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Abstract. We have used a Wavelet Based Fractal Analy-have used a simple form of the Bayes Theorem to compute
sis (WBFA) and a Waveform Classifier (WC) to recognize the probability of occurrence of facies at different locations
lithofacies at the Oritupano A field (Oritupano-Leona Block, in a seismic cube, using seismic amplitude data. They use
Venezuela). The WBFA was applied first to Sonic, Density, characters or patterns derived from seismic signals to iden-
Gamma Ray and Porosity well logs in the area. The logs thatify facies. In this work we use the signature of the well logs
give the best response to the WBFA are the Gamma Ray andnd the seismic signals to recognize facies.
NPHI (porosity) logs. In the case of the logs, the lithological ~ The spectral analysis of a time series is one of the tech-
content could be associated to the fractal parameters: slop@iques most widely used to obtain the series signature. This
intercept and fractal dimension. The map obtained using theanalysis decomposes the time series into a number of com-
fractal dimension shows tendencies that generally agree witfhonents, each one associated with a particular frequency. It
the depositional patterns previously observed in conventionais also possible to decompose the time series into a number
geological maps. According to the results obtained in thisof components that are associated with a particular scale at
study, zones with fractal dimension values lower than 0.9a particular time. This is known as the wavelet transform
correspond to sandstone channels. Values between 0.9 amst wavelet analysis of a time series (Kumar and Foufoula-
1.2 coincide with the interdistributary deltaic shelf and val- Georgiou, 1994; Rioul and Vetterli, 1991). A signal can
ues greater than 1.2 might be associated with zones of greatelso be characterized by its fractal dimensions (Russell et
shale content. The WBFA and WC results obtained for theal., 1980). As in the wavelet theory, with the fractal anal-
seismic data show no relation with the lithofacies. The lostysis the behavior of a signal can be characterized using scal-
of low and high frequencies in these seismic data, as well agg tools in the measurement. These two approaches have
phase problems, could be the reasons for this behavior.  been previously combined to analyze time series. Argoul
et al. (1989) have used the wavelet transform for a fractal
description of images. Akay (1995) has applied a Wavelet
Based Fractal Analysis (WBFA) to study biomedical signals.
Using this combined analysis, important features of the sig-
To obtain a reliable reservoir characterization, it is important"@! have been extracted to understand or model physiolog-
ical systems. Moreover, the scale property of the wavelet

to have a proper identification and mapping of rock facies. - h ded a f K dving th |
This means that reservoir characterization requires the lithot@nsform has provided a iramework for studying the scale

logical and petrophysical knowledge of the study area. InProperties of seismic "_ind reservoir _da_ta. In this sense, a 3-
this sense, the identification of rock types is a main objectiveD wavelet transformatpn of geostans_upal reservoir data has
in oil exploration, in order to find reservoir and seal rocks been used to characterize the reflectivity scale spectrum and

(e.g. sandstonesplvarez et al., 2003). Facies identifica- the relation between reflectivity at different scales in a reser-

tion and mapping are usually based on the inspection of Coré(ogé'll\/losher;t al., 199?' Jié_nez et_(?l. (199|_9Lh;’:1ve a[)rﬁ"ed
data and well logs (John et al., 2005). Statistical approache§/ to study two wells, trying to identify lithology. They

have also been proposed for that purpose. John et al. (200 ave found that plots of the logarithm of the variance of the
avelet coefficients versus scale discriminate a well, mainly

Correspondence tavl. Aldana sandy, from the other with a major content of shale.
(maldana@usb.ve) In the present work we have used a Wavelet Based Fractal

1 Introduction
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Analysis (WBFA) and a Waveform Classifier (WC) to recog- line can be related with the exponent of the power-law pro-
nize lithofacies at the Oritupano A field, Venezuela, in both cess (Percival and Guttorp, 1994).

well logs and seismic traces. The study area presents pa- Based on the potential definition of the fractal dimension
leosedimentary characteristics that indicate a variation from(Mandelbrot, 1977), Berry (1979) has obtained, for a one
marine-coastal environments to estuarine or deltaic ones. Alimensional profile, a relationship between the slope of a
variation in the sand/shale content is also expected. We trgraphic of the variance of the power spectrum (given by the
to identify the facies at the field by using the parameters de+ourier Transform) vs. frequency and the fractal dimension:
rived from the WBFA and a fractal dimension obtained from

them. Maps of these parameters could show the general b@=>—2D ®)
havior of lithofacies in the area. For seismic data, WBFA and

. wherem is the slope of the linear region alis the fractal
WC results will be compared. " b g

dimension. An alternative approach to this relationship has
been given by Mengesha (1999). Considering the equiva-
2 Wavelet Based Fractal Analysis (WBFA) lence between Fourier and Wavelet transforms, we have used
equation (5) to obtain the fractal dimension associated to the
The wavelet method transforms a given time series to a scaleplots of log-variance of the wavelet coefficients (log( ver-
time domain. This transform is performed by correlating the sus scale. It is important to notice that this dimension just
time seriesf with a shifted and translated functian ac-  characterizes the time series (well log or seismic trace) that
cording to: could be associated with different sedimentary environments.

o —
C(a, e):% / f®e (%)dr; a,eeN,a>0 (2) 3 Waveform Classifier (WC)
—00

The variations in the character of a seismic reflector or a set
The functiong is called a wavelet. The wavelet is a function of reflectors might be associated to changes in the strata ge-
with limited energy and with zero mean (admissibility con- ometry or lithologic stacking patterns. Hence, in seismic
dition). The wavelet coefficient€'(a, ¢) give information  stratigraphy, the recognition of those systematic variations
about the scale as well as about the timeof appearance is an important task (Hall and Trouillot, 2004). This kind on
of a characteristic structure (Kumar and Foufoula-Georgiou,analysis could help to elucidate subsurface stratigraphy qual-

1994). itatively and also quantitatively when is coupled with seismic

The time seriesf (t) can be recovered from its wavelet modeling. The recognition of these variations, via the com-
transformC (a, e) by: parison of the wavelets shape, is called waveform classifica-

o 0o tion.
1 t — e\ dade There are two main approaches to waveform classifica-
f(”zc_//c(“"’)")< ) 2 @ tion: supervised and ised. | ised mod

B a a : supervised and unsupervised. In a supervised mode, a

— 0 wavelet of a zone of interest is used to guide the grouping of

C, is called the admissibility constant and is given by similar waveforms in the whole area and mapping them. The
searching is performed at a time window. The main assump-

°° W“’)‘z tion is that the source wavelet is similar for all traces, and that

Cyo=2m f o] dw (3 the waveform of similar traces, adjacent or not, is in part the
0 result of the same stratigraphy (Ross and Peterman, 2000).

. . o Hence, the spatial variation of the waveform could be an in-
whereg is the Fourier transform gf. The admissibility con- gicator of different geological features. The results of the
stant has to satisfy the admissibility condition: classification process can be displayed in a map of wavelet
0<C,<+00 (4) classes in Which each gllass. is represented by an intgger. In

the unsupervised classification, a reference wavelet is auto-

This transform has found a lot of applications not only in sig- matically calculated from the reference data before assigning
nal processing, but also in the geophysical sciences (Kumaelasses. This assignation is achieved after an iterative statis-
and Foufoula-Georgiou, 1994). tical analysis of a subset of the data; the results obtained are

Akay (1995) has proposed the use of a Wavelet Basedhen applied to the entire dataset. Again, the results of the
Fractal Analysis (WBFA) in order to obtain the dimension classification process can be displayed in a map of wavelet
of the heart-sound waveforms. For this analysis, the variancelasses. This approach is useful if no a priori information
of the wavelet coefficients is obtained, at each level of de-(e.g. correlation with wells or even well information) is avail-
composition, and the log-variance plotted against the scaleable (Hall and Trouillot, 2004).
Linearity regions in these plots correspond to a power-law We have performed a supervised waveform classification
process over a particular frequency region. The slope of thef the 3-D seismic data of the area, using the Waveform
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Classifier (WC) provided by Landmark Graphics Corpora-
tion (Haber and Wilk, 2006). The analyses were carried out
in a window around the interpreted horizon. The numerical
differences in the wavelets were computed using the Manhat-
tan distance (see for example Tielen et al., 1997). The Man-
hattan distance function computes the distance that would be
traveled to get from one data point to the other if a grid-like
path is followed. The Manhattan distance between two items

[ ORITUPANO - LEONA BLOCK |

is the sum of the differences of their corresponding compo- Mar Caribe ':“c‘f.{'cf‘
. - argarita
nents. The difference between two wavelgtandyr, with —
N samples, is measured using this distance as: N Coriera de Ta CoMa. gl
\\ Subcuenca de Cuggca béfenca
N N Guarco  orjpnte  de Maturin 77170
A . NOCO

A= Z |(pl _I//i | (6) AN Faja gertne ®Ciudad Bolivar

i=1 N ltade L%an e

Two identical wavelets will giveA=0, whereas different
wavelets will give positiveA values. These values are used
to obtain the WC maps.

Fig. 1. Geographical setting of the study area.

4 Geographical and geological setting of the Oritupano- [ MATURIN
A field AGE N sygsasin S
PLEISTOCENE hesa

The Oritupano-Leona Block is located at the Greater Oficina

Trend (see Fig. 1). More than 12 isolated oil fields constitute Las Piedras

the block. Structurally, the fields are located in the southern PLIOCENE -

flank of the Eastern Venezuela Basin, in the foredeep plat- m

form zone (Parnaud et al., 1995). The Oritupano A field

is affected by normal faulting mainly trending NeB. The

sedimentary sequence is conformed by coarse to medium LATE

sandstones interbedded with shales and cherts. The produc: MIOCENE

tive section is represented by the Oficina Formation (Early

Miocene) (see Fig. 2), although the uppermost reservoirs of

the underlying Merecure Formation (Oligocene) have pro- MEDIUM

duced an acceptable oil volume. The cumulative oil produc-

tion of the block is over 340 MMbbls since its discovery in MIOCENE

the 1940’s. Reservoirs are composed of sandstones of estuar

ine to shallow-marine environments (Porras et al., 2002). We

have studied the lower unit of the Oficina Formation, known EARLY

as the LU hydraulic unit. This unit was divided in eight lay-

ers: LM2, L3, M2, M4, O1, P2-3, R1 and UL. MIOCENE
A paleosedimentary study was previously performed in

the area (Grosso, 2002) and extended in this work. Facies

maps that reflect the sedimentary tendencies, lithology angig. 2. Stratigraphic column of the study area.

reservoir quality for each layer of the LU unit were obtained.

Those wells with core analysis were classified as A and B

based on the paleoenvironments identified, the quality of

the reservoir and the sand/shale content (calculated from th@)RM-94). Table 1 shows the result of the classification of

Gamma Ray logs). Wells A are characterized by the pres- g \yells.

ence of clean thick sands, good quality reservoirs and are

mainly associated with one paleoenvironment (see Fig. 3a, A map of net sand was also obtained for the study area

well ORM-117). In wells B, more than one sedimentary en- (see Fig. 4). Zones of great thickness are observed. These

vironment could be interpreted (e.g. marine-coastal, estuarzones can be associated to channels. Also this map shows

ine and deltaic); the reservoir quality ranges from regular tosedimentary and distribution patterns that can be associated

bad and the predominant lithology is shale (see Fig. 3b, welko an interdistributary zone of a deltaic plain.

La Pica
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Good Tidal bar Sand-Coal Marine-Coastal
Good-Regular Tidal bar Medium Sand Marine-Coastal
Good Channel Coarse Sand Deltaic
Very Good Channel Coarse Sand Deltaic
Regular Tidal bar Medium Sand Marine-Coastal
Regular Channel Medium Sand Estuarine
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Regular Channel Medium Sand Estuarine
Bad Bar Siltstone Marine-Coastal
Bad Channel Siltstone Marine-Coastal
Bad Swamp Coal-Lignite-Silt-Shale Swamp
No reservoir Off shore Shale Deep Marine

Fig. 3. (a)GR log and results of the paleosedimentary study of well
ORM-117. This well was classified as &) GR log and results of

©)
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Table 1. Well classification based on the paleosedimentary study
and the sand/shale content.

Well Well Type

ORM-76
ORM-82
ORM-83
ORM-117
ORM-78
ORM-142
ORM-158
ORM-123
ORM-80
ORM-36
ORM-75
ORM-61
ORM-84
ORM-66
ORM-94
ORM-105
ORM-81
ORM-68

WO @mOWWWOTWI>>>>>>>>>>

5 Well analysis

A group of 12 wells among all the wells in the area was se-
lected to test a set of wavelets for the WBFA. This set in-
cludes wavelets from Biorthogonal, Symlet, Coiflet, Mor-

let, Meyer, Mexican Hat, Haar and Daubechies families
(Foufoula-Georgiou and Kumar, 1994). The WBFA was per-
formed on the available well logs of the test group (Gamma

the paleosedimentary study of well ORM-94. This well was clas- R&Y (GR), Sonic, Density and Porosity (NPHI) logs). The
sified as B; andc) Reference table of the paleosedimentary study decompOSItlon process was applled in the depth range that
indicating, by color, the architecture, lithology and paleoenviron- comprises the hydraulic unit of interest (LU). This process

ment.

Fig. 4. Net sand map of the study area, showing the interdistributar

DELTAIC PLAIN

and channel zones.

CHANNEL ZONE

Nonlin. Processes Geophys., 14, 3285 2007

was iterated, with successive approximations decomposed in
turn, so that one signal was broken down into many lower-
resolution components (wavelet decomposition tree). A clear
linear tendency was observed in all the cases in the graphs
of the logarithm of the variance of the wavelet coefficients
(log(o)) versus scale. The best decomposition was achieved
with six levels for most of the logs. To perform the WBFA
for the whole area, we have selected the wavelet that pro-
vided the better linear adjustment in these graphics, based
on the linear regression coefficient?.RFor each well and
each type of log, a plot of the®Rvalues associated with the
tested wavelets was obtained. Figure 5a shows one of these
graphs for a NPHI log. After analyzing all these plots, the
best adjustment, based on thé gefficient, was obtained
with a wavelet from the Biorthogonal family (see Fig. 5a).

yFinaIIy, the WBFA with the selected wavelet was performed
on 32 wells available in the area at the interval of interest.

The variance of the wavelet coefficients,was calculated
and plotted versus the scale in a semi-log plot. Figure 5b

www.nonlin-processes-geophys.net/14/325/2007/
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- Fig. 6. m andbvalues for different logs. Only those wells with a
L complete set of logs (GR, Sonic, NPHI and Density) were included
[@>) . .
in this graph.
S this grap
zone. This kind of graphic also sets apart wells with more
sand content from those with more shale content. Greater

R iitna HSH-- b) absolute values aof: and b correspond to wells associated
Scale with just one depositional environment, with good reservoir
quality, and with considerable clean sands (e.g. ORM-117,
Fig. 5. (a) Linear regression coefficients,2Robtained for the ~ORM-78, ORM-142 and ORM-80). Lower absolute values
linear region of the logarithm of the variance)(of the wavelet ~ Of m andb are associated with the presence of shale layers,
coefficients versus scale plots, after decomposing a NPHI logwith interbedded thinner sand layers and medium reservoir
with wavelets from different families: Biorthogonal (bior), Sym- quality (e.g. ORM-81, ORM-84, ORM-105 and ORM-94).
let (sym), Coiflet (coif) and Daubechies (db). The best result is This separation is clearer for Density and NPHI logs.

obtained for a wavelet of the Biorthogonal familf) Log(v) ver- Them andb values obtained for the GR and NPHI logs

sus scale for a NPHI log, after decomposing it with a Biorthogonal e .

wavelet. of all the we_lls ;tudled in the area are presented in Table 2
and plotted in Fig. 7. Instead of just a two groups separa-
tion, a linear behavior is observed for both kinds of logs in

shows the results obtained for the NPHI log of one of thethis graphic. The tendency is in agreement with the litho-
studied wells. A fine linear fit is obtained; similar results logical content of each well, as can be observed in Fig. 8,
were observed for the rest of the wells and the logs. Fromvhere some representative GR logs have been inserted for
these plots, the slope and the intercept were calculated. ~ Some data points of Fig. 7. Wells with more content of sand
As a first step, we studied the dependence ofittendb layers, that correspond to channel zones, have higher val-
values with the well log type. Only 12 of the total number Ues ofm (e.g. ORM-76). Wells with more content of shales
of wells in the area have a complete set of logs that include1ave lower values of: (€.9. ORM-91). The middle section
GR, Sonic, Density and NPHI. Figure 6 shows the resultsOf the line includesn andb values that characterize wells
obtained for this set of wells. As can be observedpihalue  With alternations of sands and shales, and some of them are
varies within a range for all the logs analyzed. Nevertheless!ocated in the interdistributary zone of the deltaic plain (e.g.
the b value depends on the well log type and set them apartORM-36). Then, in this case, not only two end members (i.e.
namely GR and Sonic logs are associated with lower absoluté/ith mainly sand or mainly shale content) are observed, buta
b values compared with Density and NPHI logs. This was 9radual change of lithological content has been characterized
expected as diverse logs respond in a different way, that i$/Singm andb values derived from the WBFA analysis.
they have a different waveform, even in the same lithological Using the slopen of the plots of log ¢) vs. scale (see

www.nonlin-processes-geophys.net/14/325/2007/ Nonlin. Processes Geophys., B85326067
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s Table 2. m,b and D values obtained after the WBFA of the GR
, e, logs. The classification of the well as A or B (see Table 1) is also
s : AN ‘ indicated (NC=Not classified).
s 3V
‘\,\ R y2=-6.9923x+17.514
~2 0 R =0.8344
@m .;"‘“'\.- A ~_ . Well m b D Well Type
g ., . \ ORM-128 46618 -12.9252 0.1691 NC
- Tt ORM-76 40113 -17.229  0.49435 A
T ORM-82 3.9625 -16.8549 0.51875 A
y=-6.8289x+0.0588 ORM-54 3.8919 -8.1412 0.55405 NC
R=0861 e C ORM-83 3.7716 7.6857  0.6142 A
: ORM-117 3543 —6.6758 0.7285 A
. ORM-78 3.4732 -5.669 0.7634 A
[ec s et ORM-56 3.4293 55037 0.78535 NC
Slope (m) ORM-95 3.4015 -4.8482 0.79925 NC
ORM-142 3.3926 -4.6788 0.8037 A
Fig. 7. m andb values obtained after the WBFA of the GR and ORM-73 33128 -35737  0.8436 NC
NPHI logs of all the studied wells in the area. The equations and ORM-122 32576 —-4.1634  0.8712 NC
R? values of the lines that follow the observed tendencies of the ORM-158 3.2433 -4.5365  0.87835 A
data are also included. ORM-123 3.2422 —-4.7537 0.8789 A
ORM-120 3.2199 -4.3394 0.89005 NC
ORM-67 3.194 —34.404 0.903 NC
Fig. 5b), a fractal dimension D can be calculated via Eq. (5). 8§m:gg g'iggg j'ggg 8'3122 i
The D valugs qbtamed from the GR logs of all the wells are opM-75 30896 -37088 09552 B
presented in Fig. 9 and Table 2. The values were plotted in orMm-61 29686 -2.2577 1.0157 B
an increasing way. At least, four different groups, indicated oRrMm-84 26009 -0.2928 1.15455 B
by different slopes of the tendency lines that connect the data, oOrRM-66 2.6109 -0.4823 1.19455 B
can be observed in Fig. 9a. In Fig. 9b. representative GR logs ORM-94 2.4699 0.3868 1.26505 B
have been inserted. Also a concise description of the main ORM-105 2.4599 0.1166 1.27005 B
environment characteristics, from previous works (Grosso, ORM-81 2.3308 1.2519 13346 B
2002), is provided in this figure. The most important result ORM-58 2.3293 04398 133535 NC
ORM-99 2.3053 1.2761 1.34735 NC

is that the D values sort out the groups of wells according to

. . . . ORM-98 2.2533 1.997 1.37335 NC
the lithology. In other words, there is a relationship between
fractal dirr?gnsion and lithology, as is explained beFI)ow ORM-91 2.1749  1.8659 141255 NC
! ’ ORM-68 2.1475 1.0702 1.42625 B
As can be observed from Table 2, values of D lower than orMm-69 21111 2.2387 1.44445 NC
0.9 were obtained for wells A. These wells are associated to ORM-31 2.076 0.8258 1.462 NC

high energy sedimentary environments, channels and thick
sands of medium to coarse grains (see Fig. 9b). Values of D
greater than 1.2 were obtained for those wells associated to
sections with higher shale content, low energy environmentsand and shale layers interbedded, and with similar net sand
or marsh zones (see Fig. 9b). The wells located at the interand shale content (e.g. ORM-66). Higher D values corre-
distributary zone identified via the net sand map (see Fig. 45pond to wells with more shale content, located to the West
have values of D between 0.9 and 1.2 (We”S ORM-36, ORM-and Central zones of the area (eg ORM-94)
80, ORM-75 and ORM-66). Jiménez et al. (1999) have applied the WBFA in the study
A fractal dimension D map was obtained for the study areaof two wells, trying to identify lithology. They have found
(Fig. 10). This map can be compared with the net sand maghat plots of the logarithm of the variance of the coefficients
of the area (Fig. 4). In the D map, different zones can bevs. scale discriminate a well, mainly sandy, from the other
interpreted, and some of the patterns observed are in agre&ith a major content of shale. In their work, they do not
ment with those features previously interpreted in the netcalculate the fractal dimension associated with these plots.
sand map. Lower fractal dimensions(@.9) are observed to Nevertheless, if the fractal dimension calculated via Eq. (5)
the East and correspond to the channel zone identified in this obtained for the two wells studied by Jimenez et al. (1999),
net sand map (great sand thickness layers; e.g. ORM-117glso greater D values correspond to the mainly shaly environ-
Values between 0.9 and 1.2 correspond to the interdistribument.
tary zone of deltaic plain also identified in the net sand map. Itis important to notice that Jiemez et al. (1999) have per-
Wells in this zone show a transitional behavior with thinner formed a study of just two wells, and they have only found a

Nonlin. Processes Geophys., 14, 3285 2007 www.nonlin-processes-geophys.net/14/325/2007/
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Fig. 10. Map of D values for the study area.

two end member classification, between a shaly and a sand
well. In the present work, after applying the method to a
statistically significant number of wells, we have found that Fig. 11. Seismic cube of the study area. The unit qf interest is lo-
it is possible to identify, using the fractal dimension associ- cated between 1600 and 1700 ms, between the horizons Bur4 (blue)
ated with the WBFA of the studied wells, not just two end and Bur2 (red).

members, but a whole range variation of shale and sand con-

tehnt. Ir:hfa(t:t, m_:_h IS (;aie we Ea\t/e obtalne(cji ab drar? gle tha&996) could be expected. Hewett (1986), for example, has
shows the transitiona’ change between sandy and shaly €Wep, ., that variations in vertical porosity well logs from a
ronments. _Thls varlatl_on correspon_ds to a gradual trans't'onsubmarine fan were scale invariant; namely, the power spec-
be_tvveen different §ed!mentary environments. The maps Obt'rum followed a power law dependence on the wavenumber.
tained from the seismic data by Jmez et al. (1999) in the

o o ) ..Based on this result, he developed a fractal based interpo-
area they have studied, just classified different zones as Wh't%tion scheme in order to determine porosity variations from
or black (i.e. sandy or shaly). The fractal dimension maps

thatwe h btained in th t studv all dus to cl well logs in sedimentary basins and constructed realistic sed-
1atwe have oblained in the present study aflowed us to Casﬁ'nentary structures (Pelletier and Turcotte, 1996). Schlager
sify transitional environments and to observe, for example,

. . . e (2004) has indicated that the sediment architecture is largely
stratigraphic features as channel or interdistributary zones i

o cale invariant over a wide range of scales in time and space.
the study area. Hence, this kind of maps suggests that th g b

fractal di . b d I tribut Fie has also pointed out that first-order trends of sea-level
ractal dimension can be used as a wew /09 allfioute of EVEN 4, /o ments and sedimentation rates are fractal on all geolog-

post-;tagk seismic attribute (Brown, 2004) for reservoir Char'ically relevant time scales. These facts, that suggest a fractal
acterization. behavior in the sedimentation process, could explain the re-
Spectral techniques have been previously applied to anagy|ts obtained in our work; namely, a relationship between a
lyze the fractal behavior of time series. Scale invariant POWelsedimentary environment, reflected by the well logs behav-
spectra for diverse well logs have been observed (e.g. Topor, and a particular fractal dimension, according to the ex-
doeschuck et al., 1990). Wavelet analysis has also been usgflanation given above. Nevertheless the statement of a par-

to determine the frequency components of different time setjcular sedimentation model is beyond the scope of this work.
ries (e.g. shoreline change signals, Tebbens et al., 2002). As

in our case, when the relationship between variance and scale

is well described by a power law, the studied signal is nonstag  3-D seismic data analysis

tionary and a self-affine fractal (Tebbens et al., 2002). The

fractal dimension we have obtained in this work basically A 3-D post-stack migrated cube (30 Rimwas used in this
characterizes the analyzed logs. As it is generally knownstudy (see Fig. 11). The unit of interest is located between
greater fractal dimensions are associated with more complex600 and 1700 ms (between the horizons Bur4 (blue) and
sets (Turcotte, 1997). In our case the values of these fracBur2 (red) in Fig. 11). A combination of dynamite and vibro-
tal dimensions increase with the complexity of the studiedseijs sources was used for this survey. WBFA and WC analy-
logs. Less complex logs, associated with sandy environsis were performed on a window around the studied horizon.
ments, show more correlation between adjacent values (as

the sand thickness increases) and smoother profiles. Cors.1 WBFA

sequently the fractal dimension values are lower. The be-

havior observed in well logs as those studied here (e.g. GRYo apply the WBFA on the seismic data, a seismic trace was
is mainly associated with the lithological content of the area.extracted near each of the 32 wells of the study area. The
Hence, a fractal based model for sedimentary basins (Hewetgnalysis was applied on each extracted trace, following the
1998) or for sedimentation processes (Pelletier and Turcottesame procedure used for the well logs. Again, for most of
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Fig. 12. m andb values obtained from the WBFA analysis of the
closest seismic trace to each of the studied wells in the area. The
blue oval enclosed wells ORM-81 and ORM-80 which have differ-
ent lithologies.
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Fig. 13. Phase map of the study area. The colors correspond to th&19- 14. (a) Representative frequency spectrum obtained for the

phase range: yellow:°Qo 15°; green: 18 to 45°; blue: 45 to 8C°, seismic data analyzed in this work (after Aristiffmuand Aldana,
and red: 80 to 115. 2006) (b) Original well log (dark blue) and filtered logs with dif-

ferent frequency ranges content: 2—16 Hz (green), 80—200 Hz (red)
and 2—-16 Hz+80-200 Hz (light blue) (after Aristifimand Aldana,

the traces, the best fit was achieved with a wavelet from the?006).
Biorthogonal family and with six levels. The obtainedand
b values were represented in a plot similar to that of Fig. 7

(see Fig. 12). In this case, there is no tendency or clusterg tg 115 degrees can be observed. Just processing the data
ing according to the facies or even to the lithological content. get the same phase is not an easy task as the phase vari-
No grouping between traces that correspond to similar sediztion was introduced in the acquisition process by the com-
mentary environments was obtained, although the logs of thgjnation of vibroseis (zero phase) and dynamite (minimum
wells near these traces respond to the lithological variationphase) sources. On the other hand, the frequency spectrum
In fact, the seismic traces extracted close to the wells ORM+f seismic data is always narrower than that of well logs.
81 and ORM-80 (enclosed in the oval of Fig. 12) have nearlygenerally, frequencies above 100 Hz are lost in the acqui-
the same values df andm; nevertheless, the GR logs of s;jtion process of seismic data. A representative frequency
these two wells indicate dissimilar lithologies for these loca- spectrum obtained for the seismic data analyzed in this work
tions, i.e. sandy environment at ORM-80 and shaly at welljg presented in Fig. 14a. As can be observed, the frequen-
ORM-81 (see Table 2). cies range from 16 to 80 Hz. Analyses performed by Aris-

It is clear that the WBFA results obtained for the seismic timufio and Aldana (2006) indicate that the lithological re-
cube are completely different to those obtained for the wellsponse observed in the well logs of the study area could be
logs. The fractal parameters obtained after the WBFA of theassociated mainly to the low (0-16 Hz) and high (80—200 Hz)
well logs seem to respond to the lithological variation in the frequency ranges, that are not observed in the seismic data.
study area; this is not the case for the seismic data, as waphis behavior is illustrated in Fig. 14b (after Aristifinaiand
discussed above. Aldana, 2006) where different band-pass filters are applied

A possible explanation for these results could be a phasé¢o a log of one of the studied wells and the results are com-
problem that was observed in the 3-D seismic data and thg@ared with the original one. As can be observed, the log with
lack of low (0-16 Hz) and high (80—200 Hz) frequencies in the frequency content that ranges from 2 to 16 Hz nearly re-
these data (Aristimito and Aldana, 2006). The phase prob- sembles the general behavior or wave form of the original
lem is illustrated in the map of Fig. 13. Phases ranging fromlog. The addition of the filtered logs with frequencies from
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7 Conclusions

In this work, we have applied the WBFA method for facies
classification at the Oritupano-A field. A power-law relation-
ship between variance and scale was obtained for the ana-
lyzed well logs, indicating that the studied signals are nonsta-
tionary and self-affine fractals. After applying the method to
a statistically significant number of wells and logs, the results
WG map.Referance Horizon: Burd Window. 35 ms_ Namber of — also indicate that the fractal parameters: slope, intercept and
L I i e fractal dimension derived from them, respond to a gradual
: & X : variation in the lithological content, associated with transi-
tional environments. In fact, the D map obtained shows sed-
imentation and distribution patterns associated with a deltaic
plain, previously interpreted in conventional geological stud-
ies. Our results suggest that lower fractal dimensions corre-
spond to high energy sedimentary environments, as channel
zones, where thick sands were deposited. Greater D values
Fig. 15. Waveform Classifier maps, using as reference horizondescribed low energy environments, where mainly shale sed-
Bur4: (a) Window: 20 ms, Number of Classes: 1@) Window:  iments can be found. Medium values (from 0.9 to 1.2 for the
35ms, Number of Classes: 8. fractal dimension we calculated in this work) could be asso-
ciated to the heterolithic section that corresponds to the in-

. terdistributary zone of the deltaic plane, characterized by the
0 to 16 Hz and 80 to 200 Hz completely reproduce the ON9" 5lternation of thin sand and shale layers. These results could

inal log. These frequency ranges are absent in the se1smigy explained if the fractal dimension values are correlated to

data. Hence, no appropriate lithological information coulqthe complexity of the analyzed logs. Lower D values corre-

be derived from a WBFA analysis of these data, as the main pond to less complex logs that show more correlation be-

associated waveforms are not present. Itis important to poin ween adjacent values and smoother profiles. These features,

out that these results do not preclude the use of WBFA to Xin turn, reflect in this kind of logs the presence of thicker

tract facies information from seismic data, as the relatlonsh|psands, that characterize sandy environments. For shaly envi-

between waveform associated with lithology and the Spec:mcronments, a decrease in the sand thickness is expected; in the

Lre\(jiu$ncy content detected in this work is not a general be'studied logs, less correlation between adjacent values is ob-
avior. served and, consequently, greater D values can be obtained.
The intercept ob WBFA parameter also discriminates the

well log type. These results suggest the use of WBFA param-

With this method, using the Manhattan distance, we lookedeters as waveform derived attributes for stratigraphic charac-
for similarities between wavelets in the seismic cube, in or-terization.

der to classify them. We have tested different windows (e.g. For seismic data, no relation was observed between the
20 ms, 35 ms, 22 ms_) around the main horizons Bur4 andractal parameters derived from the WBFA and the lithofa-

8 and 10). The maps obtained (see Fig. 15) do not showdy. due to phase and frequency problems in this set of data,
any behavior that can be correlated with the lithology of thecould be the reason for the results obtained. This interpre-
area. No stratigraphic character or geometric feature that caftion was supported by the waveform classification analysis
be correlated with a particular sedimentary pattern (as chanPerformed on these same data, as no correspondence between
nels bars, for example) can be inferred from them. Also nowaveform and paleosedimentary results was observed.
correlation between different maps could be observed. These

results suggest that there is no relationship between the wave-

form of the seismic traces and the lithology or sedimentary

environment, supporting the interpretation of those results

obtained with the WBFA of the seismic data. Again, the lack

of frequencies and the phase problem could be the reasons

for the results obtained, as was previously described.

6.2 Waveform Classifier
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Symbol index Jiménez, J. R., Peinado, A., and Michelena, R. J.: Facies recogni-
tion using wavelet-based fractal analysis on compressed seismic
I time series data, in Proc. 69th Annu. Int. Meeting Soc. Expl. Geophysics,
RV wavelets 1922-1925, 1999.
C(a,e): wavelet coefficients, depending on the scale, John, A., Lake, L. W., Torres-Verdin, C., and Srinivasan, S.: Seis-
and the time of appearanae mic facies identification and classification using simple statistic,
C(p . admissibility constant Proc. SPE Ann. Tech. Conf. Exh., SPE 96577, 2005. o
o wavelet coefficients variance Kumar,_ P..and_ Foufoulg—Ge_o_rglou, E.: Wavelet an_aly5|s_|n geq—
m slope of the linear region of the log(variance) physics: An |ntr9ductlon, in: Wavelets in geophys!cs, edited by:
Foufoula-Georgiou, E. and Kumar, P., 4, Academic Press, 1-43,
versus scale plot 1994
b: intercept of the linear region of the Mandelbrot, B. B.: Fractals, Freeman Eds., San Francisco, 1977.
log(variance) versus scale plot Mengesha, Y. G.: Atmospheric boundary-layer flow over topog-
D: fractal dimension obtained via equation (5) raphy: data analysis and representations of topography, M.Sc.
R2: linear regression coefficient of the linear Thesis, York University, Toronto, Canada, 1998tp://www.
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