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Abstract. In this paper, we study extreme values of non- 1 Introduction

stationary climatic phenomena. In the usually considered

stationary case, the modelling of extremes is only based orstudies of global warming and its potential cause — green-
the behaviour of the tails of the distribution of the remainderhouse gases, are raising fundamental questions and an in-
of the data set. In the non-stationary case though, it seemsreasing concern about the problem of the pertinent usage
reasonable to assume that the temporal dynamics of the ef extreme models in the field of climat&éniston and

tire data set and that of extremes are closely related and thuStephensgn2004 Stott et al, 2003 Palmer and Risanen

all the available information about this link should be used2002. This work aims at analyzing the non-stationarity of
in statistical studies of these events. We try to study howclimatic extreme events — their temporal variability beyond
centered and normalized data which are closer to stationthe seasonal effect, inherent to the system.

ary data than the observation allows easier statistical anal- The classical analysis is based on the Extreme Value The-
ysis and to understand if we are very far from a hypothesisory (EVT) for the stationary case, obtaining constant param-
stating that the extreme events of centered and normed datgters of the distribution of extremes. Those values are re-
follow a stationary distribution. The location and scale pa-lated in a complex manner to the distributiéhof the data
rameters used for this transformation (the central field), asx, (e.g. temperature time series) and are in general unob-
well as extreme parameters obtained for the transformed dat@inable from the usual estimation &f (Embrechts et al.
enable us to retrieve the trends in extreme events of the ini1997. Therefore, since the extreme parameters depend on
tial data set. Through non-parametric statistical methods, we&ubtle properties of the tail of the distribution, the whole data
thus compare a model directly built on the extreme eventsset is usually disregarded when modelling extremes.

and a model reconstructed from estimations of the trends of The mathematical theory is divided into a probabilistic
the location and scale parameters of the entire data set anghrt (the approximation of the extremal distributions and of
stationary extremes obtained from the centered and normeghe dates of exceedances) mostly studied with stationary as-
data set. In case of a correct reconstruction, we can clearlgumptions for distributions of observations with regular tails
state that variations of the characteristics of extremes are welind a weak temporal dependance, and a statistical part dif-
explained by the central field. Through these analyses weicult to assess because of small samples of extremal values.
bring arguments to choose constant shape parameters of egor the non-stationary case allowing for a temporal evolution
treme distributions. We show that for the frequency of the of extremes, the main part of the probabilistic theory remains
moments of high threshold excesses (or for the mean of anvalid. The statistical properties are affected though primarily
nual extremes), the general dynamics explains a large part dfecause of the lack of temporal asymptotics.

the trends on frequency of extreme events. The conclusionis oyr article aims at presenting a mathematical framework
IeSS ObViOUS for the amplitudes Of threshold exceedances (%r non Stationary extremes and in particu'ar' at proposing a
the variance of annual extremes) — especially for cold temmethodology to study the relations between the dynamics of
peratures, partly justified by the statistical tools used, whichthe central field (characterised by a location parameter of the

require further analyses on the variability definition. temperature - as the mean or the median, and a scale parame-
ter - as the standard deviation or an inter-quantile range) and

Correspondence tavl. Nogaj the extremes (characterised by quantities of the same type for

(marta.nogaj@edf.fr) very high or very low temperatures). We shall see later that
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306 M. Nogaj et al.: Non-stationary extreme models

the main analysis are not affected by the choice of the locavide only the main results. We shall also discuss the case of

tion and scale parameters and thus, we choose the mean aadGEV model with variations inside a year-block and more

the standard deviation for simplicity. generally what kind of non-stationarity can be allowed in
In the non-stationary case, a trend in the mean affecting théhese studies.

entire observation set must imply a trend of extreme events. Our starting point, rather common, is the simplest data

The same is true for a trend in the variability of data. It is transformation defined by

indeed physically reasonable to assume that the entire obser-

vation set can experience trends occurring in the mean and/qvt _ Xi —m

variance, contributing to trends in extremely rare values. The S

implicit question is the connection between the entities of . .
P q wherem,; ands;, are a location and scale function respec-

the central field and extreme events: does a relation (Simfively
ple enough to be useful) explain unequivocally a part or the We denote byd the following hypothesis(H):Y,:X'_’"'

whole non-stationarity of extremes? 5t
It seems that the intuitive approach considers the befollows a distributionG, with G invariant in time.
haviour of extremes to be relatively independent from the Y is the result of a simple transformation of data, but other
central field, and the tendency is to work only on extremetransformations could be considered (i.e. logarithmic, pow-
data. In this paper, we thus try to discuss this approach aners, etc. ...)
present preliminary results intending to be a preamble to fu- This hypothesis(H) has been already discussed in the
ture works and development. We will examine to which ex- literature. Katz and Brown(1992 introduced “local prop-
tent are extremes explained by central trends. If the informaerties” as the (relative) sensibility of the probability of ex-
tion given by the central field is insufficient, it could be inter- tremes events to a change in mean or variance of the whole
esting to investigate other reasons for the presence of trendsbservation set. In a more global perspectiFerro and
in extremes. IfF; are time dependent distributions &f, Stephenso2005 propose a procedure testing analogues of
we should examine what kinds of deformatiafisof some  (H) using the estimates of a limited set of quantiles at two
F can give the observed or estimated behaviour of extremedifferent times. One important reason to use these techniques
(of their parameters). Of course these deformations woulds that popular methods for testing distributional equality be-
be constrained to keef; at least with zero mean and unit tween two samples (as the Kolmogorov-Smirnov test) are
variance but also possibly to keep time invariant a finite num-based on distances of the empirical functions not taking into
ber of other parameters as moments, quantiles or the shageecount the extreme quantiles. Therefore, the mentioned pa-
extreme parameter. It is quite impossible to choose one soper uses, among others, very large quantiles whose behaviour
lution among all possibilities without a non mathematical a is linked to that of extremes in order to tegf) on disjoint
priori information and, until today, climatic physical consid- parts of original sample. Still, the tests performed are based
erations on temperature do not give such elements. The studyn quantiles and the proposed bootstrap procedure remains
of this problem is thus outside of the scope of this paper.  perhaps difficult to apply in the context of extreme values.
Although more of a qualitative than quantitative study, this Our attempt is thus different and employs the EVT to address
type of general research offers an enriched comprehensioaextreme distribution.
of the climatic system and thus improves modelling of ex- From the hereditary property of POT models (see Ap-
tremes. pendix A) or for GEV annual models, it is easy to com-
Under the hypothesis quoted above, the distributioMef  pute the parameters of the non-stationary mode@TNS
— maximum values of observations during ygarconve- andGEV.NS of extremes ofX; from the properties of; in
niently centered and scaled by quantities depending on theur analysis and reciprocally. The advantage of these trans-
lengthn of the year, is approximated by a Generalised Ex-formations is to alleviate the usage of statistical tools, as the
treme distribution (GEY. If F; is considered annually con- transformation reduces the non stationarity of the data.
stant but varying for each year, the approximation of the dis- We can recover the extreme modelsXgffrom the knowl-
tribution will remain valid if for each year-block, the daily edge we can get of the extreme model linked’tand that
distribution is regular enough to apply the EVT. In this sim- of m;, s;,. We call this approach the indirect model or recon-
ple case we can theoretically extend the framework of thestruction procedure.

’

EVT to annual maxima/; of year j modelled by indepen- Thus, we can compare the two ways of estimating the
dent variables from a Generalised Extreme distribution dessame model of extremes of, — the direct application of
pending on parameters varying from year to year. the non-stationary EVT t&, ignoring the information of the

The same questions arise for observations above (belowyhole observation set and the indirect approach consisting in
a high (low) threshold instead of maxima per year-blocks.estimating in a first step; ands; from the whole data set,
The asymptotic justification of the use of a POT.NS modelthen fitting a (non)stationary model f&y and reconstructing
(non stationary Peaks over Threshold models) is more comthe extreme parameters &f. We then discuss their differ-
plicated than for the maxima (GEV.NS). We will thus pro- ences and analyse the circumstances invalidatthy
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Under hypothesisH), the trends in extreme events would 2 Models for non stationary extremes
be due to a translation/scaling effect of the central field. Thus
the first question we attempt to answer concerns the comWe begin our study by investigating the simplest and most
plexity of the dependence of the evolution of extremes to thacommon problem, and we compare the behaviour of the tem-
of the “central” climate. poral evolution of the whole observation data set with the
If (H) is verified, we obtain a stationary reconstruction, trends observed in yearly most extreme data. Eebe the
i.e. all extreme parameters can (in a statistical meaning) bélistribution ofX;.
chosen as constant including the shape parangetand the In the simplest case of an annually consténtthe annual
same value of can be chosen for both models. () is maximal ; of yearj are modelled by independent variables
not true, only, is the same for both models for everyThe ~ With a GEV distribution:
previously mentioned hypothesis of time invariance ofghe

_1
parameter of extreme distributions is a reasonable hypothe- expl—1+¢ <i(1>) ¢ if&#£0
. L : , A _ o) ’ ' 1
sis and is justified by mathematical studies of the estimationG (x) . (1)
of this parameter on different time periods of a long climatic expy— exn(——";’{,ﬁ“)} , if & =0.

series Parey et al.2006 Chavez-Demoulin1997. More-
over, considering the difficulties to estimdteregular trends  Let (&, n(j), o (j), j=1, ...., A) be the parameters of a non-
(e.g. linear trends) of this parameter will have minor statis-stationary GEV model we denote IBEV.NS We shall sup-
tical sense and will be in general refuted by goodness-of-fitpose that does not depend onas discussed previously.
tests Nogaj et al, 2006. Furthermore, this parameter is the  An alternative approach consists in choosing a high thresh-
main parameter to describe the behaviour of the tail of theold (often constant):(r) and considering observatior,
distribution Embrechts et a1.1997), thus a varying con-  such thatX,;>u(r). The constructed Peaks over Thresh-
veys the acceptance of a significant variation of the consid-old model in this non-stationary conteX@@QT.NS, consists
ered variable. If the distribution dif ; varies along witly, it of dates of exceedances following a non-stationary Pois-
seems more physically reasonable to consider that those varson process with intensity(¢), and of threshold excesses
ations occur with a constagtparameter, since this implies x = X; — u(¢), with a Pareto distribution:
that the tail of the distribution o, remains substantially L
constant. Glx) = <1+ E_X> /8

In the case of (partial) invalidation ¢# ), we could work o(t) '
with the centered and normed varialifg and find possi-
ble deformations of the distributio&, of ¥; leading to the The Poisson process and Pareto variables are independent.
observed trends ok,. Indeed, we could show that many (.o (), (1), u(1)) are the parameters of tROT.NSnodel.
deformations occurring with a constant null mean and unit
variance, constarit but also with a fixed finite sets of arbi- ~ We have thus three different types of models.
trary quantiles or moments, can generate the same trends in 1 — ForX,, we work with the following relation:
extremes. As mentioned before, this analysis is out of the
scope of this paper. Xi = s5:Y; +my

Seasonality driven non-stationarities are treated in differ- ) _ _ )
ent ways in literatureGoles 2007 (e.g. for tidal extremes WNerém, is a location parameter (mean or median) &ns
(Tawn et al, 1994 or for water vaporsgmith et al, 2000). a scale pa.rameter (standard dewaqon or interquantile inter-
Some approaches solve these cases with deterministic tenf2!) andY: is a centered and normalized sequence of weakly
porally varying components, but theoretical and practicald€Pendent random variables _
considerations are still not completely stabilised. In our 2 — For ye_arly recc_)rds we define the c_hrect annual model
study, we investigate trends of extreme events reaching be2y the following relationa being the year index:
yond matters of seasonality.

Non stationarity is here expressed using the intuitive vari-M“ = (@) +o@Gea)

able “time”, but for climatic time series, it could be any envi- whereG; (a) is a sequence of independent variables with a

ronmental povgrlate .or |r.1de'x, as greenhouse gas ermssmn@EV distribution of location 0 and scale 1 (or another fixed
atmospheric circulation indices (as the North Atlantic Os- value) and shape parameter

cillation index) or others. These indices, functions of time, 5 " \yia define the diredPOT.NSmodel for a suitable
would justify prediction studies based on extrapolations. Thethresholdu(t) as:

variation of extremes can thus be expressed in terms of co-

variates having their own dynamic and/or depending ontimex, — 17(1,) + o (;) e (i)

(Nogaj et al, 2006 Nogaj et al., 200%). ’

varying extremes described by a POT model for temperature data —
lNogaj, M., Yiou, P., and Dacunha-Castelle, D.: Study of time- the concept of non-stationary return levels, in preparation, 2007.
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308 M. Nogaj et al.: Non-stationary extreme models

wheret; are the successive events of a Poisson process dhen
intensity 7 (r) andmg (i) is a sequence of Pareto distributions ( c—m
My < u)

with parametersé, 1). PM, <x)=P
The three relations are thus regression models with non
constant variances and noises with specified distributions ifynerers* is a sequence with approximate GEV distribution
a
the two last cases. G (1o, 000, €). If the hypothesig H) is satisfied g, and

In a first step, for both GEV and POT mOdE|S, the tempo-ooa are independent from From Eq 2), for everyx and
rally dependent parameters are modelled by functions (calle@verya, we obtain

“non parametric” in statistical terminology). In order to
be able to estimate these functions from only a finite daté§x = &y, 04 = 00454, Ha = Mg + H0aSa 3)
we need to suppose specific regularity conditions. In fact,

these functions are estimated through non parametric sta3-1-2 POT.NS models

tistical procedures such as penalised likelihoods providing
cubic spline estimatessfeen and Silvermari994 Wahba
1990, kernel proceduresSflverman 1986 or local polyno-
mials (Davison and RamesR000.

To assess demands of predictability, and thus analyticaft
extrapolations of the parameter functions we could, for in-
stance, choose the class of polynomial functions of maxi-
mum degreek, defined by a relatively small number of pa-
rameters (“parametric models” in statistical terminology).

)

Sa

Let u(r) andw(z) be two thresholds, large enough for the
model to be correctly approximated by a POT distribution.
From Y,:@, the threshold for reconstruction is given by
(t)=s,0(t)Lm, and P(X,; >u(1))=P (Y, >v(t)).

For convenience, we shall denote the trend in a parameter,
say the locatiom:, by m, or m(¢) indistinguishably.

We find (see Appendix A) the following relations for pa-

rameters of a POT.NS model &f (with thresholdw (), v(¢)
being the threshold for):

3 From temporal transformation of data to distribution Sx =&
deformations
As mentioned in the introduction, we denote #y)(the hy- 0, () = oy (1) + (s v() + m(t) — w(?)) )

pothesis: ¥,=%=" follows a distributionG, with G in-

variant in time. We note that thgd) hypothesis, is a par-

ticular case of a general transformation of data of the form £ -1

2=V (Xy). Ju(t) = (1+ —(s(v@) +m(t) — w(t))) L) (5)
When the extreme models &f, are recovered from the Ow

knowledge we can get of the extreme model linkeditand  wheres, v(r)+m; —w(t)>0.

that Ofm,, St this model is said to be obtained by a “recon- For the case Wherﬁw(r)+m;—u(r)>0, we can find ana-

struction procedure”. logue relations fop, , andJ,, ; by invertingX andY andu
If (H) is verified, we obtain a stationary model — extreme gndw.

parameters of the transformed data are constant, and we note Those relations are true no matter if the thresholds are con-
the reconstruction of the extreme model %fto be “con-  stant or not and the hypothesid) is satisfied or not. IfH)
strained”. is true thoughg,, andJ,, are constant.
Similarly, those relations do not depend on the choice of
3.1 Obtgining approximate stationarity after centering andine |ocation £(1)) and scales(r)) functions, and can thus
scaling be chosen as the mean and standard deviation.

3.1.1 GEV.NS models
4 On the use of these results
We shall assume that the distributionfofis such that a GEV
distribution with parametey; successfully approximates the The procedure for both GEV and POT models consists of the
block maxima distribution, wittn, ands, respectively de-  following steps:
noting the location and scaling parameters.

We will consider annual models, i.e:; ands; are con-
stant in a block and are therefore denotedrhyands, re-
spectively, forrea. We will show further-on (see Se@.1.2
how these hypotheses can be relaxed.

Let M,=maxX,. M, has an approximat&EV.NSdis- 2. Estimation ofm,, s, and computation of;; choosing a

tribution G (g, 04, £1). If Mi=maxc, X’é;'": max_, Y;, thresholdv for the transformed data.

1. Direct estimation through non-parametric procedures
of the model of extremes aX giving the parameters
(4a, 04, £x) for the GEV case andg1, oy ¢, Iy ) for
the POT case, after the choicewof
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3. Estimation of {«0.4, 00.4, §v) and/or(o, ¢, 1,1, Ey) for state thatn, ands, are not exhaustive explanations of present
both cases: without constraints and under stationaritytrends in the extreme values.
hypothesis fol¥ extremes,

4.1.1 Time-varying threshold
4. Application of the above formulas of reconstruction for

X for the two cases; comparison and evaluation of theAnother issue raised by this analysis is the question of a time-
reconstructions varying threshold. Indeed, we can be interested in finding a
) ) ) ) . non-stationary:; so that the moments of exceedances would
It seems possible to test directly the stationaritygfbut in be a stationary Poisson process. Among all representations
fact classical tests perform weakly in presence of a varyingut eyyremes; the obtained model seems to be the easiest to

" h | d in the followi im at identi. ErPret asy becomes the natural trend and the remaining
The results presented in the following part aim at ldenti- yo ) consists of a noise with varying variance.

fying statistical models for both methods acquired at a high Let X X, be the subsequence ok, such
S10 00 - sy i

threshold_._ . that X, >u,;, then X;,,... X, is the trajectory ofX*,
The arising question we address here concerns the statiss bOT NS model with parametere:, o, ;, L ;) with
. s Yu,ly fu,

tical procedures allowing for the usage of those results. We £ 1
use the reconstruction in two “directions”. The comparison /u.:= (1"'01‘,,@, (s —ws;—m) E) Ju.i- Therefore, we look

of the trends in extremes obtained through the direct nonfor a constant,,, the mean number of exceedances every year
stationary procedure and the reconstructed model withoutarbitrary but large enough for statistical purposes) such that:
constrains of SecB.1.2allows to test the quality of the sta-

tistical methods for the two results. Occurring dissimilarities

it ows, L \ ¢
are only due to statistical errors. up = m; +ws, + L -1 (6)
%‘ Jw,t

4.1 \Verifying the “reconstruction” relations

The corresponding, ; is obtained through the following for-
We estimate in a non-parametric way, through proceduresnula:

such as penalised weighted least squares, the meamd
the variances, of X,. Similarly, smoothedu,, , and o, L \"*
andé can be obtained through penalised likelihoGtden Tut = Tw (Jw’t> ’

and Silverman1994. We can estimaté,, ; through kernel

methods Silverman 198§. The same methods can be ap- 4.1.2 Parametric estimations

plied with (Y, v) instead of(X, w). ) ) )

As stated earlier, to verify the correctness of ¢ hy- A Simple technique for the purpose of extrapolation, or to
pothesis, we estimate o, andJ, or u, through standard ob.taln a glo_bal V|suaI|§at|on (e.g. |nvoIV|_ng multiple gnd
procedures with the constraint of stationarity of POT or GEV P0INts) requires to estimate, m,, o;, I, with parametric
models, assuming the parametersrpto be constant. We models, |Ik§ polynomials, to get confidence mtgrvals. Still,
also estimate the parameters Xofwithout the stationarity the estlmanon of parameters as well as the cho_lce_of the best
constraint. models, is done through procedures based on likelihoods, for

Non-parametric and qualitative plots allow us to evaluateWhich the statistical asympt.otic theory might pot be justified.
the correctness of the equations relatiigandy, — namely, Also, the problem of choo_smg a model remains complex for
the relations 4) and 6). The evaluation of the quality of the purpose of our ana'IyS|s.. Stl||', an example of'a procedure
the reconstructed trends of extreme parametggsand /,, through polynomial estimation will be presented in SB.
can be done through simulations to point the magnitudes of
probabilities of deviations between the two models. A sim-
pler method, consists in computing the absolute area differ-

ence between the_ reconstructed and estimated time—varyinghe presented examples will show the application of our
parameter normalised by the area under one of the f“nCt'On%ethodoIogy to different types of data. To check the validity
for instance the direct one. This value (denotedMlysee  of the (1) hypothesis, we obtain the mean and the vari-
Sect.5.1) can be considered as a useful adjustment Criteriorhnces, as well as the stationary extreme parameters. With
to evaluate the correctness of our methodology. We computg,gse data, and with Eqsf)(and &), we reconstruct the non-

it both for the reconstruction based on the general POT modelationary parameters of tiROT.NSmodelo, ; and1, ;.
for Y; and that considering thg?) hypothesis true. We can ' '

obtain distributions of this quantity through simulation anal- 5.1 Simulated example and statistical criteria
yses.

If the reconstructed trends, ; andl, ; are not convenient To assess the correctness of our theoretical results as well as
enough, the hypothesis is invalidated, and we can reasonablyne precision of the obtained reconstructions, we will work

Examples

www.nonlin-processes-geophys.net/14/305/2007/ Nonlin. Processes Geophys., 34630667
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Table 1. Table representing the main features (mean, standard det-hte case where we estimateands to obtain f anfg, and
viation (“SD"), and the 25th and 75th percentiles) of the distribu- 2’ (f; 8) the case where we use the true functiensand

tion of A — the absolute area difference, obtained for 1000 simula-s- Functionsf, ¢ can be the Poisson intensity for data X
tions of Gaussian data with varying mean and standard deviation— /% (obtained directly through kernel methods}, (recon-

The adjustment criterion was computed to compare estimated andtructed),/;* (reconstructed with stationarity assumption of
true mean and variance(m (1), i(1),A(s(1), §(1))), as well as  data Y), and for data Y #§ (kernel method on the trans-
between different reconstructions, direct estimations or theoreticaformed data) and;, (under stationarity constraint). Similar
Poisson intensities with notations specified in Sed. notation can be adopted for the scale parameter of extremes
(o), estimated by spline functions or local polynomiai§1.

A Mean Sb 25%  75% To assess the errors of statistical procedures, we also com-
A@m(t),m(t)) 0.0012 0.0004 0.0009 0.0015 pute theA for the difference between the true and the es-
A(s(t),5())  0.0139 0.0052 0.0103 0.0174 timated meann (A(m(t), m(t))) and standrad deviation
Al(Iy, I;(’S) 0.0705 0.0335 0.0463 0.0868 (A(s(1), $(2))).

Al(Ix, I%) 0.1224  0.0473 0.0877 0.1503 An illustration of case (1) and (3) is represented on pan-
Al(Ix,Iy) ~ 0.01792 0.0802 0.1223 0.2281 els (a) and (b) of Figl, respectively. It depicts the recon-
A°(Iy*, 1)  0.0912 0.0329 0.0656 0.1126 struction of the Poisson intensity under hypothesi$(plain
A®(Iy.Iy) ~ 0.1062 0.0378 0.0784 0.1311 line with stars), the reconstruction of the Poisson intensity
Al(Iy,Iy) ~ 0.0901 0.0293 0.0685 0.1091 based on the assumption of non-stationarityYofdashed

line), the kernel estimation with bandwidih=629 (plain

line) and the “theoretical” curve of (¢) obtained through

substitution of the truen, and s; for the centered and
in the first place on simulated data. Indeed, the aim is tonormed data. The reconstructions are qualitatively good,
examine how well our methodology determines trends e.gA! (7, I§5)=O.06 and 009, respectively. The depicted trend
for the Poisson intensity when comparing blind reconstruc-in extremes is due to the variation of the mean of the whole
tions with known initial variations. For this purpose, we data set. As stated earlier, deviations from the theoretical
perform 1000 simulations of gaussian (other distributionsyalue 0 of A indicate imprecision in the reconstructed pa-
are possible) data,, with varying mean and constant vari- rameter due to errors in the estimationsigfands, and that
ance and try to reconstruct the trend in the frequency of exof the POT parameters (see Talile Also, we infer from
tremes OfY(t)=X’+tm’- We will proceed similarly for the  the comparison of panels (a) and (b) of Fig.that the in-
case where the mean is constant but the variance increas@®duction of temporal variability in the variance hinders the
linearly with time and where those both entities vary in time. reconstruction procedure.
Thus, we will consider three cases of gaussian data of length As we have introduced itA denotes the difference be-
T'=5400. The length of the observation series correspondgween each time-varying parameter computed with the direct
roughly to 60 seasons of 90 days. This is motivated by themodel for X, (“theoretical” if m, ands; are known) and the
climatological time series we will work with later on. First reconstructed model with or without théf) hypothesis. It
(case 1) we simulate dafg with a linear trend of the mean measures the precision of statistical procedures. In theory,
m;=275+9.95x10"> and with a constant variance=1.  as we showed above, should be equal to 0. The distances
The imposed variation of the mean corresponds.586C  petween the reconstructed model with stationarity constraint
during the simulated period, which is a realistic assumption.and the unrestricted procedure measures the plausibility of
Then (case 2), we simulate data with a constant m&as0  (H). The distribution ofA has been studied through simula-
and a linear trend of the varianee=1.2+6x10"°, corre-  tions and can be characterised by some of its main features
sponding to a variation of.824°C. Finally (case 3), we shall  represented in the Table This table of distributions can
consider both the mean and the variance as varying in timepe a good basis for decisions when trying to debate on the

Both functions can be estimated through different methodsyalidiy of hypothesis(#), although conclusions should be
— moving averages, spline functions or local polynomials. drawn with care.

We present the results for the moving average estimation.

Through kernel methods, we estimdjgr) andJ,,(r) —with 5.2 \Warm observed temperatures example —(itig¢ hy-

no assumption of stationarity of the obtained distribution of pothesis

extreme parameters &f. Simulations on the parameter of

the GPD are also possible, and the estimation would be don&he aim of our study is to be able to obtain trends in extreme

by spline functions or local polynomials. events based on the information we get from the whole obser-
For each case, we compute the adjustment criterion wevation set, and more precisely the meanand the variance

defined earlier. We will use the following notation for this s;. Encouraged by our previous results performed on simu-

A index, computed as the absolute area difference betweelated data, we apply our procedure to temperature observa-

two functionsf andg—A( f, g). We will denote byA°(f, g) tions over a predefined station over Paris and over Prague.
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(a) (b)

f} =0.0946 — |(t) = Ker st

) =0.108 - == (1) rec [J(t) - ker]
k) =0.1942 It} rec [J cst]

I(t) = dir

= (
5 =0.0612 — I{t) - ker est A [E
x} =0.0704 === It} rec [J(t) - ker] ¢
k) = 0.1584 == I{t) rec [J cst] A [E;
g =0.0027 —o— I{t) - dir

12

0.08
1

It} [number of events per year]
; 0.06 0.08
1 |
(t} [number of events per year]

0.04

0.02

0.00
L

T Ty T rrror
628 1084 1716 2366 3021 3673 4325 629 1064 1716 2368 3020 3672 4324

Time Timea

Fig. 1. Reconstruction of the trend in the Poisson intensity from simulated data with an increasing linear trend in the mean
(m;=27.5+9.95x 10~°) and a constant variance=£1) (panela) and a varying mean and varying varianse=(1.2+9.5x 10~°) (panelb).

The graphs represent an approximation of the histogram of occurrences of extremes (vertical lines), the reconsthugiaindine with

stars), the reconstruction 6fr) based on kernel estimations (dashed line) with no stationary assumptiothefkernel estimation df with
bandwidth=629 (plain line) and the direct functiah obtained by substituting the real valuesf, s;. The results presented concern the
reconstructions based af(t)=X;—m;. The adjustement criterion is also provided for the evaluation of the correctness of the reconstruction
(for notations see Sed.1).

We make use of a long time series over Montsouris (Paristhe reconstruction without the stationarity assumptioly, &§
France) of 131 years (1873 to 2003) taken from the databetterA(o”, o/)=0.175. Similarly, the application of Eg5)
set produced by the European Climate Assessment projegives a proper reconstruction 6fs). Indeed, the computed
(Klein Tank et al, 2002, where we define the summer sea- I(¢) (plain line on panel b) follows closely the kernel estima-
son to start the 14 June and end the 21 September. We firsion (dashed line) £ (1%, I¥)=0.14). The kernel estimator
estimate the trend of the mean and variance. We consides subject to overfitting and depends on the size of the band-
those values to be constant during a season and to vary onwidth used. Thus, the beginning and ending section corre-
yearly basis. We first obtaim, ands, for X,, wherea cor- sponding to the width of the window were not represented.
responds to each yeat,is the mean of the summer observa- We notice that the difference betwesri/”*, 15)=0.14 —

tions ands is the standa}rd deV|at|on.. The same .anaIyS|s h"?‘s roviding the adjustment criterion between the reconstructed
been performed choosing the median and the mter-quannlxg(t) (under the(H) hypothesis) and the kernel estimate
range, obtaining similar results to those illustrated Iater-on.and theA(I”. I5)=0.11 between the kernel estimate af) '
w;;ue:rgeﬁgnarguEg;f’;(:'?oerpéggﬁdlg:rtct)osgq;:;yg:;%’ and the reconstructed Poisson intensity discarding Hhe

P year, ! 5t hypothesis (no stationary assumption of the centered and

The resulting trends are used to compme@. We as- d iabl I h lativelv cl
sumeY; satisfies the previously introduced hﬂ/pothe(sf@ normedy, variables) are small. As they are re atively close
! ’ to 0, and close to the mean of thevalue obtained through

and we apply the POT procedure to compute the extreme pa-. . .
rameters off,. Thus, we get=—0.314, u=2.12, 6,,—0.66, simulation, they show that both reconstructions are correct

The threshold foX, is w=32.05. Without any complex pro- and that deviations from 0_m|ght pe the result_ of the statisti-

. . cal procedures used. The immediate conclusion we get from
cedures to detect trends in the extremeX gfthe plain line . . .

) the analysis of these results is that tt#&) hypothesis seems
on Fig.2 shows the reconstructedr) and I (¢) of the GPD b lidated — th dih i f the whole ob
(panel a) and Poisson process (panel b) respectively 0 € vall ated —the mean an t € variance o the whole ob-
' servation set are closely linked to the trends in the occurrence

of extreme events in the sense that the hypothé’;;isxfs;l””
are stationary observations” can be accepted in a statistical
framework.

As a way of validation, we estimate(z) through cubic
splines (dashed line), which we represent on the Eg.
Similar results were obtained with local polynomial estima-
tions. The reconstruction based on E4).fpllows the spline A closer analysis shows that the general trends are cor-
curve rather closelyA (o™, o/)=0.33), which is a good in-  rectly reconstructed for intensities despite visible difficul-
dication of the performance of our statistical tools, althoughties at turning points. These problems are mainly due to
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(a) att)
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Fig. 3. Same as Fig, but for the Prague station.
Time
(b) , i i
remains a part o¥ not taken into account by the stationary
@ — model. The conclusion remains unclear.
gg: . : k)):g-llf B :E} -Kemffﬂ'[?t"}k ] Figure 3 illustrates the same analysis, performed on the
, =u. = reconstr 2rn . .
D ("SI %)= 0.07 —%— I{t) reconstr [J cst) Prague station fos; and Fig.4a shows the results fay. The
o results on/; present a spectacular accuracy of our methodol-
ogy. Again, general trends are correctly estimated and small
discrepancies are found over turning points, still produc-
. ing a relatively small adjustment criterioh(o”*, 0/)=0.2.
= -

Comparing Figs3 and4a shows that the reconstruction per-
formed on the Poisson intensity is better thandar Since

the reconstruction of the scale parameter of the GPD is not
very accurate (but better than that of Montsouris) both for the
case considering thH hypothesis true and the one with no
constraints on the stationarity of the model, we conclude
that the inexactitudes are probably not due (in this case) to
the validity of theH hypothesis. It might be a statistical er-
ror connected with estimation problems ©f o, or of the
shape parametérof the extreme distribution.

1878 1897 1915 1934 1953 1971 1990

Time

5.2.1 Warm temperatures — POT vs. GEV
Fig. 2. Extreme trend analysis over the Montsouris station of warm )
summer temperatures. Pata): Exceedances over the threshold A remarkable feature appears when analysing the POT mod-
w=32.045 (dots) andr(¢) obtained through different procedures: €ls versus the maxima of the series. Figutasb present
penalised likelihood (plain line), reconstruction based on B). ( the results of our methodology on a long time series of tem-
(plain line with stars), reconstruction discarding t#i£) hypothesis  perature observations over Prague (1997-2004). Panel (b)
of stationarity ofY; (dashed line). Pangb): Approximation of the  of Fig. 4 presents in parallel the sequence of annual max-
Poisson intensity (bars) aridt) obtained through different proce- ima, and a Smoothing produced through a moving average
durg - I_<ernel_ methods (plain line), recc_nnstru_ction based or_lEBq._( procedure of a 5 years window combined with an affinity
(plain Ilne_ with stars) an_d reconstruction without the stationarity to accentuate the turning points around local extremes. We
hypothesis of; (dashed line). establish a parallel between the variations of the annual max-

ima and the frequency of occurrence of extreme events. In

general, a higher sequence of annual maxima will produce in
statistical subtleties of estimations and smoothing.drdine response as accentuated succession of extreme exceedances.
reconstruction with hypothesig?) does not seem to fit its Adversely, lower than average maxima are related to fewer
estimated analogue everywhere. It seems that additionally tthreshold excesses. This result directly relates block maxima
a statistical problem linked to the approximationsgfthere  to the POT methodology in an empirical way.
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(@)

5.2.2 Extreme warm temperatures with a time-varying
threshold

AI™IN)=0.15
A 1%Y=012

4

As presented in Sect4, the presented analysis gives
mathematical foundations for an analysis of POT mod-
els with time-varying thresholds. For the presented time
series of daily maximum temperatures over Praghig),(

we compute the extreme parameters of #®T model
(6=-0.25, 0,,=2.048) for a thresholdw=311. The Pois-

son intensityl, of X, is approximated by kernel estimators.
We then apply Eq.6) for J=0.016, which corresponds to the
stationary intensity. Those values are chosen based on pre-
viously mentioned statistical properties and a fixed chosen
intensity corresponding to an average of 1 event per year.

The obtained time-varying threshaldr) is used to select
new exceedances™, for which we look for aPOT model
with a stationary intensity of the Poisson process. We thus
estimate a new Poisson intensity(¢) through kernel ap-
proximations. Figurdc illustrates the resulting time-varying
threshold producing stationary Poisson excess dates.

The superposition of the Poisson intensities of threshold
exceedances of; (panel a), of the annual maxima af;
(panel b) and of the time-varying threshaoid (panel c)
shows the impressive parallel between those features. The
same analysis has been done for a time varying intensity of
the dates of events of thé data set. The resulting thresh-
old differs slightly from the one presented on Hg, a dis-
similarity mainly caused by the statistical constraints applied
during the procedure.

As penalised likelihood methods are time-consuming,
constructingo (¢) with the information we get fromX, as
well as the stationary GPD model 8f seems to be an effi-
cient alternative, which might prove to be more precise than
polynomial fits and even spline functions, as more data i
available to model the temporal evolution:af ands, than
o (1), thus resulting in more accurate estimations.

o«
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SFig. 4. The upper pandla) illustrates a similar result to that pre-
sented in Fig2 but for observations over Prague. Pafi®ldraws
the annual maxima and smoothed annual maxima through a mov-
ing average procedure with a 5 years window. An affinity function
is applied to the smoothed maxima to enhance local fluctuations.
Panel(c) plots the exceedances of a time-varying threshold (plain
line) obtained through Eq6J.
We applied the described methodology to the National Cen-

ter for Environmental Prediction (NCEP) reanalysis data

over an extended region of the North Atlantic (NA) {80— covariate, to detect trends in the scale parameteand in

40°' W, 30° N-70° N), with a grid of 25° by 2.5° degrees. I,. We estimate the extreme parameters through maximum

Warm seasons were selected from the 1948-2005 scope tikelihood procedures and determine of the best polynomial

daily data, thus providing 58 summer (June to August (JJA))fit through likelihood ratio tests. Then, we center and nor-

seasons of 90 days each. Although other variables can bmalise the dat&,, and apply the procedure to the obtained

used, we focused on very warm temperatures. dataY,:X’S;t’”f. If the trend in extreme event over the NA
The advantage of this data set is that it provides griddedegion is uniquely described by the changes occurring in the

temperature data over the whole NA region. On the othemean and the variance of the whole data set, then the proce-

hand, since we are in the presence of many gridpoints vi-dure should reject trends after centering and normalising the

sual evaluation plots as presented earlier are not feasible. Bglata.

proceeding in a point-wise manner, we determine of a high Figure5 shows the obtained degrees of the polynomial fits

5.3 North Atlantic example

threshold (the 95th percentile of the d&g) and apply the
POT methodology presented Nbgaj et al.(2006. We will
use the simple polynomial family as the function for the time

www.nonlin-processes-geophys.net/14/305/2007/

for the trends of the; (panel a) of the GPD anfj (panel b)
of the Poisson process of tiOT.NSmodel. 0 denotes sta-
tionary data, 1 and 2 linear and quadratic trends respectively.
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Fig. 5. Detected trends in the extreme parameters of the non-stationary POT model over the North Atlantita)Pepedsents the degree

of the best polynomial fit for the scale parameter of the GPD. Positive and negative values correspond to the degrees of the polynomials
and depict increasing and decreasing trends, respectively. Similarly as for panel (aJbpahelvs the dynamics of the frequency of the
occurrences of extremes. Pang@sd) are analogues of panels (b—d) but for centered and normed data.

Positive and negative values denote increasing and decrea6- Conclusion
ing trends, respectively. Panels (c—d) represent the detected
trends applied ory;. Although norming and centering seem The analysed models for the central field and the extremes
to “whiten” the graphs, which is translated by data becom-are seen as regression models. The POT model is applied
ing stationary after the removal of the trends in the meanto exceedances, which occur at moments following a Pois-
and variance of the whole data set, we observe some regiorson process. The fundamental method presented in this pa-
where some trends in the parameter appears to remain. per is the introduction of a reconstruction procedure, which
The south-west of the NA is still affected by increasing linear recovers the information we have about the extreme parame-
trends. Surprisingly, some parts of western Europe (mainlyters characterising the dynamics of the extreme models. We
northern France and Ireland) present decreasing trends of théhowed, that from the information we have of the mean and
scale parameter of extremes after the centering an norminthe standard deviation of the whole dataset and that on the
whereas no trend was detected on unmodified data. As sedrehaviour of the extremes of a process closer to stationarity,
for the 5.2 results, we have more difficulties in the recon- we retrieve the behaviour of the parameters of the GEV or
struction ofo, than of7;. POT models applied to block maxima or threshold excesses
respectively.

This procedure is based on the introduction of a centered
and normed variabl¢;= ’"’, wherem; and v, are the
mean and the variance of the observati@nsr any other pa-
rameters of location and scale. We formulated the hypothesis
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(H), stating that the extremal model Bf is stationary. We  Appendix A

focused our analysis on a verification of the mathematical

foundation of this hypothesis through simulation proceduresMathematical tools

We compare three types of trends to assess the quality of the

retrieved information. First, we perform non-parametric es-Justification of Egs.4) and ©)

timations of the extreme parameters, which we then compare . .

to the reconstructed trends under hypothesis (with con- L€t us recall the following hereditary property fBIOT.NS
stant parameters of the extreme models of theariable), models. Let @OT.NSmodel with thresholdv(z), intensity

and the trends obtained while discarding {t#) hypoth- 7w (f) @nd parametergs, o, (1)). Also, lety; the dates of
esis, and considering the threshold excesse¥, afs non- exceedance of the threshold for the observakipn_et a new

stationary. thresholdu(r) > w(r), andXj,, ... X, be the subsequence of

Thus, for simulated data with a trend in the mean and theX« Such thathi>M(t_), thenX,,., ...Xy, is the trajectory of
variance, the centered and normed variable was obtained a& » POT-NSmodel with parameter§, o, (), 1, (1)) with
cording to the estimatedl; ands;, and we analysed to what _
extend the trends occurring in extremes are drivempgnd I,(t) = <1 + i(u (t) — w) Yy ()

s;. We quantified the statistical error inherent to the proce- o
dure (due to estimation errors), based on the computation of
ghneei-rror between the reconstructed trends and the theoretlch (1) = 0w () + Ew(t) — w(t))

We then applied this reconstruction procedure to climaticSuppose now we have estimated a md@T.NSfor X, for
data, to appraise the validity of tié/) hypothesis on tem- the thresholdw(s) with parameterséq, oy, (1), I (1)) and a
perature observations. Our results, obtained for several tim@QOT.NSfor YF@ with parametersg( o, (1), Jo(¢)). If
series, clearly justify th&H) hypothesis for the intensity (Xt>u(t))=(Yt>tf(tt)), thenu(r)=s(1)v(r)+m(r). Applying
of occurrences of threshold exceedances. This inference ighe previous result for hereditary property far)>w(z), we
probably false in the case of amplitudes of those excesseghtain:
probably due in part to some important inaccuracies of the
statistical procedures (both cubic splines and local polynou () = ow(t) +&(s(@)v () +m; — w(?)) (A1)
mials were tested) but also of the classical modelling tools. £
Still, this procedure does not depend on the functions choseHu (f) = <1 + (@) +m; — w(f))) Ly(@®) (A2
to depict the location and scale parametersids), as both o v . o
couples, mean/standard deviation and median/inter-quantilé Similar result can be obtained far(z)<w(z) considering
range were used to perform the analyses with very similadi'st the POT model of.
results. If the distribution is bounded, the computation is straight-

As more data is available for the computation of the ex-forward: letxr, andxg be the upper bounds df, andY;
planatory parameters of the whole data set, the estimation dieSPectively, we thus obtain:

m; ands, and therefore the computation of trends in extreme
events as we showed in this paper seems to be more accw+, = $:XG + m; == $; <v - —) + m;
rate than that of a direct search for time-varying parameters §
of extremes. Still, we acknowledge that the estimation of From a statistical point of view, the situation is often
m; ands; is by itself a first source of statistical error specif- more delicate: we cannot always find a valuesatisfying
ically in the estimation of;,. In fact, in climatic applica- w>I(u,t) for every [(u, t)=s;u+m; and such that there
tions, it is not very satisfactory to consideras a smooth  remains enough points above the thresheldn order to
version of the intra-annual variability. There appears to existperform a correct estimation of the parameters. To overpass
an inter-annual variability, probably not negligible. An im- this situation we notice that we can prove the relatidg)(
proved model ofs; should thus include both the intra- and (if w<I(u, 1)), proceeding from the variablg to X). In
inter-annual variability, also adding a smooth deterministicthis case, the limiting factor is the Poisson approximation,
parameter to a random effect depending on the observed temwhich can be invalidated for an inappropriate number of data
perature. This last point is relevant in order to have a modepoints. In the unfrequent case where both approaches cannot
with random effects. But estimations of such a model remainsolve the proper choice of the thresheld possible solution
to be performed. would consist in splitting the time series and applying two
thresholdsw=>I(u, t) for one part of the data, and<I(u, r)
for the other one.
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