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Abstract. In this paper, we study extreme values of non-
stationary climatic phenomena. In the usually considered
stationary case, the modelling of extremes is only based on
the behaviour of the tails of the distribution of the remainder
of the data set. In the non-stationary case though, it seems
reasonable to assume that the temporal dynamics of the en-
tire data set and that of extremes are closely related and thus
all the available information about this link should be used
in statistical studies of these events. We try to study how
centered and normalized data which are closer to station-
ary data than the observation allows easier statistical anal-
ysis and to understand if we are very far from a hypothesis
stating that the extreme events of centered and normed data
follow a stationary distribution. The location and scale pa-
rameters used for this transformation (the central field), as
well as extreme parameters obtained for the transformed data
enable us to retrieve the trends in extreme events of the ini-
tial data set. Through non-parametric statistical methods, we
thus compare a model directly built on the extreme events
and a model reconstructed from estimations of the trends of
the location and scale parameters of the entire data set and
stationary extremes obtained from the centered and normed
data set. In case of a correct reconstruction, we can clearly
state that variations of the characteristics of extremes are well
explained by the central field. Through these analyses we
bring arguments to choose constant shape parameters of ex-
treme distributions. We show that for the frequency of the
moments of high threshold excesses (or for the mean of an-
nual extremes), the general dynamics explains a large part of
the trends on frequency of extreme events. The conclusion is
less obvious for the amplitudes of threshold exceedances (or
the variance of annual extremes) – especially for cold tem-
peratures, partly justified by the statistical tools used, which
require further analyses on the variability definition.
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1 Introduction

Studies of global warming and its potential cause – green-
house gases, are raising fundamental questions and an in-
creasing concern about the problem of the pertinent usage
of extreme models in the field of climate (Beniston and
Stephenson, 2004; Stott et al., 2003; Palmer and R̈ais̈anen,
2002). This work aims at analyzing the non-stationarity of
climatic extreme events – their temporal variability beyond
the seasonal effect, inherent to the system.

The classical analysis is based on the Extreme Value The-
ory (EVT) for the stationary case, obtaining constant param-
eters of the distribution of extremes. Those values are re-
lated in a complex manner to the distributionF of the data
Xt (e.g. temperature time series) and are in general unob-
tainable from the usual estimation ofF (Embrechts et al.,
1997). Therefore, since the extreme parameters depend on
subtle properties of the tail of the distribution, the whole data
set is usually disregarded when modelling extremes.

The mathematical theory is divided into a probabilistic
part (the approximation of the extremal distributions and of
the dates of exceedances) mostly studied with stationary as-
sumptions for distributions of observations with regular tails
and a weak temporal dependance, and a statistical part dif-
ficult to assess because of small samples of extremal values.
For the non-stationary case allowing for a temporal evolution
of extremes, the main part of the probabilistic theory remains
valid. The statistical properties are affected though primarily
because of the lack of temporal asymptotics.

Our article aims at presenting a mathematical framework
for non stationary extremes and in particular, at proposing a
methodology to study the relations between the dynamics of
the central field (characterised by a location parameter of the
temperature - as the mean or the median, and a scale parame-
ter - as the standard deviation or an inter-quantile range) and
the extremes (characterised by quantities of the same type for
very high or very low temperatures). We shall see later that
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the main analysis are not affected by the choice of the loca-
tion and scale parameters and thus, we choose the mean and
the standard deviation for simplicity.

In the non-stationary case, a trend in the mean affecting the
entire observation set must imply a trend of extreme events.
The same is true for a trend in the variability of data. It is
indeed physically reasonable to assume that the entire obser-
vation set can experience trends occurring in the mean and/or
variance, contributing to trends in extremely rare values. The
implicit question is the connection between the entities of
the central field and extreme events: does a relation (sim-
ple enough to be useful) explain unequivocally a part or the
whole non-stationarity of extremes?

It seems that the intuitive approach considers the be-
haviour of extremes to be relatively independent from the
central field, and the tendency is to work only on extreme
data. In this paper, we thus try to discuss this approach and
present preliminary results intending to be a preamble to fu-
ture works and development. We will examine to which ex-
tent are extremes explained by central trends. If the informa-
tion given by the central field is insufficient, it could be inter-
esting to investigate other reasons for the presence of trends
in extremes. IfFt are time dependent distributions ofXt ,
we should examine what kinds of deformationsFt of some
F can give the observed or estimated behaviour of extremes
(of their parameters). Of course these deformations would
be constrained to keepFt at least with zero mean and unit
variance but also possibly to keep time invariant a finite num-
ber of other parameters as moments, quantiles or the shape
extreme parameter. It is quite impossible to choose one so-
lution among all possibilities without a non mathematical a
priori information and, until today, climatic physical consid-
erations on temperature do not give such elements. The study
of this problem is thus outside of the scope of this paper.

Although more of a qualitative than quantitative study, this
type of general research offers an enriched comprehension
of the climatic system and thus improves modelling of ex-
tremes.

Under the hypothesis quoted above, the distribution ofMj

– maximum values of observations during yearj , conve-
niently centered and scaled by quantities depending on the
lengthn of the year, is approximated by a Generalised Ex-
treme distribution (GEV). If Ft is considered annually con-
stant but varying for each year, the approximation of the dis-
tribution will remain valid if for each year-block, the daily
distribution is regular enough to apply the EVT. In this sim-
ple case we can theoretically extend the framework of the
EVT to annual maximaMj of yearj modelled by indepen-
dent variables from a Generalised Extreme distribution de-
pending on parameters varying from year to year.

The same questions arise for observations above (below)
a high (low) threshold instead of maxima per year-blocks.
The asymptotic justification of the use of a POT.NS model
(non stationary Peaks over Threshold models) is more com-
plicated than for the maxima (GEV.NS). We will thus pro-

vide only the main results. We shall also discuss the case of
a GEV model with variations inside a year-block and more
generally what kind of non-stationarity can be allowed in
these studies.

Our starting point, rather common, is the simplest data
transformation defined by

Yt =
Xt − mt

st
,

wheremt and st are a location and scale function respec-
tively.

We denote byH the following hypothesis:(H):Yt=
Xt−mt

st

follows a distributionG, with G invariant in time.
Y is the result of a simple transformation of data, but other

transformations could be considered (i.e. logarithmic, pow-
ers, etc. ...)

This hypothesis(H) has been already discussed in the
literature. Katz and Brown(1992) introduced “local prop-
erties” as the (relative) sensibility of the probability of ex-
tremes events to a change in mean or variance of the whole
observation set. In a more global perspective,Ferro and
Stephenson(2005) propose a procedure testing analogues of
(H) using the estimates of a limited set of quantiles at two
different times. One important reason to use these techniques
is that popular methods for testing distributional equality be-
tween two samples (as the Kolmogorov-Smirnov test) are
based on distances of the empirical functions not taking into
account the extreme quantiles. Therefore, the mentioned pa-
per uses, among others, very large quantiles whose behaviour
is linked to that of extremes in order to test(H) on disjoint
parts of original sample. Still, the tests performed are based
on quantiles and the proposed bootstrap procedure remains
perhaps difficult to apply in the context of extreme values.
Our attempt is thus different and employs the EVT to address
extreme distribution.

From the hereditary property of POT models (see Ap-
pendix A) or for GEV annual models, it is easy to com-
pute the parameters of the non-stationary models (POT.NS
andGEV.NS) of extremes ofXt from the properties ofYt in
our analysis and reciprocally. The advantage of these trans-
formations is to alleviate the usage of statistical tools, as the
transformation reduces the non stationarity of the data.

We can recover the extreme models ofXt from the knowl-
edge we can get of the extreme model linked toYt and that
of mt , st . We call this approach the indirect model or recon-
struction procedure.

Thus, we can compare the two ways of estimating the
same model of extremes ofXt – the direct application of
the non-stationary EVT toXt ignoring the information of the
whole observation set and the indirect approach consisting in
estimating in a first stepmt andst from the whole data set,
then fitting a (non)stationary model forYt and reconstructing
the extreme parameters ofXt . We then discuss their differ-
ences and analyse the circumstances invalidating(H).
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Under hypothesis(H), the trends in extreme events would
be due to a translation/scaling effect of the central field. Thus
the first question we attempt to answer concerns the com-
plexity of the dependence of the evolution of extremes to that
of the “central” climate.

If (H) is verified, we obtain a stationary reconstruction,
i.e. all extreme parameters can (in a statistical meaning) be
chosen as constant including the shape parameterξ , and the
same value ofξ can be chosen for both models. If(H) is
not true, onlyξt is the same for both models for everyt . The
previously mentioned hypothesis of time invariance of theξ

parameter of extreme distributions is a reasonable hypothe-
sis and is justified by mathematical studies of the estimation
of this parameter on different time periods of a long climatic
series (Parey et al., 2006; Chavez-Demoulin, 1997). More-
over, considering the difficulties to estimateξ , regular trends
(e.g. linear trends) of this parameter will have minor statis-
tical sense and will be in general refuted by goodness-of-fit
tests (Nogaj et al., 2006). Furthermore, this parameter is the
main parameter to describe the behaviour of the tail of the
distribution (Embrechts et al., 1997), thus a varyingξ con-
veys the acceptance of a significant variation of the consid-
ered variable. If the distribution ofMj varies along withj , it
seems more physically reasonable to consider that those vari-
ations occur with a constantξ parameter, since this implies
that the tail of the distribution ofXt remains substantially
constant.

In the case of (partial) invalidation of(H), we could work
with the centered and normed variableYt , and find possi-
ble deformations of the distributionGt of Yt leading to the
observed trends ofXt . Indeed, we could show that many
deformations occurring with a constant null mean and unit
variance, constantξ but also with a fixed finite sets of arbi-
trary quantiles or moments, can generate the same trends in
extremes. As mentioned before, this analysis is out of the
scope of this paper.

Seasonality driven non-stationarities are treated in differ-
ent ways in literature (Coles, 2001) (e.g. for tidal extremes
(Tawn et al., 1994) or for water vapors (Smith et al., 2000)).
Some approaches solve these cases with deterministic tem-
porally varying components, but theoretical and practical
considerations are still not completely stabilised. In our
study, we investigate trends of extreme events reaching be-
yond matters of seasonality.

Non stationarity is here expressed using the intuitive vari-
able “time”, but for climatic time series, it could be any envi-
ronmental covariate or index, as greenhouse gas emissions,
atmospheric circulation indices (as the North Atlantic Os-
cillation index) or others. These indices, functions of time,
would justify prediction studies based on extrapolations. The
variation of extremes can thus be expressed in terms of co-
variates having their own dynamic and/or depending on time
(Nogaj et al., 2006; Nogaj et al., 20071).

1Nogaj, M., Yiou, P., and Dacunha-Castelle, D.: Study of time-

2 Models for non stationary extremes

We begin our study by investigating the simplest and most
common problem, and we compare the behaviour of the tem-
poral evolution of the whole observation data set with the
trends observed in yearly most extreme data. LetFt be the
distribution ofXt .

In the simplest case of an annually constantFt , the annual
maximaMj of yearj are modelled by independent variables
with a GEV distribution:

G(x) =

exp

{
−1 + ξ

(
x−µ(j)

σ (j)

)−
1
ξ

}
, if ξ 6= 0,

exp
{
− exp

(
−

x−µ(j)
σ (j)

)}
, if ξ = 0.

(1)

Let (ξ, µ(j), σ (j), j=1, ...., A) be the parameters of a non-
stationary GEV model we denote byGEV.NS. We shall sup-
pose thatξ does not depend onj as discussed previously.

An alternative approach consists in choosing a high thresh-
old (often constant)u(t) and considering observationsXt ,
such thatXt>u(t). The constructed Peaks over Thresh-
old model in this non-stationary context (POT.NS), consists
of dates of exceedances following a non-stationary Pois-
son process with intensityI (t), and of threshold excesses
x = Xt − u(t), with a Pareto distribution:

G(x) =

(
1 +

ξx

σ(t)

)−1/ξ

.

The Poisson process and Pareto variables are independent.
(ξ, σ (t), I (t), u(t)) are the parameters of thePOT.NSmodel.

We have thus three different types of models.
1 – ForXt , we work with the following relation:

Xt = stYt + mt

wheremt is a location parameter (mean or median) andst is
a scale parameter (standard deviation or interquantile inter-
val) andYt is a centered and normalized sequence of weakly
dependent random variables

2 – For yearly records we define the direct annual model
by the following relation,a being the year index:

Ma = µ(a) + σ(a)Gξ (a)

whereGξ (a) is a sequence of independent variables with a
GEV distribution of location 0 and scale 1 (or another fixed
value) and shape parameterξ .

3 – We define the directPOT.NSmodel for a suitable
thresholdu(t) as:

Xti = U(ti) + σ(ti)πξ (i)

varying extremes described by a POT model for temperature data –
the concept of non-stationary return levels, in preparation, 2007.
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where ti are the successive events of a Poisson process of
intensityI (t) andπξ (i) is a sequence of Pareto distributions
with parameters(ξ, 1).

The three relations are thus regression models with non
constant variances and noises with specified distributions in
the two last cases.

In a first step, for both GEV and POT models, the tempo-
rally dependent parameters are modelled by functions (called
“non parametric” in statistical terminology). In order to
be able to estimate these functions from only a finite data
we need to suppose specific regularity conditions. In fact,
these functions are estimated through non parametric sta-
tistical procedures such as penalised likelihoods providing
cubic spline estimates (Green and Silverman, 1994; Wahba,
1990), kernel procedures (Silverman, 1986) or local polyno-
mials (Davison and Ramesh, 2000).

To assess demands of predictability, and thus analytical
extrapolations of the parameter functions we could, for in-
stance, choose the class of polynomial functions of maxi-
mum degreeK, defined by a relatively small number of pa-
rameters (“parametric models” in statistical terminology).

3 From temporal transformation of data to distribution
deformations

As mentioned in the introduction, we denote by (H ) the hy-
pothesis: Yt=

Xt−mt

st
follows a distributionG, with G in-

variant in time. We note that the(H) hypothesis, is a par-
ticular case of a general transformation of data of the form
Zt=9t (Xt ).

When the extreme models ofXt are recovered from the
knowledge we can get of the extreme model linked toYt and
that ofmt , st this model is said to be obtained by a “recon-
struction procedure”.

If (H) is verified, we obtain a stationary model – extreme
parameters of the transformed data are constant, and we note
the reconstruction of the extreme model ofX to be “con-
strained”.

3.1 Obtaining approximate stationarity after centering and
scaling

3.1.1 GEV.NS models

We shall assume that the distribution ofFt is such that a GEV
distribution with parameterξ1 successfully approximates the
block maxima distribution, withmt and st respectively de-
noting the location and scaling parameters.

We will consider annual models, i.e.mt and st are con-
stant in a block and are therefore denoted byma andsa re-
spectively, fort∈a. We will show further-on (see Sect.3.1.2)
how these hypotheses can be relaxed.

Let Ma= maxXt . Ma has an approximateGEV.NSdis-
tribution G(µa, σa, ξ1). If M∗

a= maxt∈a
Xt−ma

sa
= maxt∈a Yt ,

then

P(Ma < x) = P
(

M∗
a <

x − ma

sa

)
(2)

whereM∗
a is a sequence with approximate GEV distribution

G(µ0a, σ 0a, ξ). If the hypothesis(H) is satisfied,µ0a and
σ0a are independent fromt . From Eq. (2), for everyx and
everya, we obtain

ξX = ξY , σa = σ0asa, µa = ma + µ0asa (3)

3.1.2 POT.NS models

Let u(t) andw(t) be two thresholds, large enough for the
model to be correctly approximated by a POT distribution.
FromYt=

Xt−mt

st
, the threshold for reconstruction is given by

u(t)=stv(t)+mt andP(Xt>u(t))=P(Yt>v(t)).
For convenience, we shall denote the trend in a parameter,

say the locationm, by mt or m(t) indistinguishably.
We find (see Appendix A) the following relations for pa-

rameters of a POT.NS model ofX (with thresholdw(t), v(t)

being the threshold forY ):

ξX = ξY

σu(t) = σw(t) + ξ(s(t)v(t) + m(t) − w(t)) (4)

Ju(t) =

(
1 +

ξ

σw

(s(t)v(t) + m(t) − w(t))

)−
1
ξ

Iw(t) (5)

wherestv(t)+mt−w(t)>0.
For the case wherestw(t)+mt−u(t)>0, we can find ana-

logue relations forσw,t andJw,t by invertingX andY andu

andw.
Those relations are true no matter if the thresholds are con-

stant or not and the hypothesis(H) is satisfied or not. If(H)

is true though,σw andJw are constant.
Similarly, those relations do not depend on the choice of

the location (m(t)) and scale (s(t)) functions, and can thus
be chosen as the mean and standard deviation.

4 On the use of these results

The procedure for both GEV and POT models consists of the
following steps:

1. Direct estimation through non-parametric procedures
of the model of extremes ofX giving the parameters
(µa, σa, ξX) for the GEV case and(ξ1, σw,t , Iw,t ) for
the POT case, after the choice ofw.

2. Estimation ofmt , st and computation ofYt ; choosing a
thresholdv for the transformed dataY .
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3. Estimation of (µ0,a, σ0,a, ξY ) and/or(σu,t , Iu,t , ξY ) for
both cases: without constraints and under stationarity
hypothesis forY extremes,

4. Application of the above formulas of reconstruction for
X for the two cases; comparison and evaluation of the
reconstructions

It seems possible to test directly the stationarity ofYt , but in
fact classical tests perform weakly in presence of a varying
st .

The results presented in the following part aim at identi-
fying statistical models for both methods acquired at a high
threshold.

The arising question we address here concerns the statis-
tical procedures allowing for the usage of those results. We
use the reconstruction in two “directions”. The comparison
of the trends in extremes obtained through the direct non-
stationary procedure and the reconstructed model without
constrains of Sect.3.1.2allows to test the quality of the sta-
tistical methods for the two results. Occurring dissimilarities
are only due to statistical errors.

4.1 Verifying the “reconstruction” relations

We estimate in a non-parametric way, through procedures
such as penalised weighted least squares, the meanmt and
the variancest of Xt . Similarly, smoothedµw,t and σw,t

andξ can be obtained through penalised likelihood (Green
and Silverman, 1994). We can estimateIw,t through kernel
methods (Silverman, 1986). The same methods can be ap-
plied with (Y, v) instead of(X, w).

As stated earlier, to verify the correctness of the(H) hy-
pothesis, we estimateξ, σu andJu or µu through standard
procedures with the constraint of stationarity of POT or GEV
models, assuming the parameters ofYt to be constant. We
also estimate the parameters ofYt without the stationarity
constraint.

Non-parametric and qualitative plots allow us to evaluate
the correctness of the equations relatingXt andYt – namely,
the relations (4) and (5). The evaluation of the quality of
the reconstructed trends of extreme parametersσu,t andIu,t

can be done through simulations to point the magnitudes of
probabilities of deviations between the two models. A sim-
pler method, consists in computing the absolute area differ-
ence between the reconstructed and estimated time-varying
parameter normalised by the area under one of the functions,
for instance the direct one. This value (denoted by1, see
Sect.5.1) can be considered as a useful adjustment criterion
to evaluate the correctness of our methodology. We compute
it both for the reconstruction based on the general POT model
for Yt and that considering the(H) hypothesis true. We can
obtain distributions of this quantity through simulation anal-
yses.

If the reconstructed trendsσu,t andIu,t are not convenient
enough, the hypothesis is invalidated, and we can reasonably

state thatmt andst are not exhaustive explanations of present
trends in the extreme values.

4.1.1 Time-varying threshold

Another issue raised by this analysis is the question of a time-
varying threshold. Indeed, we can be interested in finding a
non-stationaryut so that the moments of exceedances would
be a stationary Poisson process. Among all representations
of extremes, the obtained model seems to be the easiest to
interpret asut becomes the natural trend and the remaining
term consists of a noise with varying variance.

Let Xs1, . . . Xsk be the subsequence ofXti such
that Xti >ut , then Xs1, . . . Xsk is the trajectory ofX∗,
a POT.NS model with parameters(ξ, σu,t , Iu,t ) with

Iu,t=

(
1+

ξ
σw,t st

(ut−wst−mt )
−

1
ξ

)
Jw,t . Therefore, we look

for a constantIu, the mean number of exceedances every year
(arbitrary but large enough for statistical purposes) such that:

ut = mt + wst +
σwst

ξ

[(
Iu

Jw,t

)−ξ

− 1

]
(6)

The correspondingσu,t is obtained through the following for-
mula:

σu,t = σw

(
Iu

Jw,t

)−ξ

.

4.1.2 Parametric estimations

A simple technique for the purpose of extrapolation, or to
obtain a global visualisation (e.g. involving multiple grid
points) requires to estimatest , mt , σt , It with parametric
models, like polynomials, to get confidence intervals. Still,
the estimation of parameters as well as the choice of the best
models, is done through procedures based on likelihoods, for
which the statistical asymptotic theory might not be justified.
Also, the problem of choosing a model remains complex for
the purpose of our analysis. Still, an example of a procedure
through polynomial estimation will be presented in Sect.5.3.

5 Examples

The presented examples will show the application of our
methodology to different types of data. To check the validity
of the (H) hypothesis, we obtain the meanmt and the vari-
ancest as well as the stationary extreme parameters. With
those data, and with Eqs. (4) and (5), we reconstruct the non-
stationary parameters of thePOT.NSmodelσu,t andIu,t .

5.1 Simulated example and statistical criteria

To assess the correctness of our theoretical results as well as
the precision of the obtained reconstructions, we will work

www.nonlin-processes-geophys.net/14/305/2007/ Nonlin. Processes Geophys., 14, 305–316, 2007
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Table 1. Table representing the main features (mean, standard de-
viation (“SD”), and the 25th and 75th percentiles) of the distribu-
tion of 1 – the absolute area difference, obtained for 1000 simula-
tions of Gaussian data with varying mean and standard deviation.
The adjustment criterion was computed to compare estimated and
true mean and variance (1(m(t), m̂(t)),1(s(t), ŝ(t))), as well as
between different reconstructions, direct estimations or theoretical
Poisson intensities with notations specified in Sect.5.1.

1 Mean SD 25% 75%

1(m(t), m̂(t)) 0.0012 0.0004 0.0009 0.0015
1(s(t), ŝ(t)) 0.0139 0.0052 0.0103 0.0174
1t (IX, I

r,s
X

) 0.0705 0.0335 0.0463 0.0868
1t (IX, I r

X
) 0.1224 0.0473 0.0877 0.1503

1t (IX, I k
X

) 0.01792 0.0802 0.1223 0.2281
1e(I

r,s
X

, I r
X

) 0.0912 0.0329 0.0656 0.1126
1e(I s

Y
, I r

Y
) 0.1062 0.0378 0.0784 0.1311

1t (I s
Y
, I r

Y
) 0.0901 0.0293 0.0685 0.1091

in the first place on simulated data. Indeed, the aim is to
examine how well our methodology determines trends e.g.
for the Poisson intensity when comparing blind reconstruc-
tions with known initial variations. For this purpose, we
perform 1000 simulations of gaussian (other distributions
are possible) dataXt , with varying mean and constant vari-
ance and try to reconstruct the trend in the frequency of ex-
tremes ofY (t)=Xt−mt

st
. We will proceed similarly for the

case where the mean is constant but the variance increases
linearly with time and where those both entities vary in time.
Thus, we will consider three cases of gaussian data of length
T =5400. The length of the observation series corresponds
roughly to 60 seasons of 90 days. This is motivated by the
climatological time series we will work with later on. First
(case 1) we simulate dataXt with a linear trend of the mean
mt=27.5+9.95×10−5 and with a constant variances=1.
The imposed variation of the mean corresponds to 0.536◦C
during the simulated period, which is a realistic assumption.
Then (case 2), we simulate data with a constant meanmt=0
and a linear trend of the variancest=1.2+6×10−5, corre-
sponding to a variation of 0.324◦C. Finally (case 3), we shall
consider both the mean and the variance as varying in time.
Both functions can be estimated through different methods
– moving averages, spline functions or local polynomials.
We present the results for the moving average estimation.
Through kernel methods, we estimateIu(t) andJw(t) – with
no assumption of stationarity of the obtained distribution of
extreme parameters ofYt . Simulations on theσ parameter of
the GPD are also possible, and the estimation would be done
by spline functions or local polynomials.

For each case, we compute the adjustment criterion we
defined earlier. We will use the following notation for this
1 index, computed as the absolute area difference between
two functionsf andg–1(f, g). We will denote by1e(f, g)

the case where we estimatem ands to obtainf anf g, and
1t (f, g) the case where we use the true functionsm and
s. Functionsf, g can be the Poisson intensity for data X
– I k

X (obtained directly through kernel methods),I r
X (recon-

structed),I r,s
X (reconstructed with stationarity assumption of

data Y), and for data Y –I k
Y (kernel method on the trans-

formed data) andI s
Y (under stationarity constraint). Similar

notation can be adopted for the scale parameter of extremes
(σ ), estimated by spline functions or local polynomials (σ l

X).
To assess the errors of statistical procedures, we also com-
pute the1 for the difference between the true and the es-
timated meanm (1(m(t), m̂(t))) and standrad deviations
(1(s(t), ŝ(t))).

An illustration of case (1) and (3) is represented on pan-
els (a) and (b) of Fig.1, respectively. It depicts the recon-
struction of the Poisson intensity under hypothesis (H )(plain
line with stars), the reconstruction of the Poisson intensity
based on the assumption of non-stationarity ofY (dashed
line), the kernel estimation with bandwidthh=629 (plain
line) and the “theoretical” curve ofI (t) obtained through
substitution of the truemt and st for the centered and
normed data. The reconstructions are qualitatively good,
1t (IX, I

r,s
X )=0.06 and 0.09, respectively. The depicted trend

in extremes is due to the variation of the mean of the whole
data set. As stated earlier, deviations from the theoretical
value 0 of1 indicate imprecision in the reconstructed pa-
rameter due to errors in the estimations ofmt andst and that
of the POT parameters (see Table1). Also, we infer from
the comparison of panels (a) and (b) of Fig.1, that the in-
troduction of temporal variability in the variance hinders the
reconstruction procedure.

As we have introduced it,1 denotes the difference be-
tween each time-varying parameter computed with the direct
model forXt (“theoretical” if mt andst are known) and the
reconstructed model with or without the(H) hypothesis. It
measures the precision of statistical procedures. In theory,
as we showed above,1 should be equal to 0. The distances
between the reconstructed model with stationarity constraint
and the unrestricted procedure measures the plausibility of
(H). The distribution of1 has been studied through simula-
tions and can be characterised by some of its main features
represented in the Table1. This table of distributions can
be a good basis for decisions when trying to debate on the
validiy of hypothesis(H), although conclusions should be
drawn with care.

5.2 Warm observed temperatures example – the(H) hy-
pothesis

The aim of our study is to be able to obtain trends in extreme
events based on the information we get from the whole obser-
vation set, and more precisely the meanmt and the variance
st . Encouraged by our previous results performed on simu-
lated data, we apply our procedure to temperature observa-
tions over a predefined station over Paris and over Prague.
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Fig. 1. Reconstruction of the trend in the Poisson intensity from simulated data with an increasing linear trend in the mean
(mt=27.5+9.95×10−5) and a constant variance (s=1) (panela) and a varying mean and varying variance (st=1.2+9.5×10−5) (panelb).
The graphs represent an approximation of the histogram of occurrences of extremes (vertical lines), the reconstruction ofIt (plain line with
stars), the reconstruction ofI (t) based on kernel estimations (dashed line) with no stationary assumption ofY , the kernel estimation ofIt with
bandwidth=629 (plain line) and the direct functionIt obtained by substituting the real values ofmt , st . The results presented concern the
reconstructions based onY (t)=Xt−mt . The adjustement criterion is also provided for the evaluation of the correctness of the reconstruction
(for notations see Sect.5.1).

We make use of a long time series over Montsouris (Paris,
France) of 131 years (1873 to 2003) taken from the data
set produced by the European Climate Assessment project
(Klein Tank et al., 2002), where we define the summer sea-
son to start the 14 June and end the 21 September. We first
estimate the trend of the mean and variance. We consider
those values to be constant during a season and to vary on a
yearly basis. We first obtainma andsa for Xt , wherea cor-
responds to each year,m is the mean of the summer observa-
tions ands is the standard deviation. The same analysis has
been performed choosing the median and the inter-quantile
range, obtaining similar results to those illustrated later-on.
We then apply a cubic spline procedure to smoothma andsa ,
which are then replicated for each year, to obtainmt andst .
The resulting trends are used to computeYt=

Xt−mt

st
. We as-

sumeYt satisfies the previously introduced hypothesis(H),
and we apply the POT procedure to compute the extreme pa-
rameters ofYt . Thus, we getξ=−0.314,u=2.12,σu=0.66.
The threshold forXt is w=32.05. Without any complex pro-
cedures to detect trends in the extremes ofXt , the plain line
on Fig.2 shows the reconstructedσ(t) andI (t) of the GPD
(panel a) and Poisson process (panel b) respectively.

As a way of validation, we estimateσ(t) through cubic
splines (dashed line), which we represent on the Fig.2a.
Similar results were obtained with local polynomial estima-
tions. The reconstruction based on Eq. (4) follows the spline
curve rather closely (1(σ r,s, σ l)=0.33), which is a good in-
dication of the performance of our statistical tools, although

the reconstruction without the stationarity assumption ofYt is
better1(σ r , σ l)=0.175. Similarly, the application of Eq. (5)
gives a proper reconstruction ofI (t). Indeed, the computed
I (t) (plain line on panel b) follows closely the kernel estima-
tion (dashed line) (1(I r,s, I k)=0.14). The kernel estimator
is subject to overfitting and depends on the size of the band-
width used. Thus, the beginning and ending section corre-
sponding to the width of the window were not represented.

We notice that the difference between1(I r,s, I k)=0.14 –
providing the adjustment criterion between the reconstructed
I (t) (under the(H) hypothesis) and the kernel estimate,
and the1(I r , I k)=0.11 between the kernel estimate ofI (t)

and the reconstructed Poisson intensity discarding the(H)

hypothesis (no stationary assumption of the centered and
normedYt variables) are small. As they are relatively close
to 0, and close to the mean of the1 value obtained through
simulation, they show that both reconstructions are correct
and that deviations from 0 might be the result of the statisti-
cal procedures used. The immediate conclusion we get from
the analysis of these results is that the(H) hypothesis seems
to be validated – the mean and the variance of the whole ob-
servation set are closely linked to the trends in the occurrence
of extreme events in the sense that the hypothesis “Yt=

Xt−mt

st
are stationary observations” can be accepted in a statistical
framework.

A closer analysis shows that the general trends are cor-
rectly reconstructed for intensities despite visible difficul-
ties at turning points. These problems are mainly due to
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Fig. 2. Extreme trend analysis over the Montsouris station of warm
summer temperatures. Panel(a): Exceedances over the threshold
w=32.045 (dots) andσ(t) obtained through different procedures:
penalised likelihood (plain line), reconstruction based on Eq. (4)
(plain line with stars), reconstruction discarding the(H) hypothesis
of stationarity ofYt (dashed line). Panel(b): Approximation of the
Poisson intensity (bars) andI (t) obtained through different proce-
dure - kernel methods (plain line), reconstruction based on Eq. (5)
(plain line with stars) and reconstruction without the stationarity
hypothesis ofYt (dashed line).

statistical subtleties of estimations and smoothing. Forσt the
reconstruction with hypothesis(H) does not seem to fit its
estimated analogue everywhere. It seems that additionally to
a statistical problem linked to the approximation ofst , there

Fig. 3. Same as Fig.2, but for the Prague station.

remains a part ofσ not taken into account by the stationary
model. The conclusion remains unclear.

Figure 3 illustrates the same analysis, performed on the
Prague station forσt and Fig.4a shows the results forIt . The
results onIt present a spectacular accuracy of our methodol-
ogy. Again, general trends are correctly estimated and small
discrepancies are found over turning points, still produc-
ing a relatively small adjustment criterion1(σ r,s, σ l)=0.2.
Comparing Figs.3 and4a shows that the reconstruction per-
formed on the Poisson intensity is better than forσt . Since
the reconstruction of the scale parameter of the GPD is not
very accurate (but better than that of Montsouris) both for the
case considering theH hypothesis true and the one with no
constraints on the stationarity of theYt model, we conclude
that the inexactitudes are probably not due (in this case) to
the validity of theH hypothesis. It might be a statistical er-
ror connected with estimation problems ofst , σt or of the
shape parameterξ of the extreme distribution.

5.2.1 Warm temperatures – POT vs. GEV

A remarkable feature appears when analysing the POT mod-
els versus the maxima of the series. Figures4a, b present
the results of our methodology on a long time series of tem-
perature observations over Prague (1997–2004). Panel (b)
of Fig. 4 presents in parallel the sequence of annual max-
ima, and a smoothing produced through a moving average
procedure of a 5 years window combined with an affinity
to accentuate the turning points around local extremes. We
establish a parallel between the variations of the annual max-
ima and the frequency of occurrence of extreme events. In
general, a higher sequence of annual maxima will produce in
response as accentuated succession of extreme exceedances.
Adversely, lower than average maxima are related to fewer
threshold excesses. This result directly relates block maxima
to the POT methodology in an empirical way.
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5.2.2 Extreme warm temperatures with a time-varying
threshold

As presented in Sect.4, the presented analysis gives
mathematical foundations for an analysis of POT mod-
els with time-varying thresholds. For the presented time
series of daily maximum temperatures over Prague (Xt ),
we compute the extreme parameters of thePOT model
(ξ=−0.25, σw=2.048) for a thresholdw=31.1. The Pois-
son intensityIt of Xt is approximated by kernel estimators.
We then apply Eq. (6) for J=0.016, which corresponds to the
stationary intensity. Those values are chosen based on pre-
viously mentioned statistical properties and a fixed chosen
intensity corresponding to an average of 1 event per year.

The obtained time-varying thresholdu(t) is used to select
new exceedancesX∗, for which we look for aPOT model
with a stationary intensity of the Poisson process. We thus
estimate a new Poisson intensityI ∗(t) through kernel ap-
proximations. Figure4c illustrates the resulting time-varying
threshold producing stationary Poisson excess dates.

The superposition of the Poisson intensities of threshold
exceedances ofXt (panel a), of the annual maxima ofXt

(panel b) and of the time-varying thresholdut (panel c)
shows the impressive parallel between those features. The
same analysis has been done for a time varying intensity of
the dates of events of theY data set. The resulting thresh-
old differs slightly from the one presented on Fig.4c, a dis-
similarity mainly caused by the statistical constraints applied
during the procedure.

As penalised likelihood methods are time-consuming,
constructingσ(t) with the information we get fromXt as
well as the stationary GPD model ofYt seems to be an effi-
cient alternative, which might prove to be more precise than
polynomial fits and even spline functions, as more data is
available to model the temporal evolution ofmt andst than
σ(t), thus resulting in more accurate estimations.

5.3 North Atlantic example

We applied the described methodology to the National Cen-
ter for Environmental Prediction (NCEP) reanalysis data
over an extended region of the North Atlantic (NA) (80◦ W–
40◦ W, 30◦ N–70◦ N), with a grid of 2.5◦ by 2.5◦ degrees.
Warm seasons were selected from the 1948–2005 scope of
daily data, thus providing 58 summer (June to August (JJA))
seasons of 90 days each. Although other variables can be
used, we focused on very warm temperatures.

The advantage of this data set is that it provides gridded
temperature data over the whole NA region. On the other
hand, since we are in the presence of many gridpoints vi-
sual evaluation plots as presented earlier are not feasible. By
proceeding in a point-wise manner, we determine of a high
threshold (the 95th percentile of the dataXt ) and apply the
POT methodology presented inNogaj et al.(2006). We will
use the simple polynomial family as the function for the time

Fig. 4. The upper panel(a) illustrates a similar result to that pre-
sented in Fig.2 but for observations over Prague. Panel(b) draws
the annual maxima and smoothed annual maxima through a mov-
ing average procedure with a 5 years window. An affinity function
is applied to the smoothed maxima to enhance local fluctuations.
Panel(c) plots the exceedances of a time-varying threshold (plain
line) obtained through Eq. (6).

covariate, to detect trends in the scale parameterσt and in
It . We estimate the extreme parameters through maximum
likelihood procedures and determine of the best polynomial
fit through likelihood ratio tests. Then, we center and nor-
malise the dataXt , and apply the procedure to the obtained
dataYt=

Xt−mt

st
. If the trend in extreme event over the NA

region is uniquely described by the changes occurring in the
mean and the variance of the whole data set, then the proce-
dure should reject trends after centering and normalising the
data.

Figure5 shows the obtained degrees of the polynomial fits
for the trends of theσt (panel a) of the GPD andIt (panel b)
of the Poisson process of thePOT.NSmodel. 0 denotes sta-
tionary data, 1 and 2 linear and quadratic trends respectively.

www.nonlin-processes-geophys.net/14/305/2007/ Nonlin. Processes Geophys., 14, 305–316, 2007



314 M. Nogaj et al.: Non-stationary extreme models

−80 −60 −40 −20 0 20 40

30
40

50
60

70

(a)

Longitude

La
tit

ud
e

−2

−1

0

1

2

−80 −60 −40 −20 0 20 40

30
40

50
60

70

(b)

Longitude

La
tit

ud
e

−2

−1

0

1

2

−80 −60 −40 −20 0 20 40

30
40

50
60

70

(c)

Longitude

La
tit

ud
e

−2

−1

0

1

2

−80 −60 −40 −20 0 20 40

30
40

50
60

70

(d)

Longitude

La
tit

ud
e

−2

−1

0

1

2

Fig. 5. Detected trends in the extreme parameters of the non-stationary POT model over the North Atlantic. Panel(a) represents the degree
of the best polynomial fit for the scale parameter of the GPD. Positive and negative values correspond to the degrees of the polynomials
and depict increasing and decreasing trends, respectively. Similarly as for panel (a), panel(b) shows the dynamics of the frequency of the
occurrences of extremes. Panels(c–d)are analogues of panels (b–d) but for centered and normed data.

Positive and negative values denote increasing and decreas-
ing trends, respectively. Panels (c–d) represent the detected
trends applied onYt . Although norming and centering seem
to “whiten” the graphs, which is translated by data becom-
ing stationary after the removal of the trends in the mean
and variance of the whole data set, we observe some regions
where some trends in theσ parameter appears to remain.
The south-west of the NA is still affected by increasing linear
trends. Surprisingly, some parts of western Europe (mainly
northern France and Ireland) present decreasing trends of the
scale parameter of extremes after the centering an norming
whereas no trend was detected on unmodified data. As seen
for the 5.2 results, we have more difficulties in the recon-
struction ofσt than ofIt .

6 Conclusion

The analysed models for the central field and the extremes
are seen as regression models. The POT model is applied
to exceedances, which occur at moments following a Pois-
son process. The fundamental method presented in this pa-
per is the introduction of a reconstruction procedure, which
recovers the information we have about the extreme parame-
ters characterising the dynamics of the extreme models. We
showed, that from the information we have of the mean and
the standard deviation of the whole dataset and that on the
behaviour of the extremes of a process closer to stationarity,
we retrieve the behaviour of the parameters of the GEV or
POT models applied to block maxima or threshold excesses
respectively.

This procedure is based on the introduction of a centered
and normed variableYt=

Xt−mt

st
, wheremt and s2

t are the
mean and the variance of the observationsXi or any other pa-
rameters of location and scale. We formulated the hypothesis
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(H), stating that the extremal model ofYt is stationary. We
focused our analysis on a verification of the mathematical
foundation of this hypothesis through simulation procedures.
We compare three types of trends to assess the quality of the
retrieved information. First, we perform non-parametric es-
timations of the extreme parameters, which we then compare
to the reconstructed trends under hypothesis(H) (with con-
stant parameters of the extreme models of theYt variable),
and the trends obtained while discarding the(H) hypoth-
esis, and considering the threshold excesses ofYt as non-
stationary.

Thus, for simulated data with a trend in the mean and the
variance, the centered and normed variable was obtained ac-
cording to the estimated̂mt andŝt , and we analysed to what
extend the trends occurring in extremes are driven bymt and
st . We quantified the statistical error inherent to the proce-
dure (due to estimation errors), based on the computation of
the error between the reconstructed trends and the theoretical
ones.

We then applied this reconstruction procedure to climatic
data, to appraise the validity of the(H) hypothesis on tem-
perature observations. Our results, obtained for several time
series, clearly justify the(H) hypothesis for the intensity
of occurrences of threshold exceedances. This inference is
probably false in the case of amplitudes of those excesses,
probably due in part to some important inaccuracies of the
statistical procedures (both cubic splines and local polyno-
mials were tested) but also of the classical modelling tools.
Still, this procedure does not depend on the functions chosen
to depict the location and scale parameters (m ands), as both
couples, mean/standard deviation and median/inter-quantile
range were used to perform the analyses with very similar
results.

As more data is available for the computation of the ex-
planatory parameters of the whole data set, the estimation of
mt andst and therefore the computation of trends in extreme
events as we showed in this paper seems to be more accu-
rate than that of a direct search for time-varying parameters
of extremes. Still, we acknowledge that the estimation of
mt andst is by itself a first source of statistical error specif-
ically in the estimation ofst . In fact, in climatic applica-
tions, it is not very satisfactory to considerst as a smooth
version of the intra-annual variability. There appears to exist
an inter-annual variability, probably not negligible. An im-
proved model ofst should thus include both the intra- and
inter-annual variability, also adding a smooth deterministic
parameter to a random effect depending on the observed tem-
perature. This last point is relevant in order to have a model
with random effects. But estimations of such a model remain
to be performed.

Appendix A

Mathematical tools

Justification of Eqs. (4) and (5)

Let us recall the following hereditary property forPOT.NS
models. Let aPOT.NSmodel with thresholdw(t), intensity
Jw(t) and parameters(ξ, σw(t)). Also, let ti the dates of
exceedance of the threshold for the observationXt . Let a new
thresholdu(t) > w(t), andXs1, ...Xsk be the subsequence of
Xti such thatXti >u(t), thenXs1, ...Xsk is the trajectory of
X∗, POT.NSmodel with parameters(ξ, σu(t), Iu(t)) with

Iu(t) =

(
1 +

ξ

σw

(u(t) − w

)−
1
ξ

)Jw(t)

σu(t) = σw(t) + ξ(u(t) − w(t))

Suppose now we have estimated a modelPOT.NSfor Xt for
the thresholdw(t) with parameters (ξ1, σw(t), I (t)) and a
POT.NSfor Yt=

Xt−mt

st
with parameters (ξ, σv(t), Jv(t)). If

(Xt>u(t))=(Yt>v(t)), thenu(t)=s(t)v(t)+m(t). Applying
the previous result for hereditary property foru(t)>w(t), we
obtain:

σu(t) = σw(t) + ξ(s(t)v(t) + mt − w(t)) (A1)

Ju(t) =

(
1 +

ξ

σw

(s(t)v(t) + mt − w(t))

)−
1
ξ

Iw(t) (A2)

A similar result can be obtained foru(t)<w(t) considering
first the POT model ofYt .

If the distribution is bounded, the computation is straight-
forward: letxFt andxG be the upper bounds ofXt andYt

respectively, we thus obtain:

xFt = stxG + mt == st

(
v −

σu

ξ

)
+ mt

From a statistical point of view, the situation is often
more delicate: we cannot always find a valuew satisfying
w>l(u, t) for every l(u, t)=stu+mt and such that there
remains enough points above the thresholdw in order to
perform a correct estimation of the parameters. To overpass
this situation we notice that we can prove the relation (A2)
(if w<l(u, t)), proceeding from the variableY to X). In
this case, the limiting factor is the Poisson approximation,
which can be invalidated for an inappropriate number of data
points. In the unfrequent case where both approaches cannot
solve the proper choice of the thresholdu, a possible solution
would consist in splitting the time series and applying two
thresholds:w>l(u, t) for one part of the data, andw<l(u, t)

for the other one.
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