

2
(p‖i+p‖e)

)
]dξ

is possible. We nevertheless choose to neglect these contri-
butions in order to estimate the accuracy of the above approx-
imations. It turns out that in the forthcoming simulationsE
does not vary by more than one percent.

The above equations are integrated numerically in a pe-
riodic domain of size 2πD in units of ion inertial length,
using a pseudo-spectral scheme based on fast Fourier trans-
forms. Derivatives, Hilbert transforms and operators in-
volving the0ν ’s (see Appendix) are calculated in Fourier
space where they just reduce to multiplications. Nonlineari-
ties are evaluated in real space. At each time step, and for
each field, Fourier modes are truncated atkmax/2, which
does not amount to a complete dealiasing since the non-
linearities are not only of cubic type but also involve di-
visions. Time stepping is performed with a second order
Adams-Bashforth scheme. No additional dissipation nor fil-
tering is introduced. Several linear tests of the model and
of the code have been performed (Passot and Sulem, 2007),
and in particular, the growth rate of the mirror instability is
accurately reproduced. Figure1 displays a comparison of
the mirror growth rate given by linear kinetic theory using
the WHAMP code (Rönnmark, 1983) (solid line) with the
growth rate measured on a short-time integration of the FLR-

Landau fluid equations initialized with a small amplitude
random noise superimposed on the equilibrium state charac-
terized byβ=5, α=cos−1(0.1), T‖e=T‖i , T⊥i/T‖i=1.2 and
T⊥e/T‖e=1. With these parameters for which the growth rate
is rather small compared with the ion cyclotron frequency
and the angleα in a range where the gyrokinetic ordering
applies, the agreement is excellent. At larger deviations from
threshold, a small discrepency develops near the maximum
growth rate (Passot and Sulem, 2007).

3 Mirror dynamics very close to threshold

In order to investigate the nonlinear development of the mir-
ror instability very close to threshold, an initial state was
selected withβ=5, α=88.85o, T⊥i/T‖i=1.18 andT⊥e =

T‖e = 0.05T‖i , for which the maximum growth rate is about
9.5 × 10−6�i . Starting with random initial noise of am-
plitude 10−4 superimposed on a uniform density and lon-
gitudinal magnetic field, we first observe the formation of
a growing quasi-sinusoidal wave whose wavelength is about
94li , consistent with the predicted most unstable wavenum-
ber, given byk⊥rL=0.16 (Fig. 2a). This scale is large
enough compared with the ion gyroradius for the dynam-
ics to be described by the asymptotic equation derived in
Kuznetsov et al.(2007). After the linear regime, the dy-
namics develops an acceleration phase that manifests itself
by a super-exponential growth of mode 1 between times
t=0.55× 106�−1

i andt=0.78× 106�−1
i . The solution dis-

plays at this time a magnetic hole whose depth is about 28%
(Fig. 2b), a large amplitude consistent with the singular be-
havior of the asymptotic solution. The FLR-Landau fluid
model, that includes richer nonlinearities than the asymptotic
equation, is capable of arresting the singularity. The solution
then relaxes towards the uniform state (Fig.2c) on a time
scale of the order of 105�−1

i . The corresponding variation of
the mean temperatures that evolve towards a regime where
the system is mirror stable, are displayed in Fig.3. It is inter-
esting to note that when preserving close proximity to thresh-
old, but considering variation in a more oblique direction, no
quasi-singular dynamics is observed, the system saturating
smoothly on small-amplitude quasi-sinusoidal mirror waves.

Quasi-linear effects (Shapiro and Shevchenko, 1964)
which, in Vlasov-Maxwell simulations, are observed to op-
erate at early time and in large domains, are not contained
in the the FLR-Landau fluid model. The latter model, like
the asymptotic equation, however captures a branch of solu-
tions that is observed on Vlasov simulations for larger dis-
tance from threshold or at later times in the evolution (Cali-
fano et al., 20071). It thus not only correctly reproduces the
linear dynamics of the mirror modes, but also incorporates
the ingredients of a subcritical bifurcation, leading to the de-
velopment of large amplitude structures.
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Fig. 2. Snapshots of a simulation illustrating the development of the
mirror instability very close to threshold, withβ = 5, α=88.85◦,
T⊥i/T‖i=1.18 andT⊥e=T‖e=0.05T‖i at timest=350× 103�−1

i
,

t=780× 103�−1
i

andt=850× 103�−1
i

. Displayed are the mag-
netic field amplitude (solid line) and the density (dashed line) as a
function of space in units of ion inertial lengthli =

vA
�i

.

4 Nonlinear structures with constant mean ion pres-
sures

Since in the simulation discussed in Sect. 3, as well as in
those reported inPassot and Sulem(2006b), the structures
that form as a result of the mirror instability are not per-

Fig. 3. Evolution of the parallel (top) and perpendicular (bottom)
temperatures in the run close to threshold, as a function of time in
units of�−1

i
.

fectly stationary but rather slowly relax to the uniform state,
it is of interest to enforce stationarity by maintaining con-
stant the mean ion parallel and perpendicular pressures. This
is a simple way of imposing a forcing which, in more re-
alistic situations, is obtained through boundary conditions,
such as for example an inflow. We shall first address the case
above threshold. Any kind of initial condition, either small
amplitude noise or finite amplitude perturbations, leads to
similar solutions in the form of periodic trains of magnetic
holes as depicted in Fig.4 (top). In this simulation, with
β=5, α=78.46o, T⊥i/T‖i=1.2 andT⊥e=T‖e=0.05T‖i , the
size of the domain is 94li , so that only two magnetic struc-
tures (whose width at mid-height is about 5rL) can form. As
a result, the system is able to reach a stationary regime. The
bottom panel of Fig.4 displays the perpendicular (solid line)
and parallel (dashed line) ion temperatures, showing, as for
the density (dashed line in the top panel), a clear anticorrela-
tion with the magnetic field amplitude. Note that the parallel
temperature presents a sharper profile than the perpendicular
one, with a smaller magnitude.

In the case of larger domains, the system cannot reach an
equilibrium. With the same plasma parameters as those of
Fig.4 but in a domain four times larger, the dynamics evolves
on a slow time scale and involves few Fourier modes. An in-
teresting feature is the transition between the linear phase,
dominated by the most unstable mode, and the nonlinearly
developed regime where the characteristic scale of the struc-
tures is twice smaller than predicted by linear theory, the
dominant Fourier mode becoming linearly neutral.

www.nonlin-processes-geophys.net/14/373/2007/ Nonlin. Processes Geophys., 14, 373–383, 2007
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Fig. 4. Stationary solution in a simulation where mean tempera-
tures are kept constant, withβ=5, α=78.46o, T⊥i/T‖i=1.2 and
T⊥e=T‖e=0.05T‖i . The top panel displays the magnetic field am-
plitude (solid line) and density (dashed line) as a function ofli . The
bottom one shows the perpendicular (solid line) and parallel (dashed
line) ion temperatures.

At larger distance from threshold, a faster dynamics devel-
ops that displays spatio-temporal chaos and involves more
Fourier harmonics, most of them corresponding to linearly
damped modes, in a way somewhat similar to CLUSTER
observations reported bySahraoui et al.(2006). The spa-
tial Fourier spectrum is however an exponential rather than
a power law. Holes form and disappear in a chaotic fashion,
and large-scale compression waves are observed to propagate
through the domain. Figure5 displays a snapshot of such a

Fig. 5. Snapshot of the magnetic field amplitude in a simulation
with fixed mean temperatures in a large domain, displaying spatio-
temporal chaos. The parameters are similar to those of Fig.4 except
thatT⊥i/T‖i=1.3.

Fig. 6. Magnetic field amplitude (solid line) and density (dashed
line) in the stationary regime in a simulation where mean temper-
atures are kept constant, withβ=5, α=78.46o, T⊥i/T‖i=1.17 and
T⊥e=T‖e=0.05T‖i .

simulation in the case of an anisotropyT⊥i/T‖i=1.3. The
general pattern shows an interesting similarity with the hole
structures observed in the Jovian magnetosheath (Fig. 1 in
Joy et al., 2006).

The saturated equation constructed inKuznetsov et al.
(2007) as well as Vlasov-Maxwell direct simulations (Cali-
fano et al., 20071), indicate that below threshold both the uni-
form state and isolated magnetic holes are stable solutions. It
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is thus of interest to investigate, in the context of the present
fluid model, the range of parameters for which this bistable
regime is observed. Since initial conditions in the form of
small amplitude noise obviously relax to the uniform state,
we here choose to initialize the simulation with a finite size
magnetic hole, taking the longitudinal magnetic field in the
form bz=c−0.5 exp[−(x−0.5)2/0.005], where 0<×<1 is
the non-dimensional space variable, and wherec is chosen to
ensure thatbz has mean value 1. Parameters are identical to
those of Fig.4, except thatT⊥i/T‖i=1.17, a value for which
the uniform state is mirror stable. The hole first adjusts and
then stabilizes towards a stationary solution shown in Fig.6.
The hodograph of the magnetic field vector, namely the curve
of coordinates(by, sinα(bz − 1) − cosαbx) is displayed in
Fig. 7, showing a small but visible signature of the compo-
nent of the magnetic field perpendicular to the(k,B0) plane,
also shown in Fig.8. Interestingly, both theby andbz com-
ponents are symmetric with respect to the center of the mag-
netic hole, making the hodograph fold on itself. This prop-
erty, also observed in Vlasov simulations (Califano et al.,
2007)1, contrasts with all previous soliton models based on
anisotropic Hall-MHD (Stasiewicz, 2004a; Mjølhus, 2006),
where by is found to be antisymmetric. All the velocity
components are anti-symmetric,ū being negligible (about
2×10−5), whileuy , displayed in Fig.8, has a relatively large
amplitude with a sharp gradient at the center of the hole, indi-
cating that the gyroviscous tensor plays an important role in
the equilibrium. Similar signatures are observed in PIC sim-
ulations of non-propagating rarefractive solitary structures
generated by particle injection (Baumg̈artel et al., 2005) in
a plasma that is initially isotropic with a much smaller value
of β (taken equal to 0.25). The heat fluxes also seem to play
an important role since no equilibrium can be reached when
these terms are removed from the equations. The modeling
of these static magnetic holes in terms of soliton solutions
of a minimal model (e.g. anisotropic Hall-MHD with lead-
ing order FLR corrections) remains an open problem. Their
symmetry properties however suggest that they do not cor-
respond to the same branch of solutions as the slow mag-
netosonic solitons, in contrast with the claim byStasiewicz
(2004b).

It is possible to investigate the subcritical nonlinear so-
lutions in the bistable regime using a continuation proce-
dure taking, for example, the latter solution as initial con-
dition for simulations with the same parameters but smaller
anisotropies. Such solutions still exist forT⊥i/T‖i=1.16, but
seem to disappear atT⊥i/T‖i=1.15. In a similar way, it is
possible to find subcritical hole solutions withT⊥i/T‖i=1.17
and values ofβ down toβ=4.6, corresponding to a slightly
larger deviation from threshold. Interestingly, these solutions
have a similar magnetic field depression of about 25% to
30% (see Fig.9). The overshoots on the edges of the mag-
netic holes are almost absent for such subcritical solutions,
while they become more prononced above threshold, consis-
tent with CLUSTER observations (Génot et al., 2006).

Fig. 7. Hodograph of the magnetic field(by , sinα(bz−1)−cosαbx)
for the solution displayed in Fig.6.

Fig. 8. Profiles ofuy (solid) andby (dashed) for the hole solution
displayed in Fig.6.

If initial conditions in the form of magnetic humps are in-
stead chosen in subcritical situations close to threshold, the
system relaxes to the uniform state, as observed in PIC and
Eulerian Vlasov simulations (Baumg̈artel et al., 2003; Cali-
fano et al., 20071).
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Fig. 9. Magnetic field amplitude (solid line) and density (dashed
line) in the stationary regime, in a simulation where mean tempera-
tures are kept constant, with the same parameters as in Fig.6 except
thatβ=4.6.

5 The case of oblique angles

In this section, we briefly report on the existence of propa-
gating solutions obtained as a result of the nonlinear satura-
tion of the mirror instability developing from small ampli-
tude initial noise at an angle of propagation of 50◦ with re-
spect to the ambient magnetic field. The simulations are here
performed without fixing the mean temperatures. While for
larger angles the structures that form are at rest and slowly
relax to the uniform state, for this intermediate propaga-
tion angle, slowly propagating solitary-like structures are ob-
served, whose amplitude decreases at a much slower rate. In
Fig. 10 are displayed two snapshots att=5×104�−1

i (right
curve) andt=105�−1

i (left curve) of a traveling hole for
β=5, T⊥i/T‖i=1.55, T⊥e=T‖e=0.05T‖p. For comparison,
at a larger angle of propagation, the hole would have com-
pletely disappeared after such a long integration time. In
the present simulations, the parallel temperature rapidly be-
comes almost uniform. The profile of theby magnetic field
component presents a small antisymmetric part (not shown).

6 Conclusions

We have shown that a fluid model containing linearized Lan-
dau damping and FLR effects evaluated in the gyrokinetic
approximation is capable of capturing not only the linear dy-
namics of the mirror instability but also the finite amplitude

Fig. 10.Two snapshots of the magnetic field amplitude as a function
of space in units ofli for a simulation with freely evolving temper-
atures, withβ=5,α=50o, T⊥i/T‖i=1.55,T⊥e=T‖e=0.05T‖i .

solutions in the form of magnetic holes commonly observed
in Vlasov simulations and in satellite data of planetary mag-
netosheaths. This approach is relevant in cases where nonlin-
earities originate mainly from hydrodynamic effects. Non-
linear kinetic effects such as particle trapping or nonlinear
FLR corrections, not retained by the present description, can
however be efficient to saturate the instability. The inclusion
of these effects at a phenomenological level in a fluid model
is presently an object of investigation. Further work is also
needed to clarify the nature of the obtained static magnetic
hole solutions, which, in view of their polarization proper-
ties, do not appear to belong to the same family as the travel-
ling Hall-MHD solitons.

Appendix

In the following, the hat symbol denotes the Fourier com-
ponent of the corresponding fields and the overbar their
(time-dependent) space average. The various non-gyrotropic
tensor elements are derived inPassot and Sulem(2007) and
explicited below in the one-dimensional case.

Gyroviscous stress tensor:

5xx=−pi
⊥
F−1

(
ik sinα RiA1ûy+A2

T̂ i
⊥

T
i

⊥

)
(A1)

5xy=p
i
⊥
Ri sinα∂ξF−1

(
B1Êy−B2ûx

)
(A2)
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)
+Ri(p

i
⊥

− pi
‖
)F−1

(
PyzD2b̂y

)
+pi

⊥
R2
i

sin2 α

cosα
∂ξξF−1

(
cosα(−1

+
β

2
(pi

‖
+pe

‖
− pi

⊥
− pe

⊥
))̂by

+
β

2
pi

⊥
(ikRi sin2 α)(B1Êy − B2ûx)
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Transverse fluxes of parallel and transverse heat:
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Non-gyrotropic components of the fourth rank cumulants:
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Fourth rank cumulants:
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The termr̃ i
⊥⊥

is sometimes filtered at small scales because
of the strong increase of its coefficients with the transverse
wavenumber. No significant effect results from this approxi-
mation, except possibly at the smallest scales.

The various coefficients, functions of the parameterb ≡

k2
⊥
r2
L/2=

β

2
T
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2
i k

2 sin2 α, involve the functions00 and01

where 0ν(b) is the product of exp(−b) by the modified
Bessel functionIν(b). They are given by
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E1(b)=
(00(b)−01(b))(1−00(b)+b01(b)−b00(b))

1−00(b)

+2b00(b)−2b01(b)−01(b) (A29)

E3(b)=−
1−00(b)+b01(b)−b00(b)

1−00(b)
(A30)

RNG1(b)=1−00(b)+2b00(b)−2b01(b) (A31)

RNG2(b)=b(00(b)−01(b)) (A32)

Ri
⊥⊥1=−Rp2(b)−Rp3(b) (A33)

Ri
⊥⊥2=

Rp1(b)

00(b)
+Rp2(b)

( 1−00(b)

b(00(b)−01(b))

+1−
2

00(b)
+
01(b)

00(b)

)
+Rp3(b)

(
1−

00(b)

b(00(b)−01(b))
+
01(b)

00(b)

)
(A34)

Ri
⊥⊥3=−

Rp1(b)

00(b)
+Rp2(b)

( 2

00(b)
−1−

01(b)

00(b)

)
−Rp3(b)

(
1+
01(b)

00(b)

)
(A35)

where

Rp1(b)=4b201(b)−4b200(b)−b01(b)+3b00(b) (A36)

Rp2(b)=2b201(b)+b01(b)−2b200(b) (A37)

Rp3(b)=2b200(b)+2b201(b)−7b01(b). (A38)

The coefficients entering the fourth rank cumulants are
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with µi=1 andµe=me/mi , ratio of the electron to ion mass.
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