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Abstract. Quantification of granite textures and structures
using a mathematical model for characterization of granites
has been a long-term attempt of mathematical geologists over
the past four decades. It is usually difficult to determine
the influence of magma properties on mineral crystalliza-
tion forming fined-grained granites due to its irregular and
fine-grained textures. The ideal granite model was originally
developed for modeling mineral sequences from first and
second-order Markov properties. This paper proposes a new
model for quantifying scale invariance properties of mineral
clusters and voids observed within mineral sequences. Se-
quences of the minerals plagioclase, quartz and orthoclase
observed under the microscope for 104 aplite samples col-
lected from the Meech Lake area, Gatineau Park, Québec
were used for validation of the model. The results show that
the multi-scale approaches proposed in this paper may en-
able quantification of the nature of the randomness of mineral
grain distributions. This, in turn, may be related to original
properties of the magma.

1 Introduction

“Ideal granite” modeling was proposed originally by Vis-
telius in the 1960s in order to characterize granite crystal-
lization from sequences of rock-forming minerals in granites
observed under the microscope. The first attempt to formu-
late a conceptual stochastic model for examination of granitic
rocks was made in Vistelius (1966). A more precise model
of granite crystallization from magma was created later, and
this became the model for ideal-granite crystallization (Vis-
telius, 1972). Subsequently, a special version of this model
was developed and called the model of “degenerate” ideal
granite (Vistelius and Romanova, 1976). Stochastic mod-
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els of ideal, degenerate ideal granite, and two models for
metasomatically transformed granites were compared using
sequences of grains observed in granitic rocks of Yosemite
Valley, California (Vistelius and Harbaugh, 1980). A stock of
fine grained potassic granite (Meech Lake aplite) was inves-
tigated using a stochastic model for ideal granite (Vistelius,
Agterberg, Divi and Hogarth, 1983). In all these models,
Markov properties of first and second order of granite se-
quences were determined from many observations and ex-
periments.

From a non-linear theory point of view, first and second
order Markov properties might not be enough to fully quan-
tify the non-linear sequence properties especially for study-
ing the long term memory of a sequence. Scaling issues
have been introduced to characterize the distributions and in-
tertwining properties of rock-forming minerals by means of
a Markov chain-based discrete multifractal model (Cheng,
1997). Fractal and multifractal models had been developed
for characterizing patterns including sequences from a mul-
tiscale point of view (Mandelbrot, 1983). Examples of se-
quences and other forms of objects characterized by scaling
or scale invariance properties include clusters of words in En-
glish literature (Mandelbrot, 1983; Bohez, 1998), aggregat-
ing proteins (Feder et al., 1984), gold films near the percola-
tion threshold (Voss et al., 1982), solar flares (Mogilevsky
et al., 2006), ecosystems (Banavar et al., 2007; Martin et
al., 2006), cloud boundaries (Lou and Liu, 2007), complex
networks (Kim et al., 2007), atmospheric CO2 concentration
(Varotosos et al., 2007), large events in driven nonequilib-
rium systems (Verma et al., 2006), faults on the terrestrial
planets (Schultz et al., 2006), size distributions (Benguicui et
al., 2006), and vein systems in gold deposit (Sasaki, 2006).

This paper will investigate whether sequences of ideal
granite show scaling properties and if so how fractal models
can be used to characterize ideal granites? First, it is neces-
sary to define several quantities on the basis of the sequences
used for ideal granite modeling that might be analyzed from
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Figure 1 Study area and sample locations in Meech Lake aplite and surrounding 

area (after Vistelius et al., 1983). A: Aplite; C: Carbonatite; CS: Calc-Silicate Rock; 

G: Orthogneiss, Granite Pegmatite, Marble, Calc-Silicate Rock, Biotite Gneiss, 

Diopside Gneiss; P: Pegmatite. (Dash lined rectangle shows samples with 

sequence data used for correlation analysis.) 
 

 

Fig. 1. Study area and sample locations in Meech Lake aplite and surrounding area (after Vistelius et al., 1983). A: Aplite; C: Carbonatite;
CS: Calc-Silicate Rock; G: Orthogneiss, Granite Pegmatite, Marble, Calc-Silicate Rock, Biotite Gneiss, Diopside Gneiss; P: Pegmatite (dash
lined rectangle shows samples with sequence data used for correlation analysis).

a scaling point of view. Next a standard deviation index will
be defined for fractal dimensions of mineral clusters in se-
quences. This index is demonstrated to be useful for char-
acterizing granite crystallization from magma with variable
viscosity. The dataset used in the paper consists of the se-
quences from Meech Lake granite in Ottawa used originally
for the ideal granite study by Vistelius et al. (1983).

2 Modeling scale invariance property of finite-element
sequences

In order to quantify the scale invariance property of mineral
sequence we will introduce a few definitions and notations
for modeling scaling property of a general sequences.

2.1 Definition 1

Given a real sequence{xi}
L
i=1, xi ∈ S and||S||/L�1, where

S={a1, a2, · · · , an} is a finite set of real values and||S||

stands for the size of the set,||S||=n. The size of the set
is much smaller than the length of the sequence (n�L), so
that the sequence can be considered as a long sequence for
conducting statistical inference. A k-cluster ofai is defined
as kai ’s following one another continuously in sequence ar-
ranged, as in· · · ajai ...aiak · · ·, j, k 6=i. The number of ele-
ments in the k-cluster is called the length of the cluster. The
array between two neighboring clusters ofai is called a void
of elementai . The length of the void is defined as the num-
ber of elements in it plus one. A cluster and a void with

Nonlin. Processes Geophys., 14, 237–246, 2007 www.nonlin-processes-geophys.net/14/237/2007/



D. Xu et al.: Scaling property of ideal granitic sequences 239

length k are denoted ask-cluster andk-void, respectively,
in the following discussion. For example, in the sequence
“. . . 21113. . . .”, “111” is a 3-cluster of “1”, but “11” is not
a 2-cluster; in “. . . 211132332112. . . ”, the sequence “32332”
is a 6-void of “1” which is the void of length 6 between a
3-cluster and a 2-cluster.

2.2 Definition 2

For a given sequence{xi}
L
i=1, if the number ofk-clusters of

elementai ,N(c(ai)=k), is linearly proportional to the power
of the inverse of the length k of the clusters ask−αi , i.e. for
any existingk with

N(c(ai) = k) ∝ k−αi (1)

then the sequence is called cluster scaling invariant forai ,
denoted by CSI;αi is called the invariance index of cluster.
If the number of k-voidsN(v(ai)=k) is linearly proportional
to the power of the inverse of the length k ask−βi for any
existingk

N(v(ai) = k) ∝ k−βi (2)

then the sequence is called void scaling invariant forai , de-
noted by VSI;βi is called invariance index of void.

2.3 Definition 3

In definition 2, count the number accumulatively
asN(c(ai)≥k) or N(v(ai)≥k). If the number is lin-
early proportional to the power of the length of the cluster
or the length of void, then the sequence is called cluster
accumulatively scaling invariant or void accumulatively
scaling invariant, denoted by CASI and VASI, respectively.
Similarly to Eqs. (1) and (2), if the sequence is CASI and
VASI for ai , then we have the formulae:

N(c(ai) ≥ k) ∝ kαA
i (3)

N(v(ai) ≥ k) ∝ kβA
i (4)

To distinguish between CSI and VSI,αA
i andβA

i are referred
as the invariance indexes for CASI and VASI.

2.4 Property 1

If for any ai in the sequence{xi}
L
i=1, xi∈S={a1, a2, · · · , an}

is cluster scaling invariant, andαi(i=1, 2, · · · , n) are the in-
variance indexes, and thenαi(i=1, 2, · · · , n) are correlated
due to a closure effect,

∑
i

∑
ki

kiN(c(ai)=ki)=L.

2.5 Property 2

For a cluster scaling invariant and void scaling invariant se-
quence{xi}

L
i=1, xi∈S={a1, a2, · · · , an}, αi andβi are corre-

lated because fori=1, 2, . . . ,n∑
k

kN(c(ai) = k) +

∑
m

(m − 1)N(v(ai) = m)

 
 

Figure 2 Typical Meech Lake aplite texture (Vistelius et al., 1983). Sample 73. 

Nichols crossed. Minerals are mostly Orthoclase (57.5%), frequently striped 

Plagioclase (15.6%) and irregularly shaped Quartz (24.2%; rounded forms). 
 

Fig. 2. Typical Meech Lake aplite texture (Vistelius et al., 1983).
Sample 73. Nichols crossed. Minerals are mostly Orthoclase
(57.5%), frequently striped Plagioclase (15.6%) and irregularly
shaped Quartz (24.2%; rounded forms).

=

∑
k

k·kαi +

∑
m

(m−1)·mβi =L+Ci (5)

whereCi are constants related to the number of elements be-
fore the firstai and the number of elements after the lastai

in the sequence.
Similar results can be obtained for the accumulative cases,

CASI and VASI.
If a sequence{xi}

L
i=1, xi∈S={a1, a2, · · · , an} shows the

CSI property for all elementsai , and each cluster or void
corresponds to finite invariance indexesαi orβi , respectively,
then these intertwined clusters of elements can be considered
as special cases of finite multifractals with measuring unit of
cluster length (Cheng, 1997).

3 Scaling properties of ideal granite sequences from
Meech Lake Aplite

3.1 Study area and ideal granite sequences

The study area chosen for this study is the Meech Lake Aplite
in the Gatineau Park, Québec, which was studied by Vistelius
et al. (1983). The dataset used by Vistelius et al. (1983) for
ideal granite modeling is used in the current study. It in-
cludes 104 samples collected from the Meech Lake aplite.
The study area and locations of samples are shown in Fig. 1.
Thin sections were made from these rock samples and se-
quences of three rock-forming minerals: plagioclase, quartz
and orthoclase, were identified under the microscope. An
example of photography taken under microscope is shown
in Fig. 2. Ideal granite sequences published by Vistelius et
al. (1983) are denoted as sequences of three minerals coded
as “1”, “2” and “3”, representing grains of microcline, quartz
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Figure 3 Test for CSI and VSI for element "2" in the sequence of Sample 3  

Plots show the relationships between frequency of clusters and cluster length and 

between voids and void length obtained from sample 3. (A) to (C) show the results of 

voids for elements “1”, “2” and “3”, respectively; and (D) to (F) give the results of 

clusters obtained for elements “1”, “2” and “3”. Logarithmic transformation is 10 

based. Solid lines are fitted by means of least squares. The statistics for these plots are 

given in table 1. 
 

Fig. 3. Test for CSI and VSI for element “2” in the sequence of Sample 3. Plots show the relationships between frequency of clusters and
cluster length and between voids and void length obtained from sample 3.(A) to (C) show the results of voids for elements “1”, “2” and
“3”, respectively; and(D) to (F) give the results of clusters obtained for elements “1”, “2” and “3”. Logarithmic transformation is 10 based.
Solid lines are fitted by means of least squares. The statistics for these plots are given in Table 1.

 

Figure 4 Test for CASI and VASI for element "2" in the sequence of Sample 3 

Plots show the relationships between the accumulative frequency of clusters and 

cluster length and between accumulative frequency of voids and void length obtained 

from sample 3. (A) to (C) show the results of voids for elements “1”, “2” and “3”, 

respectively; and (D) to (F) give the results of clusters obtained for elements “1”, “2” 

and “3”. Logarithmic transformation is 10 based. Solid lines are fitted by means of 

least squares. 
 

Fig. 4. Test for CASI and VASI for element “2” in the sequence of Sample 3. Plots show the relationships between the accumulative
frequency of clusters and cluster length and between accumulative frequency of voids and void length obtained from sample 3.(A) to (C)
show the results of voids for elements “1”, “2” and “3”, respectively; and(D) to (F) give the results of clusters obtained for elements “1”,
“2” and “3”. Logarithmic transformation is 10 based. Solid lines are fitted by means of least squares.

and orthoclase, respectively. An example of a sequence of
this type is

“. . . ,1,1,3,1,2,2,3,1,1,2;3,3,2,1,3,3,2,1,2,1,2,2,2,. . . ”.

In order to obtain results of statistical significance, the se-
quences should be long enough. As a rule, subsequences
separated by “;” in a sequence should be chosen as those
containing no less than 10 grains (Vistelius et al., 1983). The

usual sequence length for this analysis is about 1000 and
there may be several subsequences. The following sequence
is an example taken from sample 3 in the paper by Vistelius
et al. (1983).

1212112121122122121212121131211212121121212
131221221121212213112121212;2312132121211112
12212;21312122311212113212221212121212312212
12122211121212121321212121121321123211221212
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1312131211121313111312121212121;2121121212121
2111212112122121222321312212122123121311321;
12131232131211121112113113122123121213121112
1222112221221312121121212121212211213121121
2122122123221112211311112131211211312112112
1111212131212121212113212122121321321212121
22121212;12121212121321123121212121212121312
2121221121212121212121231212121221111222211
33221;21211211211211313221121221121311212212
113111223112122;121232121213212132121111232
22212121212312121;21221212121221213113211212
2113121111311131311111321213121321212112131
12222111131121;12121213211212132121313131212
2121311212122121212211323213112212121312131
22213121212121311113213121212221213122121212
1332221131311213;21212121122121212221312121
12121122121212212131212112211222122112213121
212121212;121222131121312121213212111312122
131312112123113121212;1213122121322121211221
23112;1121111212112132313121213113131221212
11211312212121113121112112212121212112312113
2121312112121212112131213121212;

These data were used to form Markov transition probabil-
ity matrix for characterizing first and second order Markov
properties. From the results the samples were classified into
ideal granites and non-ideal granites. The former show high
degree of randomness in granite crystallization which might
be interpreted as the magma having had high viscosity due
to relatively low concentration of calcium (plagioclase per-
centage) and high potassium and sodium concentration (or-
thoclase).

3.2 Scaling analysis of ideal granite sequences

To validate the power-law models (1) and (2) with the ideal
granite sequences, the following preprocessing calculations
were conducted:

1. Connecting all sequences observed in a sample by omit-
ting “;” to form one long sequence, which is equivalent
to reading the grains of a section in a zigzag way. This
should be reasonable under the assumption that granite
textures are isotropic.

2. To avoid edge effects, the beginning before the con-
sidered element appears and ending after the last con-
sidered element disappears are regarded as two voids
of the element. For instance, considering grain “3”
in the sample above, “12121121211221221212121211”
before the first “3” and “121212” after the last “3” are
regarded as a 27-void and a 7-void, respectively. This
is reasonable since there is no significant error if the se-
quence is sufficiently long.

3. Linear functions are fitted to the log-transformed data,
log[N(c(ai)=k)] and log (k) for cluster analysis and

Figure 5. Map showing the spatial relationship between distributions of percentages 

of plagioclase in granite and within-group variances of void scale invariance indexes 

calculated from the sequences from samples in Meech Lake aplite for the area 

indicated in Fig.1. The background patterns are created from the percentage values of 

plagioclase using inverse distance weighting interpolation method with searching 

distance 1.2 km, and minimum number of points 12. The size of dots represents the 

level of within-group variance of void scaling invariance index calculated for three 

minerals. 
 

Fig. 5. Map showing the spatial relationship between distributions
of percentages of plagioclase in granite and within-group variances
of void scale invariance indexes calculated from the sequences from
samples in Meech Lake aplite for the area indicated in Fig. 1. The
background patterns are created from the percentage values of pla-
gioclase using inverse distance weighting interpolation method with
searching distance 1.2 km, and minimum number of points 12. The
size of dots represents the level of within-group variance of void
scaling invariance index calculated for three minerals.

log[N(v(ai)=k)] and log(k) for void analysis, by means
of least squares. The slope of the straight-line gives
the value ofαi or βi . Correlation coefficients andt-
statistics related to this linear regression are calculated
for validation of the power-law models (1) and (2).

To illustrate the process we show the results for the void and
cluster analysis of element “2” in samples 3 in Tables 1 and
2, respectively. Based on the data from Table 1 we can pro-
duce plots on log-log paper. If the values of logN(v=k)

and log(k) show linear trend then these data can be fitted
with straight-lines by means of least squares. The correla-
tion coefficients and t-statistics can be calculated from the
least square fittings. For example, Figs. 3b and e show the
results for void and cluster for element “2” calculated from
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Figure 6. Plots showing the relationship between the within-group variance calculated from 

the scaling analysis and the percentages of plagioclases, quartz and orthoclase, respectively. R 

is correlation coefficient.  
 

Fig. 6. Plots showing the relationship between the within-group variance calculated from the scaling analysis and the percentages of plagio-
clases, quartz and orthoclase, respectively.R is correlation coefficient.

Table 1. Data obtained for element “2” from sample 3 for void analysis.

Length (k>1) 2 3 4 5 6 7 8 9 10 18
Frequency [N(v=k)] 213 67 44 17 7 1 6 1 1 1
Accumulative
frequency[N(v≥k)]

358 145 78 34 17 10 9 3 2 1

Table 2. Data obtained for element “2” from sample 3 for cluster
analysis.

Length (k) 1 2 3 4
Frequency [N(c=k)] 296 51 11 3
Accumulative frequency
[N(c≥k)]

361 65 14 3

sample 3. From the plots we can see that the relationships
between log[N(v(ai)=k)] and log(k), log[N(c(ai)=k)] and
log(k) are linear. The data for voids in Fig. 3b were fitted
by a straight-line using least squares which gives the esti-
mated slope = 2.45, correlation coefficientR=0.85 and t-
statistics ast=4.66, respectively. The results of correlation
coefficient and t-statistics indicate that the linear relationship
between log[N(v(ai)=k)] and log(k) is are statistically sig-
nificant which implies that the power-law relationship holds
true betweenN(v(ai)=k) andk. This example validates that
model (2) does hold true for the element “2” in sample 3.
Similarly we have treated the data for other elements “1” and
“3” from sample 3 and the results are plotted in Figs. 3a and
c for voids and Figs. 3d and f for clusters, respectively. In
the same way, the accumulative cases can be investigated as
Fig. 3 shows.

Similar analysis was applied to all other samples and the
results for CSI and VSI analyses are shown in Table 3.
Among the 104 samples, except one mineral of five samples
(98, 135, 138, 139 and 142), all other samples from the study
area gave consistent results showing that the power-law rela-

tionships (1) and (2) are generally hold true for the clusters
and voids of plagioclase, quartz and orthoclase. We may con-
clude that granite sequences collected from the study area
show cluster scaling invariance and void scaling invariance
properties which can be characterized by models (1) and (2)
defined in this paper. Similar results were found to hold true
for the accumulative scaling invariance for clusters and voids
in all the samples (Fig. 4).

3.3 Variance of scale invariance index of three minerals
and its significance for characterizing granite crystal-
lization

Since the scale invariance properties of mineral clusters and
voids quantified using the exponentsα andβ, respectively,
characterize the power-law distributions of the frequency of
clusters and voids, the values of these exponentsα and β

reflect the degrees of complexity of the distribution of miner-
als; for example, a largerα value of a mineral in a sequence
corresponds more rapid decrease of number of clusters with
cluster size increasing, which implies relatively more small
clusters than large clusters of mineral grains. The smaller
value ofα may, on the other hand, indicate less randomness
and more uniform of distribution of mineral grains. There-
fore, if a standard deviation calculated fromα values of the
three minerals, it may reflect the overall heterogeneity of the
mineral grains. If the standard deviation is large it means that
some minerals show high degree of randomness whereas oth-
ers show less randomness in distribution of grains indicating
a general constraint on the crystallization of granites. The
results of within-group standard deviation were calculated
for all samples and the results are plotted in Fig. 5 based on
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Table 3. Results obtained for clusters and voids of elements from Ideal Granite sequences used by Vistelius et al. (1983).

Sample
Void analysis Cluster analysis

Minerals

1 2 3 1 2 3
No Code α R t α R t α R t α R t α R t α R t

1 COG-2 5.49 1.00 559. 2.35 0.97 11.6 0.97 0.76 5.87 2.77 0.97 9.43 4.55 1.00 11.3
2 COG-3 4.43 0.94 6.23 2.54 0.97 11.4 0.88 0.75 5.50 2.80 0.88 3.72 3.08 0.97 3.99 5.77 1 NaN
3 COG-4 4.72 0.99 17.3 2.46 0.86 4.67 0.94 0.67 4.11 3.32 0.93 4.28 3.27 0.98 7.39 5.78 1 NaN
4 COG-5 4.83 0.97 8.14 2.39 0.97 9.90 0.70 0.69 4.98 2.98 0.93 5.25 3.83 0.96 6.06 5.42 1 NaN
5 COG-6 3.10 0.98 13.4 2.12 0.91 5.68 1.85 0.94 10.9 4.04 0.97 5.86 3.16 0.92 4.03 4.68 0.96 3.63
6 COG-7 3.18 0.92 6.48 2.56 0.97 9.83 2.01 0.89 7.19 3.31 0.98 6.48 3.42 0.95 4.36 3.72 1 NaN
7 COG-8 3.94 0.97 9.49 1.73 0.88 6.67 1.73 0.89 7.88 2.59 0.97 9.12 4.06 0.97 3.69 3.50 0.95 4.33
8 COG-10 4.60 0.99 12.6 2.38 0.93 7.55 0.75 0.74 5.54 2.55 0.91 4.92 3.68 0.99 8.41 6.39 1 NaN
9 COG-11 4.16 0.94 5.30 2.35 0.95 9.69 1.59 0.87 7.73 2.83 0.93 4.33 3.20 0.94 4.92 4.86 1 NaN
10 COG-12 3.13 0.85 4.34 2.54 0.92 6.67 1.88 0.81 5.26 3.03 0.96 6.04 3.18 0.98 7.33 3.25 1.00 23.1
11 COG-13 3.00 0.88 5.24 2.66 0.97 12.3 1.51 0.85 6.73 3.34 0.97 5.79 3.51 0.93 4.56 3.66 1.00 13.2
12 COG-14 3.31 0.95 6.64 2.35 0.96 8.21 1.83 0.85 6.09 2.99 0.96 4.67 2.98 0.96 4.93 3.96 1 NaN
13 COG-15 3.74 0.98 8.45 2.56 0.96 9.04 1.09 0.73 4.83 2.63 0.98 10.1 3.77 0.90 2.96 5.12 1 NaN
14 COG-16 4.57 0.99 11.2 2.64 0.97 12.3 1.52 0.86 7.62 3.29 0.92 3.95 3.66 0.98 9.17 7.31 1 NaN
15 COG-17 3.85 0.96 7.00 2.03 0.96 11.3 1.45 0.85 7.10 2.66 0.96 8.60 4.05 0.96 12.9 4.91 1 NaN
16 COG-18 3.99 0.98 9.10 2.80 0.98 12.9 1.19 0.71 4.92 3.29 0.95 4.37 3.41 0.94 7.75 4.53 0.98 4.46
17 COG-19 4.03 0.93 5.87 2.45 0.97 12.2 1.40 0.85 7.82 3.04 0.94 5.70 2.86 0.96 6.54 4.30 1 NaN
18 COG-20 3.57 0.95 8.05 2.51 0.98 13.4 1.04 0.78 6.43 3.26 0.93 4.29 2.78 0.92 5.29 4.14 1 NaN
19 COG-D-1 2.57 0.64 1.71 2.44 0.95 9.84 0.77 0.61 4.18 2.61 0.86 3.72 4.59 1.00 21.7
20 COG-D-2 2.30 0.90 6.35 2.50 0.90 5.69 2.45 0.95 10.6 4.14 0.98 8.05 2.98 0.93 5.03 3.28 0.97 6.05
21 COG-D-3 4.35 0.98 7.92 2.11 0.89 5.87 1.29 0.80 5.51 2.83 0.94 5.78 4.76 0.88 1.81 5.23 1 NaN
22 COG-D-4 5.03 0.99 12.3 2.17 0.98 16.2 0.56 0.47 2.75 1.94 0.97 9.19 4.06 0.99 13.1 5.34 1 NaN
23 COG-D-5 6.27 0.99 8.22 2.36 0.97 11.2 0.82 0.63 4.10 2.39 0.96 7.43 3.91 1.00 23.6
24 COG-D-6 4.13 0.97 7.12 2.53 0.97 9.12 1.33 0.73 4.47 3.16 0.93 4.95 3.85 0.94 3.99 5.7 1 NaN
25 COG-D-7 3.89 0.95 7.23 2.50 0.97 13.1 1.79 0.87 6.42 3.08 0.99 8.77 3.54 1.00 26.9 3.83 0.99 7.13
26 COG-D-8 2.72 0.96 8.48 2.39 0.92 5.72 1.41 0.81 5.80 2.96 0.94 4.64 2.52 0.99 11.4 4.44 0.97 4.20
27 COG-D-9 3.98 0.95 7.39 2.65 0.98 13.4 1.00 0.75 5.59 2.84 0.91 4.36 2.92 0.95 5.40 4.86 1 NaN
28 COG-D-10 2.41 0.95 10.2 2.51 0.96 9.39 2.79 0.95 9.65 5.02 0.97 4.01 2.97 0.94 5.55 3.71 0.92 3.24
29 COG-D-11 3.24 0.98 12.8 2.53 0.98 13.5 1.67 0.86 7.36 3.39 0.97 6.97 3.13 0.96 5.67 3.64 1 NaN
30 COG-D-12 2.70 0.97 11.4 2.13 0.92 6.22 2.15 0.86 5.30 3.52 0.99 10.1 2.85 0.96 7.49 3.49 0.92 3.39
31 COG-D-13 3.57 0.97 7.87 2.61 0.95 8.76 2.13 0.92 8.52 3.43 1.00 14.9 2.98 1.00 17.3 4.25 0.99 7.48
32 COG-D-14 4.64 1.00 19.0 2.65 0.96 10.3 0.71 0.61 3.98 2.54 0.97 7.86 3.03 0.99 11.3 5.52 1 NaN
33 COG-D-15 2.93 0.95 8.95 2.50 0.97 11.1 2.13 0.88 6.32 3.26 0.96 6.32 3.15 0.99 16.8 3.35 0.97 4.38
34 COG-D-16 4.20 0.98 9.26 2.60 0.97 7.66 0.95 0.81 6.97 3.06 0.95 6.19 3.27 0.99 10.7 6.74 1 NaN
35 COG-D-17 3.04 0.94 6.60 2.78 0.95 7.75 1.97 0.88 6.09 3.52 0.97 5.53 3.70 0.89 2.69 3.78 0.99 9.93
36 COG-D-18 5.26 0.92 3.43 2.40 0.95 7.81 1.62 0.88 8.23 3.19 0.97 7.49 3.61 0.97 4.24 4.90 0.94 2.73
37 COG-D-19 4.08 0.98 9.85 2.45 0.97 11.6 1.65 0.90 8.53 2.95 0.99 8.50 3.41 0.98 4.60 3.43 1.00 22.4
38 COG-D-20 4.35 0.97 7.19 2.78 0.93 6.67 0.75 0.59 3.39 2.56 0.89 3.47 4.21 0.98 6.65 5.67 1 NaN
39 COG-D-21 5.13 0.97 6.83 2.36 0.91 6.43 1.26 0.80 6.10 2.80 0.94 4.60 3.29 0.98 5.54 7.13 1 NaN
40 COG-D-22 4.46 0.95 7.11 3.03 0.96 8.21 0.78 0.61 4.02 3.70 0.95 4.39 2.86 0.94 4.97 5.00 1 NaN
41 COG-D-23 5.67 0.99 9.79 2.56 0.99 16.8 0.46 0.43 2.49 2.67 0.92 5.33 4.11 0.96 3.51
42 COG-D-24 5.37 1.00 15.4 2.02 0.94 8.70 0.90 0.80 6.66 2.58 0.87 4.64 4.17 0.99 6.23
43 COG-D-25 3.47 0.93 6.35 2.61 0.96 9.18 1.65 0.92 9.57 2.79 0.96 4.86 3.70 0.95 5.51 3.74 1.00 17.7
44 COG-D-26 3.93 0.93 4.25 2.93 0.96 9.29 0.63 0.59 3.62 3.09 0.90 4.05 3.01 0.89 3.40
45 COG-D-27 3.56 0.95 6.65 2.58 0.96 9.48 1.34 0.88 8.99 3.05 0.96 7.41 3.72 0.95 5.03 4.51 0.99 7.45
46 COG-D-28 3.88 0.97 9.98 3.04 0.96 8.14 0.82 0.67 4.66 3.06 0.86 2.90 2.67 1.00 19.3 4.98 1 NaN
47 COG-D-29 3.43 0.95 7.34 2.62 0.99 16.2 0.98 0.85 8.12 2.78 0.93 5.74 2.81 0.97 6.11 5.85 1 NaN
48 COG-D-30 3.98 0.95 5.97 2.44 0.94 8.11 0.72 0.72 5.39 2.61 0.88 4.04 2.95 0.96 5.84 4.72 1 NaN
72 COG-D-78 4.33 0.97 8.44 2.41 0.97 10.6 1.00 0.76 5.51 3.08 0.95 6.28 2.89 0.96 7.10 6.88 1 NaN
73 COG-D-79 3.39 0.94 6.06 2.82 0.94 7.04 1.03 0.71 4.68 2.98 0.97 8.68 2.67 0.91 3.88 4.91 1 NaN
74 COG-D-80 4.87 0.95 5.38 2.13 0.98 14.4 0.97 0.73 5.50 2.68 0.94 5.52 2.88 0.97 6.11 5.06 1 NaN
75 COG-D-81 3.97 0.98 10.4 2.44 0.96 9.45 1.43 0.87 7.58 3.57 0.92 3.95 2.98 0.97 7.11 4.67 1.00 33.1
76 COG-D-82 4.04 0.95 6.36 2.61 0.91 5.82 0.55 0.59 4.26 2.77 0.91 4.41 2.91 0.96 7.04 6.08 1 NaN
77 COG-D-83 3.75 1.00 213. 2.88 0.98 12.6 0.37 0.37 2.08 2.81 0.95 5.45 2.68 0.99 9.02
86 COG-F-1 2.75 0.94 7.34 2.11 0.97 11.5 2.33 0.92 8.33 2.74 0.94 4.06 2.65 0.95 6.00 4.88 0.98 5.40
87 COG-F-2 3.54 0.96 8.12 2.32 0.97 11.7 1.83 0.84 6.05 2.96 0.97 5.25 3.22 0.95 5.31 4.82 1.00 14.5
88 COG-F-3 4.79 0.96 6.84 2.52 0.99 16.8 0.60 0.55 3.47 1.97 1.00 18.8 2.72 0.93 3.63
89 COG-F-4 3.07 0.89 5.62 2.25 0.95 9.86 1.71 0.85 6.09 2.96 0.95 5.20 3.15 0.95 6.08 3.66 0.97 3.71
90 COG-F-5 3.37 0.97 9.45 2.09 0.93 7.03 1.63 0.85 5.95 3.20 0.98 7.28 2.87 0.93 5.52 3.73 1 NaN
91 COG-F-6 3.79 0.97 8.33 2.55 0.92 5.95 1.18 0.85 6.58 2.57 0.91 3.74 3.17 0.99 7.78 4.79 1 NaN
92 COG-F-8 5.02 0.92 3.28 2.52 0.95 9.38 0.81 0.74 5.67 2.89 0.93 6.48 4.10 0.90 2.88
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Table 3. Continued.

Sample
Void analysis Cluster analysis

Minerals

1 2 3 1 2 3
No Code α R t α R t α R t α R t α R t α R t

93 COG-F-9 4.27 0.97 7.83 1.84 0.91 7.03 1.27 0.81 6.49 2.54 0.90 5.53 3.52 0.97 3.73 4.50 0.99 7.48
94 COG-F-10 3.19 0.99 14.4 2.85 0.97 9.15 1.52 0.87 6.97 3.06 0.97 7.17 3.06 0.99 8.80 4.20 0.99 9.68
95 COG-F-11 4.10 0.91 4.30 3.02 0.92 5.95 0.91 0.65 4.37 3.05 0.85 2.78 3.19 0.96 4.91 4.29 1 NaN
96 COG-F-12 5.16 0.98 8.84 2.05 0.93 7.74 1.16 0.74 5.21 2.53 0.94 7.34 3.46 1.00 12.7 4.98 1 NaN
97 COG-F-13 6.27 0.98 6.69 2.41 0.96 9.62 0.80 0.74 5.62 2.39 0.94 5.50 4.30 0.94 2.71 5.48 1 NaN
98 COG-F-27 4.95 0.98 9.20 3.30 0.97 9.13 0.17 0.22 1.18 2.80 0.95 6.37 3.88 0.96 5.69 5.25 1 NaN
99 COG-F-16 3.15 0.97 8.48 2.44 0.97 12.4 1.89 0.93 9.78 3.49 0.96 6.26 2.83 0.97 7.96 4.15 1.00 28.2
100 COG-F-17 4.84 0.94 4.64 2.76 0.97 10.8 1.07 0.68 4.39 3.20 0.88 3.13 2.98 1.00 38.7 5.94 1 NaN
101 COG-F-18 3.78 0.95 7.09 2.46 0.96 9.53 1.41 0.86 7.95 3.10 0.94 5.47 3.77 0.93 3.51 4.57 1.00 35.2
102 COG-F-19 3.83 0.96 8.37 2.61 0.96 9.86 1.91 0.89 7.92 3.32 0.96 4.82 3.37 0.93 3.62 4.09 0.99 7.07
103 COG-F-20 3.41 0.96 6.12 2.67 0.93 6.64 0.96 0.72 5.16 3.25 0.93 5.59 3.34 0.94 4.02 4.16 1 NaN
104 COG-F-21 6.12 0.97 5.39 2.68 0.96 9.89 0.45 0.38 2.33 2.72 0.90 4.69 4.44 0.95 3.11
105 COG-F-22 3.52 0.95 8.23 2.65 0.96 9.18 1.88 0.85 6.90 3.80 0.93 4.34 2.85 0.96 6.90 4.36 1 NaN
106 COG-F-24 4.42 0.98 7.82 2.45 0.97 10.5 1.29 0.80 6.41 3.16 0.88 3.16 3.62 0.99 9.98 4.77 1 NaN
107 COG-F-25 4.32 0.95 6.73 2.88 0.97 9.56 1.27 0.80 5.62 3.45 0.95 6.00 3.34 0.95 5.22 4.39 1 NaN
108 COG-F-26 3.96 0.86 3.83 2.68 0.95 7.76 0.96 0.79 6.49 3.14 0.95 6.11 2.93 0.97 7.92 4.36 1 NaN
109 COG-F-28 5.86 0.96 5.61 3.46 0.98 13.2 0.57 0.53 3.36 3.40 0.97 7.58 3.60 0.97 3.84
110 COG-F-29 3.68 0.98 9.15 2.41 0.91 5.69 1.68 0.90 8.52 3.54 0.97 6.07 2.84 0.96 7.06 4.58 1 NaN
111 COG-F-30 4.92 0.95 5.50 1.90 0.93 8.44 0.71 0.67 4.65 2.02 0.89 5.19 3.33 0.97 6.21 6.44 1 NaN
112 COG-F-31 4.40 0.93 5.83 3.12 0.97 8.91 1.03 0.73 5.21 3.24 0.95 4.15 3.27 0.89 2.80 4.82 1 NaN
113 COG-F-32 4.74 0.98 9.77 2.46 0.95 9.71 1.08 0.83 7.74 2.73 0.92 5.25 3.53 0.98 9.64
114 COG-F-33 3.36 0.99 16.2 1.53 0.88 7.05 2.32 0.95 11.1 3.08 0.94 5.54 2.90 0.88 2.67 3.43 0.98 8.77
115 COG-F-34 3.03 0.99 16.1 1.83 0.95 9.69 2.53 0.95 8.28 3.12 1 NaN 3.58 1.00 12.8 3.02 0.96 4.64
116 COG-F-35 3.02 0.92 6.43 0.87 0.81 6.25 3.42 0.96 8.76 4.27 0.99 8.79 2.70 0.97 6.45 2.73 0.89 4.45
117 COG-F-36 2.89 0.96 8.35 1.29 0.89 7.63 2.35 0.83 4.78 3.64 0.98 7.53 2.81 0.95 6.06 3.02 0.92 4.02
118 COG-1 4.19 0.97 7.55 1.55 0.93 9.60 1.67 0.94 10.7 2.49 0.95 6.84 3.65 0.99 9.41 4.72 0.98 5.29
119 COG-D-37 5.16 0.89 3.30 2.23 0.91 7.16 1.36 0.85 7.51 2.84 0.94 6.88 2.80 0.99 6.35 4.14 1 NaN
128 COG-D-46 4.92 0.96 6.17 2.20 0.97 11.7 0.96 0.79 6.51 2.89 0.87 4.04 3.54 0.97 5.39 4.38 0.95 2.92
129 COG-D-47 4.27 0.96 6.23 2.39 0.98 12.9 1.25 0.85 7.45 2.44 0.97 6.14 3.32 0.95 5.50 6.02 1 NaN
130 COG-D-55 4.07 0.95 5.58 2.68 0.95 8.21 1.24 0.77 5.51 3.15 0.94 5.51 3.35 0.95 5.27 4.99 1 NaN
133 COG-D-68 5.22 0.99 10.3 2.84 0.94 7.86 0.66 0.57 3.56 2.92 0.91 4.52 3.70 0.96 4.56 5.32 1 NaN
134 COG-D-69 5.00 0.98 7.65 2.87 0.96 8.87 0.61 0.55 3.59 3.06 0.91 4.92 3.46 0.98 6.28 6.27 1 NaN
135 COG-D-70 5.29 0.97 7.32 3.00 0.94 7.27 0.01 0.00 0.01 2.85 0.86 3.37 3.58 0.98 8.32
136 COG-D-71 5.04 0.97 7.73 2.49 0.94 8.03 0.69 0.68 4.29 2.20 0.92 5.42 3.74 0.95 4.12 4.27 1 NaN
137 COG-D-72 5.53 0.97 7.14 2.29 0.91 6.03 0.61 0.61 4.29 2.35 0.86 3.74 3.74 0.89 2.78
138 COG-D-73 4.12 0.97 6.90 2.67 0.99 15.4 0.21 0.11 0.61 2.78 0.95 5.91 2.98 0.97 6.51
139 COG-D-74 5.74 0.90 2.84 2.90 0.97 10.1 0.22 0.29 1.50 2.74 0.90 4.98 2.41 0.94 2.87
140 COG-D-75 2.83 0.94 8.35 3.46 0.96 7.91 1.25 0.85 6.22 3.74 0.98 7.84 3.23 0.91 4.39 5.00 1 NaN
141 COG-D-76 4.96 0.97 8.23 2.51 0.95 7.70 0.81 0.79 6.36 2.63 0.89 3.93 3.95 0.96 4.84 5.48 1 NaN
142 COG-D-77 5.19 0.92 3.96 3.24 0.93 6.22 0.15 0.05 0.26 2.96 0.90 4.16 3.45 0.97 5.93
143 COG-D-86 4.14 0.98 8.41 3.29 0.97 10.6 0.76 0.62 3.70 3.48 0.96 5.94 2.85 0.98 6.61
144 COG-D-92 5.04 0.97 7.10 3.14 0.69 8.56 1.04 0.74 5.15 3.58 0.97 5.54 3.75 0.97 5.72 5.24 1 NaN

Note: The cells with NaN or cells as blanks represent the situations that only one or two lengths of clusters of minerals for which it can not
fit with linear function.

the samples in the rectangular area in Fig. 1. The levels of
within-group standard deviation are represented proportional
to the size of the dots. A visual comparison of within-group
standard deviation ofα-value (represented as dot size) with
the percentages of plagioclase (represented as color patterns)
clearly demonstrates that the standard deviation is negatively
correlated to the percentage of plagioclase. Similar results
were obtained by plotting the standard deviation ofα-value
against the percentages of plagioclase as a scatter plot shown
in Fig. 6a. Figure 6a shows a clear trend with a correlation

coefficientR=−0.696 implying a statistical significant corre-
lation between the standard deviation and the percentage of
plagioclase. Similarly, the results calculated for orthoclase
and quartz show that the standard deviation ofα-value is neg-
atively correlated with percentage of quartz and positively
correlated with the percentage of orthoclase. This discovery
is interest since it may represent overall influence of viscosity
of the magma on randomness of crystallization. Comparing
the results obtained with standard deviation of theα-value
with those with first or second-order Markov model, one can
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Table 4. Summary table providing statistics obtained from all samples from the Meech Lake aplite.

Table 4 Summary table providing statistics obtained from all samples from the Meech Lake 

aplite  

 

Ideal Granite Non-ideal Granite 

 General 
First Order Markov Chain 

Second Order 

Markov Chain 

Number of 

samples  
104 83 9 12 

Minerals 1 2 3 1 2 3 1 2 3 1 2 3 

Average  4.15 2.50 1.24 4.23 2.49 1.16 4.29 2.60 1.27 3.44 2.44 1.73 

SDV 0.90 0.41 0.61 0.90 0.44 0.61 0.64 0.32 0.43 0.79 0.26 0.58 

1.54 

1.20 
1.29 Average of 

within-group 

SDV 

1.51 
1.58 

1.25 
 

see that the discrimination of ideal and non-ideal granites are
not clearly separated in the distribution of standard deviation
of theα-value. This might indicate that the influence of vis-
cosity of magma may not be significant on the near neighbor-
ing grains of minerals which are related to low-order Markov
properties, but it might be significant on distant neighbors
showing long term non-linear memory. This type of long
term non-linear memory might be detectable using a multi-
scale approach as introduced in the current paper. Although
more investigations are needed to understand the phenomena
of randomness of crystallization of granites and the proper-
ties of magma, the results obtained from the current research
might provide interesting statistical indexes for characteriz-
ing such type of behavior. The method proposed in this paper
might be applicable to other types of sequences such as DNA
or RNA sequences. Further investigations along these lines
are worthwhile.

4 Conclusions

Two power-law models were proposed to quantify mineral
sequences for scaling invariance analysis. The data from 104
mineral sequences previously used for ideal granite modeling
were analyzed with the models and the results have shown
that sequences of plagioclase, quartz and orthoclase of gran-
ite sample may show power-law relationships between clus-
ters and voids of minerals and void lengths. It indicates that
the clusters and voids of minerals in the sequence show scale
invariance properties. The standard deviation of the expo-
nents calculated for these three types of minerals from the
power-law relationships fitted to the dataset has shown strong

statistical correlations with the percentages of these minerals
(positive correlation for orthoclase, and negative correlations
for plagioclase and quartz). Therefore, standard deviation
defined in the paper might be an effective index for charac-
terizing the nature of randomness of crystallization of gran-
ites.
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