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Abstract. Long’s equation describes two dimensional strat- showed that these approximations set strong limitations on
ified atmospheric flow over terrain. Its solutions using reg- the validity of the derived solutions (Peltier and Clark, 1983).
ular first order perturbations and linear approximation were Long's equation also provides the theoretical framework
investigated analytically and numerically by many authors.for the analysis of experimental data (Shutts et al., 1988;
Special attention was paid to the properties of the gravityJumper et al., 2004) under the assumption of shearless base
waves that have been predicted to be generated as a resuffiow. (An assumption which, in general, is not supported by
In this paper we derive a new representation of this equathe data). An extensive list of references appears in Baines
tion in terms of the atmospheric density. This new equation(1995), Nappo (2002), Yih (1980).

is used then to study the steady state that results from some An analytic approach to the study of the solutions of this
ideal upstream density profiles and the generation of gravityhonlinear equation and its bifurcations was initiated recently
waves. Furthermore we compare the new formulation withpy the current author (Humi, 2004a, 2006). We showed that
the stream function formulation of Long equation and de-for a base flow without shear and under rather mild restric-
velop new criteria for the stability of the flow. tions the nonlinear terms in the equation can be simplified.
We also identified the “slow variable” that controls the non-
linear oscillations in this equation. Using phase averaging
approximation we derived for self similar solutions of this
equation a formula for the attenuation of the stream function

Long’s equation (Long, 1953, 1954, 1955, 1959) models theperturbation with height. This result is generically related
flow of stratified incompressible fluid in two dimensions over to th-e presence of the nonlinear terms n Long’s quaﬂon.
terrain. When the base state of the flow (that is the unper-The !mpact that shgar ha§ onthe gengratlon gnd amplitude of
turbed flow field far upstream) is without shear the numeri-grav'ty ‘\‘Navgs was |n\,{est|gatec§ by us |r_1 Hu_ml (2006).

cal solutions (in the form of steady lee waves) of this equa- The “Achilles heel” of Long;_egyaﬂon IS rele}ted to the
tion in various settings and approximations were studied byfact that the Valb‘e of the Bruntarsala Irquenpy is usually
many authors (Drazin, 1961; Drazin and Moore, 1967; Dur- Set apriori to a “reasonable constant” which is based on the
ran, 1992: Lily and Klemp, 1979 Peltier and Clark, 1983; density profile of the flow in the far upstream. Furthermore

Smith, 1980, 1989; Yih, 1967; Davis, 1999). The most com-there is no feedback to its value (or variation in its value)
mon approximation in these studies was to set Bruiia from the resulting flow field over the computational domain.
frequency to a constant or a step function over the computa- In some applications (e.g._determination of the refraction
tional domain. Moreover the values of the paramegeand ~ Structure parametet:7; Humi, 2004b) or questions about

1 which appear in this equation were set to zero. In this (Sin_alrplane safety, the atmos_pherlc density dlstrlbutlpn is at least
gular) limit the nonlinear terms and one of the leading second?S important as the flow field. Furthermore density is one of
order derivatives in the equation drop out and the equatiorin® Primitive variables for model atmospheres and its pro-
reduces to that of a linear harmonic oscillator over two di- file can be used to determine temperature profiles assum-

mensional domain. Careful studies (Lily and Klemp, 1979) ing perfect gas law. It follows then that a reformulation of
Long’s equation in terms of the atmospheric density can of-
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274 M. Humi: Density representation of Long’s equation

“streamline displacements”. This is in spite of the fact that where subscripts indicate differentiation with respect to the

from a mathematical point of view the two formulations are indicated variablel=(u, w) is the fluid velocity,o is its den-

in principle equivalent. Thus from a practical point of view sity p is the pressure anglis the acceleration of gravity.

each formulation may turn out to be more useful than the We can non-dimensionalize these equations by introduc-

other under some circumstances. ing
With this motivation it is our objective in this paper to de-

. . , .. . _ x _ No _ u _ LNy
rive a representation of Long’s equation interms of the vari-x = =, 7="—"—z, i=—, w= —5w
able atmospheric density. This representation will require an L Vo Uo Ug
apriori idealized modeling of the flow field. Thus thisnew . _ p No

representation of Long’s equation stands for the “polar oppo- 00 p= gUo,Oop ®)

site” to the one that was derived originally by Long (1953). - -
We shall use this representation to derive a new stability cri—\évgrirreeLS reelz;i/zelnttig frgirzfrf;ﬁt'selﬁ)r;?tth;z@d ;\f’errzpree(; base
teria for the flow. We demonstrate also that it yields new P y Y 9

insights about the excitation of gravity waves over topogra—denSIty (ie. h?.r?)(.). s a constant)Ng 's an averaged value
phy. To this end we study some idealized density and veloc-Of the Brunt-\aisala frequency
ity profiles in the far upstream limit and investigate whether g dpo
! . A2

these profiles support the generation of steady state (density)~ = T dz (6)
gravity waves over topography.

This density representation provides also an efficient algo4n these new variables Eq4-4) take the following form (for
rithm to simulate flows with specified upstream density andbrevity we drop the bars)
velocity profiles.

The plan of the paper is as follows: in Sect. 2 we presentitx +wz =0 (7
a short review of the usual derivation of Long’s equation and
some aspects of its solutions. In Sect. 3 we derive the (gen-
eral) density representation of this equation and specialize itﬁp +wp. =0 ®)
form to some idealized density profiles in the far upstream. In""* <
Sect. 4 we consider the choice of the parameter function that
appears in the density representation and the related question
of gravity wave generation. Section 5 compares the new for-8p (uu, + wu;) = —p, 9)
mulation with the classical stream function formulation of
Long’s equation. We derive also some (approximate) ana-
Iytic solutions over low topography . Furthermore we derive )

a stability criteria for the density distribution and apply it to AP Wwx +ww:) = —u=*(pz + p) (10)
the idealized density profiles that were studied in previous
. . : : where

sections. In Sect. 6 we discuss the results of simulations for
several model atmospheres and the effect of some parame;  NoUo

ters that control the topography on the density distribution.” ~— ¢ (11)
We end up in Sect. 7. with a summary and conclusions.

Uo
2 Long's equation — a short overview K= NoL (12)

In two dimensions(x, z) the flow of a steady inviscid and g is the Boussinesq parameter (Davis, 1999) which controls
mcom_pressmle stratified fluid is modeled by the following stratification effects (assumirigh0) andy is the long wave
equations: parameter which controls dispersive effects (or the devia-

we +w. =0 L tion from the hydrostatic approximation). In the limit=0
* ‘ the hydrostatic approximation is fully satisfied (Smith, 1980,

1989).

upy +wp, =0 ) In view of Eq. (/) we can introduce a stream functign
so that

= s = — . 13

puuy + wuz) = —py 3) “= Vo w v 13)
Using this stream function we can rewrite E§) &s

puwy + ww;) = —p; — pg 4)  J{p.y}=0 (14)
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M. Humi: Density representation of Long’s equation

where for any two (smooth) functions g

af o af o
Jpogy= Lo A%

15
0x 0z 0z 0x (15)

Equation (4) implies that the functiong, v are dependent

on each other and we can express each of them in terms

the other. Thus we can writg asy (p) or p asp (V).
Using ¢ the momentum equation8)( (10) become
Bo(WWox — Yxzz) = —px (16)

Bo (=Y Wx + V) = —i2(pe + p) 17)

275

G(y) is some unknown function which is determined
from the base flow. Henceforth we assume it to be a func-
tion of z only. To carry out this determination &f we con-
sider Eq. 21) atx=—o00 and express the left hand side of this
equation in terms ofy only. (Assuming that disturbances do
r}ot propagate far upstream (Baines, 1995; Yih, 1980). Equa-

cE|on (21) is referred to as Long’s equation.

For example if we let
Y(—00,2) =2

i.e. consider a shearless base flow with-co, z)=1 then

(23)

For brevity we eliminatg from these equations by the trans- and Eg. 1) becomes:

formation x=ux. This leaves Eq.1(6) unchanged and in

Eq. (17) n cancels out. (In the following we drop the bars v2y, _ N2y, [z — v+ p (1/,Z2 + 42— 1)] =0.

on the variablex).
To eliminatep from Eqgs. (6), (17) (after the transforma-
tion mentioned above) we differentiate Eq&6) and (L7)

with respect ta, x, respectively and subtract. This leads to

(o — VxWzz) + oWz — Yazo);
— px (=Y ¥nx + U V¥xz)
— p(=YVax + Yx¥xz)x

1
=——J{z, p}

5 (18)

Using Eq. (4) we can rewrite this equation (after some alge- ¥ (x, 7f(x)) = constant t =

bra) as

1 1
pJ V2P, ¥} + J{Ew,% +v2), p} = _E”Z’ o}

However in view of Eqs.8) , p=p () and this fact can be

(19)

used to eliminate from Eq. @9). To this end we observe

that
Px = Py¥x, Pz = pPy¥z, (20)

This leads then to the following equation fégr(Davis, 1999)

vy — N2(y) [z s wf)] — G(W) (21)
where
N2(y) = -2 (22)

Bp

is the nondimensional Bruntarsala frequency. We observe

that in this definitionV? is a function ofy. (As aresultitcan
be an additional source of nonlinearity in E2f) This is in
contrast to the previous definition of this quantity in Eg). (
which depends only on the base state.

www.nonlin-processes-geophys.net/14/273/2007/

G() = —N?(¥) (w + g) (24)
5 (25)

Itis evident from this derivation that different profiles for the
base flow att=—o0 will lead to different forms ofG ().

For a general base flow in an unbounded domain over to-
pography with shap¢g (x) and maximum heigh# the fol-
lowing boundary conditions are imposed ¥n

Y (=00, 2) = Yo(2) (26)

H Ny

Us (27)

where the constant in EQRY) is (usually) set to zero. As to
the boundary condition off (co, z) we observe that Long’s
equation contains no dissipation terms and therefore only
radiation boundary conditions can be imposed in this limit.
Similarly atz=o0 it is customary to impose (following Dur-
ran, 1992) radiation boundary conditions.

For the perturbation from the shearless base flow

Eqg. (25 becomes
V2 —y2m? + 1% — N2z +n)Bn, —n) =0 (29)
where
N2
2 V2B (30)

2

We observe that whefr|<«1 the boundary condition2{)
can be approximated by

n(x, 0 = —tf(x). (31)
WhenN is constant Eq.Z9) is invariant with respect to trans-
lations inx, z and hence admits self-similar solutions of the

Nonlin. Processes Geophys., 28327667



276 M. Humi: Density representation of Long’s equation

form n=f (kx+mz) (Humi, 2004a). These solutions are in- Physically it reflects the relationship betweeand in the
terpreted as gravity waves that are generated by the flow ovear upstream boundary. Equatiod5j can be considered to
the topography. be the “density representation of Long’s equation”.
From a numerical point of view it is a common practice  We also note that Eq36) can be written in the form
Durran, 1992; Lily and Klemp, 1979; Davis, 1999) to solve
( y P ) h(P)Y2V-(h(p) Y2V p) + 2 = S(p). (37)

Eq. 9) in the limit =0 and x=0 with constant (or step
In Eq. 35) h(p) can be considered as a parameter function

function) N over the domain (and this value &f remain
unchanged even thoughis variable over the domain. (One which is determined by the momentum distribution in the far
upstream base flow. This is similar to the definition of the

can restorgu to Eq. 9) by the the transformatioﬁ:ﬁ.)
Brunt-Vaisala frequency in Egg).

Equation 29) reduces then to a linear equation
We now give several examples for the determination of the

n.:+ N =0. (32)  function S(p) and the resulting forms of E3¥).
We observe that the limg=0 can be obtained either by let-
ting Up—0 or Ng—0. In the following we assume that this
limit is obtained as/p— 0 (so that stratification persists in
this limit).

Equation 82) is a singular limit of Long’s equation as one
of the leading second order derivatives drops whet® and

the nonlinear terms drops out whga=0. This approxima-

3.1 Casel: limp(x,z)=1-az
X—>—0Q0

(Here and in the following we normaliz&(—oo, 0) to 1 and
« is a constant.)

Substituting this value gf in Eq. (35) and expressing as
z:l;—p we obtain

tion and its limitations were considered numerically and an- a? 1-p

alytically (Drazin and Moore, 1967; Durran, 1992; Humi, S = %" () + ——. (38)

20044a, 2006) and was found to be justified only under S"O”%quation 85) becomes then

restrictions even under the assumption that the base flow is

shearless. Nevertheless it is used routinely in the actual ana;(,)v?2, + %h/(,o)[pf + pz2 —a? - 1=r +z=0 (39)
o

ysis of atmospheric data (Shutts et al., 1988; Jumper et al.,

2004; Baines, 1995). 3.2 Case?2: limp(x,z)=e %
X——00

This is the case of an isothermal atmosphere W&hRLTO

3 Long’s equation — density representation
(Dutton, 1986, p. 69).

In view of Eq. (L4) we can expres in terms ofy or
in terms of p. Using the first possibilityo=p (1) leads to
Eq. 21). However if we letyy=1 (p) and use the following
identities

Yo = Yppxs Vo =Vppss V2U = Ypplp2+ 021+, V2p.
(33)

then after some algebra we obtain from EDB)(the follow-
ing

1
7 {(ﬂpw,?)vzp + 5 Bev)plo? + P21+ 2, p} =0. (34)

Since for any function o (p) we haveJ{F(p), p}=0. we

For this base state we have

Inp

1
S(p) = a? [h(p)p + Eh’(mpz} - (40)

and the density representation of Long’s equation becomes
2 2 1 2, 2 22 Inp
h(p)[Vp —a p]+§h (0o +pZ —a“p ]+7+z =0
(41)

3.3 Case3: limp(x,z)=(1—az)", r#l
X—>—0Q

For proper values af andr this relationship has been used
for convective atmospheric studies (Dutton, 1986, p. 67-69).
Following the same procedure outlined above we have

infer that 1 1—plr

L iheo) S(py=a’r =D h(p)p* "+ Sa?r2h (0)p* 2/ +=——
KPP+ 5k (P)pE+pil+z=S(p). I = 2 9 (42)
where and Eq. 85) becomes

h(p)[V?p — a®r(r — 1)p* /"]
h(p) = Bovr; (36) 1
+Zh ()2 + pZ — a®r?p* 2T

and S(p) is some function ofp which is determined by the 2 L
functional form ofp in the far upstream boundary. This func- _ 1—ptr L7=0 (43)
tion can be considered as an integration “constant” or gauge. o

Nonlin. Processes Geophys., 14, 2283 2007
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4 Equations for perturbations from the base state definition of & it is easy to see that this will happen when
w~pl2. For the present base density profile we then have

In this section we derive the equations for the perturbationy,,~(1—az)¥/2 which in turn implies thato~(1—az)~1/2

n=p—po (Wherepo=Ilimy_, _o p(x, z)) from different pro-  j.e. 4q is increasing (slowly) with height. For this special

files of the base density. We would like to emphasize how-casei’=0 and the equation foy reduces to a linear equa-

ever that although we refer tpas a perturbation it is more tjon.

appropriate to refer to it as “deviation from base state” as we 1

place no restriction on the size gf Furthermore the equa- hV2y+ =5 =0. (48)

tions we derive fom are exact (and nonlinear) in general. «

These equations are useful for the numerical simulation ofWhich can be solved by standard methods). We stress that

the density over topography and for the analytical study ofthis an exact result and no approximations (or linearizations)

gravity wave generation from different base state. were made in the derivation of this equation. _

We consider again the three cases that were discussed in The same result can be obtained using the formulation
the previous section. of Long’s equation in terms of streamline displacements

Case 1 8=z—z0 (EQ. 5.3.7 in Baines, 1995),

Substituting forp in Eqg. 39) yields 1da /98 1 9

v2s 4 =4 <— -|v3|2> _ 8905 (49)
> 1, 2, .2 1 gdz \9z 2 2q 3z0
h(p)Von + Sh (o) +n; — 2amz] + —n = 0. (44) ) : ,
o whereg=poU /2. In this case a short calculation shows that

Here (and in the following): and its derivative have to be g=a?/8i.e.q is a constant and Eq49) reduces to a linear
expressed in terms of i.e. h=h(po+n) however we shall equation. This demonstrates again that the traditional and the
leave the notation unchanged for brevity. Furthermore thereglensity formulation Long’s equations are equivalent from a
is no chance of confusion. We wish to emphasize again thamathematical point of view.
EqQ. @4) is an exact equation for. Case 2

Whenyo=Ilim,_, _« ¥ (x, z)=z (that is the base flow is The exact equation for the perturbatigim this case is

shearless) thetro=2=20 and it follows that 1
¢ IV n—a®nl+Sh ()42 —a®n—20e™" (an+n.)]

Br
h == 45 In(1+ e**
) =" (45) LA+ g (50)
o
Similarly if o=z (Shear flow withu=2z) then For shearless base flow withp=z we have
48p(1— p)? _ P

Here we assume that the functional form/ofemains un-  Similarly for yo=z2 we obtain
changed throughout the region under consideration. 4B(In p)?
From this discussion we infer that Egi4) will remain h(p) =
invariant under translations i z and therefore admits self-
similar solutions of the form of= f (kx+mz) only if we can ~ Equation B0) is not invariant with respect to translations and
approximate: andh’ by constants. (That is we first evaluate hence in general will not admit self-similar solutions of the
h' using the exact expression fa(p) and then approximate form n=f (kx+mz). However, for|az|<1 we can use the
it by a constant). One possible strategy to accomplish thisapproximatione“*~1 and under this restriction self-similar
will be to approximate these functions by pg) and#’(og) solutions will be admitted by the resulting (approximate)
and then replace these functions by a “proper” constant.  equation if in additior: and#’ are approximated by a con-
For the case given by Eg4%) such an approximation is stant. The derived equation fgrunder these approximations
possible if|az|«1 in the domain under consideration. We is
then haver~£; andr’=—L£. With this additional approxi-
mation the resulting equation fgftis

o (52)

h[<k2+m2)f“—a2f1+%h/[<k2+m2><f/>2—a2f—2a<af+mf/>]
In(1+ f) _

1 1
h(K2+m?) [+ S [(P4+m?) (f)?=2amf1+= f = 0 (47) o
2 o For i to actually be a constant for this base density profile

az

(where we removed the dependence oh, i’ to emphasize ¥ must satisfyyr~e™ 2 which implies that: = v, decays

0 (53)

the fact that these should be considered as constants) exponentially with height. The resulting equation fois
In view of the need for this second approximation it is in- IN(1 + %2
, ) X 2 2 n(l+e*n)
teresting to determine whehnis actually constant. From the [V —a“n]l+ ——— = (54)

www.nonlin-processes-geophys.net/14/273/2007/ Nonlin. Processes Geophys., 28322667
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which is still nonlinear . However if we assume that<y |
«1 we can linearize this equation to obtain

(074
hv2) — 2]+ <1 =0 (55)

Case 3
The exact equation foy in this case is

h(p) [vzn + o — DA —az) q1— 31*2/’]} + (56)

2
%h/(p) { |:7l§ + I:rlz —ar(l1— az)r—l]

. 1-
—a?r?(1—az)? 723272/r} + az [Bl/r _ 1] -0
o

where

n

B=1+——
+(1—ozz)’

1—pé/r
o

Wheno=z we haveyo= which yields

ﬂp(Z—r)/r

h(p) = (57)

272

We see that when=2, 1 is a constant.
We can simplify Eq. §6) if | ﬁ | «1 using the ap-

proximation(1+s)"~1+ms to obtain

h(p) {vzn 2 —D(r —2)(1— az)_zn} n (58)

1, .
Eh (p) {[n)% + nzz — 2ar(1—az) 117Z — 20%r

N 1—a)t™"y
ro

r—1(1— az)”—zn] —0

M. Humi: Density representation of Long’s equation

5 Comparisons, solutions and stability

It is easy to see that the stream-function formulation of
Long’s equation remains nonlinear for any (nontrivial) base
state profiles ofy andp. In fact this equation becomes lin-
ear only in the limitsf—0 andu—0 (and constaniv?).
These are singular limits from both physical and mathemat-
ical points of view which limit severely the insights that can
be derived form the linearized form of this equation. In
the density formulation even if one linearizes the equation
for the deviationn from the base state (i.e. assuméekl)
there is no need to impose these limitspand . Further-
more we demonstrated in the previous section that for each
of the three model atmospheres considered there exist base
state profiles of the density and stream function under which
the density representation of Long’s equation becomes either
linear or “mildly” nonlinear and hence amenable to analytic
treatment.

For casel wherg_} Iiorgp(x, 7)=(1—az) Eq. @8) is ex-

actly linear regardless of the amplitudef Its eigensolu-
tions (subject to obvious physical constraints) are

Nw = e~ “*(A(w) cosvx + B(w) Sinvx) (62)
wherev?=w?+ 1 andw>0.

The corresponding stream-function Long’'s equation
(Eq.21) for this problem withy=p/2 is

2 1—y?
¢v2w+—[z+é(w3+w3)— 4 }:o. (63)

B 2 o
which is highly nonlinear. However there may exist reverse
situations where the traditional formulation of Long’s equa-

tion in terms of the stream function might be simpler to the

We see that even under this approximation the equatiof?n€ in terms of of the density.

is not invariant under translations with respectzaand

therefore (strictly speaking) does not admit solutions of the
form f(kx+mz). However if|az|<«1 in the domain under

For the other atmospheric models that were considered in
the previous section EqH%) and 61) are also linear. (These
were derived, however, under the constraint of small pertur-

consideration we can make the (additional) approximationP@tion). Wheny is not small the corresponding Eq$4],

1-az~1 and Eq. $8) becomes invariant under translations

(60) are “weakly” nonlinear. (The square root and log func-

in x, z. Under these approximations a solution of the form tions damp the nonlinear effects).

f (kx+mz) must satisfy the following equation

ML+ ) " 02— 2~ D1+

(2 4m) (1P~ 2mraf 2627 (=D f 14120 (59)
Whenh is a constant ane=2, Eq. 66) becomes
hv2n+1;“2[/1+ﬁ—1}=0 (60)

For|n|«1 we can linearize this equation to obtain

0 0. (61)

hv? — =
n+ 200(1 — az)

Nonlin. Processes Geophys., 14, 2283 2007

From another point of view Eq.3@) with N=constant
(which has been used routinely in the literature) admits al-
ways solutions of the forny (kx+mz). On the other hand
the equations derived foy in our formulation show that
this form of solution exists only under very special circum-
stances. In fact even the linearized Edsb){ (61) do not
admit these solutions as they are not invariant under transla-
tions inz. This demonstrates that there exist many profiles
of base density and stream function for which gravity waves
solutions of the formy (kx+mz) (for the density) do not ex-
ist.

In addition even though Eqs5%), (61) have non-constant
coefficients they admit eigensolutions in terms of well known
functions. Using separation of variables we obtain for the

www.nonlin-processes-geophys.net/14/273/2007/
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nonsingular eigensolutions of Ed5)

Nw(x, 2) = Jik(s) [A coswx + B sinwx] (64)

where
r 2V a2 + w? 2¢%%/2
= , S = .
o ha3

Jir is Bessel functions of the first kind and a real non-
negative parameter.

will decay with z (i.e. height) due to the properties of the
Bessel functions.

Similarly for the eigensolutions of Eg6{) we obtain for
w#0

Nw(x,2) = (1 — az)e®*KummemnM (n, 2, s)

[A(w) coswx + B(w) Sinwx] (65)
and
no(x, 2) = AOVI —azJi(r) (66)

for w=0. In these equations

1 2 1-
n=1-—, —w(l—az), ;= 81— az)
o off

Bw’

and Kummep is the Kummer-M function (Abramowitz and
Stegun, 1970, p. 504).

5.1 Boundary conditions and analytic solutions

The eigenfunctions for Eqs48), (55), (60) that were de-

rived above enable us to write analytic solutions for theseg(pq) = K (pg)(po).. + 1h "(p0)(00)2)? + z

equations over low topography.
To derive the appropriate boundary conditions pro
solve Eqg. 48) in the presence of topography (x) we let

p=v? (that is we let the constant of proportionality to be 1).

Hence

nx, tf(x)) = plx, tf(x)) — polx, Tf(x))
= ¥2(x, Tf () — YA(x, Tf (x))

However on the ground (we lef)(x, 7f (x))=1. Therefore

(67)

n(x, 7f (x)) = atf(x) (68)

Observe that this is an exact boundary condition. For low

lying topography we can approximate this equation by
n(x,0) =arf(x) (69)

This is an approximation similar to the one used in B4) (
However we emphasize the fact that in our formulafscemnd

wu are not set to zero. Thus this linearization of the problem

is not equivalent to the one that led to E§2)

www.nonlin-processes-geophys.net/14/273/2007/

From this representation of the eigen-
solutions we infer that excitations governed by this equationn(x, z)) =

279

Following the same procedure outlined in Sect. 2 we ob-
tain for the boundary conditions on Eq54) and 65)

(e, tf (1) = 1— e @/, (70)
Similarly for Egs. 60) and 61) we have
n(x, tf(x) = atf()[2—arf(x)]. (71)

The general solution of Eg48) in the upper half plane is
o0
/ e”“*(A(w) cosvx + B(w) sinvx)dw. (72)
0
For low topography the boundary conditicg®j yields then
_art /Oo
=]

at [ .
= —f f(x)sinvxdx.
T J-o0o

A(w) f(x)cosvxdx,

B(w)

Similar expressions can be derived for the solutions of
Egs. 65), (61). We wish to emphasize that the only ap-
proximation made in the derivation of the solutior2) is

due to the topography (or more precisely the boundary con-
dition on the topography) where E§8) was approximated

by Eqg. 69).
5.2 Stability
Assuming that

Iimoo p(x,2) = po(2) (73)

x——

we infer from Eq. 85) that in this limitS(p) must satisfy
(74)

wherez on the right hand side of this equation has to be re-
expressed in terms @b.

To examine the (linear) stability of the(x, z) against a
perturbation from the base state we write

p(x,2) = po(z) + n(x, 2). (75)

and substitute this expression in E5). Linearizing the re-
sulting equation (aroungy(z)) and using Eq.44) we obtain

2 h(po)
Ve + 1(p0)

”(po)

(po)znz + _[ /(pO)(pO)zz

h(po)
(p0)? — S/(,Oo)}n=0

+ (76)
where primes demote differentiation with respecpto

Since pg is a function ofz only this equation is separa-
ble we can deduce the properties of its solutions by applying
separation of variables. Introducing

n(x,z) = x(x)¢(2) (77)

Nonlin. Processes Geophys., 28327667
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we obtain Since po=1—az>0 both Jo and Yy will remain bounded if
al<1. We conclude then that the amplitudefolvill remain

X(@)x +2ax(x) =0 (78)  bounded with height if this condition is satisfied.

and Case 2
Using Egs. 40), (51) we obtain that

h(po)¢zz + h'(p0) (00):¢: — [A + S'(p0) — ' (00) (00):z 1

14 _ az
-2 2|0 =0 (r9) M@ =rmge

Hence the amplitude ofp will increase with height if

wherei(>0) is the separation of variables constant. Equa-
Aae” % >1.

tion (79) can be rewritten as

Case 3
(h(po)p;); — H(z)p =0 (80) We use Egs.42), (57) and consider only the case with=2.
This leads to
where
h// H — )\. _
H(z) = 1+ §'(po) — h'(00)(p0)zz — (2,00) (p0)? (81) ® 200(1 — az)

Equations 80-81) demonstrate that the properties of the per- Hence the amplitude af will increase with height if
turbation as a function of depend only on. (i.e. the square

of the wave number in the x-direction) and the base state of**(1 —@2) > 1.

the flow. - : . .
S . . (The explicit solution of Eqg.&0) in this case can be ex-

ObI:gliJrI]tlplylng Eq. (80) by ¢(2) and integrating by parts we pressed in terms of Kummar functions).

< Z 5 Zz 5
h(po)pgz| — / h(po)pzdz — / H()¢“dz=0  (82) 6 Numerical simulations for the perturbation

o Jo 0
Assuming that (0)=0 we can rewrite this equation as In previous sections we discussed from an analytical point of

) view different aspects of the density representation of Long’s

do= ¢ 2 ¢ 2 equation for different asymptotic profiles pfand o and
dz h(po) [/0 h(po)g:dz +/o H@)¢%dz (83) derived differential equations for the perturbation from the

base state. In this section we perform numerical simulations

of these equations (that is Edgl, 50, 56) over topography to

examine the different flow patterns that are predicted by these

h(po) > 0, H(z) > O. equations and their relation to gravity waves. In all cases we
considered only a shearless base flowy.g=z. We also let

In fact from its definition (Eq.36) it is clear thath(po) is  r=2in case 3, i.e. we solve E6@) (which is a special case

always positive. Therefore we need to check only the secon@f Eq. 56).

It follows then that a sufficient condition for the amplitude of
¢ to increase with height is

condition. To solve for the perturbation over a finite two dimen-

To make further progress we consider now each of thesional domain[a, c]x[tf(x), b] we assumed thay=0 at
three cases which were discussed in Sect. 3 Witk z. x=a. Radiation boundary conditions were imposed &t

Case 1 andz=b. These are necessary to avoid reflection of the out-
In this casen(p) and S(p) are given by Eqs.4p), (38), re-  going wave. To implement these boundary conditions we
spectively, and we obtain that used “sponge boundaries” et=c andz=>b with exponential

1 damping (as is done in the NCAR/MM5 mesoscale model

H=MX\-— o (Haggenson et al., 1994, and others). In the simulations that

we describe below we let (in nondimensional units}—50,
Hence the amplitude of the perturbation will increase when-5=50 andc=50. The sponge layers startzzat45 andx=45.
everaA>1. Furthermore we can solve EQQj explicitly in In addition we let

this case to obtain

an an
— =0atx=c; — =0atz=>»
$(z) = Crlo(w) + Ca¥o(w) ox O :
whereC1, C7 are constants and Furthermore due to the fact that in these simulations some
waves appear to propagate upstream we added a sponge layer
w2 1-2a)(1—az) atx=a to avoid wave reflection at this boundary. This sponge
N ap layer extends up to=—45.
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Fig. 1. Contour plot ofy with pg(x, 2)=1—az, Y=z, 7=0.75. Fig. 2. Contour plot ofy with pg=e %%, 9=z, t=0.75.

To derive the exact boundary condition appropriate forwas approximately $10° and each simulation took about
each of the equations mentioned above at the bottom topogr&20—25 h on a Xeon 3.2 Mhz CPU.
phy we use the same procedure outlined in Sect. 5.1. Letting Figures 1, 2, 3 present (respectively) the results of the sim-

¥ (x, Tf (x))=0 we obtain the following conditions ulations of the equations mentioned above with these bound-
Case 1: ary conditions and the following topography shape function
n(x, tf(x)) = p(x, tf (x)) — polx, Tf(x))) 1
=(l-ay of ()~ A-apolr. of () [0 =5 (84)
=atf(x)

The parameters used in these simulations were:

Case 2:
1=075 «=001 B=41073, (85)

—_ —ap(x,tf(x) _ —ayolx,tf(x) _ 9 _ ,—atf(x) . .
n(x, f(x)) =e ¢ =1-e (In case 1 was set to @15 to induce stronger stratifica-

tion).
We see from these figures that in the first two cases there is
10, Tf(0) = (L— avr(x, Tf )2 — (L— avolx, tf ()2 8 clear evidence of gravity waves over the topography. How-
ever in the third case there is no such evidence and the pic-
= atf ()@= arf(x)) ture is completely different. This might explain in part why

To solve Egs. 44), (50) and 60) we used the software some current models over predict the production of gravity
package “FlexPde” (2006) This is a finite element pack- Waves (Eckermann and Preusse, 1999; Dewan et al., 1998).

age (with dynamic local grid refinement) which can simu- This suppression effect is due to the different base density

late a system of (nonlinear) partial differential equations inProfile and the nonlinearity of Long’s equation. In fact it
two dimensions over arbitrary domain. Accordingly, exact W&S demonstrated in Humi (2006) that some shear profiles in

boundary conditions were used at the bottom topography?he ba;e flow might have the same effect on the_ generation
(There was no need to use approximations similar to those ifff 9ravity waves over topography. Another possible expla-

Eq.69). The convergence criteria for the iterations was thatnation is that the wave spectrum is concentrated at intrinsic
the step error of|pmr1—pom|| Was less than 50-5 where frequencies abov&'. The question as to which base profiles

m is the iteration number. Due to the fact that dynamic grid N@ve this effect remains an open problem. o
refinement was used the total number of (Newton) iterations V& note the difference in the wave pattern in Fig. 2 as

(approximately 100-125) does not convey the actual Compug:ompared to Fig. 1 and the difference in their horizontal wave

tational effort needed to achieve this convergence. HowevePUmber. We observe also that as expected (due to energy con-

we note that the total number of nodes in the final mesh(es§ervation) the amplitude of the waves increases with height
due to stratification.

l«FlexPde 5" is a trademark of “Pde Solutions Inc.”, Antioch,  These figures demonstrate clearly the role of the base state
CA, 2006. and stratification on the generation of gravity waves and their

Case 3:
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Contour plot of p
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Fig. 3. Contour plot ofy with pg(x, 2)=(1-az)?, Yo=z, 7=0.75. Fig. 5. Contour plot ofy with pg=e %% , 9=z, t=0.75.

Contour plot of p

this phenomena (which is absent in some plots that appeared
in the literature) to the fact that in our simulations we used
nonzero values fop andu while the figures that appear in
the literature usually set these parameters to zero. Further-
more we observe that Long’s equation contains no viscosity
terms. Hence any decay in the amplitude of the waves is due
solely to nonlinear effects. It can be expected therefore that
s 11 dos under these settings a perturbation will decay only slowly
2ol | both downstream and upstream.
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7 Summary and conclusions

0.3

We derived in this paper the density analog representation

* of Long’s equation and examined its application to several
_ ) idealized base density profiles. In this representation the
Fig. 4. Contour plot ofp with pp=1~az , Yo=z, 7=0.75. conditions on the base density and flow profiles which

support the generation of gravity waves become more trans-
parent. Thus the stream function Long’s equation predicts
energy. We wish to note the fact that these simulations wergp 5t gravity waves will be generated whenever Bruiisi(a
carried out with nonzero values gfandu while most of the frequency can be set to a constant and the base flow is
simulations carried out in the literature using the streamfuncnearless. Due to its complexity no other choices of these
tion formulation of Long’s equation set these parameters toparameters was considered in the literature. In the new
Zero. representation a richer structure emerges which involve both
We would like to emphasize that in Figs. 1-3 we plotted the base density and flow. As a result the properties of
the perturbation from the base state. In many plots that apdifferent atmospheric structures can be investigated in depth.
pear in the literature only the (total) stream function is plot- Using this formalism we derived a new stability criteria for
ted. To show that the results of our simulations actually havethe flow and applied it to three different idealized cases. We
the same general features as those that appeared in the liiso showed that in some instances the new representation
erature we plottegh (that is the total density) in Figs. 4, 5. of Long’s equation lead to analytic solutions for the density
These plots correspond to the perturbations shown in Figs. Idistribution.
2.
Note that in Fig. 2 and to some extent also in Fig. 1 the per-Edited by: R. Grimshaw
turbation propagates in the upstream direction. We attributeReviewed by: three referees
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