
Nonlin. Processes Geophys., 13, 99–107, 2006
www.nonlin-processes-geophys.net/13/99/2006/
© Author(s) 2006. This work is licensed
under a Creative Commons License.

Nonlinear Processes
in Geophysics

Nonlinear effects in a conceptual multilayer cloud model

U. Wacker

Alfred-Wegener-Institut f̈ur Polar- und Meeresforschung, 27515 Bremerhaven, Germany

Received: 13 October 2005 – Revised: 31 January 2006 – Accepted: 31 January 2006 – Published: 12 April 2006

Abstract. As conceptual model for a cloud a system is con-
sidered which is open for condensate mass transport and
subject to internal processes such as cloud microphysical
transformation and vertical condensate transport. The effects
of microphysical processes are represented in parameterized
form and the system is divided into two layers to account for
the vertical structure. The evolution is mathematically de-
scribed in terms of four coupled nonlinear ODEs; the prog-
nostic variables are the mass concentrations of cloud water
as well as precipitation condensate in each of the layers.

In the absence of vertical velocity the evolution in the
lower layer is triggered by the evolution in the upper layer.
In the presence of an upwind, the dynamics in both layers is
mutually coupled. Depending on the chosen parameter val-
ues up to four steady states are found. When varying the
parameter upwind velocity, three regimes are distinguished:
For week upwind the long-term evolution is steered by the
external sources; for stronger upwind the cloud condensate
is blown out of the cloud in the final state and does not con-
tribute to formation of precipitation; for intermediate upwind
multiple steady state solution branches arise which character-
ize the transition between those two regimes.

1 Introduction

Formation and evolution of clouds and precipitation are the
consequence of many interacting processes, among them nu-
cleation of condensate particles, their growth, and their trans-
port due to advection and sedimentation within, into and out
of the cloud. Hence we can characterize a cloud system as an
open system with internal interactions between the conden-
sate particles.
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The evolution of cloud systems is mathematically de-
scribed by a set of thermo-hydrodynamic equations. In
numerical simulation models of the atmosphere, cloud mi-
crophysical processes are frequently not modelled in de-
tail but their effect on the prognostic variables is treated in
parameterized form; for parameterization models see, e.g.,
Doms and Scḧattler (1999) and Cotton and Anthes (1989).
Cloud microphysical parameterization schemes are necessar-
ily based on many assumptions, e.g., the type of ice particles
is prescribed and assumed unchanged during the integration
cycle. Since the growth rate of an ice particle depends on its
shape, it will not surprise that model results differ in surface
precipitation and in particular in cloud water content, when
different particle types are assumed (Reinhardt and Wacker,
2004, 2006).

The parameterization equations for the cloud physical
transformations and sedimentation processes turn out to con-
tain nonlinear and autocatalytic expressions in the mass con-
centration of water and ice, respectively. The formal struc-
ture of the prognostic equations for the mass concentrations
is similar to that of the equations which describe the evo-
lution of mass concentrations of chemical substances due
to chemical reactions, such as, e.g., the famous “Brusse-
lator”, see e.g., Nicolis and Prigogine (1977) and Ebeling
(1976). This formal analogy of the dynamic equations mo-
tivated a qualitative analysis of the dynamics of conceptual
open nonlinear cloud physical systems (Wacker, 1992, 1995,
1998). Some typical nonlinear effects, such as transcritical
and Hopf-bifurcations are found, and in case of several pre-
cipitation species also selection effects arise. It turned out in
particular, that the prescribed type of precipitating particles
(e.g. rain drop, graupel, flat snow flake) is decisive for the
order of the transformation rates (whereby the orders are real
numbers) and for the dynamic structure of the system. While
the system always develops towards a fixed point, if the pre-
cipitating particles are assumed to be of spherical-like shape,
matters are different if they are chosen as flat ice particles.
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100 U. Wacker: Nonlinear cloud model

In this case, the system’s long-term evolution develops into
either a point attractor or a periodic attractor, pursuant to the
numerical values of parameters controlling the external forc-
ing. A necessary condition for the occurrence of a limit cycle
is derived in terms of parameters which carry the information
on the selected type of sedimenting particles.

The conceptual cloud model was combined by Palmer
(1996) with a one-dimensional dynamic model for the prog-
nostic variables temperature and velocity, wherein the depen-
dency of the variables on height is accounted for in terms
of a few spectral modes. The evolution of the condensate
fields at different heights is coupled by vertical advection
of condensate. This model describes different vertical mo-
tion regimes such as turbulent, gravity-wave or laminar flow
types. Palmer suggests that the transition between these flow
regimes changes the long-term behaviour of the condensate
variables. As an example, for a parameter range for which
the cloud model alone is in a limit-cycle regime, the transi-
tion from laminar flow regime to gravity-wave regime forces
the transition of a periodic attractor to a chaotic attractor.

A simplified version of Palmer’s model has been recently
investigated by Spassova and Nikolov (2005), who analyzed
the dynamics of a single-layer model in the variables cloud
water and rain water concentrations and vertical velocity.
They also found that the attractor can be a fixed point, a limit
cycle, or of chaotic type, depending on the selected parame-
ter values.

Another study emphasising the importance of the nonlin-
earity of cloud physical transformations is that of Jiang and
Smith (2003). Based on a conceptual model for orographic
precipitation, they identify a threshold point that separates a
precipitating and a nonprecipitating state.

While in Palmer (1996) and in Spassova and Nikolov
(2005) the character of the attractor is modified due to the
interaction with a nonstationary flow field, it is not clear yet,
whether the evolution of condensate concentrations within a
certain cloud layer can be triggered simply by the evolution
in a neighbouring cloud layer due to vertical mass transport
by a stationary flow field. Therefore, in this paper a concep-
tual cloud model for several coupled layers is defined and
investigated with regard to its dynamics. The coupling of the
evolution in adjacent layers is due to vertical mass transport
by sedimentation of precipitation mass and by advection of
cloud water mass; advection of precipitation mass is typically
neglected since the vertical motion of precipitating particles
is mostly dominated by sedimentation. Vertical velocity will
be kept constant to avoid nonstationary forcing and is treated
as a parameter.

To that end, we extend the zero-dimensional conceptual
cloud model as introduced in Wacker (1992, 1998) to a one-
dimensional model. Different to Palmer (1996), the cloud is
divided into few discrete vertical layers, here for simplicity
only two layers. Since it is known from the zero-dimensional
version that a periodic attractor requires the choice of flat ice
particles, we shall restrict the following discussion to such

particles types. Owing to the focus on the dynamics of the
conceptual cloud model, interaction with the velocity and
temperature fields are discarded. The dynamics of the cou-
pled two-layer system will be investigated in terms of finding
unique or multiple steady states and their stability, and of de-
riving information on the system’s attractor(s). The solution
branches and their stability are calculated using a software
package provided by C. V̈olker (personal communication,
1997)1 in combination with MATLAB V7.0.1.

The paper is organized as follows: In Sect.2 the concep-
tual model for two layers is discussed for the case of one-
sided coupling due to sedimentation. In Sect.3 also vertical
advection of cloud water by a constant upwind is allowed;
hence we have two subsystems with two-sided interactions.
Finally the results are summarized and discussed in Sect.4.

2 A coupled two-layer model

We consider a model of a horizontally homogeneous mixed
phase cloud with condensate in form of suspended cloud
droplets and large, sedimenting particles (rain drops or ice
particles), hereafter called precipitating particles. The effect
of microphysical processes in clouds is parameterized by a
scheme of the Kessler (1969) type. Thereby the ensembles
of droplets and precipitating particles are separately charac-
terized by a single time dependent variable, the mass con-
centrations of cloud water (C) and of precipitating particles
(P ).

In the following we concentrate on two important cloud
physical processes. They are the growth of precipitating par-
ticles due to collection of cloud droplets (i.e. accretion in
case of rain drops and riming in case of ice particles) and
sedimentation of the large particles. The first process repre-
sents an internal transformation between the two condensate
categories and the second process signifies a mass sink. All
other processes, e.g., phase transformations or horizontal and
vertical advection, are summarized into a general value8 as
external source rate.

Adopting the same model assumptions for the parameteri-
zation equations as outlined in Wacker (1992, 1998), we ar-
rive at the following equations:

Ċ = 8c − bCP β

Ṗ = 8p + bCP β
+

1

ρ

∂Fp

∂z

(1)

8c and8p represent external source rates. The second term
bCP β stands for the riming/accretion rate. This transfer of
cloud water mass into precipitation mass is an autocatalytic
process and is mathematically described by a nonlinear ex-
pression.∂Fp/∂z denotes the divergence of the downward
sedimentation mass fluxFp.

1Völker, C.: Continuation and bifurcation problems with MAT-
LAB, unpublished manuscript, personal communication, 1997.
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The parameterization equation for the flux reads

Fp = d̃P δ . (2)

ρ−1 ∂Fp/∂z is discretized for a vertical layer of depth1z as

1

ρ

∂Fp

∂z
=

1

ρ

Fpu − Fpl

1z
(3)

with Fpu andFpl denoting the flux at the upper and the lower
boundaries of the layer under consideration. The flux out
of a layer is assumed to depend on the precipitation mass
concentrationP within that layer.

The coefficientsb and d̃, and the exponentsβ andδ are
determined from the parameterization, see Wacker (1992,
1998). They depend on, among others, the chosen type of
ice particles.

We now expand the previous conceptual model with re-
gard to a vertical variation of the model variables. To that
end we divide the model cloud into two vertical layers, each
of depth1z. For simplicity, the same particle type is as-
sumed for both layers, so that the model equations (1) hold
for the upper (index 1) as well as for the lower (index 2) layer
with equal parameter valuesb, d̃, β, δ. We use the discretiza-
tion (3) of the flux divergence and setd=d̃/(ρ1z). Due to
mass conservation the sedimentation flux leaving a layer is
the flux entering the next layer below. However, no precipi-
tation mass falls into the upper cloud layer. Thus the dynam-
ics of the conceptual two-layer cloud model is represented by
the following set of coupled ordinary differential equations:

Ċ1 = 8c1 − bC1P
β

1

Ṗ1 = 8p1 + bC1P
β

1 − dP δ
1

Ċ2 = 8c2 − b2C2P
β

2

Ṗ2 = 8p2 + bC2P
β

2 + dP δ
1 − dP δ

2

(4)

Similarly, the model can be expanded to a multi-layer model.

The source rates8c1,2 and 8p1,2 and the precipitation
falling out of the lower layer (dP δ

2 ) represent interactions
with the environment of the two-layer system. The riming
ratebCP β is an internal nonlinear autocatalytic transforma-
tion of the orderβ+1; the precipitation falling from the upper
into the lower layer is an external sink or source when con-
sidering each cloud layer alone, but it signifies an internal
transformation of the orderδ in the coupled two-layer sys-
tem. Due to the one-sided coupling via sedimentation, the
dynamics in the upper layer is independent of the existence
of the lower layer. Parameters of the system are the source
rates8c1,2 and8p1,2, the coefficientsb andd and the expo-
nentsβ andδ.

It turns out that the system has a unique steady state given
by:

Cs1 =
8c1

b

(
d

8c1 + 8p1

)β/δ

Ps1 =

(
8c1 + 8p1

d

)1/δ

Cs2 =
8c2

b

(
d

8c1 + 8c2 + 8p1 + 8p2

)β/δ

Ps2 =

(
8c1 + 8c2 + 8p1 + 8p2

d

)1/δ

(5)

The four eigenvaluesλ follow as

λ =
1

2
Ai ±

[
−bdδP

β+δ−1
si +

1

4
A2

i

]1/2

for i = 1, 2 (6)

with

Ai = bP
β
si − bβCsiP

β−1
si + dδP δ−1

si (7)

that gives

A1 =
[
(β − δ)8c1 − δ8p1

] (
d

8c1 + 8p1

)1/δ

− b

(
8c1 + 8p1

d

)β/δ

(8)

A2 =
[
(β − δ)8c2 − δ(8p2 + 8c1 + 8p1)

](
d

8c1 + 8p1 + 8c2 + 8p2

)1/δ

− b

(
8c2 + 8p2 + 8c1 + 8p1

d

)β/δ

. (9)

A positive real part of an eigenvalue indicates instability of
the steady state. Instability of steady state requires at least
one of theAi to be positive which can be fulfilled only for
β>δ. If the particles are assumed to be nearly spherical, as
e.g., rain drops and graupel,β<δ holds, and the steady state
is always stable irrespective of the values of8. If, how-
ever, the particles are interpreted as flat ice particles,β>δ

holds, and the real part of the eigenvalue may become pos-
itive. Then the steady state is either stable or unstable de-
pending on parameter8, that is depending on the strength of
the external source rates.

In the following, we shall consider only the case in which
the precipitating particles are interpreted as flat ice particles
with β>δ, because this case shows the more interesting dy-
namical behaviour. Henceforth, the precipitating ice particles
will be interpreted as “aggregates of unrimed radiating as-
semblages of dendrites or dendrites” according to Locatelli
and Hobbs (1974) withβ=1.406 andδ=1.085, b=2827.2,
andd=0.02563 (in SI units), see particle type “1” in Wacker
(1998).
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Fig. 1. Critical source rate of8p1 for marginal stability as a func-

tion of source rate8c1. Units are s−1.

Marginal stability of the steady state requires parame-
ter combinations such thatAi=0. We now consider only
the upper layer. Figure1 gives the critical values of8p1,
called8p,crit, as function of8c1 at marginal stability. For
8p1>8p,crit the steady state is stable, otherwise unstable.

For combinations of the parameter values8c1 and 8p1
outside the critical curve in Fig.1 the system will always
evolve into a stable steady state, which is a focus (for param-
eter values in the vicinity of the critical curve) or a node. Be-
low the critical curve8p,crit(8c1) the steady state turns out
to be an unstable focus or node and the attractor is periodic.
For vanishing external source rate8p1 of the precipitating
species, however, it may occur for weak forcing8c1 thatP1
approaches zero, so that cloud water can be depleted by no
mechanism. Such a system turns out unphysical.

Stability or instability of a steady state in the lower
layer can be also depicted immediately from Fig.1, if 8c1
is replaced by8c2 and 8p1 replaced by the total source
8p2+dP δ

1s for the lower layer. Obviously, the additional
forcing dP δ

1s owing to the influx from the upper layer tends
to stabilize the steady state in the lower layer.

A systematic investigation of the dynamics of the coupled
two-layer system distinguishes four cases. They are sorted
according to the stability of the steady states for the uncou-
pled systems:
(1) Stable steady states in both layers:
The8-parameters required for this situation are such that the
coupled system will always evolve into a stable steady state.
(2) Stable steady state in upper layer, unstable steady state in
lower layer:
For the coupled layers the steady state sedimentation flux
dP δ

1s=8c1+8p1 increases the forcing of layer 2. The steady
state is unstable provided8p2+8c1+8p1<8p,crit(8c2).

This combination is possible, however, only for a weak
source rate8c1.
If, however, 8p2+8c1+8p1>8p,crit(8c2), the impact of
sedimentation into the lower layer forces its evolution into
a stable steady state.
(3) Unstable steady state in upper layer, stable steady state in
lower layer:
The periodic sedimentation flux out of the upper layer acts as
periodic forcing on the lower layer and synchronizes a limit
cycle in C2 andP2. In case of a focus for the lower layer
with short period, the forced periodic evolution is superim-
posed by damped oscillation.
(4) Unstable steady states in both layers:
The periodic forcing by periodic inflow of precipitation from
above triggers off a periodic evolution in the lower layer, and
the entire system develops into a periodic attractor. If the
period of the limit cycle in the upper layer is shorter than
the period for the stand-alone limit cycle in the lower layer,
thenC2 andP2 oscillate in the coupled system with the forc-
ing period. If the period in the upper layer, however, is larger,
thenC2 andP2 show the fast oscillation superimposed by the
forced slow oscillation. An example for this constellation is
shown in Figs.2 and3. Time integration is done using the
MATLAB routine “ode23s”. Figure2 gives the trajectory in
three-dimensional phase space for various combinations of
the four variablesC1, P1, C2, P2, and Fig.3 shows the evo-
lution of the variables at later times after reaching the peri-
odic attractor. The limit cycle inC1 andP1 is passed through
within a period of about 5000 s.C1(t) has a saw-tooth-like
shape.P1 is low during most of the time. It increases rapidly
afterC1 has exceeded a certain threshold value due to the au-
tocatalytic riming. The accompanying depletion ofC1 in re-
turn decelerates further increase ofP1, which is then dimin-
ished rapidly due to sedimentation. The periodic behaviour
of C2 andP2 with a period of some 1000 s is superimposed
by the disturbance due to the temporary, but nevertheless pe-
riodic forcing from the upper layer. Hence, the dynamics in
the lower layer is characterized by the evolution on two dif-
ferent time scales.

3 The two-layer model with advection

3.1 Model equations

In this section the above model is extended by the effect of
vertical advection of cloud water content,−w∂C/∂z. This
additional process changes the two-layer model into a two-
sided coupled one.

We assume, in contrast to the model of Palmer (1996), a
vertical velocity which is constant in space and time. Fur-
thermore we assume a discretization of the advection term of
the upstream type, and no cloud water outside the two cloud
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Fig. 2. Trajectories in three-dimensional phase space for case 4.
Plotted mass concentration values are multiplied by 104. Exter-
nal source rates:8c1=2×10−7 s−1, 8p1=10−9 s−1, 8c2=7×10−7

s−1, 8p2=0,1z=100 m. Initial conditions:C1, P1, C2, P2=10−4.

layers. We confine here to upwindsw>0. Thus the set of
Eqs. (4) is enlarged as follows:

Ċ1 = 8c1 − bC1P
β

1 −
w

1z
C1 +

w

1z
C2

Ṗ1 = 8p1 + bC1P
β

1 − dP δ
1

Ċ2 = 8c2 − bC2P
β

2 −
w

1z
C2

Ṗ2 = 8p2 + bC2P
β

2 + dP δ
1 − dP δ

2

(10)

Due to upward motion, the dynamics in the upper layer
is affected by the dynamics in the lower. Moreover, due to
the absence of cloud water outside the layers, the effect of
advection signifies an additional mass sink−w/1zC1 for the
total system.

A special feature caused by the coupling is discussed now.
Figures2 and3 show that the evolution in the lower layer is
modified by the time-dependent precipitation flux from the
upper layer, that is by superposition of a long-term oscilla-
tion due to the limit cycle in theC1, P1 variables. Figures4
and5 show the corresponding trajectories and time series as
resulting under the same conditions, but with advection of
cloud water mass by an upwind ofw=10 cm s−1. It is noted
thatP1 is very low but nonzero. The striking difference to the
w=0 case is that the long-term evolution is characterized by
a periodic oscillation in all variables with the same period of
about 3000 s. This period is an intermediate value between
the periods charcteristic forC1, P1 andC2, P2, respectively,
in the casew=0 (Fig. 3). Due to advection the evolution of
C1 andP1 of the upper layer is triggered off by the periodic
cloud water mass transport into the upper layer, which pre-
vents the formation of the long period limit cycles as seen in
Fig. 3. The choice of other parameter values may result in
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Fig. 3. Time series of cloud water and precipitation mass concen-
trations (multiplied by 104) for a time interval 90 000 to 100 000 s,
i.e. after reaching the periodic attractor. Model conditions as for
Fig. 2.

a different period of the coupled system or in a steady state
attractor.

It is noteworthy that the timescales of the evolution of the
concentrations for the examples shown in Figs.3 and5 are
roughly of the order of an hour. They certainly depend on the
control parameters, but they are of the order of time scales
known for real clouds. Moreover, Rauber et al. (1986) re-
port from the observation of a cloud system a sequel of two
maxima of liquid water content and of precipitation rate; the
highest liquid water content occurred prior to the onset of
precipitation, and after the onset, liquid water content de-
creased substantially. This type of evolution is similar to that
seen in Figs.3 and5. A comparison between the results of
the idealised study with real world phenomena is subject to
handicaps due to the many model simplifications. Hence,
it cannot be decided whether the similar features are due to
the same physical mechanisms, or triggered off by other pro-
cesses as, e.g., nonstationary vertical motion.

3.2 Special case:8p1=0,8p2=0

The special case of no external sources of precipitation mass,
that is8p1=0 and8p2=0, will be discussed first. This case
is of physical relevance, since the dominant external source
and sink for precipitation mass in a cloud layer are the sedi-
mentation mass fluxes into and out of the layer, represented
in terms ofdP δ

i .

This model system turns out to have multiple steady states.
One of them is characterized by vanishing precipitation mass
concentrations, in which the external sources8c1,2 for cloud
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Fig. 4. As Fig.2, but for vertical velocityw=10 cm s−1.

water are balanced by the advective outflow, that is:

C1s = (8c1 + 8c2)
1z

w
P1s = 0

C2s = 8c2
1z

w
P2s = 0

(11)

This steady state (11) has no counterpart in the casew=0,
see previous Sect.2. A linear stability analysis of the steady
state (11) gives two negative and two zero eigenvalues. Inte-
gration of (10) shows that the steady state is a point attractor,
however, with only a small attracting basin.

Other steady states exist, but are not found analyti-
cally. The bifurcation diagram is given in Fig.6 for fixed
8c2=10−6 s−1 and varying8c1. Multiple steady states are
found for all 8c1-values. While for weak external forc-
ing three steady states are found for equal parameter values,
two further steady states are born at a critical source rate of
2.94×10−7 s−1. Beyond the tangent bifurcation, five steady
states are found. The numerical differences in some steady
state branches are within drafting accuracy. The steady state
values ofP1 on branches 3, 4, and 5 and ofP2 on branch 4
are zero. It turns out that the steady states are linearly sta-
ble or unstable as indicated in Fig.6 by the solid and dashed
lines, respectively. On branch 1 a Hopf bifurcation occurs
at 8c1=7.2783×10−7 s−1. Indeed, numerical integration of
the set of Eqs. (10) shows that at least for8c1 slightly less
than that value, the system possesses a periodic attractor; its
attracting basin, however, is limited by the attractor basin of
the point attractor on solution branch 4 and eventually van-
ishes for8c1 smaller than a certain value.

3.3 General case for8p1, 8p2≥0

In this subsection we shall see how the multiple steady states
are modified by additional external sources8p>0. Ob-
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Fig. 5. As Fig.3, but for vertical velocityw=10 cm s−1.

viously, non-vanishing source rates8p1 or 8p2 prevent a
steady state with vanishing mass concentrationP1 or P2 as
for the branches 3, 4, and 5 in Fig.6, and it is expected
that steady state branches may exist only for parts of the pa-
rameter range. Figure7 gives the bifurcation diagram for
the steady states as functions of8c1 for fixed parameters
8c2=10−6 s−1 and w=10 cm s−1, as in Fig.6, except for
8p1=8p2=10−9 s−1. Even for this weak source rate for pre-
cipitation mass we find qualitative differences in the steady
states, and this example illustrates how the solution branches
are modified with increasing8p1,2.

Firstly, it is noted that only up to three solution branches
are found. Their numbering in Fig.7 follows that in Fig.6.
Solution branches 4 and 5 with small values ofP1 andP2
exist only up to a certain8c1 value, which in turn decreases
with increasing8p1,2. The selected8p1,2-values are such
that branches 4 and 5 do not exist any more. Branches 2 and 3
also end at an upper8c1-limit and merge in a cusp, as seen in
Fig. 7. This 8c1-limit decreases with increasing8p1,2, and
for 8p1=8p2=10−8 s−1 the cusp has already dissappeared;
irrespective of8c1 only a unique steady state remains.

In general, increasing external forcing by8p1,2 removes
some freedom from the system’s dynamics and forces its de-
velopment into a unique attractor. For the parameter val-
ues chosen for the calculations shown in Fig.7, three steady
states are found in a small range of parameter values8c1.
This range, however, does neither include very weak nor
strong forcing8c1. The attractor turns out to be unique for
all 8c1-values, that is either the stable steady state on branch
3, or the stable steady state on branch 1, or a limit cycle re-
lated to the unstable steady state on branch 1 if branch 3 does
not exist. Multistability may occur for smaller8p1,2-values,
when the branches 3 and 1 with stable steady states coexist
at given8c1-values, as happens, e.g., under conditions used
for preparing Fig.6.
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Fig. 6. Bifurcation diagram for steady states as functions of the
parameter8c1 for 8c2=10−6 s−1, 8p1=0, 8p2=0, andw=10 cm

s−1. The five branches are numbered. Some branches distinguish
only within drafting accuracy. Steady states are linearly stable (solid
line) or unstable (dashed line).

0 0.5 1 1.5 2

x 10
−6

0

2

4

6

8
x 10

−4

Φ
c1

C
1

0 0.5 1 1.5 2

x 10
−6

0

1

x 10
−4

Φ
c1

P
1

0 0.5 1 1.5 2

x 10
−6

0

1

2
x 10

−4

Φ
c1

C
2

0 0.5 1 1.5 2

x 10
−6

0.5

1

1.5

2

2.5

3
x 10

−4

Φ
c1

P
2

1

1

1

1
2

2

2

2

3

3

3

3

Fig. 7. As Fig.6, but for8p1=10−9 s−1, 8p2=10−9 s−1.

3.4 Variation of the parameter vertical velocityw

Besides the external source rates8 the dynamics of the cloud
system also strongly depends on the parameter vertical veloc-
ity w. Vertical velocity controls the internal interaction be-
tween cloud water concentrations of the two layers as well as
the outflow of cloud water to the exterior of the system under
consideration. We had already found in Sect.3.2for 8p1,2=0
that a steady state characterized by vanishing precipitation
species (P1,2s=0) is admissible provided thatw>0, while
such a state is not admissible forw≤0.
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8c1=6×10−7 s−1, 8c2=10−6 s−1, 8p1=10−9 s−1, 8p2=10−9

s−1. Steady states are linearly stable (solid line) or unstable (dashed
line).

To elucidate the role of advection for the dynamic structure
of the system, the bifurcation diagram with respect to param-
eterw is shown in Fig.8. For upwind velocities between
about 12 and 30 cm s−1 multiple steady states exist, while
for weakerw-values the steady state is unique and unstable.
A synoptic view on Figs.7 and8 shows that for the set of
parameter values which are common to both (e.g.w=10 cm
s−1, 8c1=6×10−7 s−1) the single steady state is found along
branches 2 and “a”, respectively. For stronger upwind the
transport of cloud water becomes so efficient that only few
condensate is left for the growth of precipitating particles
due to riming. Indeed, in the single steady state, that is the
one on branch “d”, precipitation concentrations are low and
the cloud water contentsC1 andC2 decrease with increasing
w. This configuration shows some similarities to the steady
state given in Eq. (11) for the limiting case8p1,2=0 with
P1,2s=0 andC1,2s∝w−1. On the other hand, for weak up-
wind the type of evolution is primarily determined by the
external8-sources, while advection becomes unimportant.
This situation is similar to that forw=0 discussed in Sect.2.
The values of the8’s dominate the steady state and its sta-
bility. For the selected parameter values for Fig.8 the steady
state turns out to be unstable and the attractor is a limit cy-
cle. A range of intermediatew-values exists for which none
of these regimes dominate. Instead the dynamics allows for
multiple steady states. Two of them merge into the weak-
upwind regime (branch “a”) and the “strong”-upwind regime
(branch “d”), respectively. (Note thatw of the order of sev-
eral tens of centimeters per second is not really considered as
a strong upwind.)
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Empirical data for a systematic verification of the bifurca-
tion diagrams of the conceptual model unfortunately are not
available. Instead, the characteristica of two cloud types will
be discussed with regard to the steady state types of branches
“a” and “d” in Fig. 8.

A typical nimbostratus cloud is characterized by an in-
cloud vertical air motion less than a few tens of centimeters
per second and fallout of precipitation (Houze, 1993). These
features are similar to the steady states described by branch
“a”, when disregarding their (in-)stability.

An example for a cloud which forms at moderate upwind
of the order of 1 m/s is a cirrus uncinus. According to the
empirical model outlined by Houze (1993), the condensate
particles are carried upwards up to the top of the updraft. In
this “head” of the cloud the particles are, due to the strong
vertical shear of horizontal wind, advected out of the upwind
region. Downstream they move downward due to downdrafts
and form the characteristic fallstreaks. The upward transport
of condensate in the head is sufficiently fast to suppress pre-
cipitation formation. This situation is similar to the steady
state situation according to branch “d” in Fig.8.

4 Discussion

The zero-dimensional conceptional model for a cloud sys-
tem, as proposed in Wacker (1992, 1998), is extended to a
one-dimensional model to account for the vertical structure
of the condensate variables and for the coupling of the dy-
namics in different layers due to mass transfer by advection
and by sedimentation. A two-layer model is proposed, the
dynamics of which is mathematically described by four cou-
pled nonlinear ordinary differential equations. In this model,
interaction of the open system with its environment is due to
fall out of precipitation by sedimentation, loss of cloud water
by advection out of the system, and other processes, formu-
lated by lump-sum constant source rate8. Internal interac-
tions are due to riming and mass transports between the two
layers by (downward) sedimentation and (upward) advection
of cloud water. Structural analysis of this dynamic system
shows that, compared with the zero-dimensional model, ad-
ditional features arise due to vertical coupling.

In case of neglected advection, the dynamics of the single
layers is coupled one-sided, that is the upper layer behaves as
in the zero-dimensional model while the lower layer is sub-
ject to an additional source arising from the inflow of precip-
itation. Hence its longterm evolution is triggered off by the
longterm evolution of the upper layer. For instance, a peri-
odic attractor for the upper layer acts as periodic forcing on
the lower layer, and the entire system develops into a periodic
attractor. The characteristic time scales for the evolution in
each layer decide, in which way the oscillations of the upper
and lower layer variables are synchronized or whether the
dynamics in the lower layer shows a superposition of varia-

tions at two frequencies, that is an evolution on two different
time scales (see Fig.2).

When advection of cloud condensate by an upwind is ad-
ditionally included in the model, then the dynamics in both
layers is mutually coupled. Depending on the chosen values
of external parameters, multiple steady states, namely up to
four in the case of vanishing constant external sources8, are
found, some of which are linearly stable and some of which
are linearly unstable. In particular, when varying the control
parameter upwind velocity for otherwise constant parame-
ters, three regimes are distinguished: (i) For weak upwind,
the system has a unique steady state, which turns out to be
unstable, and the dynamics is characterized by a periodic at-
tractor. The constant external sources influence the evolution
so that condensate concentration never remains permanently
low. (ii) For “strong” upwind, the long-term behaviour is
controlled by the advection of cloud water. Again the steady
state is unique, but stable, such that the long-term evolution
runs into a point attractor. In this final state, the input of cloud
water due to the external source is mostly blown out of the
upper layer. Since hardly any condensate is left for riming,
precipitation concentrations remain low. Hence advection is
the dominating process in this regime. (iii) For intermediate
upwind velocities, however, multiple solution branches turn
out, which merge by cusp and tangent bifurcations. Some of
the steady states resemble the situation (i) with noteworthy
precipitation concentrations, some of them situation (ii) with
suppressed precipitation.

The study has shown that not only a nonstationary flow
field can trigger off typical nonlinear features in the evolution
of condensate concentrations, as shown by Palmer (1996),
but that characteristic nonlinear effects are also triggered off
by the interaction of condensate in adjacent vertical layers.
The nonlinear system “cloud” proves itself to reveal many
dynamical structures known from the theory of nonlinear
systems. Coupling of the dynamics in several layers does
not neccesssarily force the system to evolve into a unique at-
tractor, but allows several evolution types, depending on the
control parameters.
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