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Abstract. Long’s equation describes two dimensional strat-
ified atmospheric flow over terrain. Its solutions using reg-
ular first order perturbations and linear approximation were
investigated analytically and numerically by many authors.
Special attention was paid to the properties of the gravity
waves that have been predicted to be generated as a result.
In this paper we derive a new representation of this equa-
tion in terms of the atmospheric density. This new equation
is used then to study the steady state that results from some
ideal upstream density profiles and the generation of gravity
waves. Furthermore we compare the new formulation with
the stream function formulation of Long equation and de-
velop new criteria for the stability of the flow.

1 Introduction

Long’s equation (Long, 1953, 1954, 1955, 1959) models the
flow of stratified incompressible fluid in two dimensions over
terrain. When the base state of the flow (that is the unper-
turbed flow field far upstream) is without shear the numeri-
cal solutions (in the form of steady lee waves) of this equa-
tion in various settings and approximations were studied by
many authors (Drazin, 1961; Drazin and Moore, 1967; Dur-
ran, 1992; Lily and Klemp, 1979; Peltier and Clark, 1983;
Smith, 1980, 1989; Yih, 1967; Davis, 1999). The most com-
mon approximation in these studies was to set Brunt-Väis̈alä
frequency to a constant or a step function over the computa-
tional domain. Moreover the values of the parametersβ and
µ which appear in this equation were set to zero. In this (sin-
gular) limit the nonlinear terms and one of the leading second
order derivatives in the equation drop out and the equation
reduces to that of a linear harmonic oscillator over two di-
mensional domain. Careful studies (Lily and Klemp, 1979)
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showed that these approximations set strong limitations on
the validity of the derived solutions (Peltier and Clark, 1983).

Long’s equation also provides the theoretical framework
for the analysis of experimental data (Shutts et al., 1988;
Jumper et al., 2004) under the assumption of shearless base
flow. (An assumption which, in general, is not supported by
the data). An extensive list of references appears in Baines
(1995), Nappo (2002), Yih (1980).

An analytic approach to the study of the solutions of this
nonlinear equation and its bifurcations was initiated recently
by the current author (Humi, 2004a, 2006). We showed that
for a base flow without shear and under rather mild restric-
tions the nonlinear terms in the equation can be simplified.
We also identified the “slow variable” that controls the non-
linear oscillations in this equation. Using phase averaging
approximation we derived for self similar solutions of this
equation a formula for the attenuation of the stream function
perturbation with height. This result is generically related
to the presence of the nonlinear terms in Long’s equation.
The impact that shear has on the generation and amplitude of
gravity waves was investigated by us in Humi (2006).

The “Achilles heel” of Long’s equation is related to the
fact that the value of the Brunt-V̈ais̈alä frequency is usually
set apriori to a “reasonable constant” which is based on the
density profile of the flow in the far upstream. Furthermore
there is no feedback to its value (or variation in its value)
from the resulting flow field over the computational domain.

In some applications (e.g. determination of the refraction
structure parameter,C2

n; Humi, 2004b) or questions about
airplane safety, the atmospheric density distribution is at least
as important as the flow field. Furthermore density is one of
the primitive variables for model atmospheres and its pro-
file can be used to determine temperature profiles assum-
ing perfect gas law. It follows then that a reformulation of
Long’s equation in terms of the atmospheric density can of-
fer, in some instances, conceptual and practical advantages
over the same formulation in terms of the stream function or
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274 M. Humi: Density representation of Long’s equation

“streamline displacements”. This is in spite of the fact that
from a mathematical point of view the two formulations are
in principle equivalent. Thus from a practical point of view
each formulation may turn out to be more useful than the
other under some circumstances.

With this motivation it is our objective in this paper to de-
rive a representation of Long’s equation in terms of the vari-
able atmospheric density. This representation will require an
apriori idealized modeling of the flow field. Thus this new
representation of Long’s equation stands for the “polar oppo-
site” to the one that was derived originally by Long (1953).
We shall use this representation to derive a new stability cri-
teria for the flow. We demonstrate also that it yields new
insights about the excitation of gravity waves over topogra-
phy. To this end we study some idealized density and veloc-
ity profiles in the far upstream limit and investigate whether
these profiles support the generation of steady state (density)
gravity waves over topography.

This density representation provides also an efficient algo-
rithm to simulate flows with specified upstream density and
velocity profiles.

The plan of the paper is as follows: in Sect. 2 we present
a short review of the usual derivation of Long’s equation and
some aspects of its solutions. In Sect. 3 we derive the (gen-
eral) density representation of this equation and specialize its
form to some idealized density profiles in the far upstream. In
Sect. 4 we consider the choice of the parameter function that
appears in the density representation and the related question
of gravity wave generation. Section 5 compares the new for-
mulation with the classical stream function formulation of
Long’s equation. We derive also some (approximate) ana-
lytic solutions over low topography . Furthermore we derive
a stability criteria for the density distribution and apply it to
the idealized density profiles that were studied in previous
sections. In Sect. 6 we discuss the results of simulations for
several model atmospheres and the effect of some parame-
ters that control the topography on the density distribution.
We end up in Sect. 7. with a summary and conclusions.

2 Long’s equation – a short overview

In two dimensions(x, z) the flow of a steady inviscid and
incompressible stratified fluid is modeled by the following
equations:

ux + wz = 0 (1)

uρx + wρz = 0 (2)

ρ(uux + wuz) = −px (3)

ρ(uwx + wwz) = −pz − ρg (4)

where subscripts indicate differentiation with respect to the
indicated variable,u=(u,w) is the fluid velocity,ρ is its den-
sity p is the pressure andg is the acceleration of gravity.

We can non-dimensionalize these equations by introduc-
ing

x̄ =
x

L
, z̄ =

N0

U0
z, ū =

u

U0
, w̄ =

LN0

U2
0

w

ρ̄ =
ρ

ρ̄0
, p̄ =

N0

gU0ρ0
p (5)

whereL represents a characteristic length, andU0, ρ̄0 repre-
sent respectively the free stream velocity and averaged base
density (i.e. herēρ0 is a constant).N2

0 is an averaged value
of the Brunt-V̈ais̈alä frequency

N2
= −

g

ρ0

dρ0

dz
. (6)

In these new variables Eqs. (1–4) take the following form (for
brevity we drop the bars)

ux + wz = 0 (7)

uρx + wρz = 0 (8)

βρ(uux + wuz) = −px (9)

βρ(uwx + wwz) = −µ−2(pz + ρ) (10)

where

β =
N0U0

g
(11)

µ =
U0

N0L
. (12)

β is the Boussinesq parameter (Davis, 1999) which controls
stratification effects (assumingU0 6=0) andµ is the long wave
parameter which controls dispersive effects (or the devia-
tion from the hydrostatic approximation). In the limitµ=0
the hydrostatic approximation is fully satisfied (Smith, 1980,
1989).

In view of Eq. (7) we can introduce a stream functionψ
so that

u = ψz, w = −ψx . (13)

Using this stream function we can rewrite Eq. (8) as

J {ρ,ψ} = 0 (14)
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where for any two (smooth) functionsf, g

J {f, g} =
∂f

∂x

∂g

∂z
−
∂f

∂z

∂g

∂x
(15)

Equation (14) implies that the functionsρ,ψ are dependent
on each other and we can express each of them in terms of
the other. Thus we can writeψ asψ(ρ) or ρ asρ(ψ).

Usingψ the momentum equations (9), (10) become

βρ(ψzψzx − ψxψzz) = −px (16)

βρ(−ψzψxx + ψxψxz) = −µ−2(pz + ρ) (17)

For brevity we eliminateµ from these equations by the trans-
formation x̄=µx. This leaves Eq. (16) unchanged and in
Eq. (17) µ cancels out. (In the following we drop the bars
on the variablex).

To eliminatep from Eqs. (16), (17) (after the transforma-
tion mentioned above) we differentiate Eqs. (16) and (17)
with respect toz, x, respectively and subtract. This leads to

ρz(ψzψzx − ψxψzz) + ρ(ψzψzx − ψxψzz)z

− ρx(−ψzψxx + ψxψxz)

− ρ(−ψzψxx + ψxψxz)x

= −
1

β
J {z, ρ} (18)

Using Eq. (14) we can rewrite this equation (after some alge-
bra) as

ρJ {∇
2ψ,ψ} + J {

1

2
(ψ2

x + ψ2
z ), ρ} = −

1

β
J {z, ρ} (19)

However in view of Eqs. (8) , ρ=ρ(ψ) and this fact can be
used to eliminateρ from Eq. (19). To this end we observe
that

ρx = ρψψx, ρz = ρψψz, (20)

This leads then to the following equation forψ (Davis, 1999)

∇
2ψ −N2(ψ)

[
z+

β

2
(ψ2

z + ψ2
x )

]
= G(ψ) (21)

where

N2(ψ) = −
ρψ

βρ
(22)

is the nondimensional Brunt-V̈ais̈alä frequency. We observe
that in this definitionN2 is a function ofψ . (As a result it can
be an additional source of nonlinearity in Eq.21) This is in
contrast to the previous definition of this quantity in Eq. (6)
which depends only on the base state.

G(ψ) is some unknown function which is determined
from the base flow. Henceforth we assume it to be a func-
tion of z only. To carry out this determination ofG we con-
sider Eq. (21) atx=−∞ and express the left hand side of this
equation in terms ofψ only. (Assuming that disturbances do
not propagate far upstream (Baines, 1995; Yih, 1980). Equa-
tion (21) is referred to as Long’s equation.

For example if we let

ψ(−∞, z) = z (23)

i.e. consider a shearless base flow withu(−∞, z)=1 then

G(ψ) = −N2(ψ)

(
ψ +

β

2

)
(24)

and Eq. (21) becomes:

∇
2ψ −N2(ψ)

[
z− ψ +

β

2
(ψ2

z + ψ2
x − 1)

]
= 0 . (25)

It is evident from this derivation that different profiles for the
base flow atx=−∞ will lead to different forms ofG(ψ).

For a general base flow in an unbounded domain over to-
pography with shapef (x) and maximum heightH the fol-
lowing boundary conditions are imposed onψ

ψ(−∞, z) = ψ0(z) (26)

ψ(x, τf (x)) = constant, τ =
HN0

U0
(27)

where the constant in Eq. (27) is (usually) set to zero. As to
the boundary condition onψ(∞, z) we observe that Long’s
equation contains no dissipation terms and therefore only
radiation boundary conditions can be imposed in this limit.
Similarly atz=∞ it is customary to impose (following Dur-
ran, 1992) radiation boundary conditions.

For the perturbation from the shearless base flow

η = ψ − z (28)

Eq. (25) becomes

∇
2η − γ 2(η2

z + η2
x)−N2(z+ η)(βηz − η) = 0 (29)

where

γ 2
=
N2(ψ)β

2
. (30)

We observe that when|τ |�1 the boundary condition (27)
can be approximated by

η(x,0) = −τf (x). (31)

WhenN is constant Eq. (29) is invariant with respect to trans-
lations inx, z and hence admits self-similar solutions of the
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form η=f (kx+mz) (Humi, 2004a). These solutions are in-
terpreted as gravity waves that are generated by the flow over
the topography.

From a numerical point of view it is a common practice
(Durran, 1992; Lily and Klemp, 1979; Davis, 1999) to solve
Eq. (29) in the limit β=0 andµ=0 with constant (or step
function)N over the domain (and this value ofN remain
unchanged even thoughψ is variable over the domain. (One
can restoreµ to Eq. (29) by the the transformation̄x= x

µ
.)

Equation (29) reduces then to a linear equation

ηzz +N2η = 0 . (32)

We observe that the limitβ=0 can be obtained either by let-
ting U0→0 orN0→0. In the following we assume that this
limit is obtained asU0→0 (so that stratification persists in
this limit).

Equation (32) is a singular limit of Long’s equation as one
of the leading second order derivatives drops whenµ=0 and
the nonlinear terms drops out whenβ=0. This approxima-
tion and its limitations were considered numerically and an-
alytically (Drazin and Moore, 1967; Durran, 1992; Humi,
2004a, 2006) and was found to be justified only under strong
restrictions even under the assumption that the base flow is
shearless. Nevertheless it is used routinely in the actual anal-
ysis of atmospheric data (Shutts et al., 1988; Jumper et al.,
2004; Baines, 1995).

3 Long’s equation – density representation

In view of Eq. (14) we can expressρ in terms ofψ or ψ
in terms ofρ. Using the first possibilityρ=ρ(ψ) leads to
Eq. (21). However if we letψ=ψ(ρ) and use the following
identities

ψx = ψρρx, ψz = ψρρz, ∇
2ψ = ψρρ[ρ

2
x+ρ

2
z ]+ψρ∇

2ρ.

(33)

then after some algebra we obtain from Eq. (18) the follow-
ing

J

{
(βρψ2

ρ)∇
2ρ +

1

2
(βρψ2

ρ)ρ[ρ
2
x + ρ2

z ] + z, ρ

}
= 0. (34)

Since for any function ofF(ρ) we haveJ {F(ρ), ρ}=0. we
infer that

h(ρ)∇2ρ+
1

2
h′(ρ)[ρ2

x+ρ2
z ]+z = S(ρ), h′

=
dh(ρ)

dρ
. (35)

where

h(ρ) = βρψ2
ρ (36)

andS(ρ) is some function ofρ which is determined by the
functional form ofρ in the far upstream boundary. This func-
tion can be considered as an integration “constant” or gauge.

Physically it reflects the relationship betweenρ andψ in the
far upstream boundary. Equation (35) can be considered to
be the “density representation of Long’s equation”.

We also note that Eq. (35) can be written in the form

h(ρ)1/2∇·(h(ρ)1/2∇ρ)+ z = S(ρ). (37)

In Eq. (35) h(ρ) can be considered as a parameter function
which is determined by the momentum distribution in the far
upstream base flow. This is similar to the definition of the
Brunt-Väis̈alä frequency in Eq.6).

We now give several examples for the determination of the
functionS(ρ) and the resulting forms of Eq. (35).

3.1 Case 1: lim
x→−∞

ρ(x, z)=1−αz

(Here and in the following we normalizeρ(−∞,0) to 1 and
α is a constant.)

Substituting this value ofρ in Eq. (35) and expressingz as
z=

1−ρ
α

we obtain

S(ρ) =
α2

2
h′(ρ)+

1 − ρ

α
. (38)

Equation (35) becomes then

h(ρ)∇2ρ +
1

2
h′(ρ)[ρ2

x + ρ2
z − α2

] −
1 − ρ

α
+ z = 0 (39)

3.2 Case 2: lim
x→−∞

ρ(x, z)=e−αz

This is the case of an isothermal atmosphere withα=
g
RT0

(Dutton, 1986, p. 69).
For this base state we have

S(ρ) = α2
[
h(ρ)ρ +

1

2
h′(ρ)ρ2

]
−

ln ρ

α
(40)

and the density representation of Long’s equation becomes

h(ρ)[∇2ρ−α2ρ]+
1

2
h′(ρ)[ρ2

x +ρ2
z −α2ρ2

]+
ln ρ

α
+ z = 0

(41)

3.3 Case 3: lim
x→−∞

ρ(x, z)=(1−αz)r , r 6=1

For proper values ofα andr this relationship has been used
for convective atmospheric studies (Dutton, 1986, p. 67–69).

Following the same procedure outlined above we have

S(ρ)=α2r(r−1)h(ρ)ρ1−2/r
+

1

2
α2r2h′(ρ)ρ2−2/r

+
1−ρ1/r

α
(42)

and Eq. (35) becomes

h(ρ)[∇2ρ − α2r(r − 1)ρ1−2/r
]

+
1

2
h′(ρ)[ρ2

x + ρ2
z − α2r2ρ2−2/r

]

−
1 − ρ1/r

α
+ z = 0 (43)
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4 Equations for perturbations from the base state

In this section we derive the equations for the perturbation
η=ρ−ρ0 (whereρ0= limx→−∞ ρ(x, z)) from different pro-
files of the base density. We would like to emphasize how-
ever that although we refer toη as a perturbation it is more
appropriate to refer to it as “deviation from base state” as we
place no restriction on the size ofη. Furthermore the equa-
tions we derive forη are exact (and nonlinear) in general.
These equations are useful for the numerical simulation of
the density over topography and for the analytical study of
gravity wave generation from different base state.

We consider again the three cases that were discussed in
the previous section.

Case 1:
Substituting forρ in Eq. (39) yields

h(ρ)∇2η +
1

2
h′(ρ)[η2

x + η2
z − 2αηz] +

1

α
η = 0. (44)

Here (and in the following)h and its derivative have to be
expressed in terms ofη i.e. h=h(ρ0+η) however we shall
leave the notation unchanged for brevity. Furthermore there
is no chance of confusion. We wish to emphasize again that
Eq. (44) is an exact equation forη.

Whenψ0= limx→−∞ ψ(x, z)=z (that is the base flow is
shearless) thenψ0=

1−ρ0
α

and it follows that

h(ρ) =
βρ

α2
(45)

Similarly if ψ0=z
2 (Shear flow withu=2z) then

h(ρ) =
4βρ(1 − ρ)2

α4
(46)

Here we assume that the functional form ofh remains un-
changed throughout the region under consideration.

From this discussion we infer that Eq. (44) will remain
invariant under translations inx, z and therefore admits self-
similar solutions of the form ofη=f (kx+mz) only if we can
approximateh andh′ by constants. (That is we first evaluate
h′ using the exact expression forh(ρ) and then approximate
it by a constant). One possible strategy to accomplish this
will be to approximate these functions byh(ρ0) andh′(ρ0)

and then replace these functions by a “proper” constant.
For the case given by Eq. (45) such an approximation is

possible if|αz|�1 in the domain under consideration. We
then haveh≈ β

α2 andh′
=−

β
α

. With this additional approxi-
mation the resulting equation forf is

h(k2
+m2)f ′′

+
1

2
h′

[(k2
+m2)(f ′)2−2αmf ′

]+
1

α
f = 0 (47)

(where we removed theρ dependence onh, h′ to emphasize
the fact that these should be considered as constants)

In view of the need for this second approximation it is in-
teresting to determine whenh is actually constant. From the

definition of h it is easy to see that this will happen when
ψ∼ρ1/2. For the present base density profile we then have
ψ0∼(1−αz)1/2 which in turn implies thatu0∼(1−αz)−1/2

i.e. u0 is increasing (slowly) with height. For this special
caseh′

=0 and the equation forη reduces to a linear equa-
tion.

h∇2η +
1

α
η = 0. (48)

(which can be solved by standard methods). We stress that
this an exact result and no approximations (or linearizations)
were made in the derivation of this equation.

The same result can be obtained using the formulation
of Long’s equation in terms of streamline displacements
δ=z−z0 (Eq. 5.3.7 in Baines, 1995),

∇
2δ +

1

q

dq

dz

(
∂δ

∂z
−

1

2
|∇δ|2

)
−
g

2q

∂ρ0

∂z0
δ = 0. (49)

whereq=ρ0U
2
0/2. In this case a short calculation shows that

q=α2/8 i.e.q is a constant and Eq. (49) reduces to a linear
equation. This demonstrates again that the traditional and the
density formulation Long’s equations are equivalent from a
mathematical point of view.

Case 2:
The exact equation for the perturbationη in this case is

h(ρ)[∇2η−α2η]+
1

2
h′(ρ)[η2

x+η
2
z−α

2η−2αe−αz(αη+ηz)]

+
ln(1 + eαzη)

α
= 0 (50)

For shearless base flow withψ0=z we have

h(ρ) =
β

α2ρ
. (51)

Similarly forψ0=z
2 we obtain

h(ρ) =
4β(ln ρ)2

α4ρ
. (52)

Equation (50) is not invariant with respect to translations and
hence in general will not admit self-similar solutions of the
form η=f (kx+mz). However, for|αz|�1 we can use the
approximationeαz≈1 and under this restriction self-similar
solutions will be admitted by the resulting (approximate)
equation if in additionh andh′ are approximated by a con-
stant. The derived equation forf under these approximations
is

h[(k2
+m2)f ′′

−α2f ]+
1

2
h′

[(k2
+m2)(f ′)2−α2f−2α(αf+mf ′)]

+
ln(1 + f )

α
= 0 (53)

For h to actually be a constant for this base density profile
ψ must satisfyψ∼e−

αz
2 which implies thatu = ψz decays

exponentially with height. The resulting equation forη is

h[∇2η − α2η] +
ln(1 + eαzη)

α
= 0 (54)
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which is still nonlinear . However if we assume that| eαzη |

�1 we can linearize this equation to obtain

h[∇2η − α2η] +
eαzη

α
= 0 (55)

Case 3:
The exact equation forη in this case is

h(ρ)
{
∇

2η + α2r(r − 1)(1 − αz)r−2
[1 − B1−2/r

]

}
+ (56)

1

2
h′(ρ)

{[
η2
x +

[
ηz − αr(1 − αz)r−1

]2

−α2r2(1 − αz)2r−2B2−2/r
}

+
1 − αz

α

[
B1/r

− 1
]

= 0

where

B = 1 +
η

(1 − αz)r

Whenψ0=z we haveψ0=
1−ρ

1/r
0
α

which yields

h(ρ) =
βρ(2−r)/r

α2r2
(57)

We see that whenr=2,h is a constant.
We can simplify Eq. (56) if |

η
(1−α)r

| �1 using the ap-
proximation(1+s)m≈1+ms to obtain

h(ρ)
{
∇

2η − α2(r − 1)(r − 2)(1 − αz)−2η
}

+ (58)

1

2
h′(ρ)

{[
η2
x + η2

z − 2αr(1 − αz)r−1ηz − 2α2r

(r − 1)(1 − αz)r−2η
}

+
(1 − αz)1−rη

rα
= 0

We see that even under this approximation the equation
is not invariant under translations with respect toz and
therefore (strictly speaking) does not admit solutions of the
form f (kx+mz). However if |αz|�1 in the domain under
consideration we can make the (additional) approximation
1−αz≈1 and Eq. (58) becomes invariant under translations
in x, z. Under these approximations a solution of the form
f (kx+mz) must satisfy the following equation

h(ρ)[(k2
+m2)f ′′

− α2(r − 2)(r − 1)f ] +
h′(ρ)

2

[(k2
+m2)(f ′)2−2mrαf ′

−2α2r(r−1)f ]+
f

rα
=0 (59)

Whenh is a constant andr=2, Eq. (56) becomes

h∇2η +
1 − αz

α

[√
1 +

η

(1 − αz)
− 1

]
= 0. (60)

For |η|�1 we can linearize this equation to obtain

h∇2η +
η

2α(1 − αz)
= 0. (61)

5 Comparisons, solutions and stability

It is easy to see that the stream-function formulation of
Long’s equation remains nonlinear for any (nontrivial) base
state profiles ofψ andρ. In fact this equation becomes lin-
ear only in the limitsβ→0 andµ→0 (and constantN2).
These are singular limits from both physical and mathemat-
ical points of view which limit severely the insights that can
be derived form the linearized form of this equation. In
the density formulation even if one linearizes the equation
for the deviationη from the base state (i.e. assume|η|�1)
there is no need to impose these limits onβ andµ. Further-
more we demonstrated in the previous section that for each
of the three model atmospheres considered there exist base
state profiles of the density and stream function under which
the density representation of Long’s equation becomes either
linear or “mildly” nonlinear and hence amenable to analytic
treatment.

For case 1 where lim
x→−∞

ρ(x, z)=(1−αz) Eq. (48) is ex-

actly linear regardless of the amplitude ofη. Its eigensolu-
tions (subject to obvious physical constraints) are

ηω = e−ωz(A(ω) cosνx + B(ω) sinνx) (62)

whereν2
=ω2

+
1
hα

andω≥0.
The corresponding stream-function Long’s equation

(Eq.21) for this problem withψ=ρ1/2 is

ψ∇
2ψ +

2

β

[
z+

β

2
(ψ2

x + ψ2
z )−

1 − ψ2

α

]
= 0. (63)

which is highly nonlinear. However there may exist reverse
situations where the traditional formulation of Long’s equa-
tion in terms of the stream function might be simpler to the
one in terms of of the density.

For the other atmospheric models that were considered in
the previous section Eqs. (55) and (61) are also linear. (These
were derived, however, under the constraint of small pertur-
bation). Whenη is not small the corresponding Eqs. (54),
(60) are “weakly” nonlinear. (The square root and log func-
tions damp the nonlinear effects).

From another point of view Eq. (32) with N=constant
(which has been used routinely in the literature) admits al-
ways solutions of the formf (kx+mz). On the other hand
the equations derived forη in our formulation show that
this form of solution exists only under very special circum-
stances. In fact even the linearized Eqs. (55), (61) do not
admit these solutions as they are not invariant under transla-
tions in z. This demonstrates that there exist many profiles
of base density and stream function for which gravity waves
solutions of the formf (kx+mz) (for the density) do not ex-
ist.

In addition even though Eqs. (55), (61) have non-constant
coefficients they admit eigensolutions in terms of well known
functions. Using separation of variables we obtain for the
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nonsingular eigensolutions of Eq. (55)

ηω(x, z) = Jk(s) [A cosωx + B sinωx] (64)

where

k =
2
√
α2 + ω2

α
, s =

2eαz/2
√
hα3

.

Jk is Bessel functions of the first kind andω a real non-
negative parameter. From this representation of the eigen-
solutions we infer that excitations governed by this equation
will decay with z (i.e. height) due to the properties of the
Bessel functions.

Similarly for the eigensolutions of Eq. (61) we obtain for
ω 6=0

ηω(x, z) = (1 − αz)eωzKummerM(n,2, s)

[A(ω) cosωx + B(ω) sinωx] (65)

and

η0(x, z) = A(0)
√

1 − αzJ1(r) (66)

for ω=0. In these equations

n = 1 −
1

βω
, s =

2ω

α
(1 − αz), r =

√
8(1 − αz)

αβ

and KummerM is the Kummer-M function (Abramowitz and
Stegun, 1970, p. 504).

5.1 Boundary conditions and analytic solutions

The eigenfunctions for Eqs. (48), (55), (60) that were de-
rived above enable us to write analytic solutions for these
equations over low topography.

To derive the appropriate boundary conditions onη to
solve Eq. (48) in the presence of topographyτf (x) we let
ρ=ψ2 (that is we let the constant of proportionality to be 1).
Hence

η(x, τf (x)) = ρ(x, τf (x))− ρ0(x, τf (x))

= ψ2(x, τf (x))− ψ2
0(x, τf (x)) (67)

However on the ground (we let)ψ(x, τf (x))=1. Therefore

η(x, τf (x)) = ατf (x) (68)

Observe that this is an exact boundary condition. For low
lying topography we can approximate this equation by

η(x,0) = ατf (x) (69)

This is an approximation similar to the one used in Eq. (31).
However we emphasize the fact that in our formulationβ and
µ are not set to zero. Thus this linearization of the problem
is not equivalent to the one that led to Eq. (32).

Following the same procedure outlined in Sect. 2 we ob-
tain for the boundary conditions on Eqs. (54) and (55)

η(x, τf (x)) = 1 − e−ατf (x). (70)

Similarly for Eqs. (60) and (61) we have

η(x, τf (x)) = ατf (x)[2 − ατf (x)]. (71)

The general solution of Eq. (48) in the upper half plane is

η(x, z)) =

∫
∞

0
e−ωz(A(ω) cosνx + B(ω) sinνx)dω. (72)

For low topography the boundary condition (69) yields then

A(ω) =
ατ

π

∫
∞

−∞

f (x) cosνxdx,

B(ω) =
ατ

π

∫
∞

−∞

f (x) sinνxdx.

Similar expressions can be derived for the solutions of
Eqs. (55), (61). We wish to emphasize that the only ap-
proximation made in the derivation of the solution (72) is
due to the topography (or more precisely the boundary con-
dition on the topography) where Eq. (68) was approximated
by Eq. (69).

5.2 Stability

Assuming that

lim
x→−∞

ρ(x, z) = ρ0(z) (73)

we infer from Eq. (35) that in this limitS(ρ) must satisfy

S(ρ0) = h(ρ0)(ρ0)zz +
1

2
h′(ρ0)(ρ0)z)

2
+ z (74)

wherez on the right hand side of this equation has to be re-
expressed in terms ofρ0.

To examine the (linear) stability of theρ(x, z) against a
perturbation from the base state we write

ρ(x, z) = ρ0(z)+ η(x, z). (75)

and substitute this expression in Eq. (35). Linearizing the re-
sulting equation (aroundρ0(z)) and using Eq. (74) we obtain

∇
2η +

h′(ρ0)

h(ρ0)
(ρ0)zηz +

1

h(ρ0)

[
h′(ρ0)(ρ0)zz

+
h′′(ρ0)

2
(ρ0)

2
z − S′(ρ0)

]
η = 0 (76)

where primes demote differentiation with respect toρ.
Sinceρ0 is a function ofz only this equation is separa-

ble we can deduce the properties of its solutions by applying
separation of variables. Introducing

η(x, z) = χ(x)φ(z) (77)
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we obtain

χ(x)xx + λχ(x) = 0 (78)

and

h(ρ0)φzz + h′(ρ0)(ρ0)zφz −
[
λ+ S′(ρ0)− h′(ρ0)(ρ0)zz

−
h′′(ρ0)

2
(ρ0)

2
z

]
φ = 0 (79)

whereλ(>0) is the separation of variables constant. Equa-
tion (79) can be rewritten as

(h(ρ0)φz)z −H(z)φ = 0 (80)

where

H(z) = λ+ S′(ρ0)− h′(ρ0)(ρ0)zz −
h′′(ρ0)

2
(ρ0)

2
z (81)

Equations (80–81) demonstrate that the properties of the per-
turbation as a function ofz depend only onλ (i.e. the square
of the wave number in the x-direction) and the base state of
the flow.

Multiplying Eq. (80) by φ(z) and integrating by parts we
obtain

h(ρ0)φφz

∣∣∣∣z
0
−

∫ z

0
h(ρ0)φ

2
zdz−

∫ z

0
H(z)φ2dz = 0 (82)

Assuming thatφ(0)=0 we can rewrite this equation as

dφ2

dz
=

1

h(ρ0)

[∫ z

0
h(ρ0)φ

2
zdz+

∫ z

0
H(z)φ2dz

]
(83)

It follows then that a sufficient condition for the amplitude of
φ to increase with height is

h(ρ0) > 0, H(z) > 0.

In fact from its definition (Eq.36) it is clear thath(ρ0) is
always positive. Therefore we need to check only the second
condition.

To make further progress we consider now each of the
three cases which were discussed in Sect. 3 withψ0=z.

Case 1
In this caseh(ρ) andS(ρ) are given by Eqs. (45), (38), re-
spectively, and we obtain that

H = λ−
1

α

Hence the amplitude of the perturbation will increase when-
everαλ>1. Furthermore we can solve Eq. (80) explicitly in
this case to obtain

φ(z) = C1J0(w)+ C2Y0(w)

whereC1, C2 are constants and

w = 2

√
(1 − λα)(1 − αz)

αβ

Sinceρ0=1−αz>0 bothJ0 andY0 will remain bounded if
αλ<1. We conclude then that the amplitude ofφ will remain
bounded with height if this condition is satisfied.

Case 2
Using Eqs. (40), (51) we obtain that

H(z) = λ−
1

α
eαz

Hence the amplitude ofφ will increase with height if
λαe−αz>1.

Case 3
We use Eqs. (42), (57) and consider only the case withr=2.
This leads to

H(z) = λ−
1

2α(1 − αz)

Hence the amplitude ofφ will increase with height if

2λα(1 − αz) > 1.

(The explicit solution of Eq. (80) in this case can be ex-
pressed in terms of Kummar functions).

6 Numerical simulations for the perturbation

In previous sections we discussed from an analytical point of
view different aspects of the density representation of Long’s
equation for different asymptotic profiles ofρ andψ0 and
derived differential equations for the perturbation from the
base state. In this section we perform numerical simulations
of these equations (that is Eqs.44, 50, 56) over topography to
examine the different flow patterns that are predicted by these
equations and their relation to gravity waves. In all cases we
considered only a shearless base flow i.e.ψ0=z. We also let
r=2 in case 3, i.e. we solve Eq. (60) (which is a special case
of Eq.56).

To solve for the perturbationη over a finite two dimen-
sional domain[a, c]×[τf (x), b] we assumed thatη=0 at
x=a. Radiation boundary conditions were imposed atx=c

andz=b. These are necessary to avoid reflection of the out-
going wave. To implement these boundary conditions we
used “sponge boundaries” atx=c andz=b with exponential
damping (as is done in the NCAR/MM5 mesoscale model
(Haggenson et al., 1994, and others). In the simulations that
we describe below we let (in nondimensional units)a=−50,
b=50 andc=50. The sponge layers start atz=45 andx=45.
In addition we let

∂η

∂x
= 0 atx = c ;

∂η

∂z
= 0 atz = b

Furthermore due to the fact that in these simulations some
waves appear to propagate upstream we added a sponge layer
atx=a to avoid wave reflection at this boundary. This sponge
layer extends up tox=−45.
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Fig. 1. Contour plot ofη with ρ0(x, z)=1−αz, ψ0=z, τ=0.75.

To derive the exact boundary condition appropriate for
each of the equations mentioned above at the bottom topogra-
phy we use the same procedure outlined in Sect. 5.1. Letting
ψ(x, τf (x))=0 we obtain the following conditions
Case 1:

η(x, τf (x)) = ρ(x, τf (x))− ρ0(x, τf (x)))

= (1 − αψ(x, τf (x)))− (1 − αψ0(x, τf (x))

= ατf (x)

Case 2:

η(x, τf (x)) = e−αψ(x,τf (x))−e−αψ0(x,τf (x)) = 1−e−ατf (x)

Case 3:

η(x, τf (x)) = (1 − αψ(x, τf (x)))2 − (1 − αψ0(x, τf (x))
2

= ατf (x)(2 − ατf (x))

To solve Eqs. (44), (50) and (60) we used the software
package “FlexPde” (2006)1. This is a finite element pack-
age (with dynamic local grid refinement) which can simu-
late a system of (nonlinear) partial differential equations in
two dimensions over arbitrary domain. Accordingly, exact
boundary conditions were used at the bottom topography.
(There was no need to use approximations similar to those in
Eq. 69). The convergence criteria for the iterations was that
the step error of||ρm+1−ρm|| was less than 5.10−5 where
m is the iteration number. Due to the fact that dynamic grid
refinement was used the total number of (Newton) iterations
(approximately 100–125) does not convey the actual compu-
tational effort needed to achieve this convergence. However
we note that the total number of nodes in the final mesh(es)

1“FlexPde 5” is a trademark of “Pde Solutions Inc.”, Antioch,
CA, 2006.
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Fig. 2. Contour plot ofη with ρ0=e−αz, ψ0=z, τ=0.75.

was approximately 5×105 and each simulation took about
20−25 h on a Xeon 3.2 Mhz CPU.

Figures 1, 2, 3 present (respectively) the results of the sim-
ulations of the equations mentioned above with these bound-
ary conditions and the following topography shape function

f (x) =
1

(1 + x2)3/2
. (84)

The parameters used in these simulations were:

τ = 0.75, α = 0.01, β = 4.10−3, (85)

(In case 1,α was set to 0.015 to induce stronger stratifica-
tion).

We see from these figures that in the first two cases there is
a clear evidence of gravity waves over the topography. How-
ever in the third case there is no such evidence and the pic-
ture is completely different. This might explain in part why
some current models over predict the production of gravity
waves (Eckermann and Preusse, 1999; Dewan et al., 1998).
This suppression effect is due to the different base density
profile and the nonlinearity of Long’s equation. In fact it
was demonstrated in Humi (2006) that some shear profiles in
the base flow might have the same effect on the generation
of gravity waves over topography. Another possible expla-
nation is that the wave spectrum is concentrated at intrinsic
frequencies aboveN . The question as to which base profiles
have this effect remains an open problem.

We note the difference in the wave pattern in Fig. 2 as
compared to Fig. 1 and the difference in their horizontal wave
number. We observe also that as expected (due to energy con-
servation) the amplitude of the waves increases with height
due to stratification.

These figures demonstrate clearly the role of the base state
and stratification on the generation of gravity waves and their
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Fig. 3. Contour plot ofη with ρ0(x, z)=(1−αz)2, ψ0=z, τ=0.75.
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Fig. 4. Contour plot ofρ with ρ0=1−αz , ψ0=z, τ=0.75.

energy. We wish to note the fact that these simulations were
carried out with nonzero values ofβ andµ while most of the
simulations carried out in the literature using the streamfunc-
tion formulation of Long’s equation set these parameters to
zero.

We would like to emphasize that in Figs. 1–3 we plotted
the perturbation from the base state. In many plots that ap-
pear in the literature only the (total) stream function is plot-
ted. To show that the results of our simulations actually have
the same general features as those that appeared in the lit-
erature we plottedρ (that is the total density) in Figs. 4, 5.
These plots correspond to the perturbations shown in Figs. 1,
2.

Note that in Fig. 2 and to some extent also in Fig. 1 the per-
turbation propagates in the upstream direction. We attribute
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Fig. 5. Contour plot ofη with ρ0=e−αz , ψ0=z, τ=0.75.

this phenomena (which is absent in some plots that appeared
in the literature) to the fact that in our simulations we used
nonzero values forβ andµ while the figures that appear in
the literature usually set these parameters to zero. Further-
more we observe that Long’s equation contains no viscosity
terms. Hence any decay in the amplitude of the waves is due
solely to nonlinear effects. It can be expected therefore that
under these settings a perturbation will decay only slowly
both downstream and upstream.

7 Summary and conclusions

We derived in this paper the density analog representation
of Long’s equation and examined its application to several
idealized base density profiles. In this representation the
conditions on the base density and flow profiles which
support the generation of gravity waves become more trans-
parent. Thus the stream function Long’s equation predicts
that gravity waves will be generated whenever Brunt-Väis̈alä
frequency can be set to a constant and the base flow is
shearless. Due to its complexity no other choices of these
parameters was considered in the literature. In the new
representation a richer structure emerges which involve both
the base density and flow. As a result the properties of
different atmospheric structures can be investigated in depth.
Using this formalism we derived a new stability criteria for
the flow and applied it to three different idealized cases. We
also showed that in some instances the new representation
of Long’s equation lead to analytic solutions for the density
distribution.
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